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ABSTRACT
Networks abstracted as graph lose some information related
to the super-dyadic relation among the nodes. We find nat-
ural occurrence of hyperedges in co-authorship, co-citation,
social networks, e-mail networks, weblog networks etc. Treat-
ing these networks as hypergraph preserves the super-dyadic
relations. But the primal graph or Gaifmann graph associ-
ated with hypergraphs converts each hyperedge to a clique
losing again the n-ary relationship among nodes. We aim to
measure Shapley Value based centrality on these networks
without losing the super-dyadic information. For this pur-
pose, we use co-operative games on single graph representa-
tion of a hypergraph such that Shapley value can be com-
puted efficiently[1]. We propose several methods to generate
simpler graphs from hypergraphs and study the efficacy of
the centrality scores computed on these constructions.

Categories and Subject Descriptors
G.2.2 [Hypergraphs]: Network Centrality

Keywords
Hypergraph, Shapley value, Centrality

1. INTRODUCTION
The study of networks represents an important area of

multidisciplinary research involving Physics, Mathematics,
Chemistry, Biology, Social sciences, and Information sci-
ences. These systems are commonly represented using sim-
ple graphs in which the nodes represent the objects under in-
vestigation, e.g., people, proteins, molecules, computer sys-
tems etc., and the edges represent interactions between the
nodes. But, there are occasions in which interactions in-
volve more than two actors. For example, deliberations that
take place in a committee are multi-way interactions [2]. In
such circumstances, using simple graphs to represent com-
plex networks does not provide complete description of the
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real- world systems. For example, if we model a collabora-
tion network as a simple graph, we would have to reduce the
interaction into a set of two way interactions, and if there
are multiple actors collaborating on the same project, the
representation will be a clique on all those actors. As we
will show, we lose information about the set of actors col-
laborating on the same project in the clique construction. A
natural way to model these interaction is through a hyper-
graph. In a simple graph, an edge is represented by a pair
of vertices, whereas an hyperedge is a non-empty subset of
vertices.

Multi-way interactions, known as super-dyadic relations,
characterize many real world applications and there has been
much interest lately in modeling such relations, especially
using hypergraphs [3, 4, 5, 6]. While there have been several
approaches proposed for using various graph properties, such
as connectivity, centrality, modularity, etc., for modeling in-
teractions between actors, the extensions of these notions to
hypergraphs is still an active area of research. The typical
approach is to construct a simple graph from the hypergraph
and compute the properties on the regular graph. The ap-
proaches differ in the construction of the simple graph.

A hypergraph of tag co-occurrences has been used for de-
tecting communities using betweenness centrality [3]. Puzis
et al. [4] used betweenness as a centrality measure on hy-
pergraphs and gave an efficient approach using Brandes al-
gorithm. Zhou et al. [7] pointed out the information loss
occurs when hypergraphs are treated as simple graphs and
utilised hypergraphs to device clustering technique. Kather-
ine Faust [5] used non-dyadic affiliation relationships which
allowed to quantify the centrality of a subset of actors or a
subset of events. She calculated an actor’s centrality as a
function of the centrality of hyperedges of events to which
the actor belongs and calculated the centrality of events as a
function of centrality of the actors. Hypergraphs have been
used to understand team assembly mechanisms to determine
collaboration [8, 9, 10]. Jain et al. [11] studied Indian Rail
network using hypergraph.

Of particular interest to us in this work are centrality mea-
sures. A centrality measure identifies nodes that are in the
‘center’of a network. In practice, identifying exactly what
we mean by ‘center’depends on the application of interest.
In this work, we mainly look at this from the view point of
information propagation. Independent Cascade and Linear
Threshold are the two information diffusion models proposed
in [12]. To find a seed set of k nodes that maximizes influ-
ence propagation is in general a hard problem and [12] gave
an (1 − 1/e − ε) approximation under the assumption that



the activation functions are submodular. We use the diffu-
sion models of [12] to define measures of effectiveness of the
different centrality scores that we investigate.

There have been some earlier attempts at computing cen-
trality scores on hypergraphs. Faust [5] looked at a hy-
pergraph as a bipartite graph[6] between actors and events
when computing closeness centrality. Puzis et al.[4] essen-
tially converted each hyperedge to a clique and computed be-
tweenness centrality on the modified graph efficiently. Rep-
resenting each hyperedge as a clique converts the hypergraph
to a general graph. We call this conversion as clique con-
struction. Clique construction is the method that is widely
used for computations on hypergraph. But in this work we
argue that the clique construction loses the non-dyadic in-
formation represented by the hyperedges. Another, slightly
different way of looking at the hypergraph is using the edge
multiplicity between two nodes as the weight on the edge
between those nodes in the clique construction. This con-
version we call as wt-clique construction.

The following is a toy example where we look at a small
network so that we can easily measure influence of each node.
This example shows that the traditional computations on
hypergraphs indeed give away some information.

