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ABSTRACT

KEYWORDS: Representation Learning; Deep Learning; Transfer Learning;

Neural Networks; Auto-encoders; Common Representations.

Classical Machine Learning (ML) algorithms learn to do a specific task, say classifica-

tion by using the available training data and classify the test data which is unknown dur-

ing the training. However, all these algorithms assume that the data is represented using

a set of features, which are mostly hand-crafted by human experts. Learning useful

features or representations from the raw data, also known as Representation Learning is

one of the hardest problems in Machine Learning. Deep Learning is an emerging field

in Machine Learning which solves the problem of representation learning using Deep

Neural Networks (DNNs). These representations learned using Deep Neural Networks,

when coupled with simple classification algorithms, perform significantly better than

the complex state-of-the-art procedures in text, image and speech data.

Common Representation Learning (CRL), wherein different descriptions (or views)

of the data are embedded in a common subspace, is receiving a lot of attention recently.

Two popular paradigms in CRL world are Canonical Correlation Analysis (CCA) based

approaches and Autoencoder (AE) based approaches. CCA based approaches learn a

joint representation by maximizing correlation of the views when projected on the com-

mon subspace. AE based methods learn a common representation by minimizing the

error of reconstructing the two views. Each of these approaches has its own advantages

and disadvantages. For example, though CCA based approaches outperform AE based

approaches for the task of transfer learning, they are not as scalable as the latter.

In this thesis, we propose Correlational Neural Networks (CorrNet), a class of neu-

ral networks that can learn common representation for two different views. CorrNet

is an AE based approach, that explicitly maximizes correlation among the views when

projected on the common subspace. The model can be efficiently trained with batch

gradient descent and is thus scalable to big data. Apart from learning common repre-

sentation for different views, the model also learns to predict the features in one view
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given the features in the other view, which has several interesting applications. Corr-

Net, unlike CCA, can be easily extended to more than two views. Experiments show

that CorrNet outperforms CCA in learning common representation. Thus scalability is

gained without compromising performance. The CorrNets come with another advan-

tage, that is, it can make use of single view data when there are less parallel data and

this is not possible in CCA.

CorrNet has been successfully applied in Natural Language Processing (NLP) to

several cross lingual tasks where a learner has to learn from one language and perform in

a different language. In the task of Cross Language Document Classification (CLDC),

CorrNet based bilingual word representation learning algorithm performs significantly

better than the current state of the art procedures and a strong Machine Translation

baseline. The model is also applied in Transliteration Mining. It has been tested with

several language pairs and works well even if the languages differ in scripts, since the

model itself is not language dependent.

CorrNet can be considered as a variant of auto-encoder to handle multi-view data.

In this thesis, we also propose ways to make the CorrNet deep. One of the deep versions

of the CorrNet performs much better than several strong baselines in the task of Cross

Language Sentiment Analysis (CLSA). All the mentioned studies leads us to believe

that CorrNet is a promising tool from common representation learning.
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CHAPTER 1

INTRODUCTION

"Can machines think?" Alan Turing, a British mathematician proposed to consider this

question in 1950 (Turing, 1950). We humans can think and act based on our intelli-

gence. Can a (non-living) machine think? Can a machine possess human level intelli-

gence? Artificial Intelligence (AI) tries to answer this question by designing algorithms

that can acquire knowledge and perform reasoning based on its acquired knowledge.

Machine Learning (ML) is a sub-field of AI which believes that intelligence can be

achieved only by learning, which is how humans are believed to gain their knowledge.

Machine Learning is widely applied to problems related to text, images, videos and

speech. One simple application of ML is spam classification. In spam classification,

the task is to classify the mails as spam or ham. The learning algorithm may face any

of the following scenarios:

Given a set of sample spams and hams, the algorithm is supposed to learn the char-

acteristics of spam and ham and classify the new mail as per these characteristics. This

is called as Supervised Learning since the algorithm receives supervision in the form of

training data, which contains sample mails and corresponding classes (spam or ham).

The learning algorithm might be forced to directly perform, without any supervi-

sion and get some feedback in the form of rewards for each decision it takes. It will

eventually learn to classify by trying to maximize the rewards. This form of learning is

called as Reinforcement Learning.

Given a set of mails without any labels, the algorithm might be asked to learn to

characterize the mails and detect anomalies in the new mail (spam). This form of learn-

ing is called as Unsupervised Learning.

In the case of Supervised Learning, the algorithm learns a decision function from

the given set of examples (training data). However, the algorithm is expected to perform

well even when it sees previously unseen data (test data). This is known as generaliza-

tion capability of the algorithm and better the generalization, better the performance.



In all the three approaches for learning, data plays a major role. The agent (algo-

rithm) learns to perform a task by learning from the data. The data is usually represented

in the form of a set of features. For example, in the case of e-mail classification prob-

lem, the presence or absence of a certain set of discriminative words can be considered

as features. In an image classification problem, features could be the pixel information

in the image.

Now we can formally define the problem of supervised learning. Given {(Xi, Yi)
N
i=1}

where N is the number of training samples, Xi ∈ Rd and Yi ∈ R, learn a function

f : Rn → R which fits the data well such that given a new instance X , the learnt func-

tion can predict the corresponding Y as accurate as possible. This is called as regression

problem and when Y is discrete, it is called as classification problem.

In any supervised problem, the features used for learning has a big impact on the

learnability of the problem with respect to a particular learning algorithm. We will

illustrate this fact with a simple toy example. Consider an XOR problem over two

variables. The data points and the corresponding class labels are given in Table1.1.

x1 x2 class
0 0 0
0 1 1
1 0 1
1 1 0

Table 1.1: XOR Problem

Figure 1.1: Two different projections of data points in XOR problem.

Let us consider the perceptron algorithm which can learn linear decision functions.
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Let us consider the features to the algorithm to be x1 and x2. In this scenario, the data

lies in this two dimensional space and it is visually represented in Figure 1.1 (left). By

visualizing the data, it is easy to verify that a linear perceptron can never achieve more

than 75% accuracy. With a linear decision function, it should definitely misclassify

at least one point. However, if we project the data into some other representation,

like the one illustrated in Figure 1.1 (right), then the problem can be easily solved by a

linear perceptron. The same problem which was previously linearly inseparable became

linearly separable! This is the power of good representation. A good representation

makes learning relatively much easier.

1.1 Representation Learning

Good representations are expressive in nature. According to Bengio et al. (2013), there

are three major characteristics that a good representation should possess:

• distributed : A distributed representation is the one where multiple features can
be independently varied. The features are not mutually exclusive. Each concept
is represented by multiple features and each feature is involved in representing
many concepts.

• invariant : A good representation would be invariant to most local changes in
the input. This results in a proper abstraction of the data which is good enough to
generalize.

• disentangling factors of variation : A good representation should be able to
disentangle the underlying factors of variation.

Consider the case of document representation. One simplest way of representing

documents is to represent it as a binary bag of words (bbow) vector. bbow is a binary

vector of size equal to the vocabulary. Each entry in the vector is 1 if the corresponding

word in the vocabulary is present in the document or 0 otherwise. Clearly this is not a

good representation since it is not distributed. Also, as the vocabulary size increases,

the representation becomes too sparse and the curse of dimensionality is high. It is also

clear that designing better representations manually, as we did for the XOR problem is

practically infeasible in this scenario. The standard machine learning approach to this

problem is to learn a better representation from the data itself.
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Learning representations from the data is one of the most challenging problems in

machine learning. It is challenging because we are interested in learning good repre-

sentations while we do not know which representation is good for the application in

hand. Earliest method which is successfully applied for learning representation is Prin-

cipal Component Analysis (PCA) (Pearson, 1901) which learns a linear projection of

the unlabelled data such that the variance in projected dimensions is maximum. Linear

Discriminant Analysis (LDA) (Fisher, 1936) can be considered as a supervised counter-

part for PCA. LDA learns linear projections of the data such that it separates the data

points from different classes. While both these models are linear models, kernel ver-

sions of these models (Scholkopf et al., 1998; Mika et al., 1999) which find non-linear

projections also exist.

Once we have a good representation learnt using a representation learner, we use

the learnt representation to train a classifier for the task in hand. Neural Networks

are a class of algorithms which are capable of learning representations and decision

surfaces simultaneously. Consider a three layer neural network. The hidden layer can

be considered to learn a projection of the data (representation learning) and the output

layer to learn a decision function (classification learning).

Autoencoders and Restricted Boltzmann Machines (RBMs) are the most successful

Neural Network based approaches for representation learning. A three layer linear au-

toencoder learns representation of the data which is exactly similar to the representation

learnt by a PCA. However, using multiple layers in Autoencoders or RBMs was initially

not succesful. With the invention of greedy layer-wise unsupervised pre-training (Hin-

ton et al., 2006), the deep neural networks are capable of learning richer representations

which produce state of the art results in speech recognition (Hannun et al., 2014), im-

age recognition (Krizhevsky et al., 2012), text processing (Zhang and LeCun, 2015)

and several other fields.

1.2 Motivation

In any real life application, data comes with several constraints. The same data can be

viewed from multiple views. For example, a movie clip consists of an audio view and a

video view. A text document can be viewed from multiple languages. It is desirable to
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make the best use of the available information in all the views. For example, viewing the

same document in multiple languages benefits in word sense disambiguation and hence

better performance (Mihalcea et al., 2007). Traditional machine learning algorithms

can just consider all the views as a single set of features. However, this might result

in the loss of several inter-view and intra-view dependencies. Learning representations

such that it captures all these inter and intra view dependencies in multiple modalities

is necessary in such situations.

Another motivation to learn a common representation for multiple views is transfer

learning. In transfer learning, we are interested in training an agent to perform in one

view and expect it to generalize its knowledge to perform in another view. This has

several potential applications. If we have a good transfer learning system, we can use

all available resources for language processing in English to design better systems for

language processing in other languages in which we do not have enough resources.

Any ideal common representation should have the following characteristics.

• If x and y form a parallel view, then they should be mapped to same vector or
closest possible vector in the common representation space.

• Similar data points should be mapped closer in the common representation while
dissimilar data points should be mapped far away. In other words, the common
representation should preserve the semantics of the data.

• The representation of one view in this common space should be predictive of the
features in the other view.

A good shared representation has a wide range of applications as listed below.

• Common representation helps in transfer learning across the views. If you con-
sider these views as languages, then essentially we can train a classifier with the
training data available in one language and transfer that knowledge to classify
instances in another language. This is most preferable when you do not have
enough training data in one language.

• In some applications, one view might be easy to get while the second view might
be hard to get or costly to compute online. Unfortunately, the second view might
be most representative of the classes. In such scenario, a common representa-
tion which is predictive of the second view can improve the performance of the
classifier even though it has access to the first view only.

• Common representation captures the characteristics of both the views and hence
projecting the data to the common representation to train a classifier solves mul-
tiview learning.
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• Common representation for multimodal data solves multimodal learning. For
example consider a query system for image search. When you have a common
representation for images and text, we can query the system with either text or an
image and the system will retrieve the images that lie close to this query in the
shared space. Hence common representation helps in multimodal tasks as well.

1.3 Problem Statement

In the previous section, we discussed the characteristics, an ideal common representa-

tion should have. In this section we formally define the problem of Common Represen-

tation Learning (CRL). We define the task of learning common representation for two

views and the definition can be easily extended to multiple views.

Consider some data Z = {zi}Ni=1 which has two views: X and Y . Each data point

zi can be represented as a concatenation of these two views : zi = (xi,yi), where

xi ∈ Rd1 and yi ∈ Rd2 . Common Representation Learning is defined as learning two

functions, hX and hY , such that hX(xi) ∈ Rk and hY (yi) ∈ Rk are projections of xi

and yi respectively in a common subspace (Rk) such that for a given pair xi, yi :

1. hX(xi) and hY (yi) should be highly correlated.

