
CS591-5 - Selected topics in Compiler Design
Introduction

V. Krishna Nandivada

IIT Madras

*

Academic Formalities

Written assignments = 10 marks.
Final = 40 marks.
Programming assignment: One assignment (optional).
Extra marks

During the lecture time - individuals can get additional 5 marks.
How? - Ask a good question, answer a chosen question, make a
good point! Take 0.5 marks each. Max one mark per day per
person.

Attendance requirement – as per institute norms. Non compliance
will lead to ‘W’ grade.

If you come to the class after 5 minutes - don’t.
Proxy attendance - is not a help; actually a disservice.

Plagiarism - A good word to know. A bad act to own.
Students Welfare and Disciplinary committee.

Contact (Anytime) :
Instructor: Krishna, Email: nvk@iitm.ac.in, Office: A6-04.
Course page:
http://www.cse.iitm.ac.in/˜krishna/cs591-5/

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 2 / 45

*

What, When and Why of Compilers

What:
A compiler is a program that can read a program in one language
and translates it into an equivalent program in another language.

When
1952, by Grace Hopper for A-0.
1957, Fortran compiler by John Backus and team.

Why? Study?
It is good to know how the food (you eat) is cooked.
A programming language is an artificial language designed to
communicate instructions to a machine, particularly a computer.
For a computer to execute programs written in these languages,
these programs need to be translated to a form in which it can be
executed by the computer.

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 3 / 45

*

Images of the day

Figure: Grace Hopper and John Backus

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 4 / 45

http://www.cse.iitm.ac.in/~krishna/cs591-5/

*

Compilers – A “Sangam”

Compiler construction is a microcosm of computer science
Artificial Intelligence greedy algorithms, learning algorithms, . . .
Algo graph algorithms, union-find, dynamic programming, . . .
theory DFAs for scanning, parser generators, lattice theory, . . .
systems allocation, locality, layout, synchronization, . . .
architecture pipeline management, hierarchy management,
instruction set use, . . .
optimizations Operational research, load balancing, scheduling,
. . .

Inside a compiler, all these and many more come together. Has
probably the healthiest mix of theory and practise.

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 5 / 45

*

Course outline

A rough outline (we may not strictly stick to this).
Overview of Compilers
Lexical Analysis and Parsing (overview)
Intermediate Code (three address codes)
Data flow analysis
Constant propagation

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 6 / 45

*

Your friends: Languages and Tools

Start exploring
C and Java - familiarity a must - Use eclipse to save you valuable
coding and debugging cycles.
Find the course webpage:
http://www.cse.iitm.ac.in/˜krishna/cs591-5/

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 7 / 45

*

Get set. Ready steady go!

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 8 / 45

http://www.cse.iitm.ac.in/~krishna/cs591-5/

*

Acknowledgement

These slides borrow liberal portions of text verbatim from Antony L.
Hosking @ Purdue, Jens Palsberg @ UCLA, and the Dragon book.

Copyright c©2018 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 9 / 45

*

A common confusion: Compilers and Interpreters

What is a compiler?

a program that translates an executable program in one language
into an executable program in another language
we expect the program produced by the compiler to be better, in
some way, than the original.

What is an interpreter?
a program that reads an executable program and produces the
results of running that program
usually, this involves executing the source program in some fashion

This course deals mainly with compilers
Many of the same issues arise in interpreter
A common (mis?) statement – XYZ is an interpreted (or compiled)
languaged.

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 10 / 45

*

Compilers – A closed area?

“Optimization for scalar machines was solved years ago”

Machines have changed drastically in the last 20 years

Changes in architecture⇒ changes in compilers

new features pose new problems
changing costs lead to different concerns
old solutions need re-engineering

Changes in compilers should prompt changes in architecture
New languages and features

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 11 / 45

*

Expectations

What qualities are important in a compiler?
1 Correct code
2 Output runs fast
3 Compiler runs fast
4 Compile time proportional to program size
5 Support for separate compilation
6 Good diagnostics for syntax errors
7 Works well with the debugger
8 Good diagnostics for flow anomalies
9 Cross language calls

10 Consistent, predictable optimization
Each of these shapes your expectations about this course

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 12 / 45

*

Abstract view

errors

compilercode code
source machine

Implications:
recognize legal (and illegal) programs
generate correct code
manage storage of all variables and code
agreement on format for object (or assembly) code

Big step up from assembler — higher level notations

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 13 / 45

*

Traditional two pass compiler

code
source

code
machinefront

end
back
end

IR

errors

Implications:
intermediate representation (IR). Why do we need it?
front end maps legal code into IR
back end maps IR onto target machine
simplify retargeting
allows multiple front ends
multiple passes⇒ better code

A rough statement: Most of the problems in the Front-end are simpler
(polynomial time solution exists).
Most of the problems in the Back-end are harder (many problems are
NP-complete in nature).
Our focus: Mainly front end and little bit of back end.

