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Energy efficient compilation is an important problem for multi-core systems. In this context, irregular programs with task-
parallel loops present interesting challenges: the threads with lesser work-loads (non-critical-threads) wait at the join-points
for the thread with maximum work-load (critical-thread); this leads to significant energy wastage. This problem becomes
more interesting in the context of multi-socket-multi-core (MSMC) systems, where different sockets may run at different
frequencies, but all the cores connected to a socket run at a single frequency. In such a configuration, even though the load-
imbalance among the cores may be significant, an MSMC-oblivious technique may miss the opportunities to reduce energy
consumption, if the load-imbalance across the sockets is minimal. This problem becomes further challenging in the presence
of mutual-exclusion, where scaling the frequencies of a socket executing the non-critical-threads can impact the execution
time of the critical-threads. In this paper, we propose a scheme (X10Ergy) to obtain energy gains with minimal impact on
the execution time, for task-parallel languages like X10, HJ, and so on. X10Ergy takes as input a loop-chunked program
(parallel-loop iterations divided into chunks and each chunk is executed by a unique thread). X10Ergy follows a mixed
compile-time + runtime approach that (i) uses static analysis to efficiently compute the work-load of each chunk at runtime,
(ii) computes the “remaining” work-load of the chunks running on the cores of each socket at regular intervals and tunes the
frequency of the sockets accordingly, (iii) groups the threads into different sockets (based on the remaining work-load of their
respective chunks), and (iv) in the presence of atomic-blocks, models the effect of frequency-scaling on the critical-thread.
We implemented X10Ergy for X10 and have obtained encouraging results for the IMSuite kernels.

1. INTRODUCTION
The advent of multi-core systems has brought the dual challenges of high performance and low
energy consumption, firmly to the front. The projected increase in expenses towards the energy
needs of servers [Koomey et al. 2009] makes it quite important to reduce the energy consumption
of parallel programs. For many types of workloads, DVFS (dynamic voltage and frequency-scaling)
can be applied to obtain energy savings [Yuki and Rajopadhye 2013], but at the cost of increased
execution time. In this paper, we present a scheme to reduce the energy consumption of task-parallel
programs running on multi-core systems, without significantly increasing the execution time.

Optimizing task-parallel programs to reduce energy consumption is an interesting problem, es-
pecially in the context of multi-socket-multi-core (MSMC) systems, such as Sandy Bridge [Rotem
et al. 2012], Ivy Bridge [Intel 2017], Opteron [AMD 2016], and so on, where all the cores on a
socket run at the same frequency. This problem becomes more challenging for irregular programs
with task-parallel loops (ITP programs, in short), where the work-loads of different tasks can vary
significantly and it is not possible to completely reason about these work-loads statically. The result-
ing load-imbalance among the threads, executing these tasks on MSMC systems supporting DVFS,
provides some unique opportunities for energy reduction. We will use an example to illustrate.

Fig. 1a shows a snippet of the code (in X10 [Saraswat et al. 2014]) from the DS kernel of IM-
Suite [Gupta and Nandivada 2015]. In X10, an async construct creates an asynchronous task that
may run in parallel with the current task. The finish construct acts as a join point that waits for all
the tasks spawned within the finish-block to terminate. The DS kernel computes a dominating-
set of nodes of an input graph using a distributed greedy (approximation) algorithm [Wattenhofer
2011]. It uses the intuition that if a node k has many neighbors as members of the dominating-set
d, then k is less likely to be a member of d. Corresponding to each node of the graph, the algo-
rithm maintains a set of ‘white’ neighbors (nodes not yet processed). For each node k, the algorithm
checks if k’s white-neighbor count (V(k).W) is more than that of any of its white neighbors at a
distance of at-most two. If so, k is a potential candidate to be added to the dominating-set. The snip-
pet of the code shown in Fig. 1a performs this check. Fig. 1b shows the corresponding code after
loop-chunking [Nandivada et al. 2013]. This optimization creates as many tasks as the number of
threads (nThreads – typically set to #hardware cores); each such task consists of non-overlapping
groups of iterations of the original loop; this is an essential optimization to keep the program scal-
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1finish for(k = 0; k < n; k++){
2 async {
3 if(V(k).whiteNeigCnt!=0){
4 for(j=0;j<V(k).N2v.size();j++)
5 if(Colr(V(k).N2v.get(j))==WHITE){
6 //Mx=max white-neighbor count in

N2v
7 }
8 if(Mx==V(k).W)//’k’ a candidate?
9 ...
10 } } /* async */ } /* finish */

(a) Input code

1chSz=(n + nThreads - 1)/nThreads;
2finish for(i=0;i<n;i+=chSz){//ACLoop
3 async {//chunk
4 for(k=i;k<min(i+chSz,n);k++){//chLoop
5 if(V(k).whiteNeigCnt != 0){
6 for(j=0;j<V(k).N2v.size();j++){
7 if (Colr(V(k).N2v.get(j))==WHITE){
8 //Mx=max white-neighbor count in N2v
9 }
10 if(Mx==V(k).W)//’k’ a candidate?
11 ...
12 } } } /* chLoop */
13 } /* chunk */
14} /* ACLoop */

(b) Chunked version

Fig. 1: A sample parallel-loop from the DS kernel of IMSuite and its chunked version. V is the array of vertices.

able. For example, on an Intel dual socket system (64 GB RAM, 8 cores/socket, with cores 0-7 and
8-15 connected to sockets 0 and 1, respectively), running at the highest system frequency (hereafter,
called as MAXFREQ) for an input graph of 32K nodes, the original program terminates with heap-
overflow, but the chunked program completes successfully (takes≈21 seconds, and consumes 1464
Joules – measured using RAPL interface [Manual 2016]).

We now analyze the chunked code to identify opportunities for reduction in energy consump-
tion. Even though the coarser-grained tasks (each executed by a different thread) created by loop-
chunking may more or less execute the same number of iterations, these tasks may not be fully
balanced with respect to the amount of work done by each of them, especially in the context of
ITP programs. Note that for the code snippet shown in Fig. 1b, different tasks may execute differ-
ent number of serial for-loop iterations (Line 6), and may take different paths in if-else statements
(Line 5, 7, 10). Fig. 2 shows the execution times of the threads executing each task created in Fig. 1b,
normalized with respect to that of the task with the highest execution time (task executed by thread
with thread-id 3). This load imbalance causes some threads which are executing tasks with smaller
work-loads (called non-critical-threads) to wait at the join-point for the thread which is executing
the task with the largest work-load (critical-thread), which in turns leads to wastage of energy.

There have been many efforts to balance the load among the threads [Thoman et al. 2012; Gautier
et al. 2013], but their effectiveness is quite limited in the context of ITP programs. This is because
in many of the ITP programs a large part of the work is done serially by a few of the tasks and it
may not be semantically correct to divide those serial parts among the parallel tasks. For example,
in Fig. 1a, the loop at Line 4 is the main reason for the load-imbalance among the tasks (typically
a few tasks execute significantly more iterations in the loop, compared to the rest). The only way to
completely balance the load among the tasks would be to divide the serial-iteration of the tasks with
very large values of N2v.size(), among the tasks with lower values of N2v.size(). However,
the iterations of this serial loop are not independent. Thus, it would not be semantics preserving to
divide this loop among multiple tasks. This makes it hard to do load balancing, even using a dynamic
scheme like work-stealing which mainly work at a task-level granularity (not at the granularity of
inner serial code). A similar argument applies to the chunked code shown in Fig. 1b. Thus, instead of
balancing the work-load, many prior approaches [Liu et al. 2005; Rakvic et al. 2010; Cai et al. 2008;
Ozturk et al. 2013; Chen et al. 2014; Rauber and Rünger 2015] reduce the energy consumption by
reducing the frequency of the cores on which the non-critical-threads are mapped such that all the
threads reach the join-point at the same time, thereby reducing the energy consumption without any
increase in the execution time. Many of these schemes [Liu et al. 2005; Rakvic et al. 2010; Cai et al.
2008; Chen et al. 2014; Rauber and Rünger 2015] assume that the frequency of each core can change
independently, which is not true in case of MSMC systems. We can extend these schemes to MSMC
systems by assuming that the work-load of the socket is equal to that of the thread executing the task
with maximum work-load on that socket, and using the respective schemes to reduce frequencies
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Fig. 2: Execution time of the threads normalized against that of thread-id 3 for the snippet shown in Figure 1b.

of the “non-critical”-sockets (sockets not running the critical-thread) – we call such an extension
as MSMC-oblivious scheme. However, such an extension does not always translate to energy gains
because of the way the threads are scheduled on the socket. For example, in Fig. 2, there is an overall
load-imbalance in the program but the two threads executing the tasks with the highest execution
times (threads with ids 3 and 8) are mapped to two different sockets (note: here thread i is mapped to
core i). Since the execution times for tasks executed by threads 3 and 8 are almost equal, the MSMC-
oblivious schemes assume that there is no load-imbalance among the sockets and thus perform very
minimal or no frequency-scaling. Similarly, the MSMC-oblivious scheme of Li et al. [2004] runs
the non-critical-sockets at MAXFREQ and switches them off once all the tasks running on these
sockets reach the join-point. This scheme does not lead to much benefits either as there is not much
socket-level load-imbalance. Further Cai et al. [2008] and Rakvic et al. [2010] show that even in the
presence of some load-imbalance, this simple scheme is not much beneficial. Thus we see that in the
context of MSMC systems, there is less scope to reduce the frequency of the non-critical-sockets,
using MSMC-oblivious schemes.

The recent work of Ozturk et al. [2013] reduces the energy consumption in MSMC systems, but
it assumes that the work-load is known statically (not applicable in the context of ITP programs,
where the sources of load-imbalance are input dependent loop bounds, if-conditions, and so on).

In this paper, we aim to reduce the energy consumption of ITP programs running on MSMC
systems, without significantly impacting their execution times. We first list three key intuitions that
form the basis of our solution: (i) Though it is hard to statically measure the work-load of the
tasks for ITP programs, it is more feasible to estimate the same efficiently, using a mixed static +
runtime approach. For example, for a normalized [Muchnick 1997] for-loop with an input dependent
loop-bound, if we can compute the work-load of the loop-body statically, then we can compute
the work-load of the loop at runtime, by multiplying the loop-bound (known at runtime) with the
statically computed work-load of the loop-body. (ii) The load-imbalance among the threads can vary
during the execution of their assigned tasks; thus, it may be beneficial to perform frequency-scaling
multiple times during the life time of the tasks. (iii) For MSMC systems, segregating the threads
into different sockets (such that the load-imbalance among the sockets is maximized), can help in
creating more opportunities for frequency-scaling. Importantly, all these points must be handled in
a way such that the runtime overheads are minimal.

Achieving energy reduction with minimal increase in execution time becomes more challenging
in the presence of atomic-blocks. An atomic-block in languages like X10 (or an isolation-block in
HJ) provides mutual-exclusion. Reducing the frequency of the non-critical-sockets slows down the
atomic-blocks executed by the corresponding threads. This in turn may increase the waiting time of
the critical-thread at those atomic-blocks. Consequently, even though the critical-socket is running
at MAXFREQ, the execution time of the critical-thread may increase. Thus, it is important to model
the impact of atomic-blocks on the execution time of the critical-thread.