2. It should be possible to reconstruct yi from xi (through hX(xi)) and vice versa.

Canonical Correlation Analysis (CCA) satisfies only the first condition. Existing

Autoencoder based approaches satisfy only the second condition. We need both these

conditions to be satisfied for meaningful common representation. The model should

also learn this common representation with as less multi-view data as possible since

multi-view data is costly when compared to single view data. The model should also be

able to use the available single view data.

1.4 Contributions of the thesis

In this thesis, we propose a novel algorithm for learning common representation based

on neural networks. We call our learning algorithm as Correlational Neural Network

(CorrNet). The proposed learning algorithm has several advantages as described below.

6



• The CorrNet can predict the other view based on one view. This predictive capa-
bility improves the quality of the representations learnt.

• The proposed learning algorithm is scalable with the available huge amount of
data while most of the existing algorithms are not scalable. CorrNets work well
with batch gradient descent as demonstrated in the experiments section.

• Another major advantage with CorrNets, which is not available in other methods
is that this can be trained with single view data also along with parallel view data
to improve the quality of reconstruction. This helps in better generalization.

• The CorrNets are very simple when compared to the existing shared representa-
tion learners and easy to implement.

• This model can be easily extended to more than 2 views.

In this thesis, we do an extensive analysis of CorrNets and compare its character-

istics with other competing algorithms. Experiments on several tasks prove that Corr-

Nets are better than other common representation learning algorithms. The thesis also

demonstrates the application of CorrNet for several cross language tasks. We show that

we can learn meaningful bilingual word representations without any word-aligned data,

such that similar words in two different languages lie closer in the common subspace.

We apply CorrNet to transfer learning tasks like Cross Language Document Clas-

sification (CLDC) and Cross Language Sentiment Analysis (CLSA). Specifically, in

Cross Language Document Classification CorrNet achieves around 14% improvement

over the previous state of the art for English to German transfer task. We also apply

CorrNet to a matching task : Transliteration Equivalence. In this thesis, we propose

two different ways to extend CorrNets to Deep Correlational Networks and provide

experimental evidences for their performance.

1.5 Organisation of the thesis

Rest of this thesis is organized as follows:

• In chapter 2, we will review the background in Neural Networks and Deep Learn-
ing which is essential to understand the rest of the thesis. We will also describe
Canonical Correlation Analysis (CCA) which also does common representation
learning.

• Chapter 3 introduces Correlational Neural Network, the major contribution of
this thesis. This chapter has an extensive analysis of CorrNet which helps to
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characterize the algorithm. Experiments on MNIST dataset show that CorrNet is
superior to the existing algorithms for common representation learning in various
aspects. We also discuss how to apply CorrNet for transliteration mining.

• Chapter 4 talks about the application of CorrNets for Cross Language Learning.
We propose a way to learn common representation for words in two languages
and the learnt word representations are used for Cross Language Document Clas-
sification (CLDC). Our model outperforms the previous state of the art and a
strong machine translation baseline by a huge margin.

• In chapter 5, we motivate the need for Deep Correlational Networks and propose
two ways to extend CorrNet to deep versions. We state experimental results for
one variant of Deep CorrNet applied for Cross Language Sentiment Analysis
(CLSA).

• Chapter 6 concludes the thesis by providing a summary of the work done and
discussing possible future work.
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CHAPTER 2

BACKGROUND

In this chapter, we will briefly describe the neural network and deep learning back-

ground necessary to understand Correlational Neural Networks. We will also describe

Canonical Correlation Analysis (CCA) which is a de facto model for learning common

representation for two views.

2.1 Neural Networks

The field of Neural Networks takes inspiration from how the human brain works. Hu-

man Neural System is an extremely complicated and massively parallel system which

is responsible for most of our thinking and decision making.

The artificial neuron or perceptron (Rosenblatt, 1957) is a simple computational unit

that mimics the process of a biological neuron. However, it should be remembered that

the functionality of even a single biological neuron is highly complex and still unclear.

Perceptron is just a simple mathematical abstraction of how a biological neuron acts.

Figure 2.1: An Artificial Neuron

The neuron model is illustrated in Figure-2.1. Let X ∈ Rd where d is the number

of features. The neuron computes a pre-activation function a(x) given by

a(x) = b+
d∑
i=1

wixi (2.1)



where W = (w1, ..., wd) is a d-dimensional weight vector and b is the bias. The pre-

activation function can also be written as

a(x) = b+W TX (2.2)

in vectorial representation. Now the neuron applies some activation function g : R→ R

on the pre-activation to compute the output y.

y = g(a(X)) = g(b+W TX) (2.3)

The activation function can be any linear or non-linear transformation. Few commonly

used activation functions are listed below.

1. Linear activation function g(a) = a.

2. Sigmoid activation function g(a) = sigm(a) = 1
1+exp(a)

.

3. Hyperbolic tangent activation function g(a) = tanh(a).

4. Rectified linear activation function g(a) = reclin(a) = max(0, a).

A single neuron described above can solve any linearly separable problem and only

linearly separable problems. In chapter 1, we saw an example (XOR problem) where

the perceptron can fail (Minsky and Papert, 1969). We also saw that if the input is trans-

formed to a suitable representation, then the problem becomes easy for the perceptron

(linearly separable). This is the motivation for designing Neural Networks.

Figure 2.2: Standard three layer neural network. Bias connections are not shown in the
figure.
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A neural network consists of multiple layers with each layer being defined as a set

of neurons. A standard Neural Network as shown in Figure-2.2 consists of three layers:

An input layer, a hidden layer and an output layer. Neurons in the input layer are just

placeholders for the input and each input neuron is connected to every neuron in the

hidden layer. Similarly each neuron in the hidden layer is connected to every neuron in

the output layer. Given input X , the hidden layer activation is defined as follows:

h(x) = g(b(1) +W (1)X) (2.4)

where W (1) is the weight matrix, b(1) is the bias vector and g is the hidden layer activa-

tion function. This hidden layer can be considered as a projection of the input features

onto some other feature space such that the problem becomes simpler. Now, the hid-

den layer activation (new features) is given as the input to the output layer neuron to

compute the output f(x).

f(x) = o(b(2) +W (2)h(x)) (2.5)

where W (2) is the weight matrix and b(2) is the bias vector and o is the output activation

function. W (1), b(1),W (2), b(2) are the parameters of the model to be learnt. In the next

section, we will discuss an efficient algorithm for learning these parameters given the

training data.

When we deal with a multiclass classification problem with k classes, the output

layer will contain k neurons and softmax activation is usually used which gives us a

valid probability distribution over the k classes. The softmax activation function is

defined as follows:

softmax(a) =

[
exp(a1)∑
i exp(ai)

, ...,
exp(ak)∑
i exp(ai)

]
(2.6)

The universal approximation theorem (Hornik, 1991) says that a three layer neural net-

work described above can model any arbitrary function provided enough number of

hidden neurons. However the number of hidden neurons required grows exponentially

as the complexity of the problem increases.

To give more expressive power to neural networks with relatively smaller number

of hidden neurons, one obvious solution is to add more hidden layers which results in
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a highly non-linear transformation. One should note that adding more layers makes

sense only if the hidden neurons have non-linear activation functions. In case of linear

neurons, multiple hidden layers can be replaced by an equivalent single hidden layer

with suitable weights and biases.

2.2 Training Neural Networks

In the previous section, we described an artificial neuron and network of neurons. In

this section, we will see how to train them efficiently. We will begin the discussion with

training a single neuron.

Given {(Xi, Yi)
N
i=1} where N is the number of training samples, Xi ∈ Rd and

Yi ∈ R, a neuron learns the function f which maps the input X to the output Y . The

performance of the neuron is measured by some loss function, say l(f(X), Y ) which

determines the deviation of the network output f(X) from the true output Y . Some of

the commonly used loss functions are listed below.

1. Squared error function l(f(X), Y ) = (f(X) − Y )2. This is suitable when the
output is a real value.

2. Negative Log Likelihood l(f(X), Y ) = −
∑

i IY=ilogf(X)i. This is suitable
when the output is a probability distribution. NLL is exactly equivalent to cross-
entropy between Y and f(X) when the output is binary.

Given a loss function, the training proceeds by learning a set of parameters Θ =

{W, b} for the neuron such that the loss over the training data is minimized or the

likelihood of the training data is maximized. This is usually done by gradient descent

where you take the gradient of the loss function with respect to the parameters and

update the parameters based on the gradient such that the training proceeds towards a

local minimum of the loss function.

The vanila version of gradient descent which takes one example at a time and up-

dates the parameters is called as online Stochastic Gradient Descent (SGD) and the

update equation for parameter θ is given by,

vt+1 = −α∇l(θt)

θt+1 ← θt + vt+1

(2.7)

12



where α is the learning rate. The learning rate decides the magnitude of the step taken by

SGD towards the local minimum. Usually we will go through the training set multiple

passes and each pass through the training set is called as an epoch. This simple first

order gradient descent is sufficient in most of the cases. However, to train a neural

network, we will see more advanced optimization procedures in the next section.

Training a neural network in general is not as trivial as the training procedure de-

scribed for the single neuron. The loss function for a neural network with multiple

layers is a composition of several sub-functions and thus deriving gradients with re-

spect to each parameter is difficult. Rumelhart et al. (1986) introduced what we now

call as the backpropagation algorithm which is an efficient way of computing gradients

for function compositions based on the chain rule for derivatives.

The idea of backpropagation is simple. When we train a neural network, we com-

pute each layer output based on the input from the previous layer. Doing this computa-

tion from input to the output layer is known as forward propagation. Now we compute

the gradient for the output layer and backpropagate the gradients until the input layer

using chain rule. This is computationally very efficient.

However, deriving the gradient update rules for each model is a tedious process and

there are automatic gradient computation tools available which can be used to automate

the backpropagation. Most commonly used tools are Theano (Bergstra et al., 2010) and

Torch (Collobert et al., 2011a). We have used Theano for all of our experiments.

Initialization of weights and the type of activation functions used play a major role

in the performance and they are decided based on the kind of problem and data. When

we have huge data, which is typical in most of the experiments we will see, using mini-

batch gradient descent is more effective. In mini-batch gradient descent we update the

parameters after seeing a mini-batch of training examples rather than a single example.

This is computationally more efficient since it can exploit the available advancements

in doing fast matrix multiplications.
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2.3 Advanced Gradient Descent techniques

We discussed about a vanilla Stochastic Gradient Descent and its mini-batch version in

the previous section. However, there are several improvements over SGD which tries to

accelerate the learning process.

2.3.1 Classical Momentum

The momentum based method to accelerate gradient descent was proposed in (Polyak,

1964). We refer to this method as Classical Momentum (CM) method. CM is a tech-

nique for accelerating gradient descent by accumulating a velocity vector in directions

of persistent reduction in the objective across iterations. The update equations are given

by:

vt+1 = µvt − α∇l(θt)

θt+1 ← θt + vt+1

(2.8)

where µ ∈ [0, 1] is the momentum coefficient.

