
SCALING CONTEXT-SENSITIVE

POINTS-TO ANALYSIS

A Thesis

Submitted For the Degree of

Doctor of Philosophy

in the Faculty of Engineering

by

Rupesh Nasre.

under the supervision of

Prof. R. Govindarajan

Computer Science and Automation

Indian Institute of Science

BANGALORE – 560 012

FEBRUARY 2012

c©Rupesh Nasre.

FEBRUARY 2012

All rights reserved

TO

the beautiful moments

amidst the mad rush.

Acknowledgements

My PhD life has been supported by so many that acknowledgments turn out to be longer than

the thesis abstract.

A research advisor is a person who always talks good about you despite all your tantrums.

I learnt (and still learning) a great deal from Guruji – how to nurture a thought from idea to

a presentable work, how to present a work well, and how to make your student go through a

night-out for even a rebuttal. His ability to manage students amidst his administrative work

is something which puzzles so many people around. He allowed me to work independently on

problems that interested me and showed full trust in my limited ability. I thank him with deep

gratitude.

The first paper in PhD life is always special. Therefore, a lot of credit is attributed to

my co-authors Dr. Kaushik Rajan (now at Microsoft Research) and Prof. Uday Khedker (IIT

Bombay). Kaushik was the one who saw the connect between points-to analysis and bloom

filters. He also drove most of the implementation of that work – and still allowed me to lead the

author list. My sincere thanks to him and the other members of HPC lab (Abhishek Udupa,

Aditya Thakur, Ashwin Prasad, Girish B. C., Mrugesh Gajjar, R. Manikantan, and Sreepathi

Pai). Uday Sir helped in clarifying our doubts about context-sensitivity and he being involved

helped us relax on several aspects. Towards the later part of this work, he also introduced me

to several faculty members for further career opportunities. I sincerely thank him.

While the work with Arnab De and Prof. Deepak D’Souza is not part of this thesis, it helped

me learn about analyzing multithreaded programs. Discussions with Arnab have always been

quite rewarding. In fact, it is due to him that I got my second paper; he introduced me to

Newtonian Program Analysis on our way to coffee which eventually led me to develop a points-

to analysis as a system of linear equations. My sincere thanks to him. Deepak Sir has always

i

ii

been a source of simplicity. His comments as a reviewer of my Perspective Seminar and as an

internal expert in my PhD colloquium were very useful. He also helped in my further career

opportunities. I sincerely thank him.

I thank Dr. Subhajit Roy (now at IIT Kanpur) for some useful discussions on flow-sensitivity

and context-sensitivity. He also gave very useful comments as a student reader for my Perspec-

tive Seminar.

I thank my comprehensive examination committee members: Prof. K. V. Raghavan, Prof.

S. K. Nandi (SERC, IISc), Prof. Sunil Chandran, and Prof. Y. N. Srikant for not delaying

my PhD by allowing me to clear the examination in the first attempt. I also thank the PhD

interview panel: Prof. Hansdah, Prof. Priti Shankar, Prof. Shalabh Bhatnagar, Prof. T.

Kavitha (now at TIFR), and Prof. Vijay Natarajan for selecting me. Thanks also to Prof.

Abhik Roychoudhury, Prof. T. Kavitha, Prof. R. Govindarajan, and Prof. Y. N. Srikant

for clearing me through their courses. Abhik also helped in my further career opportunities.

Thanks a lot.

My interns Sandeep Putta (IIT Bombay) and Ankita Raman (NIT Nagpur) helped me

learn several aspects of points-to analysis. Thanks guys.

Thanks to the reviewers of my accepted and rejected papers for spending their time in

reading my work and giving me useful comments. Special thanks to the anonymous reviewer

who suggested a comparison of solving points-to constraints using a linear solver against using

a non-recursive constraint solver, in Section 6.7.3. Thanks to the following people/agencies

for helping my conference travel: Prof. M. Narasimha Murty, IISc GARP funding, Microsoft

Research travel grant, ACM SIGPLAN travel grant for CGO 2011, ACM SIGPLAN PAC travel

grant and Ashwin Prasad (SERC, IISc).

Both, the former chairman Prof. M. Narasimha Murty and the current chairman Prof. Y.

Narahari have been very supportive all throughout my PhD life. I happen to be on talking

terms with almost all the faculty members in the department and their concern towards me, my

work and family has made my stay in the department warm. The support staff in CSA office

(Lalitha Madam, Suguna Madam, Meenakshi, Manju, Gopi, Babu and others), the technical

staff (Jagadish Sir, BKP Sir, Megavannan Sir, Shankar Sir, and Ashalata Madam), and the se-

curity guards (Acharyaji, Gowdaji and Vaidyaji) have made me feel homely in the department.

Every morning I receive a smiling greeting from them. My letters are delivered directly to me

iii

and any of my requests are treated specially. I owe all of them my deep gratitude.

Thanks to the coffee breaks with Abhijit Khopkar, Arnab De, K. Vasanta Lakshmi, and

Subramanya Bharadwaj for keeping me abreast with the surrounding developments in CSA,

IISc, India and the world in general. Without those breaks, I would have still been living in

2007.

Thanks to Prof. Ambedkar Dukkipati, CCMD and the Director for their help in getting

a married students’ apartment inside campus. Our days in Ramanujan married students’

apartments are going to be the most frequently remembered. Thanks also to Dr. Amal Medhi,

Mitali Medhi, K. Vasanta Lakshmi, Arnab De, Payal De, Abhijit Khopkar, and Anamika, for

several enjoyable evenings and for making each day of our stay rewarding. Special thanks to

the milk and cylinder lorries to A-mess for some entertaining moments.

Thanks to the CSA servers euler, neumann and pingu and the student admins for never

making me use the data backups. Thanks to the IISc network and CSA/SERC network admins

for not creating any trouble at the last hour of my paper submissions. Thanks to Gmail for

being an alternative source of sending emails whenever CSA webmail was down.

Thanks to Voices, the IISc newsletter for a wonderful time and for some life-long contacts

in the form of Shyam and Sudhira.

Thanks to my friends Abhay, Meghana, Prachi, Prashant, and Rahul, for just being there.

Thanks to my parents in and outside law for their support despite the frequent exclamations

in the family like “He still doesn’t earn!”.

No thanks to our son Chinmay due to whom the mad rush began. But it is he who made

me learn that research is easier than parenting. His innocence and pranks made us leave our

negative thoughts outside home to enjoy now and here. My blessings to him.

It appears customary to thank the spouse in the end and I didn’t want to break the norm.

Meghana has been part of everything I have been doing and not doing. This thesis is as much

hers as is mine.

Publications based on this Thesis

1. R. Nasre and R. Govindarajan. Prioritizing Constraint Evaluation for Efficient Points-

to Analysis. In Proceedings of the 9th Annual IEEE/ACM International Symposium on

Code Generation and Optimization, CGO ’11, 2011, Chamonix, France, 2011. ACM.

2. R. Nasre and R. Govindarajan. Points-to Analysis as a System of Linear Equations.

In Proceedings of the 17th International Conference on Static Analysis, SAS ’10, pages

422–438, Perpignan, France, 2010. Springer-Verlag.

3. R. Nasre, K. Rajan, R. Govindarajan, and U. P. Khedker. Scalable Context-Sensitive

Points-To Analysis Using Multi-Dimensional Bloom Filters, In Proceedings of the 7th

Asian Symposium on Programming Languages and Systems, APLAS ’09, pages 47–62,

Seoul, Korea, 2009. Springer-Verlag.

v

Abstract

Pointer analysis is one of the key static analyses during compilation. The efficiency of several

compiler optimizations and transformations depends directly on the scalability and precision

of the underlying pointer analysis. Recent advances still lack an efficient and scalable context-

sensitive inclusion-based pointer analysis. In this work, we propose four novel techniques to

improve the scalability of context-sensitive points-to analysis for C/C++ programs.

First, we develop an efficient way of storing the approximate points-to information using

a multi-dimensional bloom filter (multibloom). By making use of fast hash functions and

exploiting the spatial locality of the points-to information, our multibloom-based points-to

analysis offers significant savings in both analysis time and memory requirement. Since the

representation never resets any bit in the multibloom, no points-to information is ever lost; and

the analysis is sound, though approximate. This allows a client to trade off a minimal amount

of precision but gain huge savings (two orders less) in memory requirement. By making use of

multiple random and independent hash functions, the algorithm also achieves high precision

and runs, on an average, 2× faster than Andersen’s points-to analysis. Using Mod/Ref analysis

as a client, we illustrate that the precision is above 98% of that of Andersen’s analysis.

Second, we devise a sound randomized algorithm that processes a group of constraints in a

less precise but efficient manner and the remaining constraints in a more precise manner. By

randomly choosing different groups of constraints across different runs, the analysis results in

different points-to information, each of which is guaranteed to be sound. By joining the results

of a few runs, the analysis obtains an approximation that is very close to the one obtained by

the more precise analysis and still proves efficient in terms of the analysis time. We instantiate

our technique to develop a randomized context-sensitive points-to analysis. By varying the level

of randomization, a client of points-to analysis can trade off minimal precision (less than 5%)

vii

viii

for large gain in efficiency (over 50% reduction in analysis time). We also develop an adaptive

version of the randomized algorithm that carefully varies the randomization across different

runs to achieve maximum benefit in terms of analysis time and precision without pre-setting

the randomization percentage and the number of runs.

