
CS3300 - Compiler Design
Semantic Analysis - IR Generation

V. Krishna Nandivada

IIT Madras

*

Acknowledgement

Copyright ©2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 2 / 32

*

Intermediate representations

Why use an intermediate representation?
1 break the compiler into manageable pieces

– good software engineering technique
2 simplifies retargeting to new host

– isolates back end from front end
3 simplifies handling of “poly-architecture” problem

– m lang’s, n targets⇒ m+n components (myth)
4 enables machine-independent optimization

– general techniques, multiple passes
An intermediate representation is a compile-time data structure

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 3 / 32

*

Intermediate representations

front back
end end

source
code code

machineoptimizer
IR IR

Generally speaking:
front end produces IR
optimizer transforms that representation into an equivalent
program that may run more efficiently
back end transforms IR into native code for the target machine

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 4 / 32

*

Intermediate representations

Representations talked about in the literature include:
abstract syntax trees (AST)
linear (operator) form of tree
directed acyclic graphs (DAG)
control flow graphs
program dependence graphs
static single assignment form
3-address code
hybrid combinations

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 5 / 32

*

Intermediate representations - properties

Important IR Properties
ease of generation
ease of manipulation
cost of manipulation
level of abstraction
freedom of expression
size of typical procedure

Subtle design decisions in the IR have far reaching effects on the
speed and effectiveness of the compiler.
Level of exposed detail is a crucial consideration.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 6 / 32

*

IR design issues

Is the chosen IR appropriate for the (analysis/ optimization/
transformation) passes under consideration?
What is the IR level: close to language/machine.
Multiple IRs in a compiler: for example, High, Medium and Low

In reality, the variables etc are also only pointers to other data
structures.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 7 / 32

*

Intermediate representations

Broadly speaking, IRs fall into three categories:
Structural

structural IRs are graphically oriented
examples include trees, DAGs
heavily used in source to source translators
nodes, edges tend to be large

Linear
pseudo-code for some abstract machine
large variation in level of abstraction
simple, compact data structures
easier to rearrange

Hybrids
combination of graphs and linear code
attempt to take best of each
e.g., control-flow graphs
Example: GCC Tree IR.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 8 / 32

*

Abstract syntax tree

An abstract syntax tree (AST) is the procedure’s parse tree with the
nodes for most non-terminal symbols removed.

�

hid:xi �

hnum:2i hid:yi

This represents “x − 2 ∗ y”.
For ease of manipulation, can use a linearized (operator) form of the
tree.
e.g., in postfix form: x 2 y ∗ −

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 9 / 32

*

Directed acyclic graph

A directed acyclic graph (DAG) is an AST with a unique node for each
value.

x := 2 ∗ y + sin(2∗x)
z := x / 2

:=

hid:xi

+

� sin

hid:yi

hnum:2i

�

hid:xi

:=

hid: zi

=

Q: What to do for matching names present across different functions?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 10 / 32

*

Control flow graph

The control flow graph (CFG) models the transfers of control in the
procedure

nodes in the graph are basic blocks
straight-line blocks of code
edges in the graph represent control flow
loops, if-then-else, case, goto

if (x=y) then
s1

else
s2

s3

x=y?

s2s1

s3

falsetrue

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 11 / 32

*

3-address code

At most one operator on the right side of an instruction.
3-address code can mean a variety of representations.
In general, it allows statements of the form:
x ← y op z

with a single operator and, at most, three names.
Simpler form of expression:
x - 2 * y

becomes
t1 ← 2 * y
t2 ← x - t1

Advantages
compact form (direct naming)
names for intermediate values

Can include forms of prefix or postfix code

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 12 / 32

*

3-address code: Addresses

Three-address code is built from two concepts: addresses and
instructions.

An address can be
A name: source variable program name or pointer to the Symbol
Table name.
A constant: Constants in the program.
Compiler generated temporary.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 13 / 32

*

3-address code

Typical instructions types include:

1 assignments x ← y op z

2 assignments x ← op y

3 assignments x ← y[i]

4 assignments x ← y

5 branches goto L

6 conditional branches
if x goto L

7 procedure calls
param x1, param x2, . . .param xn

and
call p, n

8 address and pointer assignments

How to translate:

if (x < y) S1 else
S2

?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 14 / 32

*

3-address code - implementation

Quadruples
Has four fields: op, arg1, arg2 and result.
Some instructions (e.g. unary minus) do not use arg2.
For copy statement : the operator itself is =; for others it is implied.
Instructions like param don’t use neither arg2 nor result.
Jumps put the target label in result.

