
CS3300: Final Exam: Nov 16 2023 (A)
Maximum marks = 90, Time: 3.00 hrs

Name: Roll:

• Write your roll number on every sheet of the answer paper and this QP. You have to submit both.

• Start the answer to every question in a new page.

• Negative marking. Each incorrect answer for a True/False question will lead to deduction of 0.5 mark.

• You may make any reasonable assumptions that you think are necessary; but state them clearly.

• Total questions=9. Total marks=90.

1. Lambdas, Type-casts, InstanceOf Checks

(a) Consider the following code in a Java like language that supports lambdas with no arguments. The syntax
of lambdas is similar to that of Java with some minor simplifications.

class A{

int f1;

void foo(){

f1 = 2;

int a = 2, b = 5;

y = lambda () -> {

int b = f1;

System.out.println(a+b);

}

... Additional code not shown ...

} ... Additional code not shown ...

}

Show the contents of the closure to be generated by the compiler for the given lambda. [4]

(b) Consider the following Java code.

class A { ... }

class B extends A { ... }

class C{

void foo(boolean flag){

A x;

if (flag) x = new B();

else x = new A();

B y = (B) x;

...

} }

(i) Show the code that has to be generated for the type-cast statement. [2]
(ii) Also clearly show the additional fields to be added to the objects allocated to support type-cast
operations. [2]

(c) In Java exception thrown in one function may be caught in a different function. True/False. [1 mark]

(d) Consider the code shown below:

for (int i=0;i<100;++i){ throw new Exception(); }

. The number of exceptions thrown by the above code = ——– [1 mark]

1

2. Dimensions of Analysis and Constant Propagation

(a) Consider the following code.

main(){

int a = 2;

int b = 3;

int c = a + b;

b = b + 1;

L1:

}

Which of the variables would be considered as constants, using flow-insensitive analysis and which of the
variables will be considered as constants using flow-sensitive analysis at L1? [2+2]

(b) Consider the following code.

main(){

int a = foo(4, 4);

int b = foo(3, 5);

}

int foo(int x, int y){

int t = (x+y)/2;

return t;

}

Using context insensitive analysis, which of the variables a, b, t will be considered constants? [2 marks]
Using context sensitive analysis, which of the variables a, b will be considered constants? [2 marks]

(c) If no function is called more than once, then context-sensitive and context-insensitive analysis will produce
the same results. True/False [1 mark]

(d) Constant propagation can help reduce code size. True/False. [1 mark]

3. Loop Analysis

(a) Consider the following code:

for (i=0;i<n;++i){ S }

Write the code after unrolling the body by a factor of 4. Hint: n can be any arbitrary integer.

(b) Consider the following code:

S1: x = 2

S2: y = x + 3;

S3: x = y * x;

S4: z = y;

Choose, which of input, output, anti and flow-dependencies exist between S1 and S2, S1 and S3, S2 and
S3, and S1 and S4. If no dependency exists, you can write “no-dependency”.

(c) Loop-invariants factoring reduces code size. True/False

(d) Overly aggressive loop unrolling can worsen the execution time performance. True/False.

4. Optimizations in Basic Blocks

(a) Consider the following code.

x = 1

y = 2

p = x + y

z = x + y + 2

x = z * x

y = x + x

Draw the DAG for the above code. [4 marks]

2

(b) Consider the following pair of instructions.

... // Some code not shown

LD R1 [M1] // loads from the designated memory location M1 to register R1

ST [M1] R1 // stores to the designated memory location M1 from register R1

... // Some code not shown

State the conditions under which (i) both the statements can be removed. (ii) only the second instruction
can be removed. [2 + 2 marks]

(c) During algebraic simplifications,

i. x ∗ 2 can be replaced by: ———- [0.5 mark]

ii. x/5.0 can be replaced by: ———- [0.5 mark]

(d) An expression 0/x can always be replaced by 0, using algebraic simplification. True/False [1 mark]

5. Liveness and Register Allocation

(a) Consider the following code.

L0 : if (x2 <= 0) then goto L2

L1 : goto L8

L2 : p = x1 / x2

L3 : q = p * x2

L4 : r = x1 - q

L5 : x1 = x2

L6 : x2 = r

L7 : goto L0

L8 : o = x1

L9 : return o;

Give the live-ranges (as sets of instructions) of all the variables used in the above code. [4 marks] Draw
the interference graph. [2 marks] Use Kempe’s heuristic to assign registers, assuming the availability of
two registers. Show how many variables (and which ones) will be spilled? [2 marks]

(b) Give the flow equations to compute the IN and OUT for liveness analysis. [1 mark]

(c) A variable live out at a node must be live in at all of its successors. True/False [1 mark]

6. Basic Blocks and Control Flow Analysis

(a) Consider the below shown IR of a function to build a CFG.

S1: i = 1

S2: j = 1

S3: t1 = i*100

S4: t2 = t1 + j

S5: t3 = i + j

S6: t4 = t3 == 100000

S7: if t4 return

S8: a[t2] = t3

S9: j = j + 1

S10: if (j < 100) goto S4

S11: i = i + 1

S12: if (i < 100) goto S3

S13: return

List the index of the leader instructions. [3 marks]. Draw the CFG. [3 marks].

(b) Write an IR code, which leads to a basic block which is both a branch and join node. [2 marks]

(c) Every CFG must have at least two basic blocks. True/False [1 mark]

(d) An Exit node may have multiple predecessors. True/False [1 mark]

3

7. IR and IR generation

(a) Consider the C code shown below.

do {

x = x + i;

y = y - i;

if (x < y) continue;

i = i + 1;

} while (i < n);

Translate the above code to three address code IR (discussed in the class). [4 marks]

(b) Consider the following grammar.

S -> id = E

E -> E - E

E -> (E)

E -> id

E -> num

Write the SDT to generate three-address IR code. [4 marks]

(c) Given a production of the form A → X Y Z in an L-attributed grammar, give the evaluation order for
the inherited and synthesized attributes of A, X, Y , and Z. [2 mark]

8. (a) Consider the following grammar.

T -> T * F

T -> T / F

T -> F

F -> id

Rewrite the grammar by left-factoring and removing left-recursion. [2 + 2 marks]

(b) Consider the following grammar.

S -> aAd | bBd | aBe | bAe

A -> c

B -> c

Construct the LR(1) parsing table for the grammar after constructing the LR(1) item sets [3 + 3 marks].

9. Potpourri

(a) Write a code that will lead to a lexical-error by a C compiler. [2 marks]

(b) Name the file, which contains the body of the C printf function: ——– [1 mark]

(c) If there is no conflict in the LALR(1) parsing table for a grammar, then the corresponding LR(1) parsing
table also will have no conflicts. True/False [1 mark]

(d) The number of states in LALR(1) CFSM matches that of SLR(1) CFSM. True/False [1 mark]

(e) Register allocation is a machine dependent optimization. True/False [1 mark]

(f) Function inlining is a machine independent optimization. True/False [1 mark]

(g) Peephole optimization is typically a whole-program optimization. True/False [1 mark]

(h) The caller does not have to store/restore all the caller-save registers. True/False [1 mark]

(i) A function need not save/restore all the callee-save registers in the prologue/epilogue. [1 mark]

4