Third, we transform the points-to analysis problem into finding a solution to a system of

linear equations. By making novel use of prime factorization, we illustrate how to transform

complex points-to constraints into a set of linear equations and transform the solution back

as a points-to solution. We prove that our algorithm is sound and show that our technique is

1.8× faster than Andersen’s analysis for large benchmarks.

Finally, we observe that the order in which points-to constraints are processed plays a vital

role in the algorithm efficiency. We prove that finding an optimal ordering to compute the

fixpoint solution is NP-Hard. We then propose a greedy heuristic based on the amount of

points-to information computed by a constraint to prioritize the constraints. This results in a

dynamic ordering of the constraint evaluation which, in turn, results in skewed evaluation of

constraints where each constraint is evaluated repeatedly and different number of times in a

single iteration. Our prioritized analysis achieves, on an average, an improvement of 33% over

Andersen’s points-to analysis.

We illustrate that our algorithms help in scaling the state-of-the-art pointer analyses. We

also believe that the techniques developed would be useful for other program analyses and

transformations.

Contents

Acknowledgements i

Publications based on this Thesis v

Abstract vii

1 Introduction 1
1.1 What is Pointer Analysis? . 2
1.2 Clients of Pointer Analysis . 3
1.3 Issues with Scalable Pointer Analysis . 3
1.4 Our Contributions . 4
1.5 Organization of this Thesis . 7

2 Background 9
2.1 Definitions and Nomenclature . 9
2.2 Analysis Dimensions . 14

2.2.1 Flow-sensitivity . 14
2.2.2 Field-sensitivity . 15
2.2.3 Context-sensitivity . 16

2.3 Computability and Complexity . 18
2.4 Two Key Points-to Analysis Methods . 19

2.4.1 Normalized Input Format . 20
2.4.2 Andersen’s Inclusion-based Analysis . 21
2.4.3 Steensgaard’s Unification-based Analysis 21

2.5 Inclusion-based Points-to Analysis as a Graph Problem 22
2.6 Chapter Summary . 25

3 A Survey of Pointer Analysis Methods 27
3.1 Introduction . 27
3.2 Surveys . 29
3.3 Complexity Results . 31
3.4 Use of Novel Data Structures . 32
3.5 Optimizations and Techniques . 33
3.6 Exact Methods . 35
3.7 Methods Achieving Explicit Trade-offs . 37
3.8 Client-driven and Demand-driven Methods . 39
3.9 Incremental and Probabilistic Methods . 41

ix

CONTENTS x

3.10 Analysis of Parallel Programs and Parallel Analyses 42
3.11 Application of Points-to Analysis . 43
3.12 Evaluations and Quantifications . 45
3.13 Points-to Analysis for Other Languages . 47
3.14 Chapter Summary . 48

4 Points-to Analysis using Bloom Filter 49
4.1 Introduction . 49
4.2 Bloom Filter . 51

4.2.1 Issues with a Naive Bloom Filter . 53
4.3 Multi-dimensional Bloom Filter . 53

4.3.1 Handling Copy Constraint . 54
4.3.2 Handling Load and Store Constraints 56
4.3.3 Extracting Information from Multibloom 59

4.4 Context-sensitive Analysis . 63
4.5 Experimental Evaluation . 65

4.5.1 Performance of Exact Analysis: Baseline 67
4.5.2 Performance of Multibloom: Overall Effect 69
4.5.3 Effect of Parameter C . 70
4.5.4 Effect of Parameter D . 70
4.5.5 Effect of Parameter B . 71
4.5.6 Effect of Parameter S . 71
4.5.7 Effect of Selected Configurations . 74

4.6 Comparison with Other Analyses . 77
4.7 Mod/Ref Analysis as a Client . 78
4.8 Related Work . 79

4.8.1 Methods using Novel Data Structures 80
4.8.2 Use of Bloom Filters in Other Applications 81

4.9 Chapter Summary . 82

5 Sound Randomized Points-to Analysis 83
5.1 Introduction . 83
5.2 Unification versus Inclusion . 84

5.2.1 Overview of the Approach . 84
5.2.2 Selection, Summarization and Composition 86
5.2.3 Implementation Challenges . 87
5.2.4 The Algorithm . 88

5.3 Randomized Context-sensitivity . 89
5.4 Soundness . 92

5.4.1 Remark . 96
5.5 Experimental Evaluation . 96

5.5.1 Overall Effect of Representative Configurations 97
5.5.2 Effect of Selection Probability . 99
5.5.3 Effect of Number of Runs . 101
5.5.4 Benchmarks with High Precision Loss 101
5.5.5 Comparison with k -Context-sensitivity 102
5.5.6 Effect of Mixed Randomization . 103

CONTENTS xi

5.5.7 Adaptive Analysis . 104
5.6 Other Analysis Dimensions . 106
5.7 Related Work . 106
5.8 Chapter Summary . 107

6 Points-to Analysis as a System of Linear Equations 109
6.1 Introduction . 109
6.2 Naive Approach . 110

6.2.1 Issues . 111
6.3 Prime-Factorization Approach . 114

6.3.1 Step 1: Preprocessing . 114
6.3.2 Step 2: Solving the System . 117
6.3.3 Step 3: Post-processing . 117
6.3.4 Step 4: Evaluating Special Constraints 118
6.3.5 Subsequent Iterations . 119

6.4 The Algorithm . 121
6.4.1 Solution Properties . 125
6.4.2 Implementation Issues . 125

6.5 Soundness and Precision . 125
6.6 Client Analysis . 130
6.7 Experimental Evaluation . 131

6.7.1 Analysis Time . 132
6.7.2 Memory . 134
6.7.3 Comparison with Bitwise Operations . 135

6.8 Related Work . 137
6.9 Chapter Summary . 138

7 Prioritizing Constraint Evaluation for Efficient Points-to Analysis 141
7.1 Introduction . 141
7.2 Optimal Constraint Ordering . 143
7.3 Prioritized Computation of Constraints . 146

7.3.1 Example . 146
7.4 Prioritization Framework . 150

7.4.1 Priority Schemes . 151
7.5 The Algorithm . 152
7.6 Experimental Evaluation . 155

7.6.1 Analysis Time . 155
7.6.2 Memory . 157
7.6.3 Overall Effect . 158
7.6.4 Effect of Bucketization . 159
7.6.5 Effect of Skewed Evaluation . 159
7.6.6 Comparison with Priority Queue . 161

7.7 Related Work . 163
7.8 Chapter Summary . 163

CONTENTS xii

8 Conclusions and Future Work 165
8.1 Summary . 165
8.2 Future Work . 167

References 169

List of Tables

4.1 Benchmark characteristics . 66
4.2 Performance of exact analysis. 68
4.3 Sensitivity to parameter C . 71
4.4 Sensitivity to parameter D . 72
4.5 Sensitivity to parameter B . 73
4.6 Sensitivity to parameter S . 75
4.7 Effect of select configurations on performance. 76
4.8 Time(seconds) and memory(MB) required for context-sensitive analysis 77

6.1 Time required in seconds for context-insensitive analysis 133
6.2 Time(seconds) and memory(MB) required for context-sensitive analysis 134
6.3 Memory required in MB for context-insensitive analysis 135
6.4 Time and memory comparison with bitwise operations 136

7.1 Analysis time (seconds) . 156
7.2 Memory requirement (MB) . 157
7.3 Comparison with Priority Queue: Analysis Time (seconds) 162

xiii

List of Figures

1.1 Placement of our contributions in pointer analysis algorithm 5

2.1 Constraint graph for Example 2.4 . 23
2.2 Constraint graph for Example 2.6 . 24

4.1 Example program to illustrate points-to analysis using bloom filters 55
4.2 Example program using two hash functions . 56
4.3 Example program to illustrate handling complex statements 59
4.4 Example program to illustrate multiple analysis iterations 61
4.5 Placement of our analysis in LLVM compilation 65
4.6 Overall effect of various configurations. 69
4.7 Mod/Ref client analysis. 79

5.1 Unification versus Inclusion . 85
5.2 Context-sensitivity (a) Original invocation graph (b) Modified invocation graph

with function f summarized . 91
5.3 Example to illustrate randomized context-sensitivity 91
5.4 Effect of two representative configurations . 97
5.5 Overall effect across various configurations . 98
5.6 Effect of selection probability ρ . 99
5.7 Effect of number of runs N . 100
5.8 Effect of some configurations over programs with high precision loss 101
5.9 Randomized versus k -context-sensitive analysis 102
5.10 Effect of mixed randomization . 104
5.11 Adaptive analysis . 105

6.1 Example to illustrate points-to analysis as a system of linear equations 110
6.2 Lattice over the compositions of primes guaranteeing five levels of dereferencing 117

7.1 (a) Input constraints and fixed constraint ordering for Deep Propagation (b)
Constraint graphs for Deep Propagation . 147

7.2 (a) Input constraints (b) Constraint graphs for Prioritized Deep Propagation . 148
7.3 Effect of prioritization for vortex, art, vpr and gap respectively 160
7.4 Effect of bucketization . 161
7.5 Effect of skewed evaluation . 161

xv

Chapter 1

Introduction

Industrial code-bases are getting bigger. Code-bases with billions of lines of source code are

no longer uncommon. Compilation of such huge programs typically takes several hours. The

scalability of compilation is, therefore, a minimum requirement for current compiler frameworks

like gcc [40] and LLVM [81]. Compilation of a program involves several static analyses which

analyze and optimize the program. A static analysis of a program automatically analyzes the

behavior of the program without actually running the program [131]. A static analysis can

help one achieve faster runtime execution, more secure code, less buggy programs, invariant

guarantees and a better program understanding, among other benefits. Since static analysis

is an inseparable component of a compiler, compiler writers and analysis designers must strive

hard to make their analyses as efficient as possible.