In this paper, we present X10Ergy, a mixed compile-time + runtime technique to reduce the en-
ergy consumption of ITP programs, for task-parallel languages like X10. To the best of our knowl-
edge, this is the first work that reduces the energy consumption of ITP programs, on MSMC systems,
with minimal increase in execution time, even in the presence of atomic-blocks; Fig. 3 summarizes
some of the important prior works in the context of the challenges discussed above. An important
point to note is that we can apply our proposed optimizations to derive additional energy gains,

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4

Technique Supports MSMC Handles Atomic-blocks Work-load estimation Optimize for Target systems
Ozturk et al. [2013] 3 7 compile-time energy homogeneous
Rakvic et al. [2010] 7 7 runtime energy homogeneous
Liu et al. [2005] 7 7 runtime energy homogeneous
Chen et al. [2014] 7 7 runtime energy homogeneous
Jibaja et al. [2016] 7 7 runtime energy+time heterogeneous
Jimborean et al. [2014] 7 7 NA energy homogeneous
Rauber and Rünger [2015] 7 7 compile-time energy homogeneous
Ribic and Liu [2014] 7 7 runtime energy homogeneous
Salami et al. [2014] 7 7 runtime temperature homogeneous
X10Ergy 3 3 compile-time+runtime energy homogeneous

Fig. 3: Comparison of X10Ergy with related works.

after the completion of the pass to load-balance the threads by traditional approaches (such as loop-
chunking). For example, in contrast to the chunked version of the DS kernel, the X10Ergy version
takes 21.2 seconds (1% more) and consumes 1171 Joules (20% less). Though our proposed solution
is presented for X10, it can be extended to other task-parallel languages that support parallel-loops
and atomic-blocks (for example, HJ [Cavé et al. 2011], OpenMP [OpenMP 2013], Chapel [Chapel
2005], and so on).
Our contributions:
• We propose a technique to estimate the work-load of the tasks by identifying two different parts
of the program: code with input independent work-load and code with input dependent work-load.
The work-load of input independent parts is calculated through static analysis, and combined with
the work-load of input dependent parts, computed at runtime to find the work-load of each task.
• Considering the continuously decreasing work-loads of the tasks (all not at the same rate), we pro-
pose an algorithm to compute the remaining work-loads and perform frequency-scaling at regular
intervals based on these remaining work-loads (instead of the initial estimated work-load [Ozturk
et al. 2013] or the work-done so far [Rakvic et al. 2010; Cai et al. 2008; Chen et al. 2014]).
• Considering the special nature of the MSMC systems, especially in the context of ITP programs,
we propose an algorithm that performs thread-migration at different intervals to maximize the load-
imbalance among the sockets, which in turn improves the opportunities for frequency-scaling.
• To handle atomic-blocks, we propose a technique that takes into consideration the increase in wait-
ing time of the critical-thread (due to frequency-scaling of the non-critical-sockets). Our technique
uses a user-specified parameter (wtTmP ) to fine-tune the frequencies of the non-critical-sockets,
so that the percentage increase in the execution time of the critical-thread is bounded by wtTmP .
• We have implemented X10Ergy in the x10-v-2.4 compiler and evaluated it against the Baseline
versions (with -NO CHECKS flag) and two prior works: the meeting-points based optimization
(MP-OPT) of Rakvic et al. [2010] and the work-load-aware optimization (EEWA-OPT) of Chen
et al. [2014]. We show that on average, on IMSuite benchmarks (i) compared to Baseline, X10Ergy
reduces the energy consumption by 15% with 2% increase in execution time. (ii) Though X10Ergy
consumes approximately equal amount of energy than MP-OPT, it does not incur the execution time
overhead (17%) incurred by MP-OPT. (iii) Compared to EEWA-OPT, X10Ergy reduces the energy
consumption by 4% and does not incur the execution time overhead (9%) incurred by EEWA-OPT.

2. BACKGROUND
We give a brief background of some of the topics related to this manuscript.
• Normalized Loop is a for-loop in which the loop index variable starts at 0, is incremented by 1 after
each iteration and is bound by a loop-invariant expression (the loop-bound expression). For example
in the loop "for(i=0;i<V(k).f();i++) S", V(k).f() is the loop-bound expression.
• In X10, each task is executed by a single thread – from start to end. The initial count of threads can
be set using the environment variable X10 NTHREADS (typically set to the number of available
cores). Starting from 0, the X10 runtime assigns a thread-id to each thread. In the rest of the paper,
we use “thread-id” of a thread, to refer to the X10 runtime assigned thread-id.
• Loop chunking [Nandivada et al. 2013] is one of the most effective ways to extract useful par-
allelism from the programmer specified ideal parallelism. We use the following terms to denote
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(b) Runtime interaction of the X10Ergy components with a chunk.

Fig. 4: Block diagrams.

different parts of the chunked loop. (i) The ACLoop (Async creator loop) creates nThreads number
of asyncs, and waits for them to terminate (Example ACLoop: Lines 2-14, Fig. 1b). (ii) The chunk
is the async block inside the ACLoop (Example chunk: Lines 3-13, Fig. 1b). (iii) The chLoop is
the loop (contained in the chunk) that executes a block of asyncs of the unchunked loop serially
(Example chLoop: Lines 4-12, Fig. 1b). (iv) The chunk-size of a chLoop is the maximum number
of iterations executed by the loop.

We use a five tuple 〈n,cS,Spre,S,Spost〉 to denote an ACLoop, where n is the loop bound
of the ACLoop, cS is the chunk-size, Spre is the code in the chunk present before the chLoop, S
is the body of chLoop, and Spost is the code in the chunk after chLoop. In this paper, we restrict
ourselves to the class of X10 programs where there is no nesting of ACLoops.
• equi-acls: Two ACLoops F1 and F2 are termed as equi-acls, if loop-bound(F1) = loop-bound(F2)
and loop-bound(chLoop(F1)) = loop-bound(chLoop(F2)).
• A post-domF B: In a CFG, A post-domFB, if each path from B to F in the CFG must pass through
A. This is a generalization of the traditional post-dominance (post-dom) relation [Muchnick 1997].
• Energy reduction via MP-OPT: Rakvic et al. [2010] propose a scheme (called meeting-point
optimization) for energy reduction, in which for each thread they maintain a counter representing
the number of parallel-for-loop iterations completed by that thread. The critical-thread is the thread
with the least counter value. After every 10 iterations, each thread sets its frequency = MAXFREQ×
the ratio of the counters of the critical-thread and itself. We call this scheme MP-OPT.
• Energy reduction via EEWA-OPT: For each parallel-loop L, the feedback based scheme proposed
by Chen et al. [2014] first records the execution times of each task (created in L), by running all the
cores at MAXFREQ. If L is embedded inside a serial loop, then in the jth instance of L, the ith task
is executed at a frequency = MAXFREQ×(recorded-execution-time(i) at iteration (j − 1)/critical-
task-execution-time at iteration 0). We call this scheme EEWA-OPT.

3. X10ERGY
We now present a new scheme (X10Ergy) to optimize loop-chunked programs for energy, with
minimal impact on the execution time. X10Ergy uses a mixed (compile-time+runtime) approach.
At compile-time, for each ACLoop (see Section 2), it emits instrumentation code that at runtime, (i)
estimates the work-load of each chunk created inside the ACLoop and (ii) based on the estimated
work-loads, uses frequency-scaling and thread migration to reduce the energy consumption.

Fig. 4a shows the block diagram of the interaction of the compile-time components of X10Ergy;
it consists of three components: (1) CompWL-emitter: emits code to estimate the initial and
remaining work-load for each chunk. (2) FreqScaler-emitter: emits code to tune the frequency
of the sockets based on the remaining work-load of all the chunks. (3) MigrationController-
emitter: emits code to (i) identify the threads for migration (based on the remaining work-load of all
the chunks) by invoking a function TMController, and (ii) perform the migration of the threads.

The codes emitted by the different emitters are invoked during the execution of the chunk.
Fig. 4b shows the block diagram of the runtime-interaction of the different components generated
by X10Ergy (CompWL, FreqScaler, and MigrationController) with any chunk of the
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Abbreviation Definition
ACLoop Async creator loop (creates as many asyncs as there are number of hardware threads available).
chunk Async block inside the ACLoop.
chLoop Loop contained in the chunk that executes a block of asyncs of the unchunked loop serially.

Fig. 5: Abbreviations used in Section 3.1 and further.

ACLoop. Before executing any ACLoop, CompWL estimates the initial work-load of all its chunks
(not shown in the figure). In each chunk, before executing an iteration of the chLoop, a part of the
code emitted by MigrationController is invoked to migrate the current thread, if it is marked
for migration by TMController. CompWL is invoked after each iteration of the chLoop to up-
date the remaining work-load of the chunk. In contrast, FreqScaler and TMController are
invoked at variable intervals depending on the load imbalance among the threads.

We now give details regarding each of the components of X10Ergy shown in Fig. 4a. For the
ease of presentation, we assume that the input code does not contain any atomic-blocks. Section 4
discusses how our proposed techniques are extended to handle atomic-blocks. For easy reference,
we list the abbreviations and variables used in the upcoming sections in Figures 5, 11 and 13.

3.1. CompWL-emitter
The CompWL-emitter performs three main tasks: (1) generates code to estimate the initial work-
loads of all the chunks; (2) identifies the appropriate program-points and emits the code generated
by Task 1; and (3) emits the code to update the remaining work-load of all the chunks at regular in-
tervals during chunk execution. In this paper, we use the terms cost and work-load interchangeably.
Task 1: To generate code to estimate the initial cost of all the chunks, we first generate an expression
denoting an upper bound on the cost of each iteration of their chLoops (abbreviations introduced in
this section are listed in Figure 5). Note that since each chunk (in an ACLoop) executes the same
piece of code, every chLoop in any such chunk will have the same syntactic cost-expression. For ex-
ample, consider the ACLoop at line 10 in Fig. 6a (a synthetic code depicting a typical pattern found
in the IMSuite kernels). For the chLoop (spanning lines 12-17) the body of each iteration spans the
lines 13-16. The cost-expression for each such iteration is V(k).list2.size()*L13+C16. We
use Li as the cost of executing one iteration of the loop at Line i (including the cost of loop-body,
predicate evaluation and loop-index variable increment), and Cj as the cost of executing Line j (see
Section 5 for a discussion on computing the static costs). Fig. 7 presents the pseudo code, of the
function getWL, used by CompWL-emitter to compute the cost-expression of the chunk.

The function getWL maintains the cost-expression of the chunk in two parts: an input dependent
part (in a string variable dCost), and an input independent part (in an integer variable iCost). The
final expression denoting the cost of the chunk is obtained by concatenating dCost and iCost; we
use the ‖ operator to concatenate two strings. The function getWL iterates over all the statements of
the chunk (line 4). If the statement is a loop, getWL generates a string denoting an expression that
multiplies the loop-bound with the cost of the loop body (line 5-9), including the loop-predicate cost
and appends this string to dCost. This multiplication ensures that at runtime, two chunks executing
the same syntactic piece of code with different values for the loop-bound expressions will have
different work-loads. Note that the function getLoopBound returns the loop-bound expression in
terms of the visible fields (of the current class or globals), and if the desired loop-bound expression
cannot be computed, then it conservatively returns a constant CL (typically, set to a large value).