Example 1.
Let H1 = (V,E1) be the hypergraph with V = {i, j, k, l}

and
E1 = {{i, j}, {i, k}, {j, k}, {i, k, l}, {i, j, k}, {j, l}} and H2 =
(V,E2) be another hypergraph with
E2 = {{i, j, k}, {i, j, k, l}, {i, k}}.

These two hypergraphs can be thought of as two collab-
oration networks where i, j, k, l are authors and each edge
represents a document the authors have written. For exam-
ple, in the first network (given by H1), the first edge i, j
represents a document written by author i and j together.
Notice here, in both the networks each author has written a
document with every one else but the number of times two
authors have written a document together is different. For
example, in the second network (given by H2) i has written
one document with l and three documents with k. Let us
assume we want to measure the centrality of nodes in these
two networks to calculate fluency of information propaga-
tion between two authors. Our philosophy is that it must
be easy to propagate information from k to i than from l to
i.

If we convert the hyperedges ofH1 andH2 to clique (clique
construction) for both H1 and H2, we get the same graph,
a 4-clique. Apparently, we lose the edge multiplicities. If
we put the multiplicities as edge weights in the clique con-
struction (wt-clique construction), both H1 and H2 again
translate into same graph as in figure 1, though the above
two hypergraphs are not the same.

Here we propose three different reduced representations of
hypergraph which use the non-dyadic information of the hy-
peredges efficiently and show how ranking of nodes changes
according to their influence on the network.

As stated before, finding maximum spread is a hard prob-
lem. [13] uses a game theoretic approach to find the ranking
of the nodes which is comparable to that given by the natural
greedy algorithm[12] but is much more time efficient that the
greedy algorithm [1]. It captures the marginal contribution
that each player makes to the dynamics of the game. Con-
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Figure 1: wt-clique construction for H1 and H2:
W (H1) and W (H2) are the same

sider a cooperative game with transferable utilities, (N, ν),
where N = 1, 2, . . . , n is the set of players and ν : 2N → R is
a characteristic function, that assigns a value to each coali-
tion (subset of N) , with ν(φ) = 0. The Shapley value (SV)
of player i ∈ N , is

SV (i) =
1

n!
.
∑
π∈Ω

ν(Si(π) ∪ {i})− ν(Si(π)) (1)

where Ω is the set of all permutations over N , and Si(π) is
the set of players appearing before the ith player in permu-
tation π.
We use the same game (Topk Game) that is described in
[13]. Then we extend the game for multi-hop on weighted
graphs as done in Topk Game with weights in [1]. We mea-
sure influence of a node using Shapley Value (SV) of the
node as in [13, 1]. This computation is fast on graphs. As
shown in [1], it is linear in number of edges and vertices. We
give an equally efficient algorithm for computing ranking on
hypergraphs. We compute these ranking using clique con-
struction; wt-clique construction and three of our proposed
methods and compare the results using diffusion models.

The main contributions of this work are: (1) Different
methods of reducing hypergraphs to simpler forms for the
purposes of centrality computations. These reductions could
possibly yield more efficient mechanisms for computing other
network properties; (2) Computation of game-theoretic cen-
trality measures on super-dyadic relations. These have been
shown to be efficient to compute on simple graphs. And, this
extension enables us to compute centrality scores on large
super-dyadic networks; and (3) Empirical study of how cen-
trality scores are distributed over the nodes of the network
under different graph constructions. We establish that tradi-
tional constructions of simple graphs from hypergraphs lead
to inefficient centrality distributions. We also introduce the
notion of dominance for comparing various centrality mea-
sures that allows us to identify which measures are truly
different in their ranking of the nodes.

2. REDUCED REPRESENTATION OF HY-
PERGRAPH

We already talked about two types of reduced graph for-
mation from hypergraphs viz, clique construction and wt-
clique construction. We give three other constructions which,
we will show, do better in terms of centrality measurement
based on SV. For completeness we briefly describe clique
construction and wt-clique construction as well.



2.1 Clique Construction
This is also known as primal of the hypergraph. Let H =

(V (H), E(H)) be a hypergraph with the vertex set V (H)
and the edge set E(H). A hyperedge e ∈ E(H) is a subset
of V (H). The primal graph, also called the Gaifmann graph
is defined as follows, P (H) = (V ′, E′) such that V ′ = V (H)
and E′ = {{u, v} | e ∈ E(H) and u, v ∈ e}
This is also known as 2-section of hypergraph. Hypergraphs
are represented as its primal graph in many problems like
partition connectedness, betweenness computation etc.

2.2 Wt-Clique Construction
Let H = (V (H), E(H)) be a hypergraph with the vertex

set V (H) and the edge set E(H). we say, u, v ∈ V (H) share
x hyperedges if there are x hyperedges, e1, e2, . . . , ex such
that ei ∈ E(H) and u, v ∈ ei∀i ∈ {1, 2, . . . , x}.
Let W (H) be the reduced representation of H using wt-
clique construction. W (H) = (V ′, E′, w) such that V ′ =
V (H) and E′ = {{u, v} | e ∈ E(H) and u, v ∈ e} and w :
E′ → R with w(u, v) = number of hyperedges u, v share.
A similar kind of approach is used in [4] for computing be-
tweenness centrality on hypergraphs where they call it one
mode projection of hypergraph.