Pointer analysis is a static analysis to find out possible memory locations pointed to by

various pointer variables in a program. It takes a program as input and computes, so called,

points-to information about the program. This points-to information is used by other static

analyses, called as clients, to optimize the program. The effectiveness of a client depends heav-

ily on the points-to information computed by the underlying pointer analysis. For instance, it

has been shown that if the pointer analysis is more precise, i.e., it adds less number of approxi-

mations, its client’s analysis time can be significantly reduced [57]. With the enormous growth

of the code-bases and the pressing need for efficient compilation, the scalability requirement of

pointer analysis is unquestionable.

1

Chapter 1. Introduction 2

The points-to information computed by a pointer analysis depends upon how various pro-

gram elements are modeled. Modeling these program elements in various ways results in differ-

ent points-to information with varying analysis time and memory requirements. These program

elements are often termed as analysis dimensions [57]. Some of these analysis dimensions re-

late to the control flow in the program (flow-sensitivity), to the calling context of functions

(context-sensitivity), to the modeling of aggregates (field-sensitivity), to the modeling of the

heap, to whole program versus local compilation, to the representation of points-to informa-

tion, etc. More precise the modeling, more precise is the pointer analysis and, in effect, better

is the points-to information computed for a client. For instance, a context-sensitive analysis

considers the calling context of a function while analyzing the function. A context-insensitive

analysis, on the other hand, ignores the calling context. Making a pointer analysis context-

sensitive makes it more precise compared to its context-insensitive counterpart. However, on

the downside, it also makes the analysis inefficient in terms of analysis time and memory re-

quirement. Similarly, a flow-sensitive pointer analysis is relatively more precise but less efficient

than a flow-insensitive pointer analysis. Achieving performance across all the three aspects,

namely, analysis time, memory requirement and precision has been posing severe challenges to

the pointer analysis research community. In this work, we deal with the problem of scaling

context-sensitive pointer analysis and propose several novel ways to improve its performance.

We mainly focus on C/C++ kinds of programs, but the techniques are extensible to other

general purpose imperative languages like Java.

1.1 What is Pointer Analysis?

Pointer analysis or alias analysis is a mechanism to statically determine whether two pointers

may point to the same memory location at run-time. Given a program P which uses pointers,

a pointer analysis processes P to extract pointer specific information and computes an internal

representation of the aliasing information present in P, called as points-to information. A client

to the pointer analysis then queries this information to obtain answers to its specific queries

regarding the alias relationship between pointers.

Several points-to analysis algorithms exist in literature (see a survey in Chapter 3). How-

ever, two of the most widely used algorithms are due to Andersen [3] and Steensgaard [123].

Chapter 1. Introduction 3

Andersen’s analysis is based on inclusion of points-to sets and is more precise but less efficient

than Steensgaard’s analysis, which is based on unification.

1.2 Clients of Pointer Analysis

Pointer analysis is not an optimization in itself, i.e., once pointer analysis is run, it does not

make the program run faster or become more secure. A program transformation needs to

query alias information from pointer analysis to create an optimized version of the program.

Further, there could be other analyses that do not alter the code but make use of pointer

analysis to compute better dataflow information (to be used by other transformations). All

such transformations and analyses are called as the clients of pointer analysis. Examples of

transformation clients include automated bug correction, parallelization, common subexpres-

sion elimination. Examples of analysis clients include slicing, shape analysis and identification

of security vulnerabilities.

1.3 Issues with Scalable Pointer Analysis

The effectiveness of a client optimization depends heavily on the underlying pointer analysis

[57]. For instance, if the pointer analysis is very precise, a client’s execution time gets sharply

reduced. One of the key ways to make pointer analysis more precise is to make it context-

sensitive, which takes into account the calling context of a function while analyzing a program

statement. However, context-sensitivity has the potential of exponentially blowing up the space

and time requirements of the analysis. For instance, the context-sensitive version of Andersen’s

analysis [3], one of the most widely used points-to analyses, without any optimizations runs

out of memory on SPEC 2000 benchmark 176.gcc on an Intel Xeon machine with 2 GHz

clock, 4 MB L2 cache and 4 GB RAM. There have been several attempts towards achieving a

scalable context-sensitive implementation of pointer analysis and those have been only partially

successful. For instance, the use of Binary Decision Diagrams (BDD) has improved the memory

requirement of pointer analysis. However, the execution times of the analyses using BDD may

prove limiting in certain scenarios. As an example, Whaley and Lam [129] proposed a cloning-

based context-sensitive pointer analysis using BDD which successfully analyses 687 KB of Java

bytecode but requires around 20 minutes to complete. In another method, Lattner et al. [75]

Chapter 1. Introduction 4

proposed another cloning-based context-sensitive pointer analysis (without using BDD) which

analyses a 200 kilo lines of C source code in 3 seconds, and claims significant performance

benefits, but offers a precision only equal to that of a context-insensitive analysis in many

cases due to unification of contexts (in some cases, it is more precise than context-insensitive

inclusion-based analysis). In one of the recent works, Kahlon [66] proposed a bootstrapping

technique for a scalable context-sensitive pointer analysis which has been shown to scale only

upto 128 kilo lines of C code requiring around 300 seconds.

From these examples we see that a context-sensitive analysis which offers benefits in all

the three dimensions – precision, analysis time and memory requirement – is still missing. We

propose to offer solutions to fill up this void in this thesis.

1.4 Our Contributions

A pointer analysis may be pictorially viewed as shown in Figure 1.1. It has the following key

elements.

• An input program P as a sequence of statements. The statements are converted into a

suitable internal format called as constraints C.

• An algorithm A that iterates over the constraints C to compute points-to information.

• A storage S that stores the computed points-to information to be used by clients.

Our key contributions towards scaling a context-sensitive pointer analysis can now be de-

picted using Figure 1.1. The numbers in the figure correspond to the appropriate item below.

The first two contributions are approximate, i.e., they offer a trade-off between precision and

scalability. The other two contributions are exact, i.e., they offer a precision equal to that of

an equivalent inclusion-based analysis.

1. To reduce the memory requirement of a context-sensitive pointer analysis, we propose

to store the points-to information using hashing in a bloom filter. A bloom filter is a

probabilistic data structure that allows us to store only a few bits per points-to fact.

This reduces the analysis memory requirement to an order of magnitude less than the

base analysis which uses sparse bitmaps. Without affecting the analysis soundness, our

Chapter 1. Introduction 5

1

2

3

4

P

C

S

A

Figure 1.1: Placement of our contributions in pointer analysis algorithm

analysis also achieves significant improvements in the analysis time. We extend basic

bloom filter to a multi-dimensional bloom filter to support pointer analysis operations.

We also give probabilistic guarantees on the precision loss due to hashing the points-

to information, and empirically show that our analysis achieves almost full precision in

practice. Specifically, our analysis is able to achieve 75% reduction in memory requirement

and 40% improvement in analysis time with less than 2% precision loss compared to

Andersen’s analysis [3]. A salient feature of our approach is that by controlling the size

of the bloom filter, a client also gets an opportunity to trade off the right amount of

precision for scalability.

2. Typically, all the points-to constraints C in Figure 1.1 are processed in the same manner.

We propose a randomized, yet sound, pointer analysis technique that partitions C into

two groups and processes each group in a different manner. Specifically, the idea is to

randomly choose a set of constraints to be processed in a less precise manner (say context-

insensitively) and the remaining in a more precise manner (say context-sensitively). Then,

by merging the points-to information obtained from the two analyses (in an iterative man-

ner), we get a points-to solution which lies in between the two precision limits. We prove

Chapter 1. Introduction 6

that the proposed randomized approach is sound, i.e., all the realizable points-to facts

are computed by our randomized analysis. Further, we demonstrate that randomiza-

tion works very well in practice and there exist several configurations using which one

can achieve over 50% reduction in analysis time with less than 5% precision loss for a

context-sensitive analysis. The technique is quite general in nature and can be applied

to other analysis dimensions.

3. The algorithm A in Figure 1.1 may be replaced by another algorithm A′ if the problem of

pointer analysis can be reduced to the problem solved using A′. We propose to polyno-

mially reduce the iterative pointer analysis problem to solving a set of linear equations.

This would enable us to use a standard linear solver to solve the pointer analysis problem

and to make use of various enhancements proposed in literature for solving a set of linear

equations. However, this problem reduction poses several issues due to address-taken

variables, pointer dereferencing and because a single pointer may point to multiple vari-

ables in the points-to solution. Further, two of the biggest challenges are to maintain

idempotency of points-to analysis (adding a points-to fact to the solution multiple times

should be equivalent to adding it once) while working with numbers and to keep the

equations linear in each iteration. We solve all these issues using novel mechanisms based

on prime factorization and show that, in practice, our approach is well suited especially

for large programs. Specifically, our method is 43% faster than an optimized Andersen’s

analysis [3].

4. We observe that the order in which points-to constraints C are evaluated affects how

quickly the points-to information is computed. In this direction, we first prove that

finding an optimal constraint ordering is NP-Complete. We then propose a prioritization

framework wherein different constraint orderings could be applied. The framework is

quite general and we apply it to Andersen’s analysis [3], Deep Propagation [100], and

BDD-based Lazy Cycle Detection [49]. We also instantiate the framework with a greedy

heuristic based on the amount of points-to information newly computed by a constraint

in each iteration and show 16–44% improvement in analysis time. Further, we show that

our technique gives significant memory improvements over the base analyses that use

difference propagation wherein only the changed points-to information is propagated.