2.3.2 Nesterov’s Accelerated Gradient

Nesterov’s Accelerated Gradient (Nesterov, 1983) is another way to accelerate the GD

and is typically faster than CM in many situations. While CM computes the gradient

update from the current position θt, NAG first performs a partial update to θt, computing

θt+µvt, which is similar to θt+1, but missing the as yet unknown correction. This results

in faster convergence. The update equations for NAG are given by:

vt+1 = µvt − α∇l(θt + µvt)

θt+1 ← θt + vt+1

(2.9)

2.3.3 Adagrad

Recently there has been some work on designing first order optimization algorithms

that has some properties of second order methods. The update rule in Adagrad (Duchi
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et al., 2011) is given by:

vt+1 = − α√∑t
τ=1(∇l(θτ ))2

∇l(θt)

θt+1 ← θt + vt+1

(2.10)

This method uses a global learning rate α. However, it also has its own dynamic rate for

each dimension which grows with the inverse of the gradient magnitudes. This makes

sure that the progress along each dimension evens out over time. However, the learning

rate will decrease continuously due to the increase in the denominator and learning will

eventually stop.

2.3.4 RMSProp

RMSProp (Tieleman and Hinton, 2012) avoids the limitation of Adagrad by using a

running average of the denominator term instead of the fixed average. The update equa-

tions for RMSProp are given as follows:

E[∇l(θt)2] = ρE[∇l(θt−1)2] + (1− ρ)(∇l(θt))2

RMS[∇l(θt)] =
√
E[∇l(θt)2] + ε

vt+1 = − α

RMS[∇l(θt)]
∇l(θt)

θt+1 ← θt + vt+1

(2.11)

where ρ is a decay constant and ε is added for numerical stability.

2.3.5 Adadelta

Adadelta (Zeiler, 2012) is similar to RMSProp with unit corrections which leads to

proper updates. In case of Adadelta, the weight updates are done as follows:

E[∇l(θt)2] = ρE[∇l(θt−1)2] + (1− ρ)(∇l(θt))2

vt+1 = − RMS[vt−1]

RMS[∇l(θt)]
∇l(θt)

E[v2t ] = ρE[v2t−1] + (1− ρ)v2t

θt+1 ← θt + vt+1

(2.12)
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Designing better optimization algorithm for training neural networks is one of the

active areas of research and there are several other methods proposed in the recent litera-

ture (Martens, 2010; Dauphin et al., 2014). We will explicitly mention the optimization

procedure we use in all the experiments.

2.4 Autoencoders

An auto-encoder consists of an encoder followed by a decoder (Rumelhart et al., 1986).

The encoder is a function f that maps an input x ∈ Rdx to hidden representation h(x)

∈ Rdh . It can be defined as

h = f(x) = sf (Wx+ bh) (2.13)

where sf is a nonlinear activation function like sigmoid function. The parameters of the

encoder are a dh X dx weight matrix W and a bias vector bh ∈ Rdh .

The decoder function g maps the hidden representation h back to a reconstruction y

such that,

y = g(h) = sg(W
′h+ by) (2.14)

where sg is the decoder’s activation function, typically either the identity or a sigmoid.

The decoder’s parameters are the matrix W ′ and a bias vector by in Rdx . In general, W ′

= W T .

Figure 2.3: An Autoencoder

The auto-encoder is trained to find the parameters θ = {W,W ′, bh, bx} such that
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the reconstruction error is minimum. If Dn is the set of training examples, then the

objective function to be minimized is given by,

JAE(θ) =
∑
x∈Dn

L(x, g(f(x)) (2.15)

where L is the reconstruction error. Squared error function is typically used.

Autoencoders are typically used for dimensionality reduction and when the hidden

layer is linear, then the autoencoder learns the top principal components of the data. In

other words, it is equivalent to doing Principal Component Analysis (PCA) on the data.

Autoencoders are also the building blocks for unsupervised feature learning in Deep

Learning as explained in the later section.

2.5 Restricted Boltzmann Machines (RBMs)

An RBM (Smolensky, 1986) is an energy based model which can be considered as a

Markov Random Field associated with a bipartite undirected graph. It consists of m

visible units V = (v1, v2, ..., vm) to represent the observable data and n hidden units

H = (h1, h2, ..., hn) to capture dependencies between observed variables. Consider

binary RBMs where each visible or hidden unit can take only binary values. The energy

function for a particular configuration of (V,H) is given by,

E(V,H) = −
n∑
i=1

m∑
j=1

Wijhivj −
m∑
j=1

bjvj −
n∑
i=1

aihi (2.16)

where W is the interaction weight matrix between hidden and visible units, b is the

bias vector associated with visible units and a is the bias vector associated with hidden

units.

Now the joint probability distribution is given by the Gibbs distribution

p(V,H) =
1

Z
e−E(V,H) (2.17)

where Z is the normalization constant (also known as the partition function).
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RBM is called as Restricted Boltzmann Machine because of the restriction in the

connections. RBM has only connections across the visible and hidden layers and not

inside the layers. This makes one hidden variables independent given the state of the

visible variables and vice versa.

p(h|v) =
n∏
i=1

p(hi|v)

p(v|h) =
m∏
i=1

p(vi|h)

(2.18)

Figure 2.4: A Restricted Boltzmann Machine

RBMs can also be interpreted as a stochastic neural network. The conditional prob-

ability of a single variable being one can be defined as follows:

p(hi = 1|v) = σ

(
m∑
j=1

Wijvj + ai

)
(2.19)

p(vj = 1|h) = σ

(
n∑
i=1

Wijhi + bj

)
(2.20)

RBMs are trained by maximizing the likelihood of the data and computing likeli-

hood is intractable in RBMs because of the partition function. So this is often approxi-

mated and most common way to do this is by training based on Contrastive Divergence

(CD) (Hinton, 2002). RBMs along with Autoencoders form the building blocks of Deep

Neural Networks.

18



2.6 Greedy Layerwise Training and Deep Learning

A single hidden layer auto-encoder basically provides a non-linear transformation of

the input to the hidden layer. A novel methodology to stack multiple auto-encoders

to design a deep neural network was proposed in (Bengio et al., 2007). Similar greedy

layer-wise training using Restricted Boltzman Machines was proposed in (Hinton et al.,

2006). Both the methods consists of an unsupervised pre-training phase followed by

supervised fine-tuning phase. We will describe the auto-encoder based training (Bengio

et al., 2007) since it is most relevant to the thesis.

1. Train the first layer of the autoencoder to minimize some form of reconstruction
error of the raw input. This is purely unsupervised.

2. The outputs of the hidden units of this autoencoder is used as input for another
layer which is also trained to be an autoencoder. Again, this is also unsupervised.

3. Iterate as in (2) to add the desired number of layers.

4. Take the last hidden layer output as input to a supervised layer and initialize its
parameters.

5. Fine-tune all the parameters of this deep architecture with respect to the super-
vised criterion. Alternately, unfold all the autoencoders into a very deep autoen-
coder and fine-tune the global reconstruction error.

This unsupervised pretraining results in better initialization of the parameters of the

network which helps in the supervised training phase. The entire procedure is illustrated

in Figure-2.5.

Figure 2.5: Procedure to train a deep neural network using autoencoders. After greedy
layer-wise pretraining, we can do either unsupervised finetuning or super-
vised finetuning.
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2.7 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) (Hotelling, 1936) is a de-facto tool for learning

common representation for two different views in the literature (Udupa and Khapra,

2010; Dhillon et al., 2011).

Let X1 ∈ Rn1 and X2 ∈ Rn2 denote random vectors with covariances Σ11 and Σ22

respectively. Let Σ12 be the cross-covariance. CCA finds pairs of linear projections of

the two views: w′1X1 and w′2X2 that are maximally correlated:

(w∗1, w
∗
2) = arg max

w1,w2

corr(w′1X1, w
′
2X2)

= arg max
w1,w2

w′1Σ12w2√
w′1Σ11w1w′2Σ22w2

(2.21)

Kernel CCA (Akaho, 2001) uses the standard kernel trick to find pairs of non-linear

projections of the two views. Deep CCA, a deep version of CCA is also introduced in

(Andrew et al., 2013).

Even though CCA and its variants are used widely for learning common represen-

tations, we would like to highlight few limitations of CCA which makes them unusable

in certain situations.

• CCA is easily not scalable. Even though there are several work on scaling up
CCA (Lu and Foster, 2014), they are all approximation to CCA and hence the
decrease in the performance.

• It is not very trivial to extend CCA to multiple views. However there are some
recent work along this line (Tenenhaus and Tenenhaus, 2011; Luo et al., 2015)
which requires complex computations.

• CCA is unidirectional in projections. In other words, you cannot get back the
data point given its projection. If you can have a bidirectional projection, then it
will facilitate translating data points from one view to another view.

• CCA can work only on parallel data. However, in real life situations, parallel data
is costly when compared to single view data. So it is ideally expect to make best
use of the single view data as well.

All the above-mentioned limitations suggest that CCA is not a final solution for

Common Representation Learning. However, CCA has been widely used because of its

superior performance over other existing CRL algorithms.
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2.8 Summary

This chapter provides a summary of Neural networks and Deep Learning which is es-

sential to understand the rest of the thesis. We also described Canonical Correlation

Analysis, a standard CRL algorithm and its limitations. In the next chapter, we will see

a Neural network based approach for common representation learning.
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CHAPTER 3

CORRELATIONAL NEURAL NETWORKS

In this chapter, we introduce Correlational Neural Networks. Correlational Neural Net-

work (CorrNet) is a three layer neural network that learns a common representation for

two different views of the data. CorrNet is for multi-view data, as an autoencoder is for

single view data.

3.1 Introduction

Let us restate the problem of Common Representation Learning. Consider some data

Z = {zi}Ni=1 which has two views: X and Y . Each data point zi can be represented as

a concatenation of these two views : zi = (xi,yi), where xi ∈ Rd1 and yi ∈ Rd2 . In this

work, we are interested in learning two functions, hX and hY , such that hX(xi) ∈ Rk

and hY (yi) ∈ Rk are projections of xi and yi respectively in a common subspace (Rk)

such that for a given pair xi, yi :

1. hX(xi) and hY (yi) should be highly correlated.

2. It should be possible to reconstruct yi from xi (through hX(xi)) and vice versa.

Canonical Correlation Analysis (CCA) (Hotelling, 1936) is a commonly used tool

for learning such common representations for two-view data (Udupa and Khapra, 2010;

Dhillon et al., 2011). By definition, CCA aims to produce correlated common represen-

tations but, it suffers from some drawbacks. First, it is not easily scalable to very large

datasets. Of course, there are some approaches which try to make CCA scalable (for

example, (Lu and Foster, 2014)), but such scalability comes at the cost of performance.

Further, CCA does not have any reconstruction capabilities, i.e., it cannot be used to

reconstruct one view from the other. Finally, CCA cannot benefit from additional non-

parallel, single-view data. This puts it at a severe disadvantage in several real world

situations, where in addition to some parallel two-view data, abundant single view data

is available for one or both views.



Recently, Multimodal Autoencoders (MAEs) (Ngiam et al., 2011) have been pro-

posed to learn a common representation for two views/modalities. The idea in MAE

is to train an autoencoder to perform two kinds of reconstruction. Given any one view,

the model learns both self-reconstruction and cross-reconstruction (reconstruction of

the other view). This makes the representations learnt to be predictive of each other.

However, it should be noticed that the MAE does not get any explicit learning signal

encouraging it to share the capacity of its common hidden layer between the views. In

other words, it could develop units whose activation is dominated by a single view. This

makes the MAE not suitable for transfer learning, since the views are not guaranteed to

be projected to a common subspace. This is indeed verified by the results reported in

(Ngiam et al., 2011) where they show that CCA performs better than deep MAE for the

task of transfer learning.