2.3 Line Graphs
This is also known as the dual of the hypergraph. Let

L(H) be the line graph of the hypergraph, H. L(H) =
(V ′, E′), where V ′ = E(H) and E′ = {{e1, e2} | e1, e2 ∈
E(H), e1 ∩ e2 6= φ}

2.3.1 Why Line Graph
We expect the line graph will give a better centrality mea-

sure than the clique construction on hypergraph. This is be-
cause, in clique construction we lose some information like
edge multiplicities of the vertices. Observe, even in wt-clique
construction where edge multiplicities do appear as weights
on the edges, we do not consider whether two edges are con-
tribution of two different hyperedges or the same hyperedge.
For instance in Example 1, consider the edges (j, l) and (i, j)
in the weighted clique construction of graphs H1 and H2

that is W (H1) and W (H2) respectively. The hyperedge
{i, j, k, l} ∈ E2 is responsible for the edge between j and
l in W (H2). The same hyperedge adds to the weight of the
edge between i and j in W (H2). But in W (H1), (j, l) is
present because of the hyperedge {j, l} ∈ E1. And the same
hyperedge is not responsible for the edge (i, j) ∈ W (H1).
To summarise, it can not be said from W (H1) and W (H2)
whether the same hyperedge is responsible for two different
edges in the wt-clique.
The above observation is crucial in centrality measurement
because from W (H1) and W (H2) it can be said that i, j
and k are equally central for both H1 and H2. Though this
can be true for H1 but for H2, it can be clearly seen that
nodes i and k appear more often than j.Later our results
on line graph shows that this is correctly predicted by the
computation using L(H).

Let us now look at the line graph construction of the two
hypergraphs of Example 1. This gives us some insight why
Shapley Value measure computed on hypergraph using line
graph can be more accurate compared to the one computed
using clique or wt-clique construction. Figure 2 shows the
line graphs for H1 and H2.

2.4 Weighted Line Graph
We also look at weighted line graph where weight on each

edge is the size of the intersection between the two hyper-
edges. We compare the centrality measure with other re-
duced representations of hypergraph and show which gives
a better measure for centrality.
Let Lw(H) be the weighted line graph for H. Lw(H) =
(V ′, E′, w), where V ′ = E(H) , E′ = {{e1, e2} | e1, e2 ∈
E(H), e1 ∩ e2 6= φ} and w : E′ → R, w is defined as follows.
Weight of an edge {e, e′} ∈ Lw(H) is w({e, e′}) = 1

|e∩e′| ,

where e, e′ ∈ E.
This representation keeps the hyperedges intact as in the
line graph representation. Also it uses the information that
how many nodes are common between two hyperedges. Two
hyperedges which has more common nodes are closer. That
is, it is easier to pass some information since more nodes (ra-
tional agents) can be involved in passing the information.

2.5 Multi-Graph
This is one variant of clique construction for hypergraph.

Here, instead of putting the edge multiplicities as edge weights,
multiple edges are kept between two nodes.
Define multi-graph of hypergraph, H, M(H) = (V ′, E′) such
that V ′ = V (H) and E′ is a multiset, E′ = {{u, v} | e ∈
E(H) and u, v ∈ e}. If two vertices u, v ∈ V (H) share x
hyperedges in H then the multi-graph of H, M(H) has x
edges between u and v.
Though this construction is similar to wt-clique construc-
tion, for example, both H1, H2 of example 1 have same
multi-graph construction, we will show it fares better in SV
computation using the definition of fringe[1] (value of a coali-
tion) given in the next section. Proof of the next claim given
in the following section gives an intuitive idea why it per-
forms better than W (H) or sometimes even L(H).

Claim 1. If u, v belongs to many hyperedges then they
marginally affect each other more in case of M(H) compared
to W (H).

3. SHAPLEY VALUE BASED CENTRALITY
MEASURE ON HYPERGRAPH

We try to find the centrality measure on hypergraph using
the concept of Shapley Value. But we define the game on
L(H) instead of H and find a ranking for the nodes of L(H).
That is, we first measure the centrality of each of the hy-
peredges than the vertices then translate it for the vertices
of H. We have to maintain collective rationality and indi-
vidual rationality when converting the Shapley values of the
hyperedges to vertices of hypergraph. Let xi be the value
player i gets. Then,

|N|∑
i=1

xi = ν(N) and ∀ player j, xj ≥ v({j}) (2)

must hold for the nodes of hypergraph. The value of the
grand coalition, ν(N) is 1.
To achieve this, we normalise the Shapley values we get for
the hyperedges and produce normalised values for the ver-
tices.