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 14 / 45

*

A Clarification:

back
end

front
end

FORTRAN
code

front
end

front
end

front
end

back
end

back
end

code

code

code

C++

CLU

Smalltalk

target1

target2

target3

Can we build n×m compilers with n + m components?
must encode all the knowledge in each front end
must represent all the features in one IR
must handle all the features in each back end

Limited success with low-level IRs

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 15 / 45

*

Phases inside the compiler

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Machine-Independent Opt

Code Generation

Machine-dependent Opt

character-stream

token-stream

syntax-tree

syntax-tree

intermediate-representation

intermediate-representation

target-machine-code (IR)

target-machine-code

Front end responsibilities:
Recognize syntactically legal
code; report errors.
Recognize semantically legal
code; report errors.
Produce IR.

Back end responsibilities:
Optimizations, code
generation.

Our target
three out of seven phases.
briefly touch upon the rest.
Based on the need.

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 16 / 45

*

Lexical analysis

Also known as scanning.
Reads a stream of characters and groups them into meaningful
sequences, called lexems.
Eliminates white space
For each lexeme, the scanner produces an output of the form:
〈token-type, attribute-values〉
Example token-types: identifier, number, string, operator and . . .
Example attribute-types: token index, token-value, line and
column number and . . .
Example scanning:

position = initial + rate * 60
For a typical language like C/Java the following lexemes and their
values can be identified:

lexeme token
position 〈id, position〉
= 〈op, =〉
initial 〈id, initial〉

lexeme token
+ 〈op, +〉
rate 〈id, rate〉
* 〈op, *〉
60 〈num, 60〉

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 17 / 45

*

Specifying patterns

Q: How to specify patterns for the scanner?

Examples:

white space

<ws> ::= <ws> ’ ’
| <ws> ’\t’
| ’ ’
| ’\t’

keywords and operators
specified as literal patterns: do, end

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 18 / 45

*

Specifying patterns

A scanner must recognize the units of syntax

identifiers
alphabetic followed by k alphanumerics (, $, &, . . .)
numbers

integers: 0 or digit from 1-9 followed by digits from 0-9
decimals: integer |’.’| digits from 0-9
reals: (integer or decimal) |’E’| (+ or -) digits from 0-9
complex: |’(’| real |’,’| real |’)’—

We need a powerful notation to specify these patterns

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 19 / 45

*

Regular Expressions

Patterns are often specified as regular languages
Notations used to describe a regular language (or a regular set)
include both regular expressions and regular grammars
Regular expressions (over an alphabet Σ):

1 ε is a RE denoting the set {ε}
2 if a ∈ Σ, then a is a RE denoting {a}
3 if r and s are REs, denoting L(r) and L(s), then:

(r) is a RE denoting L(r)
(r) | (s) is a RE denoting L(r)

⋃
L(s)

(r)(s) is a RE denoting L(r)L(s)
(r)∗ is a RE denoting L(r)∗

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 20 / 45

*

Examples of Regular Expressions

identifier
letter→ (a | b | c | ... | z | A | B | C | ... | Z)
digit→ (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)
id→ letter (letter | digit)∗

numbers
integer→ (+ | − | ε) (0 | (1 | 2 | 3 | ... | 9) digit∗)
decimal→ integer . (digit)∗

real→ (integer | decimal) E (+ | −) digit∗

complex→ ’(’ real , real ’)’

Most tokens can be described with REs
We can use REs to build scanners automatically

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 21 / 45

*

Automatic construction

Scanner generators automatically construct code from RE-like
descriptions

construct a DFA
use state minimization techniques
emit code for the scanner
(table driven or direct code)

A key issue in automation is an interface to the parser

lex/flex is a scanner generator
Takes a specification of all the patterns as a RE.
emits C code for scanner
provides macro definitions for each token
(used in the parser)

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 22 / 45

*

Limits of regular languages

Not all languages are regular
One cannot construct DFAs to recognize these languages:

L = {pkqk}
L = {wcwr | w ∈ Σ∗}

Note: neither of these is a regular expression!
(DFAs cannot count!)
But, this is a little subtle. One can construct DFAs for:

alternating 0’s and 1’s
(ε | 1)(01)∗ (ε | 0)

sets of pairs of 0’s and 1’s
(01 | 10)+

Q: What do the above languages denote?