Chapter 1. Introduction 7

1.5 Organization of this Thesis

This thesis is organized as follows. We describe the necessary definitions and terms to under-

stand the rest of the thesis in Chapter 2. Specifically, we explain with examples various analysis

dimensions like flow-sensitivity, context-sensitivity and field-sensitivity which affect the perfor-

mance of a pointer analysis. We also mention the results on computability and complexity

of various forms of pointer analysis which have triggered three decades of literature on this

important analysis.

In Chapter 3 we survey various pointer analysis methods. Due to the volume of the work

done in this area, we divide the survey in 12 categories and discuss the work in each of these

categories.

In Chapter 4 we explain how bloom filters can be used to improve storage requirements

of pointer analysis. After introducing a bloom filter, we discuss why a naive bloom filter is

unsuitable for pointer analysis. The discussion also forms the basis for extending a bloom

filter to a multibloom. We illustrate how various pointer analysis operations can be modeled

using a multibloom. Using extensive experimentation we carefully study the effect of various

configuration parameters on the analysis performance. Since pointer analysis using multibloom

affects precision, we also study its effect on the precision of Mod/Ref analysis as a client.

In Chapter 5 we present our randomized pointer analysis algorithm. We first explain our ap-

proach for two types of analyses: unification and inclusion, and introduce the building blocks of

our approach, namely, selection, summarization and composition. We then apply our random-

ization technique to context-sensitivity and describe, using an example, how the selection, sum-

marization and composition can be implemented. We show that our randomization approach

is sound. Finally, we evaluate our randomization scheme with a detailed experimentation.

In Chapter 6 we translate the points-to analysis problem into that of solving a system of

linear equations. We show the non-triviality of this problem-reduction by first describing a sim-

ple transformation and showing why it proves insufficient to cover all the aspects of an iterative

pointer analysis algorithm. We then propose our novel approach based on prime-factorization

of numbers and illustrate with an example how a complete pointer analysis algorithm can be

modeled with it. After presenting the formal context-sensitive algorithm, we prove that it

is sound and as precise as other context-sensitive inclusion-based pointer analyses. We then

qualitatively explain how various clients can get benefited by the representation of points-to

Chapter 1. Introduction 8

sets as numbers. Finally, we study how our novel approach performs in practice by comparing

it against state-of-the-art methods.

In Chapter 7 we propose the notion of a constraint priority to efficiently compute the

points-to solution. After motivating the need for a better constraint ordering to achieve the

solution faster, we show that finding an optimal ordering is NP-Complete. We then propose a

greedy heuristic based on the amount of points-to information newly added by a constraint to

decide the priority of the constraint. We then present the complete prioritization framework

wherein different priority schemes can be plugged in. We instantiate the framework with the

proposed greedy heuristic and explain our prioritized pointer analysis algorithm. We also show

the effectiveness of our approach with an extensive experimental evaluation.

We summarize our work in Chapter 8 and also explain a few key directions in which this

work can be extended.

Chapter 2

Background

In this chapter we present key concepts that are necessary to understand the forthcoming

chapters. We first define important terms and then present various dimensions of points-to

analysis that affect the precision of a pointer analysis algorithm. In Section 2.3, we present

the computability and complexity results on various forms of pointer analysis. In Section 2.4,

we present two important pointer analysis algorithms that are used extensively in the rest of

the thesis, namely, Andersen’s inclusion-based analysis [3] and Steensgaard’s unification-based

analysis [123]. Finally, in Section 2.5, we present points-to analysis as a graph problem [34]

which will help readers understand the structure of points-to information computation better.

2.1 Definitions and Nomenclature

A pointer in a general purpose language like C/C++ is declared as T *ptr where ptr is the

name of the pointer variable and T is the type of the variable it points to. Thus, a pointer

declared as int *ptr can point to a variable of type integer.

Definition 2.1 (Pointer). A pointer is a program variable whose r-value is either 0 (null) or

the address of another variable.

Definition 2.2 (Pointee). A pointee is a program variable or a (heap) location whose address

is the r-value of a pointer.

A pointer is said to point to a pointee. Typically, a pointer-pointee relationship is established

by an address-of assignment or by a memory allocation statement as below.

9

Chapter 2. Background 10

1: ptr = &var;

2: ptr = (int *)malloc(10);

Statement 1 is called an address-of assignment and var is called an address-taken variable.

Here, ptr is a pointer and var is a pointee. Same variable may act as both a pointer and a

pointee.

Unlike in Java, stack variables can act as pointees in C. Since C is a weakly-typed language,

it is possible that a pointer declared to be pointing to a pointee of one type may point to another

of some other type. Therefore, several pointer analysis algorithms ignore types altogether. In

this thesis, we follow this tradition and assume that all the variables are potential pointers.

An expression *ptr is said to dereference pointer ptr to obtain the ℓ-value of its pointee.

If ptr is null, i.e., it points to nothing, then its dereference is considered as invalid, which

typically results into a runtime fault.

Definition 2.3 (Aliases). Two pointers are aliases if they point to the same pointee.

The relationship between two aliases is called an aliasing relationship, alias relationship or,

simply, aliasing. In general, aliasing is defined as two expressions that evaluate to the same

memory location. In C, aliasing may occur due to pointers, array indexing and union variables.

The following assignment statement, as an example, makes ptr1 and ptr2 aliases of each other:

ptr2 = ptr1.

The definition above is given for two pointers, but it can be readily extended for more

than two pointers. Aliasing is a reflexive relation, i.e., p aliases with p. It is also a symmetric

relation, i.e., p aliases with q implies q aliases with p.

If it is guaranteed that two pointers p and q always (i.e., in all the program executions) alias

with each other at a program point, then they are said to be must-aliases of each other. If two

pointers p and q alias with each other at some program point in some program execution, then

they are said to be may-aliases. Identification of must-aliases helps in reducing the number of

variables tracked during the analysis and hence helps in an efficient alias analysis. Henceforth,

unless otherwise mentioned, we mean may-aliasing by the term aliasing.

Definition 2.4 (Pointer Analysis, Alias Analysis). Pointer analysis or alias analysis is

the mechanism of statically finding the aliasing relationship between pointers in a program.

A pointer analysis may be exhaustive and compute the aliasing relationship for all possible

Chapter 2. Background 11

pointer pairs. On the other hand, a pointer analysis may be demand-driven which computes

the aliasing relationship only for a given set of pointer pairs, computing more and more aliasing

information as further queries are answered.

Note that an exhaustive pointer analysis could be very costly in terms of memory require-

ment [31]. Computing and maintaining the alias relationship for all the pointer pairs in a

program of considerable size would require a huge amount of space. Further, not all clients are

interested in the alias relationships for all the pointer pairs. Therefore, an alternative repre-

sentation for storing the alias information is proposed. In this representation, each pointer is

associated with the set of pointees it is pointing to. The alias relationship between two pointers

is computed by iterating through the two sets of pointees associated with the two pointers and

checking if they have a common pointee.

Definition 2.5 (Points-to Fact, Points-to Pair). A points-to fact or a points-to pair is a

pointer-pointee relationship between two (not necessarily distinct) program variables or between

a program variable and a memory location.

Throughout, we denote a points-to fact using a right-arrow, e.g., ptr → {var}, representing

that pointer ptr points to the pointee var. Depending upon the analysis, a points-to fact is

often specialized with additional control-flow information. For instance, in case of a flow-

sensitive analysis (defined in the next section), a points-to fact is defined at a program point.

The set of all points-to facts for a pointer constitutes its points-to set or dereference set. In

this thesis, we represent a points-to set using a right-arrow to a pair of curly-braces, e.g., ptr

→ {var1, var2}. When the points-to set is a singleton, we often omit the braces. Thus, the

points-to fact ptr → {var} is represented as ptr → var. The set of points-to sets for all the

program pointers constitutes the program’s points-to information.

Consider a program with the following statements: ptr1 = &var; ptr2 = ptr1. The

points-to facts derived from this program are ptr1 → var, ptr2 → var. Note that aliasing

relationship between ptr1 and ptr2 can be computed by checking for a common pointee (in

this case, var) in the points-to sets of the two pointers.

Definition 2.6 (Points-to Analysis). Points-to analysis is a mechanism of statically com-

puting the points-to sets of pointers in a program.

Typically, there are three aspects to measuring the performance of a points-to analysis:

Chapter 2. Background 12

analysis time, memory requirement and analysis precision. Analysis time is measured in terms

of the analysis time complexity (e.g., O(n3)) and in terms of the absolute amount of wall-clock

time taken by the analysis to compute the points-to information (e.g., 3.5 second). Memory

requirement of an analysis is the total amount of memory in bytes used to store the initial

points-to constraints, the final points-to information and the intermediate data structures used

to compute the points-to information (e.g., 36 MB). We explain the meaning of analysis preci-

sion and how to measure it below.

Precision. The precision of a pointer analysis is a metric to compute the amount of conser-

vativeness in the analysis. Similar to any compiler analysis, as a points-to analysis needs to

preserve soundness (safety), it tends to be conservative. Thus, a static points-to analysis is

conservative compared to its dynamic counterpart which analyzes a program while the program

is executing. Further, different static pointer analysis methods may produce different points-to

information. Therefore, in order to compare different points-to analyses, apart from their anal-

ysis times and memory requirements, their relative precisions are also computed. An analysis

A1 is strictly more conservative than A2 if points-to information for A1 ⊃ points-to information

for A2. For instance, if the points-to information computed by A1 is ptr1 → {var1, var2};

ptr2 → var1 and that by A2 is ptr1 → var1; ptr2 → var1, then A1 is less precise than A2.