We model the games presented in [1] for hypergraphs.
Then we compute the Shapley value for these games when
they are played on line graph and weighted line graph of the
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hypergraph.
Let H = (V,E) be a hypergraph. Define the neighbourhood
of a hyperedge, e ∈ E in the line graph of H, L(H) as fol-
lows,

Ng(e) = {e′ | e′ ∈ E, e ∩ e′ 6= φ} (3)

We use the following equation to translate the values to the
nodes of H from the Shapley value svL(.) of the hyperedges.
For node vi ∈ V

sv(vi) =
∑

e∈E,vi∈e

svL(e)

|e| (4)

Next, we briefly introduced two games, one on unweighted
graphs and another on weighted graphs (Game 1 and Game 3
from [1]). These games are defined over undirected network
graphs. Then, we describe how we use these two games in
case of hypergraphs.

3.1 TopK Game: ν1(C) = #agents at-most 1 hop
away

Given an unweighted, undirected network G(V,E). Fringe
of a subset C ⊆ V (G) is defined as the set
{v ∈ V (G) : v ∈ C(or)∃u ∈ C such that (u, v) ∈ E(G)}.
Based on the fringe, the cooperative game g1(V (G), ν1) is
defined with respect to the network G(V,E) by the charac-
teristic function ν1 : 2V (G)→R given by

ν1(C) =

{
0 if C = φ

size(fringe(C)) otherwise
(5)

Using g1 on line graph, L(H) Shapley value i ∈ E is given
as follows,

svL(i) =
∑

j∈E,i∩j 6=φ

1

1 + |Ng(i)| (6)

This is computed using algorithm 1 of [1] which runs in
O(V + E) and finds SV for each of the hyperedges.

3.2 TopK Game with Weights: ν3(C) = #agents
at-most dcutoff away

This is an extension of TopK game for weighted undi-
rected networks G(V,E,W ), where W : E → R+ is the
weight function. Here the fringe of a set, s ⊆ C is defined as

the vertices which are atmost dcutoff away from some node
in s. Let g3(V (G), ν3) be the game defined on the network,
G(V,E,W ). The definition of fringe gives the following def-
inition for ν3,

ν3(C) =


0 if C = φ

size({vi :

∃vj ∈ C(or)distance(vi, vj) ≤ dcutoff}) otherwise

(7)
for each coalition C ⊆ V (G). [1] gives an exact formula for
SVs using ν3. However, in this case the algorithm for imple-
menting the formula has complexity O(V E + V 2log(V )).

For weighted line graph, Lw(H), g3 is used to find the
Shapley Value of the hyperedges.
For TopK Game with Weights as in [1], we define the ex-
tended neighbourhood as follows,

extNg(e) = {e′ | dee′ < dcutoff} (8)

where, dee′ = shortest path distance between e and e′ in
Lw(H).

Shapley value of i ∈ E in Lw(H) is

svL(i) =
∑

j∈{i}∪extNg(i)

1

1 + |extNg(i)| (9)

As we see in the final equations, the marginal contribution
of each node depends mainly on its neighbourhood. When
looking at clique construction, any two vertices which share
a common edge are neighbours. Line graph gives a dual of
this relation. So it is important to find the actual neighbour-
hood for each node in the line graph that can influence the
marginal contribution of a node of the line graph. Here what
we mean by actual neighbourhood is the neighbours who can
influence or take part in the computation of marginal contri-
bution of this node, in other the words, neighbours who can
change the node’s influence over the network. The physical
inference of Equation 7 tells the same notion mathemati-
cally. Next we analyse the neighbourhood for line graph
and give an analogous equation which is more appropriate.

3.2.1 Neighbourhood Analysis: Line Graph
Instead of considering the degree as the size of the neigh-

borhood we define volume that is analogous to degree for
the nodes of line graph L(H). Volume of a node v, vol(v)



is defined as the sum of weights of its neighbours. And, we
do not consider a node in a line graph has a contribution
of one, instead we take the cardinality of the corresponding
hyperedge. Let us explain why a different definition of size
is required.

Let us assume e1, e2, e3 be three different edges of the hy-
pergraph, H such that i, j ∈ e1, k, j ∈ e2 and j, l ∈ e3. Let
vl1 , vl2 , vl3 be the vertices of L(H) corresponding to e1, e2

and e3 respectively. Using Equation 6, each node in neigh-
bourhood of vl2 reduces the probability that vl1 brings vl2
in the coalition. Hence reduces the marginal contribution of
vl1 . So, vl3 reduces MC of vl1 .
Observe, a vertex in L(H), corresponding to a hyperedge
with large cardinality or having influential nodes of H, gets
high Shapley value and the other vertices which are con-
nected to it gets comparatively low Shapley value. If l is
an influential node that means vl3 becomes more influen-
tial lowering the influence of vl1 . Therefore, though l is not
directly connected to i it can reduce SV of i. To eliminate
this, we define voli(.) as the size of intersection of a vertex of
L(H) with i. To maintain consistency, instead of counting
i as 1 as in Equation 6, we take the contribution of i to the
coalition as the size of i.
What did we say intuitively in the above argument? Did we
say that the clique construction gives the correct neighbour-
hood? No, We showed that the neighbourhood must depend
not only on how the vertices share an edge, if they do share,
but also how many edges they share and most importantly
which vertices are connecting two edges. This gives us the
basic idea why line graph construction works better.
Therefore vol : 2V (G) → R and is defined as, vol(v) =∑
u∈Ng(v) | u∩v |. We propose the following equation based

on the above argument.