x - 2 * y

op result arg1 arg2
(1) load t1 y
(2) loadi t2 2
(3) mult t3 t2 t1
(4) load t4 x
(5) sub t5 t4 t3

simple record structure with four fields
easy to reorder
explicit names

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 15 / 32

*

3-address code - implementation

Triples
x - 2 * y

(1) load y
(2) loadi 2
(3) mult (1) (2)
(4) load x
(5) sub (4) (3)

use table index as implicit name
require only three fields in record
harder to reorder

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 16 / 32

*

3-address code - implementation

Indirect Triples
x - 2 * y

exec-order stmt op arg1 arg2
(1) (100) (100) load y
(2) (101) (101) loadi 2
(3) (102) (102) mult (100) (101)
(4) (103) (103) load x
(5) (104) (104) sub (103) (102)

simplifies moving statements (change the execution order)
more space than triples
implicit name space management

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 17 / 32

*

Indirect triples advantage

for i:=1 to 10 do
begin
a=b*c
d=i*3
end

(a)

Optimized version

a=b*c
for i:=1 to 10 do
begin
d=i*3
end

(b)

(1) := 1 i
(2) nop
(3) * b c
(4) := (3) a
(5) * 3 i
(6) := (5) d
(7) + 1 i
(8) := (7) i
(9) LE i 10
(10) IFT goto (2)

Execution Order (a) : 1 2 3 4 5 6 7
8 9 10
Execution Order (b) : 3 4 1 2 5 6 7
8 9 10

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 18 / 32

*

Other hybrids

An attempt to get the best of both worlds.
graphs where they work
linear codes where it pays off

Unfortunately, there appears to be little agreement about where to use
each kind of IR to best advantage.
For example:

PCC and FORTRAN 77 directly emit assembly code for control flow,
but build and pass around expression trees for expressions.
Many people have tried using a control flow graph with low-level,
three address code for each basic block.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 19 / 32

*

Intermediate representations

But, this isn’t the whole story
Symbol table:

identifiers, procedures
size, type, location
lexical nesting depth

Constant table:
representation, type
storage class, offset(s)

Storage map:
storage layout
overlap information
(virtual) register assignments

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 20 / 32

*

Advice

Many kinds of IR are used in practice.
There is no widespread agreement on this subject.
A compiler may need several different IRs
Choose IR with right level of detail
Keep manipulation costs in mind

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 21 / 32

*

Gap between HLL and IR

Gap between HLL and IR
High level languages may allow complexities that are not allowed
in IR (such as expressions with multiple operators).
High level languages have many syntactic constructs, not present
in the IR (such as if-then-else or loops)

Challenges in translation:
Deep nesting of constructs.
Recursive grammars.
We need a systematic approach to IR generation.

Goal:
A HLL to IR translator.
Input: A program in HLL.
Output: A program in IR (may be an AST or program text)

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 22 / 32

*

Translating expressions

S -> id = E;

E -> E1 + E2

| - E1

| (E1)

| id

{gen(top.get(id.lexeme) ’=’ E.addr);}

{E.addr = new Temp();
gen(E.addr ’=’ E1.addr ’+’ E2.addr);}

{E.addr = new Temp();
gen(E.addr ’=’ - E2.addr);}

{E.addr = E1.addr;}

{E.addr = top.get(id.lexeme);}
Builds the three-address code for an assignment statement.

addr: a synthesized-attr of E – denotes the address holding the val of E.

Constructs a three-address instruction and appends the instruction to the
sequence of instructions.

top is the top-most (current) symbol table.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 23 / 32

*

IR generation for flow-of-control statements

P->S

S->assgin

S->if (B) S1

S->if (B) S1
else S2

S.next = new Label();
P.code = S.code || label(S.next)

S.code = assign.code

B.true = new Label();
B.false = S1.next = S.next
S.code = B.code || label(B.true) || S1.code

B.true = new Label();
B.false = new Label();
S1.next = S2.next = S.next
S.code = B.code || label(B.true) || S1.code

|| gen (’goto’ S.next)
|| label (B.false) || S2.code

code is an synthetic attribute: giving the code for that node.
Assume: gen only creates an instruction.
|| concatenates the code.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 24 / 32