It should be noted, however, that such an ordering may not exist between all the pairs of

the points-to analyses, as the points-to information computed by one analysis may not be a

superset of that of another. Although there have been a few attempts to define precision in the

context of pointer analysis, unfortunately, there is no single definition used in literature. One

customary way to represent precision is by defining an average dereference set size (DSS) of a

pointer. It is defined as below (e.g., see [24]).

average DSS =

∑

p |points-to set(p)|

#p

where |points-to set(p)| refers to the number of pointees p may be pointing to and #p is the

number of pointers.

Thus, average DSS is the ratio of sum of the number of pointees of all the pointers to the

number of pointers. Lower the average DSS, better is the analysis precision. For instance, if

the points-to information computed by A1 is ptr1 → {var1, var2}, ptr2 → var1 and that

Chapter 2. Background 13

by A2 is ptr1 → {var3}, ptr2 → var1, then the two points-to sets are non-comparable. In

this case we could compute their average DSS to compare their precisions.

Average DSS(A1) = (|{var1, var2}| + |{var1}|) / 2 = (2 + 1) / 2 = 1.5.

Average DSS(A2) = (|{var3}| + |{var1}|) / 2 = (1 + 1) / 2 = 1.

Since average DSS(A1) > average DSS(A2), we say that A1 is less precise than A2.

Unfortunately, average DSS for an analysis may differ for the same input program depending

upon the intermediate code representation (IR). Due to various IR formats used by researchers,

it becomes difficult to compare precision across various pointer analyses [57].

Definition 2.7 (Realizable Points-to Fact). A points-to fact is realizable if it occurs in at

least one execution of the program.

For instance, a points-to fact ptr → var is realizable if ptr points to var in some execution

of the program.

Definition 2.8 (Soundness). A (static) points-to analysis is sound if every realizable points-to

fact is computed by the analysis.

Thus, a points-to analysis is sound if it computes a superset of the realizable points-to

facts. Note that the trivial solution where every pointer points-to all the variables is a sound

approximation to the actual (realizable) points-to set, but is also imprecise.

Definition 2.9 (Client). A client to points-to analysis is a program analysis, a program

transformation or an application that queries the points-to or alias information of the points-to

analysis.

Examples of clients are various dataflow optimizations like copy propagation, common

subexpression elimination and analyses like live variable analysis, program slicing, Mod/Ref

analysis [57]. Interestingly, a client to points-to analysis A1 could be another points-to analysis

A2 which could make use of the information from A1 to improve overall precision (e.g., see

[66]).

Definition 2.10 (Scalar, Non-Scalar). A scalar variable is a variable of a basic type. A

non-scalar variable is a variable of an aggregate type.

Examples of scalars are int, int *, char, while example of non-scalars are arrays and

structures.

Chapter 2. Background 14

Dynamic memory allocation is a language support that allows for allocation of memory

while a program is running. In C, dynamic memory allocation is supported using functions

malloc, calloc, etc. and a pointer can point to a variable present either on the stack or in the

heap, apart from global variables. However, in Java, a variable allocated on the stack cannot

be address-taken. Therefore, the only pointees possible in Java are the heap allocated variables

[130]. In the absence of dynamic memory allocation, a compiler can statically count the total

memory requirement of a program. In case of dynamic memory allocation, the amount of total

memory cannot, in general, be determined statically.

2.2 Analysis Dimensions

The precision of a program analysis depends upon how it models an input program’s data and

control-flow. The following is a list of key aspects using which this modeling is done; they are

called as analysis dimensions [113]. Although these dimensions are applicable to other program

analyses and transformations, we explain these in the context of pointer analysis.

2.2.1 Flow-sensitivity

An analysis is flow-sensitive if it takes into account the control-flow in the program while

computing its solution [57]. A control-flow defines the ordering of various statements in a

program. A flow-sensitive analysis computes dataflow information at the boundaries of the

basic-blocks. A flow-insensitive analysis ignores the control-flow specified in the program and

assumes that any basic-block can be reached from any other basic block (including self). Thus,

a flow-insensitive analysis assumes that the control-flow graph (CFG) is complete. One may

expect that a complete CFG would be more expensive to process than an incomplete CFG

since the former has more edges and, in turn, requires more information to be propagated.

This may lead to a conclusion that flow-insensitive analysis is more expensive than a flow-

sensitive analysis. However, a complete CFG can be represented by a single basic-block with

a self-loop containing all the statements from all the basic-blocks in the original CFG. This

simple representation captures all the control-flows present in the original complete CFG and

enables an efficient information processing. Thus, a flow-insensitive analysis processes all the

program statements repeatedly in a sequential order. This makes a flow-insensitive analysis

Chapter 2. Background 15

more efficient than its flow-sensitive counterpart.

Example 2.1. Consider the following program fragment.

S1: a = &x;

S2: a = &y;

The labels S1 and S2 denote program points. A flow-sensitive points-to analysis of the

above example program would yield the points-to information: a → x at S1, a → y at S2.

On the other hand, a flow-insensitive points-to analysis would compute the same points-to

information at all the program points ignoring the control-flow: a → {x, y}.

2.2.2 Field-sensitivity

Field-sensitivity deals with how aggregates are modeled by an analysis. An aggregate is a

container for multiple fields. Examples of aggregates in C are struct variables and union

variables.

A field-sensitive analysis treats each field of each aggregate instance separately [98]. A

field-insensitive analysis assumes that an access to a field is that to its enclosing aggregate

and, in turn, does not model fields at all. A field-based analysis has a limited field-sensitivity:

it models each field of an aggregate type separately, and does not distinguish between different

field-instances for different aggregate variables of the same type [98].

Example 2.2. Consider the following program fragment where variables a and b are the

aggregates of the same type T.

a.f1 = &x;

b.f1 = &y;

a.f2 = &z;

A field-sensitive analysis computes: a.f1 → x, b.f1 → y, a.f2 → z.

A field-insensitive analysis computes: a → {x, z}, b → y.

A field-based analysis computes: T.f1 → {x, y}, T.f2 → z.

A naive implementation of field-based analysis, under certain circumstances, may produce

unsound points-to information [97].

Chapter 2. Background 16

2.2.3 Context-sensitivity

In order to define context-sensitivity, we need to first define an intra-procedural analysis and

an inter-procedural analysis. An analysis is intra-procedural if it processes each function in

isolation making conservative assumptions about the external environment (callers and callees).

Example 2.3. Consider the following program fragment.

main() {

S1: ptr2 = &z;

S2: fun(&x);

S3: fun(&y);

}

fun(int *ptr1) {

}

An intra-procedural analysis of the above example processes functions main and fun in

isolation. In other words, it computes the points-to solution for the statements in each func-

tion by conservatively approximating the effect of external functions. Thus, for each pointer

that may receive points-to information from outside a function through function arguments, it

assumes that the points-to information contains all the address-taken variables in the program

(namely, x, y and z). Therefore, an intra-procedural analysis computes the following points-to

information for pointer ptr1: ptr1 → {x, y, z}.

An intra-procedural analysis, as evident from the description above, is imprecise. However,

note that all the pointers that escape a function, i.e., those pointers that are accessed outside

a function, have the same points-to information. Therefore, such pointers can be merged,

reducing the total number of variables tracked. Therefore, an intra-procedural analysis usually

scales well with the program size.

In contrast, an inter-procedural analysis allows a more precise flow of information from

one function to another. Thus, a function is not processed totally in isolation, but has infor-

mation about all of its callers and callees. A customary way of representing the caller-callee

relationship is using a call-graph (CG). Each node in a CG is a function and a call from

function foo to function bar is denoted by a directed edge from foo to bar. A cycle in a CG

denotes recursion.

Chapter 2. Background 17

An inter-procedural analysis restricts the points-to information coming into a callee to be

only from its callers. Thus, for the above example, an inter-procedural analysis would deduce

the points-to information for ptr1 as ptr1 → {x, y}. Note that the analysis merged the

points-to information coming from the two calls to fun and did not include other address-

taken variable (namely, z) in the points-to set of ptr1.

Compared to an intra-procedural analysis, an inter-procedural analysis keeps track of the

points-to sets separately for each escaping pointer. Therefore, its storage and processing re-

quirements are more than the intra-procedural analysis.

A context-sensitive analysis is an inter-procedural analysis which distinguishes between

various calls to the same function. In other words, a context-sensitive analysis keeps track

of the calling context of a function foo while analyzing foo. A calling context of a function

foo is the calling context of its caller appended with the caller’s callsite that calls foo. More

concretely, a calling context is a sequence of functions whose return address would be on stack

when a function is executing at run-time. The calling context of main is empty. Typically, a

complete context starting from main is unnecessary and analyses restrict the context length

to a small value [25, 68]. Note that the analysis of a recursive program, which essentially has

infinitely long calling context, can also be approximated by restricting its length to a fixed

value.

For the above example program, a context-sensitive analysis would distinguish between the

two calls to function fun from function main and compute a different points-to information for

pointer ptr1 across each context: ptr1 → x along S2, ptr1 → y along S3.

Even if the calling context is restricted to a fixed value k, the number of distinct contexts in

a program varies exponentially with k and it may result in not only a large storage requirement

but also a large analysis time. Therefore, context-sensitive points-to analysis has been at the

forefront of research since several years [70, 31, 132, 18, 10, 13, 17, 129, 75, 66]. In this thesis,

we focus on efficient context-sensitive points-to analysis for large programs.