sv(i) =
∑

v∈Ng(i)

1

vol(v) + size(v)
(10)

3.3 Games with Multi-Graph

3.3.1 Proof of Claim 1
Proof. If two agents have been together in k hyperedges

then they contribute k times to each others degree. Let us
assume there are k edges between u and v. Further assume,
w is connected to v by an edge. Since marginal contribu-
tion (MC) depends inversely on the degree of the neighbors,
probability that w brings v into a coalition is less in this sce-
nario compared to the case when u and v are connected by a
single edge. Thus, adding more to the degree of a neighbor
decreases the MC of any other node which are less strongly
connected to it. Hence it increases the expected MC of node
u.

3.3.2 TopK Game on Multi-Graph
As stated in the beginning, multi-graph construction is

similar to wt-clique construction. So the Shapley value of
vi ∈ V (H) using TopK Game from [1, 13] on M(H) is given
in the following equation.

SVtopk(vi) =
∑

vj∈{vi}∪NM(H)(vi)

w(vi, vj)

1 + degM(H)(vj)
(11)

where w(vi, vj) is the edge multiplicity between vi and vj ,
NM(H)(vi) is the neighbourhood of vi in M(H) which is
same as neighbourhood of vi inH and degM(H) =| NM(H)(vi) |.

4. DIFFUSION
Let f(S) be the expected number of nodes active (influ-

enced) at the end if set S is targeted for initial activation.
For example S can be the top k nodes,for some constant k.
We pick this top k from the ranking we computed, which
are not directly connected by an edge as done in the spin
algorithm[13]. We want to maximise f(S).
This optimization problem is NP-hard as proved in [12].
Hence we look for an approximate solution for this prob-
lem. Kempe et al.[12] generalised two diffusion models viz,
Independent Cascade and Linear Threshold. They showed
that greedy hill climbing algorithm using generalisation of
both the models gives (1− 1/e− ε) approximation. In fact,
as shown by them, both the generalised models are equiva-
lent.
To compare the rankings we get for the nodes of H using
P (H), W (H), L(H), Lw(H) and M(H), we use these two
methods. These models only look at the rankings and not
how the scores are distributed among the nodes. That is
useful when the scores do not have any other inference. We
come up with a heuristic using the concept of dominance
from cooperative games to compare two set of SVs we get
by different reduced representations. Dominance is a funda-
mental concept in cooperative game theory and is used for
deciding whether a vector,x from the imputation space is
preferred over another vector, y from the same imputation
space.

4.1 Measure of Diffusion using Game Theory
The solution concepts in cooperative games give a measure

of power (centrality score) of each player. Imputation Space
is the set Iv = {x ∈ Rn | x = (x1, x2, . . . , xn),

∑n
i=1 xi =

1, xi ≥ 0}. It is the set of all possible assignment of values to
each of the players. Since this set can contain uncountably
many vectors we try to find a smaller set. We use the rules
of the game to get a smaller set such that each vector from
this subset assigns some meaningful values to the players.
Shapley Value is the solution concept that we are using in
our work to find the centrality scores (power) of the players.
Marginal contribution network enables us to find the Shap-
ley Value scores in polynomial time[1]. Now, we want to use
the idea of dominant imputation to show which method is
better in assigning the scores.

4.1.1 Motivation
Idea: Core is another solution concept like Shapley value

to measure power of each of the agents. Finding core is a
computationally hard problem too. It is defined as follows.

Definition 1. Core.
Core is the set of all undominated imputation.

Let x, y ∈ Iv, Iv = set of all imputations.

Definition 2. Dominance.
We say x � y ( x dominates y or x is preferred to y), if there
exists a non-empty coalition S ⊆ N such that ∀i ∈ S, xi > yi
and

∑
i∈S xi ≤ v(S)

Where N is the set of all players and v(S) denotes the value
of the coalition S.
Checking if an imputation (centrality score) is in the core
is NP-hard[14](reduction from vertex cover) even with MC-
Net representation. So instead of checking if an imputation
is undominated, the domination of the imputation has been



checked. Domination is easy to compute when we know two
imputations (say x and y as in the definition). If x dominates
y and the agents who are getting more score in x are amongst
the top agents according to both the imputations then x
correctly assigns high score to the important nodes and low
score to less important nodes since value of grand coaltion
is 1.

4.1.2 Why We Need
When we know some vectors from the core or we know

what is the best way to divide the value of the grand coali-
tion, we have an optimal possible imputation. We can com-
pute which centrality score is better between two of them
by comparing them with the optimal one (undominated im-
putation). Precisely, we look at how much each deviates
from the optimal one, co-ordinate wise. But in lack of that
standard or optimal measure we might want to compare two
rankings(imputations) to check which one is giving a better
estimate of ranking. Here is where the idea of dominance
can be used.