If the statement is a conditional (Lines 10-14) then getWL generates an expression to compute
the conservative worst-case cost of the statement (including the cost of evaluating the predicate).
The macro MAX(B1, B2), expands to "("‖ B1 ‖ "≥ "‖B2 ‖ ")?"‖B1‖ ":"B2. The translation
of a switch statement or a simple if-then statement is handled similarly.

If the current statement is a simple-statement (neither a loop, nor a conditional) then getWL
increments iCost by the static cost of the current statement; see Section 5 for a discussion on
computing the static cost. Note that if the statement is a loop over simple-statements and its loop-
bound expression can be evaluated statically, then it is handled like a simple-statement.
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1while(some condition){
2 finish for(i=0;i<n;i+=chunkSz){
3 async{
4 for(k=i;k<min(i+chunkSz,n);k++){
5 for(j=0;j<V(k).list1.size();j++){
6 S1/*calculates some vertex x*/
7 V(k).list2.add(x);
8 } }
9 } /* async */ }/* finish */
10 finish for(i=0;i<n;i+=chunkSz){
11 async{
12 for(k=i;k<min(i+chunkSz,n);k++){
13 for(j=0;j<V(k).list2.size();j++){
14 S2
15 }
16 S3
17 }
18 } /* async */ } /* finish */
19 ...more finish blocks
20} /* while */

(a) A typical pattern found in many IMSuite kernels.

1finish for(i=0;i<n;i+=chunkSz){
2 async{
3 ch=i/chunkSz;sum=0;
4 for(k=i;k<min(i+chunkSz,n);k++){
5 sum=sum+L5*V(k).list1.size();
6 }
7 oriWLACL1(ch)=WLACL1(ch)=sum;
8 } /* async */ } /* finish */
9while(some condition){
10 finish for(i=0;i<n;i+=chunkSz){
11 async{
12 ch=i/chunkSz;sum=0;
13 for(k=i;k<min(i+chunkSz,n);k++){
14 for(j=0;j<V(k).list1.size();j++){
15 S1/*calculates some vertex x*/
16 V(k).list2.add(x);
17 }
18 sum+=L13*V(k).list2.size()+C16;
19 WLACL1(ch)-=L5*V(k).list1.size();
20 }
21 WLACL2(ch)=sum;
22 } /* async */ } /* finish */
23 finish for(i=0;i<n;i+=chunkSz){
24 async{
25 ch=i/chunkSz;sum=0;
26 for(k=i;k<min(i+chunkSz,n);k++){
27 for(j=0;j<V(k).list2.size();j++){ S2 }
28 S3
29 WLACL2(ch)-=L13*V(k).list2.size()+C16;
30 }
31 WLACL1(ch)=oriWLACL1(ch);//restore
32 } /* aysnc */ } /* finish */
33 ...more finish blocks
34} /* while */

(b) Transformed code

Fig. 6: Code transformation by CompWL. S1, S2, S3 represent blocks of code. The changes are shown in bold.

The function getWL returns a string denoting the work-load of one iteration of the chLoop, which
is accumulated at runtime by adding the contributions of every iteration to get the total estimate of
the work-load of the chunk. At runtime, we store this chunk’s workload-sum (say indexed by i), in
each ACLoop L, in a data structure WLL(i). The code for summing up the work-load and storing
the value in WLL(i) is emitted by Task 2.
Task 2: The program-points where the cost expressions computed by Task 1 are emitted impact the
overhead resulting from the emitted code. Fig. 8 shows the steps followed by CompWL to emit the
work-load estimation code at appropriate program-points so as to minimize the resulting overheads.

Note that, for any ACLoop F , we want to compute the work-load of the chunks present in F ,
before F starts executing, and these computations can be done in parallel for each chunk. Naively
emitting even a parallel-loop to compute the work-load just before F can be quite inefficient: for
instance, say F is inside a serial loop, then the task creation and termination overheads for the work-
load computing loop can be high. Instead we want to emit the work-load computing code such that
these additional overheads can be minimized. We use Iterated Dominance Frontier (IDF) [Cytron
et al. 1991] to achieve this goal and to minimize the program points where work-load estimation
code needs to be emitted.

In Fig. 8, we first calculate the IDF of the definitions (Defs) of the variables that are used in the
cost-expression E returned by Task 1. We then select a node p from S (= Defs ∪ IDF (Defs))
such that for each l ∈ S, p post-domF l. This condition ensures that p is the closest reachable node
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1 Function String getWL(Node B)
// Returns an expression (as a string) to estimate
the work-load of one iteration of chLoop, whose
body given by B.

2 int iCost := 0; // input independent
3 String dCost:="0";// input dependent
4 foreach S ∈ B.statements do
5 case S is a loop :
6 String lBound := getLoopBound(S);
7 String pCost := predEvalCost;
8 String lCost := getWL(S.body);
9 dCost := dCost ‖ "+" ‖ lBound ‖ "*("

‖ pCost ‖ "+" ‖ lCost ‖ ")";
10 case S is an if-then-else statement :
11 String pCost := predEvalCost;
12 String tCost := getWL(S.thenBody);
13 String eCost := getWL(S.elseBody);
14 dCost := dCost ‖ "+" ‖ pCost ‖ "+"

‖MAX(tCost, eCost);
15 case Otherwise /*a simple-statement*/ :
16 iCost := iCost + S.iCost

17 return dCost ‖ "+" ‖ Integer.toStr(iCost);

Fig. 7: Get the workload of the chLoop.

1 Function wLEmitter(chLoop A, ACLoop F )
2 E := getWL(A);// computed by Fig.7
3 Defs := Set of defs used in E, reaching A;
4 S := IDF (Defs) ∪Defs;
5 Find p ∈ S such that ∀l ∈ S, p post-domF l;
6 if p is inside ACLoop N AND equi-acls(N,F )

AND N 6= F then
7 EmitInACLoop(N ,F ,E)

8 else
9 if equi-acl-defs(F,Defs) then

10 foreach st ∈ Defs do
11 EmitInACLoop(ACLoop(st), F , E);

12 else EmitAt(p, F , E);

13 if ∃ a path P from F to F in the mCFG AND the
vars used in E are not modified in between then

14 if ∃ ACLoop R: R ∈ P AND equi-acls(R,F )
AND (R post-dom F OR R dom F )

AND R 6= F then
15 Emit "WLF(ch) = oriWLF(ch);" as

the last statement in chunk(R).
16 else
17 Emit "for(i=0;i<nThreads;i++)

WLF(i)=oriWLF(i);" before F

Fig. 8: Algorithm to identify the appropriate program
points and emit work-load estimation code.

to F among the nodes in S and every node in Defs that reaches E (in A) must pass through p.
Emitting the work-load computing code at p ensures that redundant work-load re-computation is
avoided. Once p is identified, if p is contained in an ACLoop N , and N and F are equi-acls (see
Section 2) then the code to estimate the work-load for each chunk in F is emitted in N using the
function EmitInACLoop (Line 6). The function EmitInACLoop (Fig. 9) modifies N in such
a way that in each chunk ch, it additionally sums up the work-load of each chLoop-iteration of
the corresponding chunk in F ; the final sum is stored in the corresponding element of that chunk
(WLF (ch)). Note that the function EmitInACLoop does not create new tasks for computing the
work-load and hence avoids the task creation and termination overheads.

If the predicate at Line 6 (Fig. 8) fails, then the algorithm checks if all the Defs are contained
in ACLoops that are equi-acl to F – we call it the equi-acl-defs condition (Line 9, Fig. 8). If so,
the function EmitInACLoop is invoked which emits the work-load estimation-code inside the
ACLoops (thereby avoiding additional task creation and termination operations), where the defs
are present; Lines 10-11, Fig. 8. Otherwise, a new ACLoop is emitted after p (Line 12, Fig. 8) to
calculate the work-load of A; we do so by invoking the function EmitAt (Fig. 10).

After the execution of the chunks contained in ACLoop F is finished, the remaining work-loads
of all those chunks (stored in WLF ) become zero. If F can be executed again (say, because it is
enclosed in a loop), we may need to reinitialize all the elements of WLF before F starts executing.
For a given ACLoop F , the algorithm (at Line 13) checks if the variables present in the string
returned by getWL are not modified anywhere along the path from F to F in the mCFG (a modified
CFG, where each ACLoop is treated as a single node). If such a path exists, then it checks whether
there exists any ACLoop R such that R and F are equi-acls, and in the mCFG, either R post-dom
F , or R dom F . If this is the case, then the code to re-initialize the work-load array (with the array
oriWL) is emitted as the last statement of the chunk contained in R (Line 15). Otherwise, a serial
for-loop which initializes the work-load array is emitted immediately before F (Line 17).
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Function void EmitInACLoop (ACLoop N ,
ACLoop F , String E)

Say N = 〈n,ii,cS,Spre,S,Spost〉;
Replace N by 〈n,ii,cS,S1,S

′,S2〉, where
S1 := Spre‖"int ch=ii/cS,sum=0;"
S′ := S ‖ " sum = sum + " ‖ E ‖ ";"
S2:=Spost‖"WLF(ch)=oriWLF(ch)=sum;"

Fig. 9: Function EmitInACLoop: in ACLoop N
emits code to compute WLF

Function void EmitAt(program-point p,
ACLoop F , String E)

Say F := 〈n,ii,cS,Spre,S,Spost〉;
After p, emit 〈n,ii,cS,S1,S’,S2〉, where
S1:="int ch=ii/cS,sum=0;"
S′ := "sum = sum + " ‖ E ‖ ";"
S2:="WLF(ch)=oriWLF(ch)=sum;"

Fig. 10: Function EmitAt: after p create a new
ACLoop to compute WLF

Task 3: The remaining work-load of the chunk (stored in the WL array) should be updated contin-
uously, as its value decreases after the execution of each statement in the chunk. Considering the
possibly significant overheads resulting from frequent updating of the WL array, we only update
the WL array at the end of each iteration of the corresponding chLoop – this helps us maintain an
approximate value of remaining work-load. For a given ACLoop N (say the chunk is indexed by
ch, if getWL returns E, then Task 3 emits the following statement after the last statement of the
chLoop: "WLN(ch)=WLN(ch)−E;".