We deal with context-sensitive, flow-insensitive and field-insensitive points-to analysis in this

thesis.

Chapter 2. Background 18

2.3 Computability and Complexity

In this section we mention results on the algorithmic complexity of various forms of points-to

analysis. The results not only provide a motivation for the significant amount of research done

in this area, but also helps a reader put various analyses in perspective.

A problem is solvable in polynomial-time if there exists an algorithm whose running

time is at most a polynomial expression in the input-size. Mathematically, the running time

T(n) = O(nk) for some constant k. A problem is a decision problem if it has a yes/no answer.

A decision problem is in the complexity class NP if it can be solved in polynomial time by a

non-deterministic turing machine. A problem is NP-Hard if it is at least as hard as the hardest

problems in NP. In other words, a problem is NP-Hard if any problem in NP can be reduced to

it in polynomial-time. A decision problem is NP-Complete if it is both in NP and NP-Hard.

A decision problem is in the complexity class PSPACE if it can be solved by a turing machine

using a polynomial amount of space. A decision problem is PSPACE-Complete if it is in

class PSPACE and if every problem in PSPACE can be polynomially reduced to it.

We now state the important results for various kinds of points-to analyses. The following

theorem states that in the presence of dynamic memory allocation a precise flow-sensitive

points-to analysis is undecidable. For a flow-insensitive analysis, the problem is still open.

Theorem 2.11 ([70, 103, 12]). Single-procedural flow-sensitive points-to analysis is undecidable

with dynamic memory allocation.

The above theorem holds even when there are only scalar variables in the program.

When dynamic memory allocation is not allowed, the configuration space of pointers be-

comes finite and the problem becomes decidable. However, it is still not computable in poly-

nomial time.

Theorem 2.12 ([71, 93, 12]). When dynamic memory allocation is disallowed, single-procedural

flow-sensitive points-to analysis is PSPACE-Complete.

The above theorem holds even when there are only scalar variables with well-defined types

in the program and only two levels of dereferencing are allowed (e.g., int, int * and int **,

but not int ***).

For the simpler variant when a program contains only a single level of dereferencing, the

problem is solvable in polynomial time [71].

Chapter 2. Background 19

Theorem 2.13 ([71]). When dynamic memory allocation is disallowed, single-procedural flow-

sensitive points-to analysis is solvable in polynomial-time when all variables are scalars with

well-defined types and only a single level of dereferencing is allowed.

Landi [71] gives a polynomial time algorithm for the case above.

We now state two important theorems for flow-insensitive analyses.

Theorem 2.14 ([59]). When dynamic memory allocation is disallowed, flow-insensitive points-

to analysis is NP-Hard for arbitrary number of dereferences.

Theorem 2.15 ([12]). When dynamic memory allocation is disallowed, flow-insensitive points-

to analysis is solvable in polynomial-time for arbitrary number of dereferences when the variables

are scalars with well-defined types.

Thus, by restricting the flow-insensitive points-to analysis to strongly-typed languages with-

out aggregates, it becomes theoretically easier to compute the points-to information. Chakar-

avarthy [12] gives a polynomial-time algorithm for the above case. This also suggests that a

flow-sensitive analysis is more expensive to compute as compared to a flow-insensitive analysis.

These complexity results suggest that in a general setting where a program can have weak-

typing, multiple functions, aggregates and dynamic memory allocation, one requires an approx-

imate analysis to compute an approximation to the precise points-to solution. Thus, such an

approximate analysis would conservatively compute more points-to information compared to a

precise analysis.

2.4 Two Key Points-to Analysis Methods

In this section we present two important pointer analysis algorithms which compute approxi-

mate points-to information. One of them, well-known as Andersen’s analysis [3], is based on

the notion of set-inclusion. It gives a relatively higher precision but has a higher running time.

The other algorithm, well-known as Steensgaard’s analysis [123], is based on the notion of

unification. It runs in almost linear time but has relatively lower precision. Several points-to

analysis algorithms in literature are variants of one of these two algorithms. Therefore, these

algorithms merit an explicit introduction. Both the algorithms are flow-insensitive.

Chapter 2. Background 20

We first explain the representation of the input program that these analyses work on which

reduces the complexity of implementation of these algorithms and also helps us in explaining

these better.

2.4.1 Normalized Input Format

Since the two algorithms are flow-insensitive, the input is simply a set of statements that can

modify the points-to information. Each such statement is normalized into one of the formats

(by creating a temporary variable, if required) as shown in the table below. Thus, there are

four kinds of statements: address-of, copy, load and store. Load and store statements are

collectively called complex statements.

address-of p = &q points-to-set(p) ⊇ {q}

copy p = q points-to-set(p) ⊇ points-to-set(q)

load p = *q ∀r ∈ points-to-set(q), points-to-set(p) ⊇ points-to-set(r)

store *p = q ∀r ∈ points-to-set(p), points-to-set(r) ⊇ points-to-set(q)

We assume that a heap allocation instruction is converted to an intermediate form similar to

the address-of statement using a temporary variable.

In the forthcoming chapters, we use the term restricted number of pointer depth in various

forms. Since its meaning differs depending upon the context, for better understanding, we

clarify it apriori here.

• For a flow-insensitive analysis, it is the number of indirections in a single statement –

which we assume to be one. We transform a statement with multiple indirections into

multiple statements, by generating temporaries, as discussed at the start of this section.

• In Chapter 4, the restriction is on the types we model precisely. Thus, we model int *p

and int **p precisely and model int ***p and higher level pointer types imprecisely, by

assuming that they may point to any address-taken variable. This is briefly mentioned

in Section 4.3.2.

• In Chapter 6, the restriction is on the number of times an indirection can be applied to

a value. Our prime-number lattice works for a fixed number of indirections. Although,

Chapter 2. Background 21

this is fixed for an analysis run, it can be set to a high value by a user. This is mentioned

in Section 6.3.

In the next two subsections we present the two algorithms.

2.4.2 Andersen’s Inclusion-based Analysis

Andersen’s inclusion-based analysis (also called constraint-based analysis or subset-based anal-

ysis) [3] works by converting each of the four kinds of statements into a set-constraint as shown

in Column 3 of the table above. Thus, a statement of the form LHS = RHS is handled by

adding a set-constraint LHS ⊇ RHS, i.e., the points-to set of LHS is a superset of that of RHS.

By obtaining such a set of n constraints, its solution can then be obtained using a constraint

solver in O(n3) time [98]. The constraint solver iteratively processes the set of constraints and

updates the points-to sets per Column 3 of the above table until a fixed-point. The fixed-point

solution consists of the points-to information for each pointer.

Example 2.4. Consider the following program.

a = &x; b = &y; p = &a; b = *p;

The points-to information computed for the above example using Andersen’s analysis is

a → {x}, b → {x,y}, p → {a}.

2.4.3 Steensgaard’s Unification-based Analysis

Steensgaard’s unification-based analysis [123] employs the notion of bidirectional similarity to

merge the points-to sets of LHS and RHS for a statement LHS = RHS. An invariant of unification-

based analysis is that every pointer has a single points-to edge. Thus, if a pointer points-to

multiple pointees, all those pointees are merged into the same set. Note that Andersen’s

analysis maintains multiple points-to edges per pointer and, therefore, it is possible in case of

Andersen’s analysis that two pointers may have a common pointee but different points-to sets,

which is not possible in case of Steensgaard’s analysis.

An alternative way of looking at unification is from the perspective of the aliasing relation.

Recall from Definition 2.3 that aliasing is a reflexive and symmetric relation. However, it is

Chapter 2. Background 22

not transitive, i.e., if pointers p and q are aliases and pointers q and r are aliases, then p

and r need not always alias with each other. For instance, if p → {a}, q → {a,b}, r →

{b}, then p aliases with q and q aliases with r, but p does not alias with r. This property

is maintained by Andersen’s analysis (using the multiple points-to edges per pointer). How-

ever, due to a single points-to edge, Steensgaard’s analysis conservatively adds transitivity to

the aliases represented. Since the relation represented is reflexive, symmetric and transitive,

it becomes an equivalence relation forming partitions of alias-sets. Thus, each pointer in an

alias-set aliases with all the pointers in the set and does not alias with any pointer outside

the alias-set. Due to this key property, alias-sets can be very efficiently implemented using a

union-find data structure [21]. In fact, Steensgaard’s analysis runs in time O(mα(m)) where m

is the number of constraints and α(m) is the inverse Ackermann’s function [21], which, for all

practical purposes, is a small constant (below 5). Thus, Steensgaard’s analysis scales almost

linearly with the program size. However, due to transitive aliasing, it has significantly less

precision compared to Andersen’s analysis.

Example 2.5. For the example program in the previous subsection, the points-to solution

obtained using unification is

a → {x,y}, b → {x,y}, p → {a}.

Note that for the example program, in comparison to Andersen’s analysis, Steensgaard’s

analysis has an additional points-to fact a → y. In general, unification computes the points-to

information U which is a superset of the points-to information I computed using inclusion, i.e.,

U ⊇ I.

2.5 Inclusion-based Points-to Analysis as a Graph Problem

As originally proposed by Andersen [3], an inclusion-based analysis iteratively computes the

points-to solution by going over the points-to constraints. However, iteratively going through

all the points-to constraints is not the most efficient way to compute the fixed-point of an

inclusion-based analysis. Fahndrich et al. [34] proposed solving a set of points-to constraints

using the notion of a constraint graph. The constraint graph gives a graphical representation

Chapter 2. Background 23

a {x}

b {x, y}
p {a}

Figure 2.1: Constraint graph for Example 2.4

to the points-to analysis problem and enables exploiting its structural properties to optimize

the analysis.