These two approaches have complementary characteristics. On one hand, we have

CCA and its variants which aim to produce correlated common representations but

lack reconstruction capabilities. On the other hand, we have MAE which aims to do

self-reconstruction and cross-reconstruction but does not guarantee correlated common

representations. In this thesis, we propose Correlational Neural Network (CorrNet) as

a method for learning common representations which combines the advantages of the

two approaches described above. The main characteristics of the proposed method can

be summarized as follows:

• It allows for self/cross reconstruction. Thus, unlike CCA (and like MAE) it has
predictive capabilities. This can be useful in applications where a missing view
needs to be reconstructed from an existing view.

• Unlike MAE (and like CCA) the training objective used in CorrNet ensures that
the common representations of the two views are correlated. This is particularly
useful in applications where we need to match items from one view to their cor-
responding items in the other view.

• CorrNet can be trained using Gradient Descent based optimization methods. Par-
ticularly, when dealing with large high dimensional data, one can use Stochastic
Gradient Descent with mini-batches. Thus, unlike CCA (and like MAE) it is easy
to scale CorrNet.

• The procedure used for training CorrNet can be easily modified to benefit from
additional single view data. This makes CorrNet useful in many real world appli-
cations where additional single view data is available.

We use the MNIST hand-written digit recognition dataset to compare CorrNet with

other state of the art CRL approaches. In particular, we evaluate its (i) ability to
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self/cross reconstruct (ii) ability to produce correlated common representations and (iii)

usefulness in transfer learning. In this setup, we use the left and right halves of the

digit images as two views. Next, we use CorrNet for the task of transliteration equiva-

lence where the aim is to match a name written using the script of one language (first

view) to the same name written using the script of another language (second view).

Here again, we demonstrate that with its ability to produce better correlated common

representations, CorrNet performs better than CCA and MAE.

3.2 The Model

As described earlier, our aim is to learn a common representation from two views of

the same data such that: (i) any single view can be reconstructed from the common

representation, (ii) a single view can be predicted from the representation of another

view and (iii) like CCA, the representations learned for the two views are correlated.

The first goal above can be achieved by a conventional autoencoder. The first and

second can be achieved together by a Multimodal autoencoder but it is not guaranteed

to project the two views to a common subspace. We propose a variant of autoencoders

which can work with two views of the data, while being explicitly trained to achieve

all the above goals. In this section and the next section, we describe our model and

the training procedure. We start by proposing a neural network architecture which

contains three layers: an input layer, a hidden layer and an output layer. Just as in a

conventional single view autoencoder, the input and output layers have the same number

of units, whereas the hidden layer can have a different number of units. For illustration,

we consider a two-view input z = (x,y). For all the discussions, [x,y] denotes a

concatenated vector of size d1 + d2.

Given z = (x,y), the hidden layer computes an encoded representation as follows:

h(z) = f(Wx + Vy + b) (3.1)

where W is a k× d1 projection matrix, V is a k× d2 projection matrix and b is a k× 1

bias vector. Function f can be any non-linear activation function, for example sigmoid

or tanh. The output layer then tries to reconstruct z from this hidden representation by
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computing

z′ = g([W′h(z),V′h(z)] + b′) (3.2)

where W′ is a d1× k reconstruction matrix, V′ is a d2× k reconstruction matrix and b′

is a (d1 +d2)× 1 output bias vector. Vector z′ is the reconstruction of z. Function g can

be any activation function. This architecture is illustrated in Figure 3.1. The parameters

of the model are θ = {W,V,W′,V′,b,b′}. In the next section we outline a procedure

for learning these parameters.

Figure 3.1: Correlational Neural Network

3.3 Training

In this section, we will describe how to train CorrNets. As mentioned before, CorrNets

can be trained with only parallel data or with both parallel and single view data.

3.3.1 Training with parallel data

Restating our goals more formally, given a two-view dataZ = {(zi)}Ni=1 = {(xi,yi)}Ni=1,

for each instance, (xi,yi), we would like to:

• Minimize the self-reconstruction error, i.e., minimize the error in reconstructing
xi from xi and yi from yi.

• Minimize the cross-reconstruction error, i.e., minimize the error in reconstructing
xi from yi and yi from xi.

• Maximize the correlation between the hidden representations of both views.
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We achieved this by finding the parameters θ = {W,V,W′,V′,b,b′} which min-

imize the following objective function:

JZ(θ) =
N∑
i=1

(L(zi, g(h(zi)))+L(zi, g(h(xi)))+L(zi, g(h(yi))))−λ corr(h(X), h(Y ))

(3.3)

corr(h(X), h(Y )) =

∑N
i=1(h(xi)− h(X))(h(yi)− h(Y ))√∑N

i=1(h(xi)− h(X))2
∑N

i=1(h(yi)− h(Y ))2
(3.4)

where L is the reconstruction error, λ is the scaling parameter to scale the fourth

term with respect to the remaining three terms, h(X) is the mean vector for the hidden

representations of the first view and h(Y ) is the mean vector for the hidden represen-

tations of the second view. If all dimensions in the input data take binary values then

we use cross-entropy as the reconstruction error otherwise we use squared error loss as

the reconstruction error. For simplicity, we use the shorthands h(xi) and h(yi) to note

the representations h((xi, 0)) and h((0,yi)) that are based only on a single view1. The

correlation term in the objective function is calculated considering the hidden represen-

tation as a random vector.

In words, the objective function decomposes as follows. The first term is the usual

autoencoder objective function which helps in learning meaningful hidden representa-

tions. The second term ensures that both views can be predicted from the shared repre-

sentation of the first view alone. The third term ensures that both views can be predicted

from the shared representation of the second view alone. The fourth term interacts with

the other objectives to make sure that the hidden representations are highly correlated,

so as to encourage the hidden units of the representation to be shared between views.

We can use stochastic gradient descent (SGD) to find the optimal parameters. For

all our experiments, we used mini-batch SGD. The fourth term in the objective function

is then approximated based on the statistics of a minibatch. Approximating second

order statistics using minibatches for training was also used successfully in the batch

normalization training method of Ioffe and Szegedy (2015).

The model has three hyperparameters: (i) the number of units in its hidden layer, (ii)

λ and (iii) the SGD learning rate. The first hyperparameter is dependent on the specific

1They represent the generic functions hX and hY mentioned in the introduction.
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task at hand and can be tuned using a validation set (exactly as is done by other compet-

ing algorithms). The second hyperparameter is only to ensure that the correlation term

in the objective function has the same range as the reconstruction errors. This is again

easy to approximate based on the given data. The final hyperparameter, the learning

rate is common for all neural network based approaches.

Once the parameters are learned, we can use the CorrNet to compute representa-

tions of views that can potentially generalize across views. Specifically, given a new

data instance for which only one view is available, we can compute its corresponding

representation (h(x) if x is observed or h(y) if y is observed) and use it as the new data

representation.

3.3.2 Training with single view data

In practice, it is often the case that we have abundant single view data and compar-

atively little two-view data. For example, in the context of text documents from two

languages (X and Y ), typically the amount of monolingual (single view) data available

in each language is much larger than parallel (two-view) data available between X and

Y . Given the abundance of such single view data, it is desirable to exploit it in order to

improve the learned representation. CorrNet can achieve this, by using the single view

data to improve the self-reconstruction error as explained below.

Consider the case where, in addition to the data Z = {(zi)}Ni=1 = {(xi,yi)}Ni=1,

we also have access to the single view data X = {(xi)}N1
i=N+1 and Y = {(yi)}N2

i=N+1.

Now, during training, in addition to using Z as explained before, we also use X and Y

by suitably modifying the objective function so that it matches that of a conventional

autoencoder. Specifically, when we have only xi, then we could try to minimize

JX (θ) =

N1∑
i=N+1

L(xi, g(h(xi)))

and similarly for yi.

In all our experiments, when we have access to all three types of data (i.e., X , Y and

Z), we construct 3 sets of mini-batches by sampling data fromX , Y andZ respectively.

We then feed these mini-batches in random order to the model and perform a gradient
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update based on the corresponding objective function.

3.4 Related Models

In this section, we briefly describe other neural network based common representation

learning models and explain how CorrNet differs from them.

Hsieh (2000) is one of the earliest Neural Network based model for nonlinear CCA.

This method uses three feedforward neural networks. The first neural network is a

double-barreled architecture where two networks project the views to a single unit such

that the projections are maximally correlated. This network is first trained to maximize

the correlation. Then the inverse mapping for each view is learnt from the correspond-

ing canonical covariate representation by minimizing the reconstruction error. There are

clear differences between this Neural CCA model and CorrNet. First, CorrNet is a sin-

gle neural network which is trained with a single objective function while Neural CCA

has three networks trained with different objective functions. Second, Neural CCA does

only correlation maximization and self-reconstruction, whereas CorrNet does correla-

tion maximization, self-reconstruction and cross-reconstruction, all at the same time.

Multimodal Autoencoder (MAE) (Ngiam et al., 2011) is another Neural Network

based CRL approach. Even though the architecture of MAE is similar to that of Corr-

Net there are clear differences in the training procedure used by the two. Firstly, MAE

only aims to minimize the following three errors: (i) error in reconstructing zi from xi

(E1), (ii) error in reconstructing zi from yi (E2) and (iii) error in reconstructing zi from

zi (E3). More specifically, unlike the fourth term in our objective function, the objective

function used by MAE does not contain any term which forces the network to learn cor-

related common representations. Secondly, there is a difference in the manner in which

these terms are considered during training. Unlike CorrNet, MAE only considers one

of the above terms at a time. In other words, given an instance zi = (xi, yi) it first tries

to minimize E1 and updates the parameters accordingly. It then tries to minimize E2

followed by E3. Empirically, we observed that a training procedure which considers all

three loss terms together performs better than the one which considers them separately.

Deep Canonical Correlation Analysis (DCCA) (Andrew et al., 2013) is a recently

proposed Neural Network approach for CCA. DCCA employs two deep networks, one

28



per view. The model is trained in such a way that the final layer projections of the data

in both the views are maximally correlated. DCCA maximizes only correlation whereas

CorrNet maximizes both, correlation and reconstruction ability.

3.5 Experiments on MNIST handwritten digits

In this section, we analyze and experimentally verify the use of Correlational Networks

in various scenarios where shared representation learning is needed.

In this section, we perform a set of experiments to compare CorrNet, CCA (Hotelling,

1936), Kernel CCA (KCCA) (Akaho, 2001) and MAE (Ngiam et al., 2011) based on:

• ability to reconstruct a view from itself

• ability to reconstruct one view given the other

• ability to learn correlated common representations for the two views

• usefulness of the learned common representations in transfer learning.

For CCA, we used a C++ library called dlib (King, 2009). For KCCA, we used an

implementation provided by the authors of (Arora and Livescu, 2012). We implemented

CorrNet and MAE using Theano (Bergstra et al., 2010).

3.5.1 Data Description

We used the standard MNIST handwritten digits image dataset for all our experiments.

This data consists of 60,000 train images and 10,000 test images. Each image is a 28 *

28 matrix of pixels; each pixel representing one of 256 grayscale values. We treated the

left half of the image as one view and the right half of the image as another view. Thus

each view contains 14 ∗ 28 = 392 dimensions. We split the train images into two sets.

The first set contains 50,000 images and is used for training. The second set contains

10,000 images and is used as a validation set for tuning the hyper-parameters of the four

models described above.
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3.5.2 Performance of Self and Cross Reconstruction

Among the four models listed above, only CorrNets and MAE have the ability to con-

struct a view from itself as well as from the other view. So, in this sub-section, we

consider only these two models. Table 3.1 shows the Mean Squared Errors (MSEs) for

self and cross reconstruction when the left half of the image is used as input.