Example: Consider the snippet in Fig. 6a. For the list objects, we assume that list.add()
is a write operation and list.size() is a read operation. Task 1: For the chLoop at Line 4,
getWL returns L5*V(k).list1.size(); and for the chLoop at Line 12, getWL returns
L13*V(k).list2.size()+C16. Task 2: The algorithm in Fig. 8 transforms the running ex-
ample to the code shown in Fig. 6b. In Fig. 6a, for the chLoop starting at Line 4, V(k).list1
is defined only during the initialization (before the while-loop, not shown in the figure). Thus, the
initial work-load of each chunk here remains unchanged across the multiple iterations of the while-
loop (Line 1). In such cases, it is enough to evaluate the cost-expression for each such chunk exactly
once to avoid redundant computations. The code generated by Task 2 achieves this by emitting the
code shown in Lines 1-8 (Fig. 6b). For the same chunks, Task 2 also emits the code at Line 31
to re-initialize the work-loads of these chunks. Consider the second chLoop of Fig. 6a at Line 12:
V(k).list2 is defined at line 7. So the estimated initial work-load of the second chunk keeps
changing in the iterations of the while-loop. CompWL emits the code at line 18 and 21. Task 3: This
task emits the code at Lines 19 and 29 in Fig. 6b to update the appropriate WL arrays.

3.2. FreqScaler-emitter
FreqScaler-emitter emits the code to update the frequency of the sockets (at specific intervals)
based on the remaining work-load of the chunks assigned to the threads. Recall (Section 2) that the
number of chunks created is equal to the number of threads, which is set equal to the total number
of cores on the system. Hereafter, we use the phrase “chunks running on a socket” to refer to the
chunks assigned to the threads running on the cores which are connected to that socket. We call the
chunk executed by the critical-thread, a critical-chunk and the rest as non-critical-chunks. The main
part of the code emitted by FreqScaler-emitter deals with the function FreqScaler. For the
ease of reading, we list the variables introduced in this section in Fig.11.

The function FreqScaler is invoked in each chunk where it checks if it is the leader, and if so
updates the frequencies of all the sockets (by calling the function updateFreq discussed later). A
leader should satisfy one of the following two properties:
Property 1- The leader is a critical-chunk. Note: if two chunks with chunk-ids i and j have the same
remaining work-load and i > j, then i is considered the chunk with larger remaining work-load.
Property 2- The leader is not the critical-chunk, but it was marked as the future leader by the pre-
vious leader. We use the variable curLdr (an atomic variable) to store the chunk-id of the leader.
The curLdr can also store two special values: (i) INIT-LDR: indicates the absence of a leader at
the start of an ACLoop. (ii) NO-LDR: indicates the leader has executed all its chLoop iterations.

The code to invoke FreqScaler is inserted before the first statement of the body of the chLoop
under consideration. This call is guarded by a predicate that ensures that FreqScaler is invoked
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Name Definition
curLdr stores the chunk-id of the leader (type: shared, atomic).
done per chunk, stores a flag indicating if the chunk has finished execution (type: shared, atomic).
backoff stores the interval after which FreqScaler is called by the current chunk (thread-local).
STEP stores the initial value of the backoff interval (user specified parameter).
socketRWL per socket, stores the max remaining work-load among the chunks running on that socket.
maxWLs stores the work-load of the critical-chunk.

Fig. 11: Variables used in Section 3.2 and further.

at the beginning of the chLoop, and after every backoff number of iterations. The variable backoff
is initialized to STEP (a system-parameter, see Section 5 for a discussion on the value of STEP ).
For example, in Fig. 6b we insert the following piece of code, after Lines 13 and 26:

if(((k-ii)%backoff ) == 0) backoff = FreqScaler(ch,backoff ,WL);

The function FreqScaler takes three arguments: (i) the current chunk-id ch, (ii) a thread local
variable backoff that is used to determine the interval at which FreqScaler is invoked in that
chunk, and (iii) the WL array of the corresponding ACLoop in execution.

In addition to the code emitted to invoke FreqScaler, the following piece of code is emitted
as the last statement of the chunk (in Fig. 6b, after Lines 21 and 31).

done(ch) = true; // chunk ch has finished execution.
curLdr.CAS(ch,NO-LDR); //if ch is same as the curLdr, set curLdr to NO-LDR.

To avoid race condition, a key requirement of frequency updating (by calling the function
updateFreq) is that it must happen inside a critical section (hereafter, referred to as CS). In
addition, we also want to avoid performing excessive CAS operations to minimize the associated
overheads. We now describe FreqScaler that ensures that both of these requirements are met.

Algorithm intuition: After every backoff number of iterations, each chunk first checks if it is the
critical-chunk. If so, then it marks itself as the current leader, updates the frequencies of the sockets
provided no other chunk is doing the same, and then resumes the execution of its chLoop iterations.
Each non-critical-chunk checks if it is the current leader (the first case), or no leader is selected yet
(the second case). If the check succeeds, it atomically marks itself as the current leader and updates
the frequencies of the sockets, otherwise it resumes the execution of its chLoop iterations. Note that
the atomic operation here resolves the possible contention either between the leader non-critical-
chunk and the non-leader critical-chunk (for the first case), or among multiple non-critical-chunks
(for the second case).

Fig. 12 shows the flow chart of the chunk execution (with chunk id = i), in the presence of
the code emitted by FreqScaler-emitter. Before the execution of any chunk, curLdr is set to
INIT-LDR. Each chunk has a local variable itr that holds the number of chLoop iterations executed
by the chunk. Starting from itr=0, and after every backoff iterations, the function FreqScaler
is invoked. Once all the iterations of the chunk i have finished execution, a flag is set to indicate
the completion of chunk i. Further, if curLdr is set to i then it is (atomically) set to NO-LDR. This
helps choose a new leader (among the remaining chunks), if the current leader finishes early.

The function FreqScaler first checks if i is the critical-chunk (in Fig. 12, critical-chunk takes
the path X – Property 1 holds). If so, it invokes the function updateFreq, provided one of the
following conditions hold: (i) curLdr = INIT-LDR, (ii) curLdr = i (the critical-chunk), or (iii) if
no other chunk is updating the frequency and chunk i succeeds in setting (atomically) curLdr to i.
Note that if the condition (i) or (ii) is true, then there is no need of CAS to update curLdr, because
it is guaranteed that there will be at most one chunk which will find its remaining work-load to be
the largest and satisfy (i) or (ii). However, if the condition (iii) is true, we need to update curLdr
atomically, because one or more chunks (not having the largest remaining work-load) may also try
to update curLdr (before calling updateFreq) under some conditions (see below).

If i is a non-critical-chunk (in Fig. 12, non-critical-chunk takes the path Y), then it invokes the
function updateFreq, if curLdr = i, or NO-LDR and chunk i succeeds in setting (atomically)
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chunk i starts
execution; itr:=0;

curLdr:=INIT-LDR;
ACLoop starts

itr%backoff
= 0?

execute 1
chLoop
iteration;
itr++;

iterations
left?

mark i as done;
CAS(i,NO-LDR);
// chunk i ends

call FreqScaler; FreqScaler returns;
Yes

No No

Yes

frequency update
not in progress &&
CAS(lvar , i) = true?

curLdr = INIT-LDR
OR curLdr = i?

executed if
i is the
critical-chunk

(curLdr = i OR curLdr = NO-LDR)
AND (CAS(lvar , i) = true)?

compute critChunkId; call updateFreq;
curLdr := (critChunkId is done)? NO-LDR : critChunkId;executed if i is

a non-critical-chunk

curLdr:=i;

critChunkId:=i;
call updateFreq;

Yes

No

No

Yes

No

Yes

1

2

2
Path X

Path Y

Fig. 12: Flow chart of the execution of chunk i in the presence of the code emitted by FreqScaler. We use
the abbreviation CAS(x, y) to indicate curLdr.CAS(x, y). Except curLdr and the array done, the rest of
the variables are thread-local variables. Note: lvar is initialized to curLdr, before each use.

curLdr to i; these conditions enforce Property 2. Here, since i is a non-critical-chunk, we find the
critical-chunk-id and set curLdr to this id. We add an additional check to see if curLdr has finished
executing all the iterations of its chLoop in which case we set curLdr to NO-LDR.This additional
step ensures that we do not choose a leader which has finished execution. We skip the detailed
FreqScaler algorithm for space and instead discuss some of the salient points of FreqScaler.
• We have observed that if chosen as the leader, the critical-chunk typically remains as the leader
across multiple invocations of FreqScaler. To reduce the amount of overheads of FreqScaler
in this common case, we first check if the critical-chunk is the current leader. If so, we avoid per-
forming the CAS operation and simply execute the CS. Note that no CAS operation is required in
this case because once a chunk i finds that it is the critical-chunk and it was earlier selected to be
the leader, no other chunk can start executing CS until chunk i decreases its remaining work-load
(done only after completing the execution of the corresponding instance of FreqScaler and one
chLoop iteration).
• Property 1 alone is not sufficient to ensure that the leader will always be selected. It may happen
that every chunk created inside a particular ACLoop finds its remaining work-load to be lesser than
that of some other chunk in that ACLoop, in which case the leader may not get selected at all. To
avoid such a scenario, we also give a chance to the non-critical-chunks to become the leader. Note
that there could be multiple such chunks and we use CAS operations to select the leader. To reduce
the number of CAS operations, we give an opportunity to a chunk i to be the leader, if either it is
the current leader (curLdr= i) or there is no leader (curLdr=NO-LDR).
• backoff update: The value of the thread-local variable backoff indicates the number of chLoop
iterations after which the function FreqScaler is re-invoked by a chunk. Calling FreqScaler
too often (low backoff value) increases the overheads of executing the function; it becomes worse,
if most of the invocations return, without changing the frequency. Similarly, calling FreqScaler
very infrequently (high backoff value), may reduce the chances of exploiting the load-imbalance
efficiently. As a trade-off, we increase the backoff value for the chunks which are less likely to call
updateFreq. We use the following three intuitions which are based on the temporal nature of
the non-leaders and load-imbalance: (i) Non-critical and non-leader chunks continue to remain as
non-critical and non-leader in the near future (double the backoff value, on the edge labeled 1©, in
Fig. 12). (ii) If updateFreq does not change the frequency of any socket, then the load is balanced
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Abbreviation Definition Abbreviation Definition
CpS number of cores per socket. execTime execution time of the critical-chunk.

Fig. 13: Abbreviations used in Section 3.3.

and will be in such a state in the near future (in such a case, double the backoff value, on the edge
labeled 2©, in Fig. 12). (iii) If the frequencies have changed then the load is not balanced and it may
change again (in such a case, halve the backoff value, on the edge labeled 2©, in Fig. 12).
• The proposed design of FreqScaler induces a data race: while a particular chunk is reading
WL(j), the jth chunk may be updating the same element, in parallel. If the critical-chunk is chosen
as the leader (common case), then the race has no impact on the frequency of the critical-socket,
while the other sockets may be set to a sub-optimal frequency. Consequently, the race does not lead
to any increase in execution time, though it may reduce some energy gains. If the non-critical-chunk
is chosen as the leader (less-common case), then the race may lead the critical-socket to run at a sub-
optimal frequency (till the critical-chunk is again chosen as the leader), thereby possibly increasing
the execution time during that period. However, our experiments have shown that such scenarios
were very infrequent and the impact of the FreqScaler on the execution time was minimal.