A constraint graph G is a directed graph where each node represents a pointer and

each directed edge u → v represents the inclusion (or subset) relationship points-to set(u) ⊆

points-to set(v). Each node also maintains its points-to set which gets updated as points-

to information flows along its incoming edges and which gets propagated along the outgoing

edges to other nodes in G. The graph is not static and new edges get added to it as complex

constraints (i.e., load and store constraints) are evaluated. Formation of new edges also enables

more points-to information propagation in G. When no more edges can be added and no more

points-to information can be propagated, a fixed-point of the points-to information is computed

at the nodes in G. The (final) constraint graph for Example 2.4 is shown in Figure 2.1. It has

three nodes corresponding to each pointer a, b, p. Each node is associated with its points-to

information, which is shown in curly-braces in the figure. A directed edge from a to b indicates

the flow of points-to information from a to b. The edge is formed due to the processing of the

load constraint b = *p.

Points-to analysis using a constraint graph is presented in Algorithm 1. Various nodes in the

constraint graph G are first initialized with the points-to information computed using address-of

constraints (Line 1). Initial set of subset edges are added to G using copy constraints (Line 2).

The points-to information at the nodes is then propagated along the edges until saturation

(Line 4). Next, the complex constraints are evaluated to add more edges in G (Line 5). The

points-to information propagation and addition of new edges is then repeatedly done until a

fixed-point is reached (repeat-until loop at Line 3).

Note that a naive analysis using a constraint graph does not give any additional benefits

over the iterative Andersen’s analysis. To make the analysis using constraint graph efficient,

the structure of the constraint graph needs to be exploited. This is done using two main

techniques: by dynamically collapsing cycles in G and by propagating points-to information in

Chapter 2. Background 24

Algorithm 1 Points-to Analysis using Constraint Graph.

Require: set C of points-to constraints
1: Process address-of constraints
2: Add edges to constraint graph G using copy constraints
3: repeat
4: Propagate points-to information in G

5: Add edges to G using load and store constraints
6: until fixed point

a {x, y}

b {x, y}
p {a}

Figure 2.2: Constraint graph for Example 2.6

topological order [34].

It is established that online cycle detection and elimination is a key requirement for scaling

points-to analysis. An interesting aspect of a cycle or a strongly connected component in a

constraint graph is that all the pointers in the cycle eventually have the same points-to sets.

This property is exploited to collapse the cycles and reduce the number of variables tracked

during the analysis.

Example 2.6. Consider the following set of points-to constraints obtained by adding the

constraint a = b to the constraints in Example 2.4.

a = &x; b = &y; p = &a; b = *p; a = b;

The final constraint graph generated for the above set of constraints is shown in Figure 2.2.

Note that there is a cycle formed by the nodes a and b. The points-to information computed

for the above example using Andersen’s analysis is

a → {x,y}, b → {x,y}, p → {a}.

We see that both a and b have the same points-to information. In general, all the pointers in

a strongly connected component eventually have the same points-to information. Thus, we can

represent all the pointers in a cycle using a single representative pointer to reduce the number

of variables tracked during the analysis and to reduce the amount of points-to propagation in

the constraint graph.

Chapter 2. Background 25

Note that cycle detection and elimination is performed dynamically (online) since edges are

added to G dynamically. An important configuration criteria is how often to check for cycles.

Evaluation of techniques which detect cycles at various frequencies is studied by Hardekopf

and Lin [49]. Collapsing cycles converts the constraint graph into a directed acyclic graph

(DAG). This enables a topological ordering of the nodes enabling efficient points-to information

propagation.

2.6 Chapter Summary

In this chapter we studied the background necessary to understand the rest of the thesis. We

defined points-to analysis and learnt about its precision and soundness. We next discussed

various analysis dimensions that affect the analysis precision. We then presented important

complexity results on various forms of pointer analysis. Next, we described two approximation

algorithms, namely, Andersen’s inclusion-based analysis and Steensgaard’s unification-based

analysis, which give precision-time trade-off. Finally, we presented points-to analysis as a

graph problem and discussed how to exploit the structure of a constraint graph to efficiently

compute the points-to solution.

Chapter 3

A Survey of Pointer Analysis

Methods

3.1 Introduction

We present a survey of pointer analysis methods in this chapter. Summarizing three decades of

research work on pointer analysis in one chapter is a difficult task. Therefore, instead of trying

to cover the work exhaustively, we attempt to discuss the most interesting and important works

on pointer analysis.

We divide the survey in 12 categories. The categories are not completely mutually exclusive.

However, we try to classify the related work into these categories based on the focus of the

work.

1. Surveys (Section 3.2): In this category, we discuss the surveys on pointer analysis. Typ-

ically, a survey contains a broader perspective than individual algorithms and although

it may not add a new innovation to the area, it helps in understanding the higher level

picture of the area in the form of trends, pitfalls and lessons.

2. Complexity Results (Section 3.3): In this category, we discuss the work which focuses

on computational complexity of pointer analysis algorithms. Such a work identifies the

complexity classes for variants of the algorithm and proposes polynomial solutions to the

possible variants.

3. Use of Novel Data Structures (Section 3.4): In this category, we discuss the work

27

Chapter 3. A Survey of Pointer Analysis Methods 28

which proposes the use of novel data structures to store points-to information which helps

in scaling pointer analysis, e.g., binary decision diagrams. We also discuss the work that

compares the same pointer analysis algorithm using different data structures.

4. Optimizations and Techniques (Section 3.5): In this category, we discuss the work

which proposes techniques to speedup points-to analyses. These techniques are generic

enough to be applicable to multiple points-to analysis algorithms.

5. Exact Methods (Section 3.6): In this category, we discuss various novel algorithms for

pointer analysis which use an inclusion-based approach.

6. Methods Achieving Explicit Trade-offs (Section 3.7): In this category, we discuss the

work which offers an explicit control over the trade-off between precision and scalability.

7. Client-driven and Demand-driven Methods (Section 3.8): Exhaustive algorithms

compute all possible points-to facts from a given set of constraints. In this category, we

discuss their variants, namely, client-driven analysis which prioritizes various processing

elements (functions, constraints, etc.) to suit the needs of a client, and demand-driven

analysis which cumulatively processes only the required program fragments to answer a

specific query.

8. Incremental and Probabilistic Methods (Section 3.9): In this category, we discuss

incremental analysis and probabilistic analysis. An incremental analysis allows for dy-

namic addition or removal of constraints from the original set of constraints and computes

points-to information only for the affected set of constraints. A probabilistic analysis as-

signs probabilities to the computed points-to facts based on the likelihood of the fact

being realized at run-time.

9. Analysis of Parallel Programs and Parallel Analyses (Section 3.10): In this cate-

gory, we discuss the work that deals with (sequential) pointer analysis of multi-threaded

programs and also the parallel versions of pointer analyses.

10. Applications of Points-to Analysis (Section 3.11): Pointer analysis has been exten-

sively used for various other analyses and transformations. In this category, we briefly

discuss some of the applications of pointer analysis, e.g., slicing and shape analysis.

Chapter 3. A Survey of Pointer Analysis Methods 29

11. Evaluations and Quantifications (Section 3.12): In this category, we focus on the

work which are experimental in nature and deduce some interesting characteristics of

benchmarks or of the underlying analysis, which help us understand the analysis behavior.

12. Points-to Analysis for Other Languages (Section 3.13): We discussed our work

in the context of C programs. However, other languages pose different challenges and

provide different opportunities to pointer analysis. For instance, Java is type-safe which

enables us to design a polynomial time points-to analysis for the language, but it also

poses challenges due to dynamic class loading and reflection. In this category, we discuss

the work on pointer analysis that deals with different programming languages.

3.2 Surveys

In this section, we discuss various surveys on pointer analysis. The most cited survey is by

Hind and Pioli [57]. It identifies several dimensions which affect the trade-off between precision

and scalability, and along which the existing work can be categorized. Some of the dimensions

mentioned are flow-sensitivity, context-sensitivity, heap modeling which deals with how alloca-

tion sites are modeled, etc. The survey also discusses various issues in the terminology, metrics

of precision evaluation and reproducibility of results. Finally, it discusses several directions for

future research (in the year 2000): scalability, improving precision without affecting scalability,

client-driven analysis, extending pointer analysis along the dimensions of path-sensitivity and

context-sensitivity, modeling heap to improve precision without adversely affecting scalability,

better modeling of aggregates, demand-driven and incremental analyses, handling features of

object oriented languages, analyzing incomplete programs, providing annotations for improv-

ing precision, and pursuing and uncovering engineering insights for a scalable analysis. While

mentioning the issues and the open problems, the survey also provides anecdotes from experts

in the field.

Ryder [113] classifies various approaches to reference analysis for object oriented languages

based on analysis dimensions. Some of the dimensions are also applicable to procedural lan-

guages. The dimensions are flow-sensitivity, context-sensitivity, program representation, object

representation, field-sensitivity, reference representation and directionality of information flow

Chapter 3. A Survey of Pointer Analysis Methods 30

in a constraint. For each of these dimensions, she discusses the related work. She also dis-

cusses various open issues in the context of object oriented languages, namely, reflection, native

methods, exceptions, dynamic class loading, and incomplete programs.

A few instances of informal classification of pointer-analysis algorithms exist. One of the

most informative surveys on pointer analysis in the recent past is by Lhotak [76]. The survey

deals with two aspects: various abstractions in the analysis which affect the precision and

efficiency and algorithmic aspects which affect the analysis efficiency. The former discusses

various abstractions like type filtering, and field-sensitivity, flow-sensitivity, context-sensitivity.