*

IR generation for flow-of-control statements

S->while(B)S1

S->S1 S2

begin = new Label();
B.true = new Label();
B.false = S.next
S1.next = begin
S.code = begin || B.code

|| label(B.true) || S1.code
|| ’goto’ || begin

S1.next = new Label()
S2.next = S.next
S.code = S1.code || label(S1.next) || S2.code

code is an synthetic attribute: giving the code for that node.
Assume: gen only creates an instruction.
|| concatenates the code.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 25 / 32

*

IR generation for boolean expressions
B -> B1 || B2

B -> B1 && B2

B -> !B1

B -> E1 rel E2

B -> true

B -> false

B1.true = B.true
B1.false = new Label()
B2.true = B. true
B2.false = B.false
B.code = B1.code || label(B1.false) || B2.code

B1.true = new Label()
B1.false = B.false
B2.true = B. true
B2.false = B.false
B.code = B1.code || label(B1.true) || B2.code

B1.true = B.false
B1.false = B.true
B.code = B1.code

t = new Temp()
B.code=E1.code||E2.code|| t || ’=’ || E1.addr || rel.op || E2.addr ||

|| ’if’ || t || ’goto’ || B.true
|| ’goto’ || B.false;

B.code = ’goto’ || B.true

B.code = ’goto’ || B.false

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 26 / 32

*

Array elements dereference (Recall)

Elements are typically stored in a block of consecutive locations.
If the width of each array element is w, then the ith element of
array A (say, starting at the address base), begins at the location:
base+ i×w.
For multi-dimensions, beginning address of A[i1][i2] is calculated
by the formula:
base+ i1×w1 + i2×w2
where, w1 is the width of the row, and w2 is the width of one
element.
We declare arrays by the number of elements (nj is the size of the
jth dimension) and the width of each element in an array is fixed
(say w).
The location for A[i1][i2] is given by
base+(i1×n2 + i2)×w
Q: If the array index does not start at ’0’, then ?
Q: What if the data is stored in column-major form?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 27 / 32

*

Translation of Array references

Extending the expression grammar with arrays:

S -> id = E;

| L = E;

E -> E1 + E2

| id

| L

L -> id [E]

| L1 [E]

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 28 / 32

*

Translation of Array references (contd)

S -> id = E;

| L = E;

E -> E1 + E2

| id

| L

{gen(top.get(id.lexeme) ’=’ E.addr)}

{gen(L.array.base’[’L.addr’]’ ’=’ E.addr);}

{E.addr = new Temp();
gen(E.addr ’=’ E1.addr ’+’ E2.addr);}

{E.addr = top.get(id.lexeme);}

{E.addr = new Temp();
gen(E.addr ’=’ L.array.base’[’L.addr’]’);}

Nonterminal L has three synthesized attributes
1 L.addr denotes a temporary that is used while computing the

offset for the array reference.
2 L.array is a pointer to the ST entry for the array name. The field

base gives the actual l-value of the array reference.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 29 / 32

*

Translation of Array references (contd)

L -> Id [E]

| L1 [E]

{L.array = top.get(id.lexeme);
L.type = L.array.type.elem;
L.addr = new Temp();
gen(L.addr ’=’ E.addr’*’L.type.width);}

{L.array = L1.array;
L.type = L1.type.elem;
t = new Temp();
L.addr = new Temp();
gen(t ’=’ E.addr ’*’ L.type.width);
gen (L.addr ’=’ L1.addr ’+’ t);}

3 L.type is the type of the subarray generated by L.
For any type t: t.width gives get the width of the type.
For any type t: t.elem gives the element type.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 30 / 32

*

Translation of Array references (contd)

Example:
Let a denotes a 2×3 integer array.
Type of a is given by array(2,array(3, integer))

Width of a = 24 (size of integer = 4).
Type of a[i] is array(3, integer), width = 12.
Type of a[i][j] = integer

Exercise:
Write three adddress code for c+a[i][j]

t1 = i * 12
t2 = j * 4
t3 = t1 + t2
t4 = a [t3]
t5 = c + t4

Q: What if we did not know the size of integer (machine dependent)?
V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 31 / 32

*

Some challenges/questions

Avoiding redundant gotos. ??
Multiple passes. ??
How to translate implicit branches: break and continue?
How to translate switch statements efficiently?
How to translate procedure code?

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 32 / 32

*

Closing remarks

What have we done in last few classes?
Intermediate Code Generation.

To read
Dragon Book. Sections 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 and 2.8

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2023 33 / 32