Note that the data races have undefined behavior in some languages (for example Java). To use
our technique in such a language without impacting the execution time negatively (note – the trans-
formation does not alter the input program semantics), we need a guarantee from the hardware that
the integer writes are atomic in nature and the obtained (read) value of the workload (an integer
value) is either an old value or the current value (no “out-of-thin-air” values); such guarantees are
typical of the ones provided by popular architectures like those from Intel and AMD.
• If-else-statement: CompWL adds the maximum of the work-loads of the if-block (if-path) and the
else-block (else-path) to the total work-load of the chunk (see Section 3.1). We call the path whose
work-load is maximum as the worst-case path. At runtime, the chunk execution may deviate from
the worst-case path which in turn causes the average remaining work-load to be lesser than the
worst-case remaining work-load. For example, on an average, across all kernels discussed in Sec-
tion 6, the value of average-case remaining work-load is less than worst-case remaining work-load
by 14% (not too high) in each chLoop iteration. An important point to note is that when the deviation
of average remaining work-load from the worst-case remaining work-load is large for a particular
chunk, its remaining work-load decreases by a larger amount. Consequently, the socket running
such a chunk is tuned at a lesser frequency compared to other sockets, which is logical.

Function updateFreq: This function is invoked by the leader from the function FreqScaler.
The function updateFreq takes two arguments: critChunkId (the chunk-id of the critical-
chunk), and WL (discussed above). As discussed in Section 1, the frequency of a MSMC system
can only be changed at a per-socket granularity. The leader first finds the chunk with the maxi-
mum remaining work-load from each socket (we call it the socketRWL of that socket). After this,
the frequency of each socket is set such that the time taken by any of its chunks does not exceed
that of the critical-chunk. We set the new frequency Fi for the socket i as the nearest system-
frequency≥ (socketRWLi÷maxWLs)∗MAXFREQ, where, maxWLs is the remaining work-load
of the critical-chunk. To avoid redundant frequency updates for a socket, we update the frequency
of any socket, only if its current frequency does not match the new frequency. Note: (i) The critical-
socket always runs at MAXFREQ. (ii) We select the largest remaining work-load of the chunks
running on each socket as the socketRWL of that socket because it ensures that the calculated fre-
quency of the socket is not under-estimated (otherwise, it may increase the execution time). We skip
the detailed algorithm for space.
3.3. MigrationController-emitter
The scheme proposed in Section 3.2 exploits the imbalance among the socketRWLs of the avail-
able sockets. For a given system with n sockets, the total %load imbalance can be computed as
(Σn

i=0(maxWLs − socketRWLi)÷ execT ime)× 100; Fig.13 lists the variables introduced in this sec-
tion. The imbalance can be maximized by sorting the threads based on the execution times of the
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1 Function TMController(int backoff , int WL[])
2 // backoff the frequency update interval

is passed by reference.
3 sortedThLst := sort thData by the workloads

of their chunks;
4 counter := 0;
5 foreach i ∈ sortedThLst do
6 curSockNum := i.coreId/CpS; /* integer division */
7 newSockNum := counter/CpS; /* integer division */
8 if (curSockNum 6= newSockNum) then
9 sInfo(curSockNum).freeC .add(i.coreId);

10 sInfo(newSockNum).newT .add(i);

11 counter := counter + 1;

12 boolean migrationNeeded := false
13 foreach k ∈ sInfo do
14 while ¬k.newT .empty() do
15 i := k.newT .remove();
16 migrationNeeded := true;
17 i.newCoreId := k.freeC .remove();
18 i.migrate := true;

19 if migrationNeeded = false then backoff := backoff × 2 ;
20 else backoff := backoff ÷ 2;

Fig. 14: The function TMController.

// Global arrays used by Figure 14
sockInfo sInfo[]; // for each socket
TData thData[]; // for each thread

chunks assigned to them and mapping a thread at index i in the sorted order to the socket bi÷ CpSc.
More imbalance in general can lead to more energy saving. Fig. 16 (columns 8 and 9) lists the imbal-
ance and the maximum possible imbalance for the IMSuite kernels ran on a two socket Intel system.
As it is visible, there is significant gap between the two columns in many of the kernels (for example,
DS, DST and MIS). Naturally, thread-migration can be used to increase the load-imbalance.
MigrationController-emitter emits the code to perform thread migration that may in-

crease the chances to scale down the frequencies of the sockets. This code consists of three parts.
Part 1: A call to the function TMController (algorithm shown in Fig. 14) is emitted in the

function FreqScaler after the call to function updateFreq. TMController is called only
when updateFreq does not modify the frequency of any socket. The function TMController
(executed, if at all, only by the leader) uses some heuristics (listed below) to mark the threads that
need to be migrated. The actual migration is performed by the individual marked threads.

To ensure that there is no increase in execution time, the frequency of any socket should be set
such that the execution times of the chunks running on the socket do not exceed that of the critical-
chunk – we call it the critical condition. Since the critical-socket is set to MAXFREQ, the maximum
energy gains can be obtained by setting the non-critical-sockets’ frequencies to the lowest frequency
satisfying the critical condition. We first sort all the threads by the remaining work-loads of their
assigned chunks and then migrate the threads to sockets using a block distribution: thread with index
i in the sorted array is migrated to a core in the socket bi÷ CpSc. To avoid redundant migrations, a
thread is marked for migration only if its current socket is different from the newly identified socket.

To assist in the process of thread migration, we maintain two arrays sInfo (of type sockInfo)
and thData (of type TData). The class sockInfo includes two fields: freeC and newT both of
type ArrayList. The list freeC contains the list of cores of the socket which have no threads mapped
to them. The list newT contains the list of threads that need to be migrated to one of the cores of
the socket. Similarly, we maintain an object of class TData, for each thread, with fields coreId
(gives the id of the core to which the thread is mapped), migrate (indicates if the thread needs to be
migrated), chunkId (gives the id of the chunk executed by the thread), and newCoreId (gives the
id of the core to which the thread is to be migrated).
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Variable Brief description
maxWLs Remaining work-load of the (standalone) critical-thread
execTmmf Remaining execution time of the critical-thread at MAXFREQ.
execTms+mf Remaining execution time of the (standalone) critical-thread at MAXFREQ
aWLi Sum of the remaining work-loads of the atomic-blocks in chunk i.
atWtTmmf Worst-case waiting time (at atomic-blocks) of the critical-thread when all the sockets are

running at MAXFREQ
atWtTmvarfreq Worst-case waiting time (at atomic-blocks) of the critical-thread when not all non-critical-

sockets are running at MAXFREQ
diffP Percentage degradation in execution times due to frequency-scaling.
wtTmP Max permitted % degradation in waiting time of the critical-thread (user specified parameter).

Fig. 15: Variables used in Section 4 along with brief descriptions. The variables referring to the metrics of
the standalone threads are subscripted with s. The variables referring to the time metrics of the threads at
MAXFREQ are subscripted with mf .

TMController (Fig. 14) performs the following four tasks (i) Line 3: It sorts the threads ac-
cording to the remaining work-load of the chunks executed by them.(ii) Lines 5-11: It iterates over
sortedThLst and for each thread i in this list, it checks if the current socket number (curSockNum)
does not match the proposed socket number (newSockNum). If so, it adds i to the newT list of the
socket newSockNum and adds the id of the core in which the thread i is currently running (i.coreId )
to the freeC list of the socket curSockNum . (iii) Lines 13-18: For each socket k, it selects the new
thread i and a core-id from freeC and assigns it to i.newCoreId . It also sets the migrate flag for
i (iv) Lines: 19– 20: If no thread is marked for migration, then it increases backoff (based on the
heuristic assumption that the remaining work-load is balanced among the threads, since there is no
migration). Otherwise, it decreases backoff .

Note: The order of sorting (increasing or decreasing) impacts the number of threads marked for
migration. Hence TMController chooses a sorting order that leads to lesser number of threads
being marked for migration (code not shown explicitly in Fig. 14).

Part 2: To ensure that the updateFreq (as discussed in the previous Section) sees a consis-
tent picture of the thread-to-core mapping, we emit a guard code that ensures that the leader calls
updateFreq only after all the threads marked for migration have been migrated (or have termi-
nated); this is done by iterating over the migrate flag of all the threads (details omitted for brevity).

Part 3: The following piece of code is emitted as the first statement of each chLoop body (For
example, after Lines 13 and 26 in Fig. 6b). This code is executed by each thread to migrate itself, if
it is marked for migration.

if(thData(threadId).migrate == true){ /* marked for migration */
thData(threadId).coreId = thData(threadId).newCoreId;
// migrate threadId to thData(threadId).coreId -- code not shown
thData(threadId).migrate = false; }

4. HANDLING ATOMICS
The X10 atomic construct brings in new challenges to the frequency-scaling schemes proposed in
Section 3. As discussed in Section 1, in each ACLoop containing atomic-blocks, scaling down the
frequency of a non-critical-socket can slow down the critical-thread (even though the critical-socket
is running at MAXFREQ). This is because running the non-critical-sockets at lesser frequencies
than MAXFREQ causes the atomic-blocks executed on these sockets to run slow. If the critical-
thread is waiting to execute any such atomic-blocks, it has to wait longer, thereby increasing the
execution time of the critical-thread which in turn increases the execution time of the program. We
now propose a scheme that tries to limit this increase in execution time. Our intuition is to first
calculate the frequencies of the non-critical-sockets using the techniques discussed in Section 3
and then use a user-specified parameter (wtTmP ) to further fine-tune the frequencies of the non-
critical-sockets so that the percentage increase in the execution time of the critical-thread is bounded
by wtTmP , while maximizing the energy gains.
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Let maxWLs be the remaining work-load of the critical-thread, in a standalone manner (ignoring
the effects of inter-thread atomic-blocks); Fig.15 lists the variables used in this section and their
brief descriptions. The remaining execution time of the critical-thread (at MAXFREQ) is given by

execTms+mf = maxWLs ÷MAXFREQ (1)

Let T be the set of threads (equal to the number of chunks created inside the ACLoop, see Sec-
tion 2). For each chunk i, aWLi be the sum of remaining work-loads of the atomic-blocks contained
in the chunk; the remaining work-load of the atomic-blocks are obtained in a way similar to that of
a chunk (Fig. 7). In the worst case, the critical-thread has to wait for all the other threads to exit their
atomic-blocks before it starts executing its own. Hence, if all the threads are running at MAXFREQ,
the worst-case waiting time of the critical-thread (with id critT ) due to the atomic-blocks (hereafter,
referred to as atWtTm) is given by

atWtTmmf = (Σ
|T|
i=0,i 6=critT aWLi)÷MAXFREQ (2)

The worst-case execution time of the critical-thread would be the sum of its waiting time at the
atomic-blocks and the time to execute its remaining work-load. Hence, when all the sockets are
running at MAXFREQ, the worst-case execution time of the critical-thread is given by

execTmmf = execTms+mf + atWtTmmf (3)

Recall that the procedure discussed in Section 3 changes the frequencies of the sockets during the
execution of the ACLoop. For a thread i ∈ T, say Fi is the computed ‘new’ frequency of the socket
containing the core to which i is mapped. The atWtTm because of the frequency change is given by

atWtTmvarfreq = Σ
|T|
i=0,i 6=critT (aWLi ÷ Fi) (4)

Note that since Fi < MAXFREQ, atWtTmvarfreq > atWtTmmf . This increase in the waiting
time of the critical-thread after frequency-scaling causes increase in the execution time of the pro-
gram. The percentage difference in the execution time due to the frequency-scaling is given by

diffP = 100× (atWtTmvarfreq − atWtTmmf )÷ execTmmf (5)
As it can be seen, when the frequency of any non-critical-socket is reduced, the value of diffP
increases. Rewriting (5):

atWtTmvarfreq = atWtTmmf + (diffP × execTmmf )÷ 100 (6)
Using (4) and (6):

Σ
|T|
i=0,i6=critT (aWLi ÷ Fi) = atWtTmmf + (diffP × execTmmf )÷ 100. (7)

Here, atWtTmmf , aWLi(∀i), and execTmmf are runtime constants, for each invocation of
FreqScaler. Thus, varying values of Fi, varies diffP , and vice versa.