4.1.3 Dominance to Diffusion
Let X and Y are two imputations. S be a set of agents

such that ∀i ∈ S xi > yi. We can check the marginal contri-
bution of xis in general over the sum of the values given to
xis in the said imputation. If marginal contribution is these
xis are high and X assigns high score to these xis, that im-
plies X is more appropriate measure than Y . Computing
diffusion with general diffusion model is hard. This gives us
an efficiently computable method to compare two centrality
measures. But since domination is not transitive to com-
pare n different measures dominance need to be checked for
O(n2) times.

5. RESULTS
We use the five different reduced representations of a hy-

pergraph described earlier and compute the centrality of the
nodes in each reduced representation. We performed our ex-
periments on three datasets, viz., JMLR, Citeseer, and Cora.
The hypergraph on the JMLR dataset is a co-authorship
network where each hyperedge corresponds to a paper pub-
lished in JMLR and links the authors of that paper. The
other two are co-citation network where all the papers cited
in a particular paper form a hyperedge. As mentioned before
we compare the five methods using (i) two diffusion mod-
els[12], Linear Threshold and Independent Cascade and (ii)
the concept of dominance from co-operative game theory.

We performed three different experiments on the differ-
ent datasets: (1) As done in [13], we use top k nodes with
spin algorithm to find diffusion using Linear Threshold and
Independent Cascade, where, k is our budget of how many
nodes we activate initially. We compared the different cen-
trality scores on the extent of the diffusion at the end of the
process.

(2) Let us assume, we do not want to care about the bud-
get but want to activate atleast p% of the nodes at the end
of diffusion. Say, p is 90%. To achieve this we fix a SV, val
such that all nodes having SV more than val is activated
initially. We call val, the limiting SV. We observe as we
decrease the limiting SV p increases rapidly in the begin-
ning but after a certain value of limiting SV change in p in
negligible. We also observe that for networks with thousand
nodes the limiting value is 10−4 for p = 85.

Method H1 H2 Summary
Unweighted
Clique

i, j, k, l i, j, k, l Gives equal
importance
to all the
vertices where
as l is much
less central
than i or k

score .25, .25, .25, .25 .25, .25, .25, .25
Weighted
Clique

k, j, i, l k, j, i, l

score .27, .27, .27, .18 .27, .27, .27, .18
Line
Graph

j, k, i, l k, i, j, l correctly as-
signs lower
fraction to l

score .33, .29, .29, .08 .4, .4, .15, .03
Weighted
Line
Graph

k, i, j, l k, i, j, l correctly as-
signs lower
fraction to l

score .31, .31, .3, .08 .4, .4, .15, .03
Multi-
Graph

k, i, j, l k, i, j, l note the dif-
ference of
sore from
wt-clique
construction

score .28, .28, .24, .17 .28, .28, .24, .17

Table 1: No of nodes influenced for example 1

Dataset No of
nodes

No of
edges

No of con-
nected com-
ponents

Size of largest
component

JMLR 3217 1159 11 2275
Citeseer
[15]

3312 2240 438 2110

Cora [15] 2708 2223 78 2485

Table 2: Description of the Datasets Used

(3) We examined how the SV is distributed as function of
the ranking of the nodes. If a larger fraction of the SV is
concentrated on the higher ranked nodes, then the measure
discriminates better between the truly important nodes and
the rest.

Most influential nodes can be prominently identified by
any of the methods.But as we try to extend the reach of
diffusion, we increase k that is we activate more nodes in
the beginning. We observed that the top 10 nodes we get
employing different methods have at least 70% intersection.
But when we look at how much power has been assigned to
each of these nodes the methods differ largely.

5.1 Example 1
Table 1 shows the empirical results that we get for the

five mentioned reduced representation of hypergraph for the
hypergraphs of Example 1. It shows the distribution of
score, for the four nodes, produced by the five methods.
It clearly shows that the ranking using P (H) (unweighted
clique) wrongly assigns same score to all the nodes. Also, ob-
serve the difference in scoring pattern of the methods W (H)
(weighted clique) and M(H) (multi-graph).



Figure 3: Compare SV distribution on JMLR Data

Table 2 describes the three datasets on which we have
performed the experiments. But before looking at the results
on the datasets, let us look at the results on Example 1 that
we introduced in introduction.

5.2 JMLR Data
From JMLR data we extract the hypergraph of the co-

authorship network that is, in this network each node rep-
resents an author and each paper they published is a hyper-
edge consisting of the authors of that paper. Statistics of
the network is given in table 2 in row 1.
We compare the distribution of SV among the nodes, com-
puted from the JMLR hypergraph using the five mentioned
representations, in figure 3. It plots the number of nodes,
having SV more than a particular value v, vs v. The trend
that we observe in figure 3 is that, the Shapley value com-
putation through line graph always assigns very low (almost
zero) value to powerless nodes where as the value, for im-
portant nodes go as high as 0.01. On the other hand, the
highest value assigned to the most important node using
P(H) or even M(H) is 0.0016 and 0.0018 respectively. The
idea of dominance clearly shows this difference.
Let us look at the top nodes given by P (H), L(H) and
M(H). We apply Linear Threshold model to measure dif-
fusion. In Linear Threshold model, threshold for each node
is kept as 1/3 of degree of that node and we find the diffu-
sion when top 10 nodes are activated initially. The number
of nodes that are activated in the beginning is written in
brackets in the heading of the columns in the table. The re-
sult is shown in figure 4. Notice, when top 15 or top 20 nodes
are activated in the beginning M(H) outperforms L(H) but
as we take more nodes for initial activation the green bar for
L(H) stands taller.

