CS3300 - Compiler Design

Basic block optimizations

V. Krishna Nandivada

IIT Madras

- It is a linear piece of code.
- Analyzing and optimizing is easier.
- Has local scope - and hence effect is limited.
- Substantial enough, not to ignore it.
- Can be seen as part of a larger (global) optimization problem.

DAG representation of basic blocks

Recall: DAG representation of expressions

- leaves corresponding to atomic operands, and interior nodes corresponding to operators.
- A node N has multiple parents $-N$ is a common subexpression.
- Example: $(\mathrm{a}+\mathrm{a} *(\mathrm{~b}-\mathrm{c}))+(\mathrm{b}-\mathrm{c}) * \mathrm{~d})$

DAG construction for a basic block

- There is a node in the DAG for each of the initial values of the variables appearing in the basic block.
- There is a node N associated with each statement s within the block. The children of N are those nodes corresponding to statements that are the last definitions, prior to s, of the operands used by s.
- Node N is labeled by the operator applied at s, and also attached to N is the list of variables for which it is the last definition within the block.
- Certain nodes are designated output nodes. These are the nodes whose variables are live on exit from the block;
- Common subexpression elimination.
- Eliminate dead code.
$\mathrm{a}=\mathrm{b}+\mathrm{c}$
- Code reordering.
- Algebraic optimizations.
$\mathrm{b}=\mathrm{a}-\mathrm{d}$
$\mathrm{c}=\mathrm{b}+\mathrm{c}$
$d=a-d$

Example (contd)

Limitations of the DAG based CSE

$$
\begin{aligned}
& \mathrm{a}=\mathrm{b}+\mathrm{c} \\
& \mathrm{~d}=\mathrm{a}-\mathrm{d} \\
& \mathrm{c}=\mathrm{d}+\mathrm{c} \\
& / / \text { if b is live } \\
& \mathrm{b}=\mathrm{d}
\end{aligned}
$$

Q: How to know if b is live after the basic block?

$$
\begin{aligned}
& \mathrm{a}=\mathrm{b}+\mathrm{c} \\
& \mathrm{~b}=\mathrm{b}-\mathrm{d} \\
& \mathrm{c}=\mathrm{c}+\mathrm{d} \\
& \mathrm{e}=\mathrm{b}+\mathrm{c}
\end{aligned}
$$

- The two occurrences of the sub-expressions $b+c$ computes the same value.

- Value computed by a and e are the same.
- How to handle the algebraic identities?
- Q: Do the sub-expressions always compute the same value?

Dead code elimination

CSE via Algebraic identities

- Delete any root from DAG that has no ancestors and is not live out (has no live out variable associated).
- Repeat previous step till no change.
- Assume a and b are live out.

- Remove first e and then c.
- a and lo remain.
- Recall: In common sub-expression elimination, we want to reuse nodes that compute the same value.
- Recall: We mainly focussed on syntactic similarities.
- Q: Can we go beyond that?

Similarities in the semantics - identity, inverse, zero

```
x + 0 = 0 + X = x
x * 1 = 1 * x = x identity, examples?
a && true = true && a = a
a || false = false || a = a
x* 0 = 0 * x = 0
0 / x = 0
```

Goal: apply arithmetic identities to eliminate computation.

Similarities in the semantics - strength reduction

```
x^2 = x * x
2 * x = x + x = x << 1 (?)
x/2 = x * 0.5 = x >> 1 (?)
Constant folding
2*0.123456789101112131415 = 0.246913578202224262830
```


Chapernowne's constant

Goal: identify equivalence module strength reduction operations.

Algebraic properties

How to?

- Commutative: Say the operator * is commutative. $x^{*} y=y^{*} x$
- Associative: $\mathrm{a}+(\mathrm{b}-\mathrm{c})=(\mathrm{a}+\mathrm{b})-\mathrm{c}$

```
    a = b + c
    e = c + d + b
    ->
    a = b + c
    t = c + d
    a = t + b
    -> (assuming t is not used anywhere else)
    a = b + c
    e =a}+
0 a = b - 1;c=a + 1 m c = b
```


Restrictions

- The language manual may restrict.
- Fortran: you can evaluate any equivalent expression, but cannot violate the integrity of paranthesis.
- Thus x * $\mathrm{y}-\mathrm{x}$ * $\mathrm{z} \rightarrow \mathrm{x}$ * $(\mathrm{y}-\mathrm{z})$
- But a + (b-c) $\neq(\mathrm{a}+\mathrm{b})-\mathrm{c}$
- Keep a language manual handy if you are writing a compiler!

Representing Array accesses in the DAG

In general the problem is that of checking equivalence of two expressions - Undecidable!

A rough idea:

- When creating the DAG, create the node for expression that has the most reduced strength.
- For each expression e,
- Take all "sub-expressions" that "build" the operands of e.
- Build a new large expression using these sub-expressions.
- Simplify the large expression.
- Check if the simplified expression (or part thereof) or any variations thereof can be found in the tree.
- Build sub-tree for the rest.

```
x = a[i]
a[j] = y
z = a[i]
Q: Is a[i] a common sub-expression?
```


Array representation (2)

Peephole optimization

```
b}=a+1
x = b[i]
a[j] = y
```

Q: Say, elements of 'a' are 4bytes size

Home reading: How to handle pointers.

Peephole optimization

Eliminating redundant loads and stores

Load a, R0
 Store RO, a

- The "peephole" is typically small. Why?
- The code in the peephole need not be contiguous.
- Each improvement may lead to additional improvements.
- In general, we may have to make multiple passes.

Eliminating unreachable code

- An unlabelled statement after an unconditional jump - can be removed.
goto L2
INCR RO
L2:
- Eliminating jumps over jumps:

```
            if class == 2015 goto L1
```

 goto L2
 L1: print 22
 L2:
 \(\rightarrow\)
 if class != 2015 goto L2
 print 22
 L2:
 - What can constant propagation do?
- Eliminate identity operations.
- Replace x^{2} by $x * x$, and so on.
- Replace fixed-point mult by a power of two (by left-shift) and divison by a power of two (by right shift).
- Replace floating-point divison by multiplication!

Flow-of-control optimizations

- Naive code generation creates many jumps.
- Jumps to jumps can be short circuited!
goto L1
L1: goto L2
Can be replaced with
goto L2
.
L1: goto L2
Further optimizations on L1 are possible.
Similar situation with conditional jumps
if (cond) goto L1
L1: goto L2
- Use auto-incremenet / auto-decrement if available. add r 1 , (r2) $+\rightarrow \mathrm{r} 1=\mathrm{r} 1+\mathrm{M}[\mathrm{r} 2]$; $\mathrm{r} 2=\mathrm{r} 2+\mathrm{d}$
- A cool PA-RISC instruction called sh2add
r2 $=$ r1 * $5 \rightarrow$ sh2add r1, r1, r2
- PA-RISC instruction ADDBT, $<=r 2, ~ r 1, ~ L 1$
- First make a list of patterns that you want to replace with a list of target patterns.
- Identify the pattern in the code and do the replacement.
- Iterate till you are done.
- Can be efficiently done on an DAG.
- No guarantees about optimality.
- Most of the peephole optimizations guarantee improvement.