We now present an overview of our scheme that uses Equation (7) to bound the possible increase
in execution time of the critical thread in the presence of atomic-blocks. We first use the scheme
in Section 3.2 to compute a set of new frequencies; say, the computed frequency of the socket
containing core to which thread i is mapped is given by Fi. We check if diffP ≤ wtTmP (a
user specified parameter). If so, then the calculated increase in waiting time of the critical-thread
is already bounded by wtTmP and we use the computed frequencies without any further change.
Otherwise, we obtain an updated frequency F i, while ensuring that F i ≥ Fi and diffP ≤ wtTmP .
Given the set of Fi values, we can potentially have many different sets of values of F i that satisfy
the above constraint. For simplicity, we compute (and use) a single constant scale(≥ 1), across all
the non-critical-sockets, and use the conservative solution ∀i, F i = scale× Fi. Let us assume that
the function critSock(x) returns true if the socket containing the core in which thread x is mapped
is critical. Rewriting (7), we get:

Σ
|T|
i=0,i6=critT,critSock(i)aWLi

MAXFREQ
+

Σ
|T|
i=0,¬critSock(i)aWLi

(scale× Fi)
≤ atWtTmmf +

wtTmP × execTmmf

100
(8)

⇒ scale ≥
Σ
|T|
i=0,¬critSock(i)(aWLi ÷ Fi)

atWtTmmf +
wtTmP×execTmmf

100
− Σ

|T|
i=0,i 6=critT,critSock(i)aWLi ÷MAXFREQ

(9)
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We set scale to the least value such that the percentage increase in execution time of the critical-
thread does not increase beyond wtTmP .

scale =
Σ
|T|
i=0,¬critSock(i)(aWLi ÷ Fi)

atWtTmmf +
wtTmP×execTmmf

100
− Σ

|T|
i=0,i 6=critT,critSock(i)aWLi ÷MAXFREQ

(10)

Note that if we use higher values for scale, then even though the execution time of the critical-
thread does not increase beyond wtTmP%, the non-critical threads will run at higher frequencies
(of course, limited by MAXFREQ), thereby reducing the energy gains. In our proposed approach,
we use (10) to compute the value of scale and use it to re-calibrate the frequencies computed using
the techniques described in Section 3.

We now explain the atomicsHandler-emitter (invoked after the MigrationController-
emitter, see Fig.4a) to translate ACLoops containing atomic-blocks. It replaces the call to
FreqScaler (inserted by FreqScaler-emitter) by a variant of FreqScaler that takes an
additional argument aWL (see the definition earlier in this section). The modified FreqScaler
follows the same flow-chart as shown in Fig. 12, except that it invokes updateFreqAtomics
(that takes an additional argument of aWL) instead of updateFreq.

For each socket k, the function updateFreqAtomics (detailed algorithm skipped for brevity)
first stores the frequency (calculated using the schemes discussed in Section 3) in the array freqs.
It then uses equations 2 and 4 to compute atWtTmmf and atWtTmvarfreq . After this, it computes
execTmmf and scale using equations (3) and (10), respectively. For each socket k, it multiplies
scale to freqs(k) to get the scaled frequency of k. Similar to the function updateFreq, it then
updates the frequencies of the sockets.

Similar to the code emitted by Task 3 of CompWL-emitter (Section 3.1), for each chunk i that con-
tains atomic-blocks, we emit code to decrement the remaining work-load of atomic-blocks (stored
in aWL) after the last statement of chLoop.

5. DISCUSSION
Computing the work-load: Wilhelm et al. [2008] presents a survey of various works that statically
compute the worst-case execution time of programs. All these works rely on some form of user-
annotations (or static bounds) to get the loop-bounds. In case of ITP programs, the loop-bounds are
input-dependent in most of the cases, thereby making it hard to provide them as user-annotations. To
overcome such a limitation, our scheme emits code which (at runtime) calculates the loop-bounds
and consequently the work-load of the chunk. To handle codes (blocks) with input-independent
(statically known) work-loads, we use a heuristic similar to that of Thoman et al. [2012]: we count
the number of assembly instructions corresponding to those blocks of codes to obtain a fair estimate
of the work-load of the block. Conservatively assuming that each instruction takes one cycle to
finish, we can divide the computed work-load by the current operating frequency of the core to
get an estimate of the execution time. While more precise ways of estimating the work-loads of the
input-independent blocks can be used (for example, schemes that consider the individual instruction
latencies, and so on), our evaluation shows that our simple heuristic gives encouraging results.
Further, our cost calculations also take into consideration the cost of the instrumentation code. In
Section 6, we show that overheads due to the instrumentation code is minimal.
Limiting the overheads of X10Ergy: If a given ACLoop has no load-imbalance among its chunks,
then invoking X10Ergy does not lead to much additional gains. Similarly, in the presence of deep
nesting of loops, since the work-load is estimated at execution time, the resultant work-load ex-
pression returned by getWL can become very expensive to execute. To limit such overheads, we
invoke X10Ergy only on those ACLoops that satisfy the following conditions: (i) has for-loops
(with input dependent loop-bounds) inside the chLoop, (ii) does not have nested loops (with nesting
depth > 3) and whose loop-index variables are dependent on each other. Moreover, the execution of
the program is also affected by (a) the total number of instrumented instructions that are added by
X10Ergy, and (b) the total number of times the sorting of remaining work-loads is done to perform
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thread migration (see Section 3.3). We have experimented with the kernels discussed in Section 6,
and found that on an average, across all kernels, (a) the number of additional instructions executed
because of X10Ergy is ≈ 0.5% of the total instructions executed in the program, which is minimal,
and (b) we performed sorting after every 2919 chLoop iterations, which is not too frequent.
Value of the parameters STEP and wtTmP : Experimentally (details in Section 6), we found
that setting STEP = 16 (the initial value of backoff , see Section 3.2) and wtTmP = 3 (giving a
percentage bound on the waiting time of the critical thread) gave the best results (max energy gains
for the least increase in execution time).
Cache modeling: Although we do not model cache explicitly, our proposed algorithm takes care
of it implicitly by maintaining the remaining work-load of each chunk. Assuming all other factors
remain the same, if two chunks mainly differ in their cache-hits (say, T1 has more cache-hits than
T2), then T1 will decrement its remaining work-load faster than that of T2. Consequently, the cor-
responding socket of T1 will be made to run at lower frequencies, in the future iterations of chLoop.
Or in other words, the computation of the remaining work-loads of different chunks at different
points of execution takes into consideration (indirectly) the impact of cache memory.
Loop Scheduling: We show our optimizations in the presence of block-chunking, although it
can also be applied in the context of many other scheduling policies [Kennedy and Allen 2002].
However, X10Ergy optimizations are not suitable for dynamic scheduling policies (for example,
dynamic-scheduling [Kruskal and Weiss 1985], guided scheduling [Polychronopoulos and Kuck
1987]), where the iterations assigned to chunks are not decided before the beginning of the ACLoop.
We believe it to be an acceptable limitation, because as claimed by Zhu et al. [2006], Cai et al.
[2008], and Rakvic et al. [2010] such dynamic techniques are not being preferred (due to the in-
curred runtime overheads), especially in the context of ITP programs.
Runtime scheduling: Using the typical OS schedulers, the OS enters the power-saving states
only when the hardware is completely unused by applications [Kambadur and Kim 2016], and
hence the resulting energy savings are limited. In general, in the absence of any compiler analy-
sis, a runtime scheduler cannot take advantage of the underlying behavior of the program (such as
remaining work-load). As a result, the decisions taken by such a scheduler can at best be based on
the past behavior of the program – can be ineffective, especially in the context of ITP programs.
X10Ergy vs work-stealing and task-resizing: In general, work stealing reduces the energy con-
sumption as a side-effect of the decreased execution time. However, work-stealing in itself is not suf-
ficient for the kernels we have under consideration because for large inputs, most of them terminate
with errors like “heap overflow”. Further, for chunked-loops, work-stealing cannot decrease the exe-
cution time nor energy any further, as the number of tasks created in a particular Async Creator Loop
matches the number of cores (no tasks to steal). Similarly, in loop-chunked ITP programs traditional
task-resizing techniques [Zahran and Franklin 2003] do not get much scope to resize and balance the
work-load as #tasks = #cores. However, X10Ergy can be used to derive additional energy gains, af-
ter the completion of the load-balancing passes by applying frequency-scaling and thread-migration
techniques discussed in this manuscript.
Interference of X10Ergy with other thread-migration techniques: It is natural to expect that if
different migration techniques (for example, X10Ergy – to improve energy gains, the schemes of
Brown et al. [2011] and Shim et al. [2014] – to improve cache-locality, the scheme of Salami et al.
[2014] – to reduce chip temperature, and so on) are deployed together, the overall gains from any
migration technique may get impacted (negatively) because of the interference from other migration
techniques. It would be interesting to study the impact of such interfering migration techniques
and devise new methodologies to reduce the negative impact thereof. Considering the complexities
involved in such a study, we leave it as a future work.
Energy measurement: The RAPL (Running Average Power Limit) interface supported in the Intel
E5 systems has a provision to get notifications on the energy consumption of the socket. We use
RAPL to obtain the energy consumed by a socket by reading a register (called the MSR register),
specific to that socket. We get the energy consumed by a program by computing the sum of the
differences between the MSR values of each socket before and after the program execution.
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kernel Brief description i/p size SLC DLC SAC DAC LI MLI
BF Breadth-first-tree construction (BellmanFord) 65,536 2 8 1 2,097,129 12 12
BY Byzantine consensus 1,024 3 5,289 1 204,203,388 32 44
DP Leader election in a general network 65,536 4 116 1 3,221,193 77 80
DR Dijkstra routing 1,024 1 1 0 0 0 5
DS Dominating set 32,768 9 27 2 65,528 22 66
DST Breadth-first-tree construction (Dijkstra) 32,768 7 84 3 182,413 40 96
HS Leader election in a ring network (bidirectional) 16,384 5 98,313 0 0 8 19
KC K-Committee construction 8,192 10 4,501 2 123,446,870 14 22
LCR Leader election in a ring network (unidirectional) 16,384 3 32,769 0 0 6 17
MIS Maximal independent set 32,768 5 5 3 153,692,873 11 31
MST Minimum spanning tree 32,768 15 28 4 65,535 0 3
VC Vertex Coloring 65,536 5 17 0 0 58 60

Fig. 16: Characteristics of Input kernels. We use the following abbreviations: SLC: static ACLoop count;
DLC: dynamic ACLoop count; SAC: static atomic-block count; DAC: dynamic atomic-block count; LI: %load
imbalance over the execution time; MLI: %maximum load imbalance over the execution time.