5.3 Citeseer Data
It is a co-citation network that is, each publication is a

node and the authors who co-authored a publication form
an hyperedge. Statistics of the network is given in table 2
in row 2.
Table 3 compares three of our proposed single graph repre-

sentations of hypergraph with primal graph of hypergraph,
P (H) and W (H).We followed spin algorithm[13] for picking

Figure 4: Diffusion using P(H), M(H) and L(H) on
JMLR Data

Graph
Repre-
senta-
tion

Linear
Threshold
(top 10)

Independent
Cascade
(top5)

Independent
Cascade
(top10)

time
(ms)

P (H) 698 832 1002.13 754
W (H) 627 800.86 1039.12 2583
L(H) 709 837.68 914.15 1573
Lw(H) 691 833.34 933.73 3042
M(H) 698 837.68 966.04 751
P (H)
(Between-
ness)

625 901.55 951.81 18520

L(H)
(Between-
ness)

664 791.35 1009.29 15731

Table 3: Diffusion using Linear Threshold and Inde-
pendent Cascade model on Citeseer

up the top k nodes, for initial activation, from the rank-
ings produced by the five methods. As stated earlier, it is
easier to find out nodes which are important (e.g., the top
node or top 5 nodes). Here, both L(H) and M(H) gives
the same set of top 5 nodes. Table 3 shows the results of
between-ness centrality too, when found using primal graph
and our proposed line graph method. For between-ness too
the performance of line graph is better both in terms of time
requirement and ranking. Computations on line graph takes
the advantage of the fact that in general these hypergraphs
are sparse compared to general graphs.

Figure 5 compares the SV assigned to nodes using L(H)
and M(H). It plots number of nodes, having Shapley Value
above v, vs v. The most important node gets SV 0.2 and
0.0089 using L(H) and M(H) respectively. In the figure the
purple line for M(H) is almost grounded to x − axis after
2× 10−3 where as many nodes have been assigned SV more
than 5× 10−3 by L(H). Figure 6 compares the distribution
of SV assigned to the nodes by all the five methods. Table
4 gives an analogous analysis in tabular format. It also puts
together the number of nodes activated at the end when all



Figure 5: Compare SV distribution on Citeseer
Data: L(H) vs M(H)

Figure 6: Compare SV distribution on Citeseer data

nodes, having SV above the limiting value v, are activated
initially. For example, when the sum of Shapley value of the
nodes picked is fixed at 0.07273128, we get only 3 nodes by
L(H) compared to 68 nodes by M(H) and the limiting value
is only 0.01 for L(H) compared to 6.14 × 10−4 for M(H).
The sum of SV of top 1022 nodes, chosen by spin algorithm,
manages to reach 0.3421102 only for M(H).

If a method M1 dominates another method M2 via x
nodes, more value of x implies stronger M2, less value of
x implies M2 has not assigned more power to more im-
portant nodes when compared to M1. Observe table 5, it
takes only 26% nodes in favour of Lw(H) when dominat-
ing M(H) compared to 62% when L(H) dominates Lw(H).
This is because, important nodes are assigned less score us-
ing M(H). So, they go in favour of Lw(H). But, when
comparing Lw(H) to L(H) all the important nodes are as-
signed high value so it takes more nodes to sum up to a score
of 0.609.

5.4 Cora Data
It is again a co-citation network. Statistics of the network

is given in table 2 in row 3.
Total number of nodes activated at the end when top 10
nodes are activated at the start is shown in figure 7 for the
five methods discussed. The diffusion model employed here
is linear threshold. Table 7 gives comparison of three of our
proposed representations with P (H) and W (H) for the co-

Method Dominates Dominated By

L(H) M(H) via 660 nodes
of total score 0.685,
P (H) via 702 nodes
of total score 0.705

None

LW (H) M(H) via 717 nodes
of total score 0.709,
P (H) via 748 nodes
of total score 0.728

L(H) via 1695 nodes
of total score 0.609

Table 5: Comparison of Diffusion Using Dominance
on Citeseer

Figure 7: Diffusion using linear threshold model on
Cora data

citation network from Cora Data. It gives the diffusion for
between-ness too, when computed using P (H) and L(H).
Performance of later is better when compared with respect
to diffusion. Notice, since this hypergraph is not as sparse
as in the case of Citeseer, the computation time when using
L(H) is more compared to P (H) in case of between-ness
measurement.

