
CS3300 Quiz 1: Sep 05, 2023. (QP Code: A)
Maximum marks = 30, Time: 45 minutes, Closed Book, Closed Neighbor

Name: Roll:

Read the instructions and questions carefully. You can use the given booklet for rough work and stating
any reasonable assumptions you make. But write the answers in the QP itself – marks will be given based on the
answers in the QP.

• MCQ and True/False questions: Each incorrect answer will lead to a deduction of 0.5 marks.

• MSQ questions:

– If you choose any wrong option - you will get a 0 for that question.

– If you choose only a subset of the correct options: you will get proportional marks.

Section 1. Lexical Analysis, 2 marks each

1. Which of the following is/are true about LL(1) grammars?

(a) Left recursive grammars are not LL(1).

(b) Some LL(1) grammars may be ambiguous.

(c) A language that has no LL(1) grammar is ambiguous.

(d) Left factoring and left recursive removal can be used to convert any grammar to LL(1).

2. The key decision(s) in bottom-up parsing is/are:

(a) When to reduce?

(b) What production rules to apply for reduction?

(c) Which non-terminal to use?

(d) Which terminals to process?

3. Which of the following is/are NOT a valid token-type(s):

(a) Type of a variable

(b) scope of a variable

(c) operator

(d) loop

4. Which of the following is/are true with respect to regular expressions:

(a) ϵ is a regular expression.

(b) Each regular expression derives unique set of strings.

(c) Given a finite alphabet L the number of regular expressions over L is finite.

(d) Every regular expression must derived at least two strings.

5. Which of the following is/are possible attribute-values(s) for lexemes:

(a) line number

(b) type of a variable

(c) operator associativity

(d) loop

6. Given a production of the form A → β, if β has k symbols (terminals and non-terminals), then how many
LR(0) items can the production generate?

(a) k − 1

(b) k

(c) k + 1

(d) Depends on the input

1



Section 2. Fill in the blank, 3 marks each

1.

Consider the grammar and state
I0.

The number of elements in the
set returned by GOTO(I0, E) =

1 S → E$
2 E → E + T
3 E → ET
4 | T
6 T → Id
7 | (E)

I0 : S → •E$
E → •E + T
E → •ET
E → •T
T → •Id
T → •(E)

2.

Consider the table driven parsing algorithm given
below. One of the lines is erroneous.

The line number that has the error is .

Input: A string w and a parsing table M for a
grammar G

Output: If w is in L(G), a leftmost derivation of
w; otherwise, indicate an error

1 push $ onto the stack; push S onto the stack;
2 a points to the input tape;
3 X = stack.top();
4 while X ̸= $ do
5 if X is a then {stack.pop(); inp++} ;
6 else if X is a terminal then error();
7 else if M [X, a] is an error entry then

error();
8 else if M [X, a] = X → Y1Y2 · · ·Yk then
9 output the production X → Y1Y2 · · ·Yk;

10 stack.pop();
11 push Y1, Y2, · · ·Yk in that order;

12 X = stack.top();

3.

Consider the code shown (in the
right) for recognizing identifiers.

The minimum number of
lines required to be changed
(added/removed) in this code to
make it correct are .
Note: if the code is correct, enter
the value 0.

1. state=0; // initial state

2. done=false;

3. tokenVal=""// empty

4. while (not done) {

5. ch=nextChar();

6. class=charClass[ch];

7. state=

nextState[class,state];

8. switch(state) {

9. case 1:

10. tokenVal=tokenVal+ch;

11. break;

12. case 2: // accept state

13. tokenType=id;

14. done = true;

15. break;

16. case 3: // error

17. tokenType=error;

18. done=true;

19. break;

20. } // end switch

21. } // end while

22. return tokenType;

4.
Consider the DFA shown to the right.
The number of non-error entries in the nextState

table are = .

0 21

3

digit

other

letter

digit

letter

other

error

accept

Section 3. True or False Answers, 1 mark each
Given an input consisting of m terminals, the LR parsing technique for a grammar with n non-terminals,

shifts m+ n number of times.

The closure of an item can be a singleton set.

In an LL(1) grammar with no epsilon productions, the FIRST and FOLLOW sets of a non-terminal may
have no common elements.

Lexical analysis can be used infer the type of each variable.

A compiler can use error recovery techniques to fix the errors in a program and generate the correct
machine-code.

Regular expressions can be used to ensure that all variables are of lower case only.

2