Though the energy consumed by a socket increases monotonically, the width of the MSR register
is fixed (32 bits). Once the value of the MSR reaches the highest supported limit, it gets wrapped
around and again starts increasing from 0; in such a case the computed difference between the MSR
values can be negative. In our evaluation, we identified and ignored such runs.
Generality of the proposed scheme: Though our proposed solution is presented for X10 programs,
it can be extended to other task-parallel languages that support parallel-loops and atomic-blocks (for
example, HJ [Cavé et al. 2011], OpenMP [OpenMP 2013], Chapel [Chapel 2005], and so on). Our
proposed solution is applicable to those hardwares which provide user-level interfaces to change the
frequencies of the cores, or sockets (for example Intel machines like Nehalem [Intel 2008], Sandy
Bridge [Rotem et al. 2012], Ivy Bridge [Intel 2017], and AMD machines like Opteron [AMD 2016],
and so on). Note that the current AMD machines do not provide any register which stores the energy
consumption of the program (thus, we cannot directly measure the energy gains here), though we
can apply our techniques to reduce the energy consumption. For these machines, we can use various
energy profilers [Manousakis et al. 2015; Alonso et al. 2012] to measure the energy consumption.

6. IMPLEMENTATION AND EVALUATION
We have implemented our proposed scheme, along with those of Rakvic et al. [2010] and Chen
et al. [2014], in the X10 compiler version 2.4. Our choice of these prior works for comparison is
based on the fact that similar to X10Ergy both of these techniques use compile time analysis to emit
the code that at runtime decides on the quantum of frequency-scaling (based on prior execution
histories in terms of number of iterations executed or the execution times). For each kernel, the
execution time and the energy readings are reported as an average over 30 runs. Each kernel was
compiled with the -NO CHECKS flags of the X10 compiler that omits many typical checks such
as NullPointerCheck, ArrayOutOfBoundsCheck, and so on; we call this the Baseline version. To
invoke our proposed optimizations, and those of Rakvic et al. [2010] and Chen et al. [2014], an
additional flag -X10Ergy, -MP-OPT and -EEWA-OPT is passed to the X10 compiler, respectively.
The experiments were conducted on a dual socket (8 cores per socket) Intel E5-2670 system. Each
socket can be set to a frequency ranging from 1.2 GHz to 2.6 GHz; the operating frequencies are
1.2 GHz, 1.3 GHz, . . . , 2.6 GHz.

We evaluate our proposed optimizations using the kernels from IMSuite [Gupta and Nandivada
2015]. A short description of these kernels along with the chosen input sizes, static and dynamic
counts of the ACLoops, and the static and dynamic counts of the atomic-blocks are given in Fig. 16.
The input is chosen as the maximum sized (in powers of 2) graph such that i) the over-all execution
time of the complete program (including the time to read the input from the files, initialization and
the actual computation) does not exceed two hours, and, ii) across multiple invocations, for at most
10% of the runs of the actual computation code, the difference between the values of the MSR
register (before and after the computation code) is negative. This ensures that we do not have to
ignore too many runs, because of the MSR register overflow (see Section 5).
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Fig. 17: Normalized execution time and energy con-
sumption of X10Ergy versions against the Baseline
versions at MAXFREQ.
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Fig. 18: Normalized execution time and energy con-
sumption of X10Ergy versions against the Baseline
versions at the threshold-frequency.

Of the twelve kernels in IMSuite, eight have visible load-imbalance (max-load-imbalance (MLI)
≈ 20% or more): BY, DP, DS, DST, HS, KC, MIS and VC. In Section 6.1, we discuss the gains
resulting from X10Ergy for kernels that exhibit load-imbalance. Later (in Section 6.2), we show that
X10Ergy does not lead to much overheads even in kernels that do not have much load-imbalance.

6.1. Impact of X10Ergy on kernels with load-imbalance
X10Ergy vs Baseline: Fig. 17 shows the normalized execution time and the energy consumption of
the kernels optimized using X10Ergy, with respect to those resulting from the Baseline optimiza-
tions. As it can be seen, the X10Ergy versions save a significant amount of energy (on average 15%
less) compared to the Baseline versions, while incurring negligible performance degradation (on
average 2%). This is because our proposed techniques exploit the load imbalance in the application
and appropriately scale down the frequencies of the non-critical-sockets (leads to energy gains),
while ensuring that the critical-socket run at MAXFREQ (limits the increase in execution time).

For the HS kernel, the load-imbalance present in the input program is low (column 8, Fig. 16),
and even after thread-migration, the maximum possible load imbalance is not too high (column 9,
Fig. 16). Consequently, the gains are also low (7%). For DS, KC and MIS, the higher load-imbalance
translates to improved energy gains (20%, 19% and 11%, respectively). In case of BY, though the
load imbalance is not too low, the energy gains are moderate. This is because, the load imbalance
is spread across a large number of ACLoop instances, thereby reducing the scope for exploiting
the load imbalance. Further, many of the ACLoops have no load-imbalance and thus give no scope
to reduce energy. This in-turn reduces the value of the energy-gains metric that is computed by
normalizing the energy-reduction against the total energy consumption across all the ACLoops.

DST shows an interesting case where the energy gains (21%) though are better than that of BY
(note: the load-imbalance in the Baseline versions of DST is more than that of BY), the energy gains
in DST are not quite matching the large maximum load-imbalance (96%) that can be realized by
thread-migration (column 9, Fig. 16). The main reason for such a behavior is that here, after thread-
migration, the execution time difference among the critical-threads and the non-critical-threads is
quite high. Consequently, the difference of energy consumption between the critical-socket with
that of the non-critical-socket (after thread-migration) is also quite high. As a result even though
there is a significant % reduction in energy in the non-critical-socket, we achieve low overall gains
(computed as energy-gains/(total energy consumption across both critical and non-critical-sockets)).

In case of DP, X10Ergy leads to 19% gains. Here, there are some ACLoops with large load
imbalance (similar to DS) – leading to good energy gains. These gains get slightly overshadowed
because of the presence of many ACLoops where we don’t get much energy gains (either because
they have no imbalance or very large imbalance).
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Fig. 19: Normalized execution time and energy con-
sumption of X10Ergy versions against the MP-OPT
and EEWA-OPT versions.
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Fig. 20: Normalized execution time and energy
consumption of X10Ergy versions against the
X10Ergy-NA versions.

In case of VC, there is an increase in both the execution time (6%) and energy consumption (1%).
This is because the execution time of the ACLoops is very low (≈10 ms) and the overhead of adding
the instrumentation code outweighed the energy gains.

Energy gains: The overall energy gains depend on the amount of load-imbalance. Since the over-
all gains is calculated as 100×(energy-gains)/(total-energy-consumed), the presence of parts of code
in the input program that do not lead to much energy gains (either because of low or very high load-
imbalance), reduce the overall-gains. Possible deterioration: Our proposed techniques are more
suited for the cases where the execution time of the ACLoop is significant (order of ≈100 ms) so
that the overhead of executing the instrumentation code is amortized by the ACLoop execution time.

X10Ergy vs Baseline at threshold-frequency: As shown in Fig. 17, X10Ergy results in signif-
icant energy gains while incurring marginal execution time increase. To invalidate the claim that
such energy gains (without increasing execution time) could also be achieved by simply running the
sockets at a lower frequency, we ran each of the Baseline kernels at a frequency (< MAXFREQ),
such that its execution time is just more than that of its X10Ergy counterpart; we call it the threshold-
frequency. Fig. 18 shows the normalized execution time and the energy consumption of the X10Ergy
versions, with respect to the Baseline versions executing at their respective threshold-frequencies.
As it can be seen, though the Baseline versions running at the threshold-frequencies take more time
than the X10Ergy versions, the average energy consumption is still higher than that of X10Ergy (ex-
cept for VC, see above for a discussion about the behaviour of VC). This indicates that the energy
gains realized by the X10Ergy cannot be achieved by the Baseline versions, by simply reducing the
frequency of the sockets (without significantly impacting the execution time).

X10Ergy vs MP-OPT and EEWA-OPT: Fig. 19 shows the execution times and the energy
consumption of X10Ergy normalized against the MP-OPT and EEWA-OPT. As it can be seen,
on average, X10Ergy optimized codes consume almost as much energy as MP-OPT, but at a much
lower execution time (≈ 17% less). For kernels DS, HS and MIS, since MP-OPT performs no thread
migration, the opportunities for energy savings diminish. In contrast, X10Ergy is able to exploit the
load-imbalance to further reduce the energy consumption (≈ 13%, 2% and 7%, respectively). For
kernels BY and KC , MP-OPT optimized code takes more time to execute (compared to X10Ergy
≈ 25% and 15%) as it is oblivious to the presence of atomic-blocks in ACLoops. On the other hand,
X10Ergy reduces the energy consumption with a minimal increase in execution time.

For kernels DP, DST and VC, we see that X10Ergy optimized code consumes more energy (com-
pared to MP-OPT ≈ 6%, 13%, and 22%, respectively), but takes significantly less time (compared
to MP-OPT ≈ 23%, 36% and 24%, respectively). This is because in MP-OPT, a thread does not
change the frequency of the other threads. Hence, if some non-critical-thread t is later identified as
critical then t may still run at a lower frequency until it executes a fixed number of iterations (leading
to execution time increase). On the other hand, in X10Ergy, the leader changes the frequency of all
the sockets ensuring that the critical-thread starts running at MAXFREQ as soon as it is identified.
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The plots are not continuous; they are connected for
improving the readability.
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Fig. 22: Normalized execution time and energy con-
sumption of X10Ergy versions against the Baseline
balanced versions.

Compared to EEWA-OPT, on average, X10Ergy is able to realize slightly more energy-gains (4%)
at a much lower execution time (9% less). This is because EEWA-OPT assumes that the work-loads
of the chunks present inside an ACLoop remain same across different invocations of that ACLoop.
So, the frequency estimation of the sockets for the subsequent invocations of any ACLoop N is only
based on the work-loads collected for the first invocation of N and hence we see significant increase
in execution time for the EEWA optimized kernels without much gains in energy (except VC where
the work-loads are similar across different invocation of the ACLoop).

Compared to the Baseline (numbers not explicitly shown), on average MP-OPT and EEWA-OPT
reduced the energy consumption by 14% and 11% respectively, and in the process increased the ex-
ecution time by 22% and 13% respectively. In contrast, compared to the Baseline, X10Ergy reduced
the energy consumption by 15%, but at a minimal increase in the execution time (2%). This is in
sync with our motivation to reduce the energy consumption with minimal impact in execution time.