Figure 8: Compare SV distribution on Cora data



Using Line Graph Using Multi-Graph
Sum of SV limiting

value
of SV

Nodes
Started
with

Diffusion
(Linear
Threshold)

Diffusion
(Inde-
pendent
Cascade)

limiting value
of SV

Nodes
Started
with

Diffusion
(Linear
Threshold)

Diffusion
(Independent
Cascade)

0.4164433 10−6 990 3067 2788.81

0.41616583 10−5 945 3060 2775.0

0.4039153 10−4 644 2864 2629.12 7.47112E-
5 (sum
0.3421102)

1022 3107 2831.49

0.22036676 0.001 84 1216 1787.81 3.02× 10−4 472 2518 2438.02

0.07273128 0.01 3 608 1596.57 6.14× 10−4 68 1212 1757.99

0.04144367 0.05 1 541 1573.94 8.87× 10−4 24 769 1622.98

Table 4: Diffusion: Linear Threshold and Independent Cascade on Citeseer Data

Using Line Graph Using Multi-Graph
Sum of SV limiting

value
of SV

Nodes
Started
with

Diffusion
(Linear
Threshold)

Diffusion
(Inde-
pendent
Cascade)

limiting value
of SV

Nodes
Started
with

Diffusion
(Linear
Threshold)

Diffusion
(Independent
Cascade)

0.37252015 10−6 752 2686 2489.74

0.371984 10−5 678 2678 2476.13

0.35889158 10−4 309 2639 2374.86 1.087832E-
4 sum
0.2821837

722 2686 2489.13

0.27076006 0.001 49 2255 2186.8 1.5× 10−4 636 2686 2478.1

0.14932592 0.01 4 994 2127.4 3.96× 10−4 153 2466 2254.25

0.09491563 0.05 1 416 2128.83 7.59× 10−4 51 2227 2168.42

Table 6: Diffusion: Linear Threshold and Independent Cascade on Cora data

Figure 8 gives the SV distribution for different methods.
The y-axis gives the number of nodes having Shapley Value
more than the value of x-axis. The line corresponding to
the SV distribution produced using W (H) ends even before
0.005 which means no nodes has been assigned value above
0.005. Where as the lines for L(H) and Lw(H) goes beyond
0.05 and has many nodes with values more than that. This
depicts the important nodes are also assigned low values by
W (H), P (H) and even M(H). Therefore it is hard to con-
clude which are the more powerful node from the scores in
case of W (H), P (H) and M(H). A similar analysis between
L(H) and M(H) is shown in table 6 where the correspond-
ing diffusion values are also given.
As we analysed for Citeseer Data, observe from Table 8, it

takes only 14% nodes in favour of Lw(H) when dominating
M(H) compared to 61% when dominating L(H). This is be-
cause, important nodes are assigned less score using M(H)
so they go in favour of Lw(H). But when comparing Lw(H)
to L(H), all the important nodes are assigned high value so
it takes more nodes to sum upto a score of 0.877 that can
give preference to Lw(H). Since, we do not care about these
less important nodes, we can safely employ any one of L(H)
or Lw(H) to get the ranking as well as the Shapley value
based scores.

6. CONCLUSION
We established that computation of game theoretic cen-

Graph
Repre-
senta-
tion

Linear
Threshold
Threshold
(top 10)

Independent
Cascade
(top 10)

Independent
Cascade
(top 5)

time

P (H) 1725 1654.73 1588.34 840
W (H) 1721 1670.13 1596.37 7998
L(H) 1864 1656.82 1625.5 7981
LW (H) 1934 1685.98 1625.5 16438
M(H) 1821 1659.83 1598.67 2523
P (H)
Between-
ness

1831 1663.82 1606.36 12226

L(H)
Between-
ness

1934 1680.68 1623.73 22932

Table 7: No of nodes influenced on Cora data

trality on hypergraphs using the clique construction indeed
loses some information which is preserved by line graph con-
struction. The results also demonstrate that the clique con-
struction does not perform well compared to Weighted Line
Graph and Multi-Graph construction. Looking at the re-
sults on all the three datasets we conclude that Weighted
Line Graph and Multi-graph reductions of a hypergraph lead



Method Dominates Dominated
By

L(H) M(H) via 403 nodes of total
score 0.845, P (H) via 442 nodes
of total score 0.873, W (H) via
457 nodes of total score 0.891

Lw(H)
via 1669
nodes of
total score
0.877

LW (H) M(H) via 399 nodes of total
score 0.853, P (H) via 443 nodes
of total score 0.887, W (H) via
493 nodes of total score 0.909,
L(H) via 1669 nodes of total
score 0.877

None

Table 8: Comparison of Diffusion Using Dominance
on Cora

to more meaningful centrality scores.
It would be an interesting line of work to investigate if these
two reductions of a hypergraph yield better algorithms/
computations in other domains, like, community detection.
While it was more or less straightforward to extend the topK
game to directed graphs, it is not clear how to extend it to
directed hypergraphs. In the context of biological networks,
directed hypergraphs are a more natural model and hence
exploring the use of these centrality measures in directed
hypergraphs is also a promising future line of investigation.
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