Model MSE for self reconstruction MSE for cross reconstruction

CorrNet 3.6 4.3

MAE 2.1 4.2

Table 3.1: Mean Squared Error for CorrNet and MAE for self reconstruction and cross
reconstruction

The above table suggests that CorrNet has a higher self reconstruction error and al-

most the same cross reconstruction error as that of MAE. This is because unlike MAE,

in CorrNet, the emphasis is on maximizing the correlation between the common rep-

resentations of the two views. This goal captured by the fourth term in the objective

function obviously interferes with the goal of self reconstruction. As we will see in

the next sub-section, the embeddings learnt by CorrNet for the two views are better

correlated even though the self-reconstruction error is sacrificed in the process.

Figure 3.2 shows the reconstruction of the right half from the left half for a few

sample images. The figure reiterates our point that both CorrNet and MAE are equally

good at cross reconstruction.

Figure 3.2: Reconstruction of right half of the image given the left half. First block
shows the original images, second block shows images where the right half
is reconstructed by CorrNet and the third block shows images where the
right half is reconstructed by MAE.
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3.5.3 Correlation between representations of two views

As mentioned above, in CorrNet we emphasize on learning highly correlated represen-

tations for the two views. To show that this is indeed the case, we follow (Andrew

et al., 2013) and calculate the total/sum correlation captured in the 50 dimensions of

the common representations learnt by the four models described above. The training,

validation and test sets used for this experiment were as described in section 3.5.1. The

results are reported in Table 3.2.

Model Sum Correlation

CCA 17.05

KCCA 30.58

MAE 24.40

CorrNet 45.47

Table 3.2: Sum/Total correlation captured in the 50 dimensions of the common repre-
sentations learned by different models using MNIST data.

The total correlation captured in the 50 dimensions learnt by CorrNet is clearly

better than that of the other models.

Next, we check whether this is indeed the case when we change the number of

dimensions. For this, we varied the number of dimensions from 5 to 80 and plotted

the sum correlation for each model (see Figure 3.3). For all the models, we tuned the

hyper-parameters for dim = 50 and used the same hyper-parameters for all dimensions.

For this experiment, we used 10,000 images for training.
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Figure 3.3: Sum/Total correlation as a function of the number of dimensions in the com-
mon representations learned by different models using MNIST data.

Again, we see that CorrNet clearly outperforms the other models. CorrNet thus

achieves its primary goal of producing correlated embeddings with the aim of assisting

transfer learning.

3.5.4 Transfer Learning across views

To demonstrate transfer learning, we take the task of predicting digits from only one half

of the image. We first learn a common representation for the two views using 50,000

images from the MNIST training data. For each training instance, we take only one half

of the image and compute its 50 dimensional common representation using one of the

models described above. We then train a classifier using this representation. For each

test instance, we consider only the other half of the image and compute its common

representation. We then feed this representation to the classifier for prediction. We use

the linear SVM implementation provided by (Pedregosa et al., 2011) as the classifier for

all our experiments and do 5-fold cross validation using 10000 test images. We report

accuracy for two settings (i) Left to Right (training on left view, testing on right view)

and (ii) Right to Left (training on right view, testing on left view).
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Model Left to Right Right to Left

CCA 65.73 65.44

KCCA 68.1 75.71

MAE 64.14 68.88

CorrNet 77.05 78.81

Table 3.3: Transfer learning accuracy using the representations learned using different
models on the MNIST dataset.

Once again, we see that CorrNet performs significantly better than the other models.

To verify that this holds even when we have less data, we decrease the data for learning

common representation to 10000 images. The results as reported in Table 3.4 show that

even with less data, CorrNet perform betters than other models.

Model Left to Right Right to Left

CCA 66.13 66.71

KCCA 70.68 70.83

MAE 68.69 72.54

CorrNet 76.6 79.51

Table 3.4: Transfer learning accuracy using the representations learned using different
models trained with 10000 instances from the MNIST dataset.

3.5.5 Relation with MAE

At the face of it, it may seem that both CorrNet and MAE differ only in their objective

functions. Specifically, if we remove the last correlation term from the objective func-

tion of CorrNet then it would become equivalent to MAE. To verify this, we conducted

experiments using both MAE and CorrNet without the last term (say CorrNet(123)).

When using SGD to train the networks, we found that the performance is almost sim-

ilar. However, when we use some advanced optimization technique like RMSProp,

CorrNet(123) starts performing better than MAE. The results are reported in Table 3.5.
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Model Optimization Left to Right Right to Left

MAE SGD 63.9 67.98

CorrNet(123) SGD 63.89 67.93

MAE RMSProp 64.14 68.88

CorrNet(123) RMSProp 67.82 72.13

Table 3.5: Results for transfer learning across views

This experiment sheds some light on the understanding why MAE is inferior. Even-

though the objective of MAE and CorrNet(123) is same, MAE tries to solve it in a

stochastic way which adds more noise. However, CorrNet(123) performs better since it

is actually working on the combined objective function and not the stochastic version

(one term at a time) of it.

3.5.6 Analysis of Loss Terms

The objective function defined in Section 3.3.1 has the following four terms:

• L1 =
∑N

i=1 L(zi, g(h(zi))

• L2 =
∑N

i=1 L(zi, g(h(xi))

• L3 =
∑N

i=1 L(zi, g(h(yi))

• L4 = λ corr(h(X), h(Y ))

In this section, we analyze the importance of each of these terms in the loss function.

For this, during training, we consider different loss functions which contain different

combinations of these terms. In addition, we consider two more loss terms for our

analysis.

• L5 =
∑N

i=1 L(yi, g(h(xi))

• L6 =
∑N

i=1 L(xi, g(h(yi))

where L5 and L6 essentially capture the loss in reconstructing only one view (say,

xi) from the other view (yi).
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For this, we first learn common representations using different loss functions as

listed in the first column of Table 3.6. We then repeated the transfer learning experi-

ments using common representations learned from each of these models. For example,

the sixth row in the table shows the results when the following loss function is used for

learning the common representations.

JZ(θ) = L1 + L2 + L3 + L4

which is the same as that used in CorrNet.

Loss function used for training Left to Right Right to Left

L1 24.59 22.56

L1 + L4 65.9 67.54

L2 + L3 71.54 75

L2 + L3 + L4 76.54 80.57

L1 + L2 + L3 67.82 72.13

L1 + L2 + L3 + L4 77.05 78.81

L5 + L6 35.62 32.26

L5 + L6 + L4 62.05 63.49

Table 3.6: Comparison of the performance of transfer learning with representations
learned using different loss functions.

Each even numbered row in the table reports the performance when the correlation

term (L4) was used in addition to the other terms in the row immediately before it. A

pair-wise comparison of the numbers in each even numbered row with the row imme-

diately above it suggests that correlation term (L4) in the loss function clearly produces

representations which lead to better transfer learning.

3.6 Transliteration Equivalence

In the previous section, we analyzed the characteristics of CorrNet using MNIST dataset

as a benchmark. In this section, we show a real application of CorrNet in Natural Lan-

guage Processing. Specifically, we use CorrNet for matching equivalent items across

views. As a case study, we consider the task of determining transliteration equivalence
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of named entities wherein given a word u written using the script of language X and a

word v written using the script of language Y the goal is to determine whether u and v

are transliterations of each other. Several approaches have been proposed for this task

and the one most related to our work is an approach which uses CCA for determining

transliteration equivalence.

We consider English-Hindi as the language pair for which transliteration equiva-

lence needs to be determined. For learning common representations we used approx-

imately 15,000 transliteration pairs from NEWS 2009 English-Hindi training set (Li

et al., 2009). We represent each Hindi word as a bag of 2860 bigram characters. This

forms the first view (xi). Similarly we represent each English word as a bag of 651

bigram characters. This forms the second view (yi). Each such pair (xi,yi) then serves

as one training instance for the CorrNet.

For testing we consider the standard NEWS 2010 transliteration mining test set

(Kumaran et al., 2010). This test set contains approximately 1000 Wikipedia English

Hindi title pairs. The original task definition is as follows. For a given English title

containing T1 words and the corresponding Hindi title containing T2 words identify

all pairs which form a transliteration pair. Specifically, for each title pair, consider all

T1 × T2 word pairs and identify the correct transliteration pairs. In all, the test set

contains 5468 word pairs out of which 982 are transliteration pairs. For every word

pair (xi,yi) we obtain a 50 dimensional common representation for xi and yi using the

trained CorrNet. We then calculate the correlation between the representations of xi

and yi. If the correlation is above a threshold we mark the word pair as equivalent. This

threshold is tuned using an additional 1000 pairs which were provided as training data

for the NEWS 2010 transliteration mining task. As seen in Table 3.7 CorrNet clearly

performs better than the other methods. Note that our aim is not to achieve state of the

art performance on this task but to compare the quality of the shared representations

learned using different CRL methods considered in this paper.

36



Model F1-measure (%)

CCA 49.68

KCCA 42.36

MAE 72.75

CorrNet 81.56

Table 3.7: Performance on NEWS 2010 En-Hi Transliteration Mining Dataset

3.7 Summary

In this chapter, we proposed Correlational Neural Networks as a method for learning

common representations for two views of the data. The proposed model has the capa-

bility to reconstruct one view from the other and it ensures that the common represen-

tations learned for the two views are aligned and correlated. Its training procedure is

also scalable. Further, the model can benefit from additional single view data, which

is often available in many real world applications. We employ the common representa-

tions learned using CorrNet for transliteration equivalence detection. We show that the

representations learned using CorrNet perform better than other methods.
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CHAPTER 4

CROSS LANGUAGE LEARNING

In this chapter, we will discuss an approach for Cross Language Learning based on Cor-

relational Neural Networks. We propose Bilingual Autoencoding, a way to use corre-

lational networks to learn common representation for words in two different languages.

In experiments on 3 language pairs, we show that our approach achieves state-of-the-art

performance in Cross Language Document Classification.

4.1 Motivation

Languages show different levels of maturity with respect to their Natural Language Pro-

cessing (NLP) capabilities. This maturity in terms of the quality and number of NLP

tools available for a given language is directly proportional to the amount of annotated

resources available for that language. As a result, languages such as English which have

plenty of annotated resources at their disposal are better equipped than other languages

which are not so fortunate in terms of annotated resources. For example, high quality

POS taggers (Toutanova et al., 2003), parsers (Socher et al., 2013), sentiment analyzers

(Liu, 2012) are already available for English but this is not the case for many other lan-

guages such as Hindi, Marathi, Bodo, Farsi, Urdu, etc. This situation was acceptable

in the past when only a few languages dominated the digital content available online

and elsewhere. However, the ever increasing number of languages on the web today

has made it important to accurately process natural language data in such less fortunate

languages also. An obvious solution to this problem is to improve the annotated inven-

tory of these languages but the involved cost, time, and effort act as a natural deterrent

to this.

While the majority of previous work on vectorial text representations has concen-

trated on the monolingual case, there has been considerable interest in learning word

and document representations that are aligned across languages (Klementiev et al.,



2012; Zou et al., 2013; Mikolov et al., 2013). Such aligned representations can poten-

tially allow the use of resources from a resource fortunate language to develop NLP ca-

pabilities in a resource deprived language (Yarowsky and Ngai, 2001; Das and Petrov,

2011; Mihalcea et al., 2007; Wan, 2009; Padó and Lapata, 2009). For example, if a

common representation model is learned for representing English and German docu-

ments, then a classifier trained on annotated English documents can be used to classify

German documents (provided we use the learned common representation model for

representing documents in both languages).