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 23 / 45

*

The role of the parser

code
source tokens

errors

scanner parser IR

A parser
performs context-free syntax analysis
guides context-sensitive analysis
constructs an intermediate representation
produces meaningful error messages
attempts error correction

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 24 / 45

*

Syntax analysis

Grammars are often written in Backus-Naur form (BNF).
Example:

1 〈goal〉 ::= 〈expr〉
2 〈expr〉 ::= 〈expr〉〈op〉〈expr〉
3 | num
4 | id
5 〈op〉 ::= +
6 | −
7 | ∗
8 | /

This describes simple expressions over numbers and identifiers.
In a BNF for a grammar, we represent

1 non-terminals with angle brackets or capital letters
2 terminals with typewriter font or underline
3 productions as in the example

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 25 / 45

*

Derivations

We can view the productions of a CFG as rewriting rules.
Using our example CFG (for x + 2 ∗ y):

〈goal〉 ⇒ 〈expr〉
⇒ 〈expr〉〈op〉〈expr〉
⇒ 〈id,x〉〈op〉〈expr〉
⇒ 〈id,x〉+ 〈expr〉
⇒ 〈id,x〉+ 〈expr〉〈op〉〈expr〉
⇒ 〈id,x〉+ 〈num,2〉〈op〉〈expr〉
⇒ 〈id,x〉+ 〈num,2〉 ∗ 〈expr〉
⇒ 〈id,x〉+ 〈num,2〉 ∗ 〈id,y〉

We have derived the sentence x + 2 ∗ y.
We denote this 〈goal〉→∗ id + num ∗ id.
Such a sequence of rewrites is a derivation or a parse.
The process of discovering a derivation is called parsing.
Parse Tree is generated.

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 26 / 45

*

Scanning vs. parsing

Where do we draw the line?

term ::= [a−zA−z]([a−zA−z] | [0−9])∗

| 0 | [1−9][0−9]∗

op ::= + | − | ∗ | /
expr ::= (term op)∗term

Regular expressions are used to classify:
identifiers, numbers, keywords
REs are more concise and simpler for tokens than a grammar
more efficient scanners can be built from REs (DFAs) than
grammars

Context-free grammars are used to count:
brackets: (), begin. . .end, if. . .then. . .else
imparting structure: expressions

Syntactic analysis is complicated enough: grammar for C has around 200
productions. Factoring out lexical analysis as a separate phase makes
compiler more manageable.

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 27 / 45

*

Parsing: the big picture

parser

generator

code

parser

tokens

IR

grammar

Automatic Generation:
Lexer: From REs
Parser: From CFGs

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 28 / 45

*

Intermediate representations

Why use an intermediate representation?
1 break the compiler into manageable pieces

– good software engineering technique
2 simplifies retargeting to new host

– isolates back end from front end
3 simplifies handling of “poly-architecture” problem

– m lang’s, n targets⇒ m + n components (myth)
4 enables machine-independent optimization

– general techniques, multiple passes
An intermediate representation is a compile-time data structure

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 29 / 45

*

Intermediate representations

front back
end end

source
code code

machineoptimizer
IR IR

Generally speaking:
front end produces IR
optimizer transforms that representation into an equivalent
program that may run more efficiently
back end transforms IR into native code for the target machine

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 30 / 45

*

Intermediate representations - properties

Important IR Properties
ease of generation
ease of manipulation
cost of manipulation
level of abstraction
freedom of expression
size of typical procedure

Subtle design decisions in the IR have far reaching effects on the
speed and effectiveness of the compiler.
Level of exposed detail is a crucial consideration.