Impact of handling atomic-blocks in X10Ergy: We compared X10Ergy with a scheme that is
oblivious to the presence of atomic-blocks; we term it as X10Ergy-NA. Fig. 20 compares the nor-
malized execution time and energy consumption of the X10Ergy optimized kernels, with respect to
the X10Ergy-NA optimized kernels. As it can be seen, compared to X10Ergy-NA, X10Ergy reduces
the energy consumptuon (≈ 3% less), and decreases the execution time significantly (9%). This is
because in the X10Ergy-NA versions, after scaling down the frequencies of the non-critical-sockets,
the atWtTm (see Section 4) increases, thereby increasing the execution time of the ACLoops con-
taining atomic-blocks. X10Ergy versions on the other hand, enforce an upper-bound (given by the
parameter wtTmP ) on the increase in atWtTm ensuring that the execution time of the ACLoops
containing atomic-blocks is bounded.

Impact of values of STEP and wtTmP : We now present our experiment to tune the two param-
eters STEP and wtTmP so that the energy reduction is maximized while minimizing the increase
in execution time of the program. To study the impact of these parameters on the execution time
and energy consumption of X10Ergy optimized kernels, we experimented with the four kernels of
IMSuite (BY, DST, KC and MIS) that contain significant number of dynamic atomic-blocks and
have significant load imbalance (≈ 20% or more). We varied STEP from 2 to 32 (in powers of
2) and wtTmP from 0, 1, . . . , 10, and 20, 30, . . . , 80. For each pair of STEP and wtTmP , we
calculated the weighted Energy-Delay Product (ED2P). For two ED2P values a and b, if a < b,
then a is said to have better tradeoff of energy consumption (lower importance) and execution time
(higher importance) than b [Laros III et al. 2013]. This metric is aligned with the goals of the paper:
energy reduction with minimal impact on the execution time. Fig. 21 shows the geometric mean
ED2P values (over the four discussed kernels) for different pairs of STEP and wtTmP . We find
that the best value of ED2P is obtained for STEP = 16 and wtTmP = 3.

Overall, one can also observe that for lower values (0 to 5%) of wtTmP the non-critical-sockets
are tuned at lower frequencies and the decrease in the energy consumption of non-critical-sockets is
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more than the increase in waiting time of the critical-thread (caused by tuning the non-critical-socket
at lower frequency), thereby obtaining lower ED2P values. For higher values of wtTmP (from 6%
to around 30%) the overall ED2P values increase. This is because energy gains obtained by further
lowering the frequency of the non-critical-sockets were lower than the increase in waiting time of
the critical-thread, thereby leading to higher ED2P values. We have observed that for larger values
(> 30%) of wtTmP , ED2P does not change much. This is because here the non-critical-sockets are
tuned to the least possible frequency and no further decrease in the frequency is possible for them.

6.2. Impact of X10Ergy on kernels with balanced load
Fig. 22 shows the normalized execution time and energy consumption of the X10Ergy versions
with respect to the Baseline versions, for the kernels that exhibit very little load-imbalance. As can
be seen in the figure, while the energy gains are minimal in these kernels (on average 1%), the
execution time overheads are also insignificant.

7. RELATED WORK
Du Bois et al. [2013] propose a hardware based (runtime) approach to identify critical-threads
(based on the running time of the threads, number of threads waiting at the barrier, and so on) and
use frequency-scaling to accelerate the critical-thread (the other threads run at lower frequencies),
which in turn leads to energy reduction. Bhattacharjee and Martonosi [2009] propose an approach
where cache misses decides the thread-criticality with more weightage given to the last level cache
misses. The critical-threads thus identified are run at MAXFREQ and the non-critical-threads are
frequency-scaled. Cai et al. [2011] target multi-core systems with SMTs and propose a technique
(thread-shuffling) where threads with similar criticality are mapped to the same SMT core after a
fixed number of execution cycles and then non-critical-cores are frequency-scaled. Our approach is
different from all the above works as i) ours is a software based approach which aims at reducing the
energy consumption of multi-socket-multi-core (MSMC) systems, ii) we identify the critical-threads
based on the remaining work-load (not on the past behavior), iii) we perform thread-migration across
sockets, iv) importantly, we handle codes with atomic-blocks such that reducing the frequency of
non-critical-threads has a minimal impact on the execution time of the critical-thread.

In contrast to the MP-OPT scheme (see Section 2) of Rakvic et al. [2010] i) we aim at reducing the
energy consumption of MSMC systems (DVFS can be applied only at a socket level granularity), ii)
we identify the critical-threads based on the remaining work-load (more intuitive than the number of
parallel tasks executed so far), iii) we perform thread-migration across sockets, iv) importantly, we
handle codes with atomic-blocks in such a way that reducing the frequency of non-critical-threads
does not significantly impact the execution time of the critical-thread. Interestingly, besides the
scheme to apply DVFS on the non-critical-threads, Rakvic et al. [2010] propose another orthogonal
scheme, where they clock-gate the entire processor (running the critical-thread) during the phases of
inactivity leading to decrease in energy. An interesting future work would be to combine X10Ergy
with their scheme, especially for MSMC systems.

Similar to the feedback based scheme of Chen et al. [2014] (see Section 2), Liu et al. [2005] mea-
sure the thread-criticality by measuring the amount of time each thread waits at the barriers. The
authors use this information to scale the frequency of the non-critical-threads before the invocation
of the future instances of those barriers. Both of these works assume that the work-load of each
iteration of a parallel-for-loop do not vary across all threads in the subsequent iterations. However,
this assumption may not hold in case of ITP programs because of the irregular nature of the work-
loads. Further, both these techniques are oblivious to the restrictions imposed by MSMC systems
on performing DVFS (that is, they stick to the default thread-to-core mapping, thereby not able to
fully exploit the load imbalance present in the application).

Salami et al. [2014] propose a scheme to dynamically balance the heat dissipation among the
cores by performing task migration based on the temperature threshold limit set for each core.
Rangan et al. [2009] propose a scheme where the frequencies of the cores are fixed with different
values and the threads are moved between high and low frequency cores depending on the cache
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misses incurred by the threads. Rauber and Rünger [2015] propose an analytical model to measure
the energy, and then minimize the energy consumption for the task-parallel programs having regular
work-loads. Ribic and Liu [2014] propose an energy efficient runtime system to apply DVFS based
on the task-queues occupancy (not the remaining work-load) of the threads.

Barik et al. [2016] propose a runtime technique which combines the runtime behavior of the
program with the power characterization of the processor to partition the work among the CPU and
GPUs with the aim of reducing the energy consumption. Jibaja et al. [2016] propose a technique
which dynamically assigns priorities and schedules the threads (holding the contended locks) to
“big” cores to speed up the performance and reducing the energy (in heterogeneous systems). Our
work is different from these works as we use a compiler+runtime scheme to obtain maximum energy
gains using DVFS for symmetric multi-core processors, without increasing the execution time.

Noureddine and Rajan [2015] propose a compiler technique which performs energy optimization
of the design patterns by reducing the calls to object instantiations, function calls and memory op-
erations. Kambadur and Kim [2016] provide application-level knobs to the programmers which is
used to trade-off the precision of the output with the energy consumption given the energy budgets
of the program. Sampson et al. [2011] uses type qualifier annotations for the data types such that
the values of ‘approximate’-annotated data types can be approximately computed (using low-power
operations) and stored on low-power memory to decrease the energy consumption. There also have
been prior works [Rangasamy and Srikant 2011; Rangasamy et al. 2008] that use petri-net based
performance models in the compiler to set the frequency of the cores. Hsu and Kremer [2003]
discuss a technique for serial programs that identifies the program regions where the CPU can be
slowed down with negligible performance loss. These program regions are the point where the CPU
is idle due to memory stalls. Jimborean et al. [2014] and Koukos et al. [2016] propose compile
time techniques in which the program is transformed into access-execute programs where an access
phase is run at low frequency to reduce the energy consumption, and execute phase is run at high
frequency with minimal cache misses. Both of these works differ in their approaches to transform
different types of applications; the former optimizes the multi-threaded scientific applications con-
taining affine codes while the latter optimizes the sequential general purpose applications. Ozturk
et al. [2013] propose a compile time technique to estimate the work-load of each thread and map the
threads to the sockets according to the sorted workloads at compile time. Their work necessitates
that the loop-bounds are statically known with minimal if-else statements. Our technique is different
from the above proposed compiler techniques since our technique considers the more general case
where the loop bounds and the branch targets are not known at compile time. Also our technique
uses the remaining work-load of the threads to identify the critical-threads. Further we also con-
sider the effect of the atomic-blocks on the execution time of the critical-threads. We also take into
consideration the MSMC systems and perform required thread migration before performing DVFS.

8. CONCLUSION
Energy efficient compilation is a critical problem for the multi-socket-multi-core (MSMC) systems.
We propose a novel energy reduction scheme (X10Ergy) for irregular programs with task-parallel
loops (ITP programs) with minimal impact on the execution time. X10Ergy scales the frequency
of the sockets based on the remaining work-loads of the chunks as against the prior works that ei-
ther use the extremely inaccurate (especially for ITP programs) static estimations or the estimates
based on past behavior. To the best of our knowledge this is the first work that reduces the en-
ergy consumption of the ITP programs with atomic-blocks (on MSMC systems), while ensuring
that the impact on the execution time is minimal. X10Ergy uses a mixed compile-time + runtime
scheme that performs compile time analysis to compute the input-independent work-loads of the
chunks created inside the ACLoops and emits the instrumentation code to (i) calculate the input-
dependent work-loads, (ii) combine the two to obtain the initial work-load of the chunks, (iii) update
the remaining work-loads of the chunks at regular intervals, (iv) perform thread-migrations across
sockets based on the remaining work-loads, and (v) scale the frequency of the sockets based on
the remaining work-loads. We show that for IMSuite X10 kernels, with reasonable load-imbalance
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(≈ 20% or more among the program threads), X10Ergy leads to (average) 15% energy gains, with
2% increase in execution time. For kernels with low load-imbalance, the impact of X10Ergy is less
in terms of energy reduction (natural), but importantly with not much increase in the execution time.

Extending our proposed work to handle SMT-enabled MSMC systems that add another level of
abstraction for thread migration is an interesting future work. Another interesting future work would
be to extend X10Ergy to be aware of the accesses to memory and multi-level caches. Similarly,
extending X10Ergy to handle nested asyncs is an interesting future work, where we can use MHP
analysis [Sankar et al. 2016] to improve the precision of the estimated work-loads.
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Techniques to Maximize Efficiency in Multicore and Simultaneous Multithreaded Microprocessors. ACM Trans. Archit.
Code Optim. 7, 2, 9:1–9:25.

RANGAN, K. K., WEI, G.-Y., AND BROOKS, D. 2009. Thread Motion: Fine-grained Power Management for Multi-core
Systems. In ISCA. ACM, New York, NY, USA, 302–313.

RANGASAMY, A., NAGPAL, R., AND SRIKANT, Y. 2008. Compiler-directed Frequency and Voltage Scaling for a Multiple
Clock Domain Microarchitecture. In ICF. ACM, New York, NY, USA, 209–218.

RANGASAMY, A. AND SRIKANT, Y. N. 2011. Evaluation of Dynamic Voltage and Frequency Scaling for Stream Programs.
In ICF. ACM, New York, NY, USA, 40:1–40:10.
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