Such reuse of resources across languages has been tried in the past by project-

ing parameters learned from the annotated data of one language to another language

(Yarowsky and Ngai, 2001; Das and Petrov, 2011; Mihalcea et al., 2007; Wan, 2009;

Padó and Lapata, 2009) These projections are enabled by a bilingual resource such as

a Machine Translation (MT) system. Recent attempts at learning common bilingual

representations (Klementiev et al., 2012; Zou et al., 2013; Mikolov et al., 2013) aim

to eliminate the need of such a MT system. Such bilingual representations have been

applied to a variety of problems, including cross-language document classification (Kle-

mentiev et al., 2012) and phrase-based machine translation (Zou et al., 2013). A com-

mon property of these approaches is that a word-level alignment of translated sentences

is leveraged, e.g., to derive a regularization term relating word embeddings across lan-

guages (Klementiev et al., 2012; Zou et al., 2013). Such methods not only eliminate

the need for an MT system but also outperform MT based projection approaches.

In this work, we experiment with a method to learn bilingual word representations

that does not require word-to-word alignment of bilingual corpora during training. Un-

like previous approaches (Klementiev et al., 2012), we only require aligned sentences

and do not rely on word-level alignments (e.g., extracted using GIZA++, as is usual),

which simplifies the learning procedure. To do so, we propose a bilingual autoencoder

model, that learns hidden encoder representations of paired bag-of-words sentences

which are not only informative of the original bag-of-words but also predictive of each

other. Word representations can then easily be extracted from the encoder and used in

the context of a supervised NLP task. Specifically, we demonstrate the quality of these

representations for the task of cross-language document classification, where a labeled

data set can be available in one language, but not in another one. As we’ll see, our ap-

proach is able to reach state-of-the-art performance, achieving up to 10-14 percentage
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point improvements over the best previously reported results.

4.2 Autoencoder for Bags-of-Words

Let x be the bag-of-words representation of a sentence. Specifically, each xi is a word

index from a fixed vocabulary of V words. As this is a bag-of-words, the order of the

words within x does not correspond to the word order in the original sentence. We wish

to learn a D-dimensional vectorial representation of our words from a training set of

sentence bags-of-words {x(t)}Tt=1.

We propose to achieve this by using an autoencoder model that encodes an input

bag-of-words x with a sum of the representations (embeddings) of the words present in

x, followed by a non-linearity. Specifically, let matrix W be the D × V matrix whose

columns are the vector representations for each word. The encoder’s computation will

involve summing over the columns of W for each word in the bag-of-word. We will

denote this encoder function φ(x). Then, using a decoder, the autoencoder will be

trained to optimize a loss function that measures how predictive of the original bag-of-

words is the encoder representation φ(x) .

There are different variations we can consider in the design of the encoder/decoder

and the choice of loss function. One must be careful however, as certain choices can

be inappropriate for training on word observations, which are intrinsically sparse and

high-dimensional. In this work, we explore one such approach.

4.3 Binary bag-of-words reconstruction training with

merged bags-of-words

We start from the conventional autoencoder architecture, which minimizes a cross-

entropy loss that compares a binary vector observation with a decoder reconstruction.

We thus convert the bag-of-words x into a fixed-size but sparse binary vector v(x),

which is such that v(x)xi is 1 if word xi is present in x and otherwise 0.

From this representation, we obtain an encoder representation by multiplying v(x)
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with the word representation matrix W

a(x) = c + Wv(x), φ(x) = h(a(x)) (4.1)

where h(·) is an element-wise non-linearity such as the sigmoid or hyperbolic tangent,

and c is a D-dimensional bias vector. Encoding thus involves summing the word repre-

sentations of the words present at least once in the bag-of-words.

To produce a reconstruction, we parameterize the decoder using the following non-

linear form:

v̂(x) = sigm(Vφ(x) + b) (4.2)

where V = WT , b is the bias vector of the reconstruction layer and sigm(a) = 1/(1 +

exp(−a)) is the sigmoid non-linearity.

Then, the reconstruction is compared to the original binary bag-of-words as follows:

`(v(x)) = −
V∑
i=1

v(x)i log(v̂(x)i) + (1− v(x)i) log(1− v̂(x)i) . (4.3)

Training proceeds by optimizing the sum of reconstruction cross-entropies across the

training set, e.g., using stochastic or mini-batch gradient descent.

Note that, since the binary bags-of-words are very high-dimensional (the dimen-

sionality corresponds to the size of the vocabulary, which is typically large), the above

training procedure which aims at reconstructing the complete binary bag-of-word, will

be slow. Since we will later be training on millions of sentences, training on each indi-

vidual sentence bag-of-words will be expensive.

Thus, we propose a simple trick, which exploits the bag-of-words structure of the

input. Assuming we are performing mini-batch training (where a mini-batch contains a

list of the bags-of-words of adjacent sentences), we simply propose to merge the bags-

of-words of the mini-batch into a single bag-of-words and perform an update based on

that merged bag-of-words. The resulting effect is that each update is as efficient as in

stochastic gradient descent, but the number of updates per training epoch is divided by

the mini-batch size . As we’ll see in the experimental section, this trick produces good

word representations, while sufficiently reducing training time. We note that, addition-

ally, we could have used the stochastic approach proposed by Dauphin et al. (2011) for
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reconstructing binary bag-of-words representations of documents, to further improve

the efficiency of training. They use importance sampling to avoid reconstructing the

whole V -dimensional input vector.

4.4 Bilingual autoencoders

Let’s now assume that for each sentence bag-of-words x in some source languageX , we

have an associated bag-of-words y for this sentence translated in some target language

Y by a human expert.

Assuming we have a training set of such (x,y) pairs, we’d like to use it to learn

representations in both languages that are aligned, such that pairs of translated words

have similar representations.

To achieve this, we propose to augment the regular autoencoder proposed in Sec-

tion 4.3 so that, from the sentence representation in a given language, a reconstruction

can be attempted of the original sentence in the other language. Specifically, we now de-

fine language specific word representation matrices Wx and Wy, corresponding to the

languages of the words in x and y respectively. Let V X and V Y also be the number of

words in the vocabulary of both languages, which can be different. The word represen-

tations however are of the same size D in both languages. For the binary reconstruction

autoencoder, the bag-of-words representations extracted by the encoder become

φ(x) = h
(
c + WXv(x)

)
, φ(y) = h

(
c + WYv(y)

)
(4.4)

Notice that we share the bias c before the non-linearity across encoders, to encourage

the encoders in both languages to produce representations on the same scale.

From the sentence in either languages, we want to be able to perform a reconstruc-

tion of the original sentence in both the languages. In particular, given a representation

in any language, we’d like a decoder that can perform a reconstruction in language X

and another decoder that can reconstruct in language Y . Again, we use decoders of the

form proposed in Section 4.3 (see Figure 4.1), but let the decoders of each language

have their own parameters (bX ,VX ) and (bY ,VY).
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Figure 4.1: Bilingual autoencoder based on the binary reconstruction error. In this ex-
ample, the model reconstruct the bag-of-words for the English sentence “the
dog barked” from its French translation “le chien a jappé”.

This encoder/decoder decomposition structure allows us to learn a mapping within

each language and across the languages. Specifically, for a given pair (x,y), we can

train the model to (1) construct y from x (loss `(x,y)), (2) construct x from y (loss

`(y,x)), (3) reconstruct x from itself (loss `(x)) and (4) reconstruct y from itself (loss

`(y)). We follow this approach in our experiments and optimize the sum of the corre-

sponding 4 losses during training.

4.4.1 Joint reconstruction and cross-lingual correlation

Inspired by the transfer learning capabilities of Correlational Neural Networks, we also

considered incorporating two additional terms to the loss function, in an attempt to

favour even more meaningful bilingual representations:

`(x,y) + `(y,x) + `(x) + `(y) + `([x,y], [x,y])− λ · cor(a(x), a(y)) (4.5)

The term `([x,y], [x,y]) is simply a joint reconstruction term, where both languages are

simultaneously presented as input and reconstructed. The second term cor(a(x), a(y))

encourages correlation between the representation of each language. It is the sum of

the scalar correlations between each pair a(x)k, a(y)k, across all dimensions k of the

vectors a(x), a(y)1. To obtain a stochastic estimate of the correlation, during training,

1While we could have applied the correlation term on φ(x), φ(y) directly, applying it to the pre-
activation function vectors was found to be more numerically stable.
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small mini-batches are used.

4.4.2 Document representations

Once we learn the language specific word representation matrices Wx and Wy as de-

scribed above, we can use them to construct document representations, by using their

columns as word vector representations. Given a document d written in language

Z ∈ {X ,Y} and containing m words, z1, z2, . . . , zm, we represent it as the tf-idf

weighted sum of its words’ representations ψ(d) =
∑m

i=1 tf-idf(zi) ·WZ
.,zi

. We use

the document representations thus obtained to train our document classifiers, in the

cross-lingual document classification task described in Section 4.6.

4.5 Related Work

Recent work that has considered the problem of learning bilingual representations of

words usually has relied on word-level alignments. Klementiev et al. (2012) propose

to train simultaneously two neural network languages models, along with a regular-

ization term that encourages pairs of frequently aligned words to have similar word

embeddings. Thus, the use of this regularization term requires to first obtain word-level

alignments from parallel corpora. Zou et al. (2013) use a similar approach, with a dif-

ferent form for the regularizer and neural network language models as in (Collobert

et al., 2011b). In our work, we specifically investigate whether a method that does not

rely on word-level alignments can learn comparably useful multilingual embeddings in

the context of document classification.

Looking more generally at neural networks that learn multilingual representations

of words or phrases, we mention the work of Gao et al. (2014) which showed that

a useful linear mapping between separately trained monolingual skip-gram language

models could be learned. They too however rely on the specification of pairs of words

in the two languages to align. Mikolov et al. (2013) also propose a method for training

a neural network to learn useful representations of phrases, in the context of a phrase-

based translation model. In this case, phrase-level alignments (usually extracted from

word-level alignments) are required. Recently, Hermann and Blunsom (2014a,b) pro-
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posed neural network architectures and a margin-based training objective that, as in this

work, does not rely on word alignments. We will briefly discuss their work in the ex-

periments section. A tree based bilingual autoencoder with similar objective function is

also proposed in (Chandar A P et al., 2014).

4.6 Experiments

The technique proposed in this work enables us to learn bilingual embeddings which

capture cross-language similarity between words. We propose to evaluate the quality of

these embeddings by using them for the task of cross-language document classification.

We followed closely the setup used by Klementiev et al. (2012) and compare with

their method, for which word representations are publicly available2. The set up is as

follows. A labeled data set of documents in some language X is available to train a

classifier, however we are interested in classifying documents in a different language Y

at test time. To achieve this, we leverage some bilingual corpora, which is not labeled

with any document-level categories. This bilingual corpora is used to learn document

representations that are coherent between languages X and Y . The hope is thus that we

can successfully apply the classifier trained on document representations for language

X directly to the document representations for language Y . Following this setup, we

performed experiments on 3 data sets of language pairs: English/German (EN/DE),

English/French (EN/FR) and English/Spanish (EN/ES).

4.6.1 Data

For learning the bilingual embeddings, we used sections of the Europarl corpus (Koehn,

2005) which contains roughly 2 million parallel sentences. We considered 3 language

pairs. We used the same pre-processing as used by Klementiev et al. (2012). We tok-

enized the sentences using NLTK (Bird Steven and Klein, 2009), removed punctuations

and lowercased all words. We did not remove stopwords.