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 31 / 45

*

IR design issues

Is the chosen IR appropriate for the (analysis/ optimization/
transformation) passes under consideration?
What is the IR level: close to language/machine.
Multiple IRs in a compiler: for example, High, Medium and Low

x = a[i,j+2]
t1 = j + 2
t2 = i * 2
t3 = t1 + t2
t4 = 4 * t3
t5 = addr a
t6 = t5 + t4
x = *t6

r1 = [fp-4]
r2 = r1 + 2
r3 = [fp-8]
r4 = r3 * 20
r5 = r4 + r2
r6 = 4 * r5
r7 = fp - 216
f1 = [r7+r6]

In reality, the variables etc are also only pointers to other data
structures.

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 32 / 45

*

Intermediate representations

Representations talked about in the literature include:
abstract syntax trees (AST)
linear (operator) form of tree
directed acyclic graphs (DAG)
control flow graphs
program dependence graphs
static single assignment form
3-address code
hybrid combinations

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 33 / 45

*

Abstract syntax tree

An abstract syntax tree (AST) is the procedure’s parse tree with the
nodes for most non-terminal symbols removed.

�

hid:xi �

hnum:2i hid:yi

This represents “x − 2 ∗ y”.
For ease of manipulation, can use a linearized (operator) form of the
tree.
e.g., in postfix form: x 2 y ∗ −

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 34 / 45

*

Directed acyclic graph

A directed acyclic graph (DAG) is an AST with a unique node for each
value.

x := 2 ∗ y + sin(2∗x)
z := x / 2

:=

hid:xi

+

� sin

hid:yi

hnum:2i

�

hid:xi

:=

hid: zi

=

Q: What to do for matching names present across different functions?

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 35 / 45

*

Control flow graph

The control flow graph (CFG) models the transfers of control in the
procedure

nodes in the graph are basic blocks
straight-line blocks of code
edges in the graph represent control flow
loops, if-then-else, case, goto

if (x=y) then
s1

else
s2

s3

x=y?

s2s1

s3

falsetrue

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 36 / 45

*

3-address code

At most one operator on the right side of an instruction.
3-address code can mean a variety of representations.
In general, it allows statements of the form:
x ← y op z

with a single operator and, at most, three names.
Simpler form of expression:
x - 2 * y

becomes
t1 ← 2 * y
t2 ← x - t1

Advantages
compact form (direct naming)
names for intermediate values

Can include forms of prefix or postfix code

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 37 / 45

*

3-address code: Addresses

Three-address code is built from two concepts: addresses and
instructions.

An address can be
A name: source variable program name or pointer to the Symbol
Table name.
A constant: Constants in the program.
Compiler generated temporary.

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 38 / 45

*

3-address code

Typical instructions types include:

1 assignments x ← y op z

2 assignments x ← op y

3 assignments x ← y[i]

4 assignments x ← y

5 branches goto L

6 conditional branches
if x goto L

7 procedure calls
param x1, param x2, . . .param xn

and
call p, n

8 address and pointer assignments

How to translate:

if (x < y) S1 else
S2

?

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 39 / 45

*

Advice

Many kinds of IR are used in practice.
There is no widespread agreement on this subject.
A compiler may need several different IRs
Choose IR with right level of detail
Keep manipulation costs in mind

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 40 / 45

*

Gap between HLL and IR

Gap between HLL and IR
High level languages may allow complexities that are not allowed
in IR (such as expressions with multiple operators).
High level languages have many syntactic constructs, not present
in the IR (such as if-then-else or loops)

Challenges in translation:
Deep nesting of constructs.
Recursive grammars.
We need a systematic approach to IR generation.

Goal:
A HLL to IR translator.
Input: A program in HLL.
Output: A program in IR (may be an AST or program text)

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 41 / 45

*

Translating expressions

S -> id = E;

E -> E1 + E2

| - E1

| (E1)

| id

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 42 / 45

*

Translating flow-of-control statements

P -> S

S -> assign

| S1; S2

| if (expr) S1

| if (expr) S2 else S3

| while (expr) S1;

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 43 / 45

*

Translating boolean expressions

B -> B1 || B2

| B1 && B2

| !B

| E1 rel E2

| true

| false

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 44 / 45

*

Self reading

Translating Array dereference.
Translating Switch, continue, break
Translating object dereferences (advanced)
Translating Exceptions (advanced++).

V.Krishna Nandivada (IIT Madras) CS591-5 - May 2018 45 / 45

	Introduction and Motivation