As for the labeled document classification data sets, they were extracted from sec-

tions of the Reuters RCV1/RCV2 corpora, again for the 3 pairs considered in our exper-

2http://klementiev.org/data/distrib/
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iments. Following Klementiev et al. (2012), we consider only documents which were

assigned exactly one of the 4 top level categories in the topic hierarchy (CCAT, ECAT,

GCAT and MCAT). These documents are also pre-processed using a similar procedure

as that used for the Europarl corpus. We used the same vocabularies as those used by

Klementiev et al. (2012) (varying in size between 35, 000 and 50, 000).

For each pair of languages, our overall procedure for cross-language classification

can be summarized as follows:

Train representation: Train bilingual word representations Wx and Wy on sen-

tence pairs extracted from Europarl for languages X and Y . We also use the mono-

lingual documents from RCV1/RCV2 to reinforce the monolingual embeddings (this

choice is cross-validated). These non-parallel documents can be used through the losses

`(x) and `(y) (i.e. by reconstructing x from x or y from y). Note that Klementiev et al.

(2012) also used this data when training word representations.

Train classifier: Train document classifier on the Reuters training set for language

X , where documents are represented using the word representations Wx (see Sec-

tion 4.4.2). As in Klementiev et al. (2012) we used an averaged perceptron trained

for 10 epochs, for all the experiments.

Test-time classification: Use the classifier trained in the previous step on the Reuters

test set for language Y , using the word representations Wy to represent the documents.

We call our model3 BAE-cr which stands for bilingual autoencoder based on cross-

lingual correlation.

Models were trained for up to 20 epochs using the same data as described earlier.

We used mini-batch (of size 20) stochastic gradient descent. All results are for word

embeddings of size D = 40, as in Klementiev et al. (2012). Further, to speed up the

training for BAE-cr we merged each 5 adjacent sentence pairs into a single training

instance, as described in Section 4.3. For all language pairs, the joint reconstruction β

was fixed to 1 and the cross-lingual correlation factor λ to 4. The other hyperparame-

ters were tuned to each task using a training/validation set split of 80% and 20% and

using the performance on the validation set of an averaged perceptron trained on the

smaller training set portion (notice that this corresponds to a monolingual classification

3Our word representations and code are available at http://www.sarathchandar.in/crl.
html
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experiment, since the general assumption is that no labeled data is available in the test

set language).

4.6.2 Comparison of the performance of different models

We now present the cross language classification results obtained by using the embed-

dings produced by our proposed model. We also compare our models with the following

approaches:

BAE-tr: This model uses similar encoder-decoder architecture as in BAE-cr while

the decoder is a tree based decoder (Chandar A P et al., 2014). However, this model

does not include the cross lingual correlation term. The correlation does not help in

BAE-tr because of the nature of the architecture.

Klementiev et al.: This model uses word embeddings learned by a multitask neural

network language model with a regularization term that encourages pairs of frequently

aligned words to have similar word embeddings. From these embeddings, document

representations are computed as described in Section 4.4.2.

MT: Here, test documents are translated to the language of the training documents

using a standard phrase-based MT system, MOSES4 which was trained using default

parameters and a 5-gram language model on the Europarl corpus (same as the one used

for inducing our bilingual embeddings).

Majority Class: Test documents are simply assigned the most frequent class in the

training set.

For the EN/DE language pairs, we directly report the results from Klementiev et al.

(2012). For the other pairs (not reported in Klementiev et al. (2012)), we used the em-

beddings available online and performed the classification experiment ourselves. Simi-

larly, we generated the MT baseline ourselves.

Table 4.1 summarizes the results. They were obtained using 1000 RCV training

examples. We report results in both directions, i.e. language X to Y and vice versa.

The best performing method in all the pairs except one is BAE-cr. In particular, BAE-cr

often outperforms the approach of Klementiev et al. (2012) by a large margin.

4http://www.statmt.org/moses/
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We also mention the recent work of Hermann and Blunsom (2014b), who proposed

two neural network architectures for learning word and document representations using

sentence-aligned data only. Instead of an autoencoder paradigm, they propose a margin-

based objective that aims to make the representation of aligned sentences closer than

non-aligned sentences. While their trained embeddings are not publicly available, they

report results for the EN/DE classification experiments, with representations of the same

size as here (D = 40) and trained on 500K EN/DE sentence pairs. Their best model

in that setting reaches accuracies of 83.7% and 71.4% respectively for the EN → DE

and DE → EN tasks. One clear advantage of our model is that unlike their model, it

can use additional monolingual data. Indeed, when we train BAE-cr with 500k EN/DE

sentence pairs, plus monolingual RCV documents (which come at no additional cost),

we get accuracies of 87.9% (EN → DE) and 76.7% (DE → EN), still improving on

their best model. If we do not use the monolingual data, BAE-cr’s performance is worse

but still competitive at 86.1% for EN→ DE and 68.8% for DE→ EN. Finally, without

constrainingD to 40 (they use 128) and by using additional French data, the best results

of Hermann and Blunsom (2014b) are 88.1% (EN→ DE) and 79.1% (DE→ EN), the

latter being, to our knowledge, the current state-of-the-art.

Table 4.1: Cross-lingual classification accuracy for 3 language pairs, with 1000 labeled
examples.

EN→ DE DE→ EN EN→ FR FR→ EN EN→ ES ES→ EN

BAE-cr 91.8 74.2 84.6 74.2 49.0 64.4

BAE-tr 81.8 60.1 70.4 61.8 59.4 60.4

Klementiev et al. 77.6 71.1 74.5 61.9 31.3 63.0

MT 68.1 67.4 76.3 71.1 52.0 58.4

Majority Class 46.8 46.8 22.5 25.0 15.3 22.2

We also evaluate the effect of varying the amount of supervised training data for

training the classifier. For brevity, we report only the results for the EN/DE pair, which

are summarized in Figure 4.2 and Figure 4.3. We observe that BAE-cr clearly outper-

forms the other models at almost all data sizes. More importantly, it performs remark-

ably well at very low data sizes (100), suggesting it learns very meaningful embeddings,

though the method can still benefit from more labeled data (as in the DE→ EN case).
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Table 4.2: Example English words along with 8 closest words both in English (en) and
German (de), using the Euclidean distance between the embeddings learned
by BAE-cr

january president said
en de en de en de

january januar president präsident said gesagt
march märz i präsidentin told sagte

october oktober mr präsidenten say sehr
july juli presidents herr believe heute

december dezember thank ich saying sagen
1999 jahres president-in-office ratspräsident wish heutigen
june juni report danken shall letzte

month 1999 voted danke again hier
oil microsoft market

en de en de en de
oil öl microsoft microsoft market markt

supply boden cds cds markets marktes
supplies befindet insider warner single märkte

gas gerät ibm tageszeitungen commercial binnenmarkt
fuel erdöl acquisitions ibm competition märkten

mineral infolge shareholding handelskammer competitive handel
petroleum abhängig warner exchange business öffnung

crude folge online veranstalter goods binnenmarktes

Table 4.2 also illustrates the properties captured within and across languages, for the

EN/DE pair. For a few English words, the words with closest word representations (in

Euclidean distance) are shown, for both English and German. We observe that words

that form a translation pair are close, but also that close words within a language are

syntactically/semantically similar as well.
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Figure 4.2: Cross-lingual classification accuracy results for EN→ DE

Figure 4.3: Cross-lingual classification accuracy results for DE→ EN

The excellent performance of BAE-cr suggests that merging several sentences into

single bags-of-words can still yield good word embeddings. In other words, not only

we do not need to rely on word-level alignments, but exact sentence-level alignment

is also not essential to reach good performances. We experimented with the merging

of 5, 25 and 50 adjacent sentences into a single bag-of-words. Results are shown in

Table 4.3. They suggest that merging several sentences into single bags-of-words does

not necessarily impact the quality of the word embeddings. Thus they confirm that exact

sentence-level alignment is not essential to reach good performances as well.
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Table 4.3: Cross-lingual classification accuracy for 3 different pairs of languages, when
merging the bag-of-words for different numbers of sentences. These results
are based on 1000 labeled examples.

# sent. EN→ DE DE→ EN EN→ FR FR→ EN EN→ ES ES→ EN

BAE-cr

5 91.75 72.78 84.64 74.2 49.02 64.4

25 88.0 64.5 78.1 70.02 68.3 54.68

50 90.2 49.2 82.44 75.5 38.2 67.38

4.7 Conclusion

We presented evidence that meaningful bilingual word representations could be learned

without relying on word-level alignments or using fairly coarse sentence-level align-

ments. In particular, we showed that even though our model does not use word level

alignments, it is able to reach state-of-the-art performance, even compared to a method

that exploits word-level alignments. In addition, it also outperforms a strong machine

translation baseline.

For future work, we would like to explore the possibility of conversion of our bilin-

gual model to a multilingual model, which can learn common representations for mul-

tiple languages, given different amounts of parallel data between these languages. We

would also like to investigate extensions of our bag-of-words bilingual autoencoder to

bags-of-n-grams, where the model would also have to learn representations for short

phrases. Such a model should be particularly useful in the context of a machine trans-

lation system.
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CHAPTER 5

DEEP CORRELATIONAL NEURAL NETWORKS

In this chapter we will discuss how to extend Correlational Neural Networks to Deep

Correlational Neural Networks.

5.1 Motivation

Correlational Neural Networks are capable of learning a common representation for two

views given enough parallel data. In the last two chapters, we experimentally verified

that the representations learnt by CorrNets help transfer learning algorithms perform

better. However, the views that we considered in all our experiments are not so skewed.

Consider multimodal learning, where we are interested in learning common represen-

tation for images and text. Now, the image view is too dense while the text view is too

sparse. Learning a common representation such that we can reproduce the image view

given the text view is harder than our previously discussed scenarios. Learning a deep

network might help us to learn this highly skewed mapping.

Another motivation to design deep networks is the nature of the problem. Some

problems might have a highly non-linear dependency across the views and a simple

three layer network might fail to capture such non-linear dependencies. Learning a

deep network will help us to capture such non-linear dependencies. In this chapter, we

will discuss two ways to construct deep Correlational Neural Networks. The first way,

as proposed in (Chandar A P et al., 2013) is really not a deep CorrNet. It employs a

shallow CorrNet on deep representations. We call such methods as Quasi deep methods.

In this thesis, we propose another way to make CorrNets deep. It essentially involves

stacking CorrNets as pretraining.



5.2 Quasi Deep Correlational Neural Networks

Our goal is to learn deep common representations for two views. In this section, we

will see a CorrNet which does this by learning common representations for two views

projected into a deep representation. We call such networks Quasi-deep networks.

We will illustrate Quasi-deep CorrNets with cross language learning as an applica-

tion. In this quasi-deep approach, we will learn language specific deep representations

and then use it to learn a common representation. Now the classifier can be trained and

tested in the common space. The entire procedure is described below.

1. Language specific deep representation: In this phase, we are interested in ob-

taining a language specific representation (pi or qi) for an entity in L1 or L2 respectively.

If the entity is a document this representation can be as simple as a set of binary fea-

tures indicating the presence or absence of a n-gram in the vocabulary of the language.

Alternatively, if the entity is a word then each feature could indicate the presence or

absence of any n-gram character in the language or some such suitable representation.

We train a k-layered stacked auto-encoder to learn an abstract representation (Figure

5.1) for a given entity using its raw representation (n-gram words, n-gram characters,

co-occurrence vectors, etc.).

Figure 5.1: Language Specific Representation

2. Shared Representation Learning(SRL): For the next phase we need a pair of
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parallel entities in L1 and L2 wherein the representation pi (or qi) of an entity in L1

(or L2) is obtained using unsupervised feature learning as described above. A sample

Z = {(pi, qi)}ni=1 of such parallel entities is then passed to the CorrNet to learn a shared

representation. This process is illustrated in Figure 5.2.

Figure 5.2: Shared Representation Learning

3. Source Language Training: Now we come to the crux of cross language

training where the aim is to train a model using the data available in L1 and apply this

model to data from L2. Lets assume we have a sample D = {xi, yi}ki=1 of training

data available in L1 where xi is the input and yi is the label. For each xi we first learn

the abstract representation pi in L1 using the auto-encoder in phase 1. Next for each

pi we obtain the compact representation f((pi,0)) = f(z1i ) using the CorrNet trained

in phase 2. Effectively, we have projected the original input xi to a space in which

entities from L2 can also be represented. Thus, a model trained using this projected

data {f(z1i )}ni=1 can be applied to entities belonging to L2 after projecting them to this

space. This process of training is illustrated in Figure 5.3.

4. Target Language Testing: Finally, the model trained above is applied to test data

from L2 by first projecting it to the common space as illustrated in Figure5.4. For each

xi, we first learn the abstract representation qi in L2 using the auto-encoder in phase

1. Next for each qi we obtain the compact representation f((0, qi)) = f(z2i ) using the

CorrNet trained in phase 2. Now use the classifier to classify the test instance.
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Figure 5.3: Source Language Training

Figure 5.4: Target Language Testing

5.3 Cross Language Sentiment Learning

We evaluate the performance of the proposed framework on the task of Cross Language

Sentiment Analysis where the goal is to detect the sentiment polarity (positive or neg-

ative) of a document in language L2 using training data available in language L1. For

the purpose of this evaluation, we created a Multilingual Dataset for Sentiment Analy-

sis similar to the Multi-domain dataset used in Blitzer et al. (2007). Specifically, we
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collected reviews for English and French DVDs from amazon 1. These reviews are

accompanied with a reviewer rating on a scale of 1 to 5 (5 indicating excellent and 1

indicating poor). We considered reviews with ratings 4 and 5 to be positive and reviews

with ratings 1 and 2 to be negative. The details of the dataset are provided in Table 5.1.

Language Training instances Test instances

Positive Negative Neutral Positive Negative Neutral

English 20000 20000 10000 2000 2000 -

French 20000 20000 10000 2000 2000 -

Table 5.1: Multilingual Sentiment Dataset Description

The dataset will be made publicly available and will hopefully help in furthering the

research on multilingual sentiment analysis.

5.3.1 Experimental Setup

As mentioned in section 5.2, our approach has four phases (i) language specific repre-

sentation (ii) shared representation learning (iii) task specific supervised training and

(iv) cross language testing. We describe the procedure followed for executing each of

these phases.

For monolingual deep learning, we used 50,000 training documents for each lan-

guage from the Multilingual Dataset. Note that we do not use parallel corpora in this

phase. We chose an arbitrary set of documents in each language drawn from the same

domain as the test documents. This is to ensure that there is a strong overlap in the

vocabulary of the corpus used in phases 1 and 2. We used a five layered stacked auto-

encoder for this phase. To feed the first layer of the auto-encoder we converted the

documents to a feature vector comprising of the top 40,000 unigrams in the vocabulary.

In subsequent layers of the stacked auto-encoder, we reduced the number of hidden

neurons from 10,000 to 5000 to 2500 to 500. The representation from the last layer

consisting of 500 hidden neurons is used as the deep representation of a given docu-

ment.
1www.amazon.com and www.amazon.fr
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Next, for the second phase, we need English-French parallel documents. For this,

we translated the 50,000 English documents used above to French using a state of the

art Machine Translation Tool (Al-Onaizan and Papineni, 2006) thus creating a English

French parallel corpus. We then obtain the language specific deep representations for

each of these documents and then use these parallel deep representations to train the

predictive auto-encoder. In the third phase, we need to train a sentiment classifier using

40K English training data. Instead of using a simple unigram based feature represen-

tation for the documents we first obtain the language specific deep representation of

these documents and then project this representation into the common space using the

predictive auto-encoder. We then train a classifier using this shared representation of

the English documents as the feature vector. Finally, we take the test documents from

French, repeat the above process of projecting them to the common space and then feed

them to the trained model for inference.

We compared the above approach with some standard approaches for CLSA. The

empirical upper bound for the performance is obtained by using a classifier trained on

French training data. In addition, we consider two baselines: (i) a classifier trained

using English data and tested on French data after translating it to English using a MT

system and (ii) a classifier trained after translating the training instances into French

and then tested on French instances. For the two baseline approaches we use a ungiram

feature representation. For all the methods we use SVM (Chang and Lin, 2011) as the

classifier. The accuracy of the different approaches are reported in Table 5.2.

S.No Approach Train data Test data Accuracy

1 Self Training Fr Fr 86.1%

2 Translate and Train En - trans. to Fr Fr 63.4%

3 Translate and Test En Fr - trans. to En 65.15%

4 Common Representation Learning En Fr 72%

Table 5.2: Accuracy of different approaches for Cross Language Sentiment Analysis
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5.4 Deep Correlational Neural Networks

As mentioned previously, quasi-deep CorrNets are actually shallow. In Quasi-deep

approach, we learn deep representation for each view separately and use it along with a

shallow CorrNet to learn a common representation. However, feeding non-linear deep

representations to a shallow CorrNet makes it harder to train the CorrNet. In this section

we propose Deep Correlational Neural Netork with an efficient pre-training procedure.

We use the following procedure to train a Deep CorrNet.

1. Train a shallow CorrNet with the given data (see step-1 in Figure 5.5). At the end
of this step, we have learned the parameters W, V and b.

2. Modify the CorrNet model such that the first input view connects to a hidden
layer using weights W and bias b. Similarly connect the second view to a hidden
layer using weights V and bias b. We have now decoupled the common hidden
layer for each view (see step-2 in Figure 5.5).

3. Add a new common hidden layer which takes its input from the hidden layers
created at step 2. We now have a CorrNet which is one layer deeper (see step-3
in Figure 5.5).

4. Train the new Deep CorrNet on the same data.

5. Repeat steps 2, 3 and 4, for as many hidden layers as required.

Figure 5.5: Stacking CorrNet to create Deep Correlartional Neural Network.

We would like to point out that we could have followed the procedure described

in Ngiam et al. (2011). However, we chose not to use the deep training procedure

described in Ngiam et al. (2011) since the objective function used by them during pre-

training and training is different. Specifically, during pre-training the objective is to

minimize self reconstruction error whereas during training the objective is to minimize
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both self and cross reconstruction error. In contrast, in the stacking procedure outlined

above, the objectives during training and pre-training are aligned.

5.5 Experiments using Deep Correlational Neural Net-

work

In this section, we evaluate the performance of the deep extension of CorrNet. Having

already compared with MAE in the previous section, we focus our evaluation here on a

comparison with DCCA (Andrew et al., 2013). All the models were trained using 10000

images from the MNIST training dataset and we computed the sum correlation and

transfer learning accuracy for each of these models. For transfer learning, we use the

linear SVM implementation provided by (Pedregosa et al., 2011) for all our experiments

and do 5-fold cross validation using 10000 test images from MNIST data. We report

results for two settings (i) Left to Right (training on left view, testing on right view)

and (ii) Right to Left (training on right view, testing on left view). These results are

summarized in Table 5.3. In this Table, model-x-y means a model with x units in

the first hidden layer and y units in second hidden layer. For example, CorrNet-500-

300-50 is a Deep CorrNet with three hidden layers containing 500, 300 and 50 units

respectively. The third layer containing 50 units is used as the common representation.

Model Sum Correlation Left to Right Right to Left

CorrNet-500-50 47.21 77.68 77.95

DCCA-500-50 33.00 66.41 64.65

CorrNet-500-300-50 45.634 80.46 80.47

DCCA-500-500-50 33.77 70.06 72.43

Table 5.3: Comparison of sum correlation and transfer learning performance of differ-
ent deep models

Both the Deep CorrNets (CorrNet-500-50 and CorrNet-500-300-50) clearly perform

better than the corresponding DCCA. We notice that for both the transfer learning tasks,

the 3-layered CorrNet (CorrNet-500-300-50) performs better than the 2-layered Corr-

Net (CorrNet-500-50) but the sum correlation of the 2-layered CorrNet is better than

that of the 3-layered CorrNet.
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5.6 Summary

In this chapter, we proposed two ways to make CorrNets deep. The first way learns

view specific deep represenations and use them to train a shallow CorrNet. We call

such models quasi-deep models. The second way actually learns a deep CorrNet. Both

models have their own advantages. Quasi-deep models can be used when there is abun-

dant single view data and fewer two view data. Deep CorrNets are preferable when

there is abundant two view data.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This thesis considers the problem of learning common representation for multiple views

which has several applications in transfer learning, multi-view learning and multi modal

learning. To solve this problem, we propose Correlational Neural Networks, a class of

Neural Networks that can learn common representation for two views. CorrNets can

be considered as the representation learning tool for multi-view data in the similar way

how Auto-encoders are representation learning tool for single view data. Experimental

results prove that CorrNet performs better than several other state-of-the-art CRL algo-

rithms like CCA, KCCA, MAE, and DCCA. We also notice that shallow CorrNet itself

is more powerful than deep models like DCCA.

CorrNet has been applied for several cross language learning tasks. We consid-

ered transfer learning tasks like Cross Language Document Classification (CLDC),

and Cross Language Sentiment Analysis (CLSA) and equivalence tasks like matching

equivalent items across views (transliteration equivalence). In all these tasks, CorrNet

performs significantly better than the previous state-of-the-art methods. Applying Cor-

rNet to several lanaguage pairs like English/German, English/French, English/Spanish,

English/Hindi, we also demonstrated the language independent nature of the model.

The thesis also outlines two ways to make CorrNet deep, with each approach having its

own advantages and disadvantages.

This thesis introduces a new class of CRL algorithms which we believe, has a huge

potential for future work. We briefly mention them below.

Multiple views: Even though we claim that CorrNets are easily extensible to mul-

tiple views, this thesis does not talk about extending CorrNet to more than two views.

One way to extend CorrNets to multiple views has been studied in (Rongali et al., 2015).

However, an even more elegant way of extending CorrNet would be to have encoder and

decoder for each view and pair them up dynamically based on the training data.

Correlational RBMs: This thesis describes an autoencoder version of Correlational

Neural Network. However, the approach is more general. The goal is to learn common



hidden representation such that the views are correlated in the common subspace. We

can also design Correlational RBMs where we have two RBMs (one for each view) and

train them in such a way that their hidden units are correlated.

Sparse Correlational Neural Networks: Sparse CCA has been widely applied in

several biological applications. CorrNet can also be extended to Sparse CorrNets which

can be applied in all such biological applications. Making CorrNet sparse can be easily

achieved by adding L1 regularization for encoder matrices. However, we do not know

if that would hinder the performance of the model, which needs further study.

Multimodal Learning: Multimodal learning, or learning from multiple modalities

like text, image, and video is gaining significant attention because of various potential

applications. CCA is a competitive approach in Multimodal Learning as well. We can

also apply CorrNets to learn common representation for multiple modalities. Such a

representation can be used for multimodal information retrieval or predicting missing

modalities.

Better pretraining procedure: In this thesis, we have proposed a pretraining pro-

cedure for Deep CorrNet which has similar objective as the training procedure. We

claimed that this resulted in better performance when compared to models where pre-

training and training are not aligned. However, this pretraining is costly since the num-

ber of correlation terms in the objective function will be very high during the pretraining

stage. One interesting future work is to design relatively cheaper pretraining methods

with similar performance.

In conclusion, the thesis proposes a potential and promising new architecture, Cor-

rNet, for common representation learning, and the strength of the model was demon-

strated by application on several cross language tasks.
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