The latter deals with points-to information propagation and implementation of sets to represent

the points-to constraints and the points-to information.

Raman [104] surveys three methods: unification-based analysis (using a type system) [123],

pointer analysis using BDDs [6] and an application of pointer analysis in bug detection [80].

He discusses various precision-scalability trade-offs involved in choosing an appropriate method

for analyzing a program with pointers.

Wu [134] presents a survey of alias analysis. He discusses various kinds of flow graphs

used in literature, namely, inter-procedural control flow graph [70, 74], invocation graph [32,

132], procedural call graph [18, 10] and context-sensitive procedural call graph [13, 17]. He

also discusses about abstract data representations used to model variables inaccessible to a

procedure [70, 32], global variables [132] and access paths [70, 17]. He further discusses various

approaches used to model recursive data structures, namely, 1-level [31, 132], k-limiting [70,

17], beyond k-limiting using symbolic access paths [27], and using shape analysis [41]. Wu

also categorizes various points-to analysis algorithms based on flow-sensitivity and context-

sensitivity and also based on their alias representation, flow graph, target language, benchmarks

used and modularity. In a later part of the survey, Wu discusses related work on assembly level

alias analysis.

Rayside [105] provides a five-page summary of various important aspects of pointer analy-

sis. Derived from Whaley’s talk slides [127], Rayside classifies several analyses based on flow-

sensitivity and context-sensitivity. It also mentions incremental analysis, handling incomplete

programs and demand-driven analysis as new research challenges.

Chapter 3. A Survey of Pointer Analysis Methods 31

3.3 Complexity Results

In this section, we discuss various results on the computability of pointer analysis. Landi

[70] and Ramalingam [103] proved that in the presence of non-scalar variables and dynamic

memory allocation, flow-sensitive alias analysis is undecidable. Chakaravarthy [12] proved the

undecidability of flow-sensitive aliasing even when a program contains only scalar variables

when dynamic memory allocation is allowed. Landi [71] and Muth and Debray [93] proved

that flow-sensitive points-to analysis is PSPACE-Complete even when all the variables are

scalars with well defined types and only two levels of dereferencing (only p, *p and **p) are

allowed. For the case when only a single level of dereferencing is allowed, Landi [71] gave a

polynomial-time algorithm.

We now discuss some results related to flow-insensitive points-to analysis. Horwitz [59]

proved that in the absence of dynamic memory allocation, flow-insensitive points-to analysis is

NP-Hard when all the variables are scalars and arbitrary number of dereferencing is allowed.

When the problem is restricted to well-defined types, the flow-insensitive analysis can be solved

in polynomial time, even when arbitrary number of dereferencing is allowed [12]. This positive

result is important for type-safe languages like Java and proposes a non-trivial points-to analysis

variant which is solvable in polynomial time. It also theoretically proves that flow-insensitive

analysis is easier than its flow-sensitive counterpart, since the flow-sensitive version is PSPACE-

Complete.

In the context of object-oriented languages, Chatterjee et al. [14] discuss the complexity

of points-to analysis in the presence of exceptions. They present a polynomial-time algorithm

for points-to analysis in the presence of exceptions for program without threads. They also

prove that an interprocedural points-to analysis with single-level types and exceptions with sub-

typing, but without dynamic dispatch, is PSPACE-Hard. They also prove that the intrapro-

cedural version of the above problem is PSPACE-Complete. They also improve the worst-case

time complexity of points-to analysis in the absence of exceptions from O(n7) [72, 106] to O(n5).

Several open problems related to flow-insensitive analysis exist. It is unknown whether

flow-insensitive points-to analysis in the absence of dynamic memory allocation with arbitrary

number of dereferencing is in NP. Also, it is unknown whether, for a bounded number of

dereferences, the problem can be solved in polynomial time. Further, it is not known whether

the problem remains decidable when dynamic memory allocation is allowed.

Chapter 3. A Survey of Pointer Analysis Methods 32

3.4 Use of Novel Data Structures

In this section, we discuss the work that proposed innovative data structures for representing

the points-to (or alias) information. Earlier approaches stored alias pairs explicitly [70]. Since

this representation is storage-intensive, compact representation is proposed which stores only a

few basic alias pairs explicitly and new alias pairs are derived based on dereference, transitivity

and commutativity [18]. Later, a more crisp representation in the form of points-to pairs has

been devised [31] which significantly reduces the storage requirement.

Heintze and Tardieu [54] propose the use of sparse bitmaps for storing points-to information.

Since for most programs, the points-to information is actually sparse — i.e., only a few pointers

have a large number of pointees while most others have very few pointees — and accessing a

sparse bitmap is very efficient, sparse bitmap is a desirable data structure for storing points-

to information. It is used in GCC 4.1 [49]. However, bitmaps cannot take advantage of the

commonality across various points-to sets. Therefore, for a context-sensitive analysis, the use

of bitmaps requires a large amount of memory.

Zhu [141] was the first one to observe that the vast amount of points-to information can

be encoded in a space-efficient manner using binary decision diagrams (BDD) [8]. Until then,

BDDs were used in symbolic model checking [9] and to represent large sets and maps [84]. Due

to the storage efficiency, BDDs were quickly adapted for solving points-to analysis algorithms.

Berndl et al. [6], Whaley and Lam [129] and Zhu and Calman [142] propose variants of points-to

analysis algorithms using BDDs for Java.

Hardekopf and Lin [49] compared the performance of BDD-based and bitmap-based points-

to analyses. They found that a BDD-based implementation is, on an average, 2× slower than

a sparse bitmap-based implementation, but uses 5.5× less memory.

We propose to store points-to information in a bloom filter (Chapter 4). Bloom filters

offer the best-of-both-the-worlds: its access time is as low as that for bitmaps and its memory

requirement is even below that of BDDs. Although it incurs a minimal amount of precision

loss, a bloom filter based analysis is likely to scale well with program size both in terms of

memory and analysis time, as demonstrated in Chapter 4.

Chapter 3. A Survey of Pointer Analysis Methods 33

3.5 Optimizations and Techniques

In this section, we discuss the work that exploits properties of the problem to improve the

efficiency of points-to analysis. Since these techniques exploit the problem structure, they are

typically applicable to a wide variety of points-to analysis algorithms. While several techniques

and engineering artifacts are proposed in almost every algorithm, we restrict this discussion to

broader techniques which stand out on their own.

One of the most important optimizations in scaling points-to analysis is online cycle elimi-

nation [34]. This optimization is an outcome of the formulation of points-to analysis as a graph

problem. The points-to constraints are represented using a constraint graph. Since the edges

are dynamically added to the graph, cycles may get introduced during the analysis. Due to

the abundance of large cycles, a fixed-point computation of points-to information along the

cycles requires considerable number of propagations. The online cycle elimination technique

exploits the fact that all the pointers involved in the cycle have the same points-to information

at the fixed-point. This allows the technique to collapse the cyclic component into a single

representative node which enables tracking fewer pointers than before.

Choi and Choe [19] propose cycle elimination for invocation-graph based context-sensitive

points-to analysis. Their method first models sets of contexts as annotations and eliminates

cycles only when the annotations appear in all the contexts.

Since cycles are formed dynamically, the cycle detection needs to be performed repeatedly.

It is important to choose a good frequency of cycle detection, since checking for cycles too often

can be costly and may outweigh its benefits; whereas checking for cycles very infrequently may

reduce the benefits obtained using cycle detection. Hardekopf and Lin [49] propose Lazy Cycle

Detection which checks for cycles when there is a good chance of finding one. This is done

based on the heuristic that when an edge gets formed between two nodes of a constraint graph

and the two nodes have the same points-to information, the two nodes may be in a strongly

connected component. Lazy Cycle Detection significantly reduces the overhead of online cycle

detection [49].

Hardekopf and Lin [49] also propose a Hybrid Cycle Detection which combines an offline

analysis with an online cycle detection to improve the running time of the online analysis. The

authors apply Hybrid Cycle Detection to three state-of-the-art solvers and illustrate significant

benefits in the analysis performance.

Chapter 3. A Survey of Pointer Analysis Methods 34

To optimize the set of points-to constraints even prior to running the analysis, Rountev and

Chandra propose offline variable substitution [108]. The technique identifies pointer-equivalent

variables (i.e., pointers with the same points-to sets at the fixed-point) from the points-to

constraints by building a subset graph without running the analysis. It has been established

that offline variable substitution can reduce the number of constraints by a large amount. For

instance, Hardekopf and Lin found that the technique reduced the number of constraints by

60 – 77% [49].

Hardekopf and Lin [50] improve upon offline variable substitution to find more pointer-

equivalent variables. They also propose location equivalence to reduce the number of variables

tracked during an analysis. Due to these offline optimizations, the authors found that sparse

bitmaps actually require lesser memory than BDDs [50].

All the above optimizations reduce analysis time without affecting precision. Approximate

pointer analysis [94] identifies pointers with mostly similar points-to sets as pointer equivalent

and identifies pointees with mostly similar pointed-by sets as location equivalent. By suitably

altering the similarity threshold, a client can obtain varying levels of analysis precision.

Several optimizations address efficient propagation of points-to information in the constraint

graph. Pearce et al. [99] propose difference propagation to propagate only the difference in the

points-to information across nodes. Wave and Deep Propagation [100] propagate points-to in-

formation in breadth-first and depth-first manner respectively for efficient analysis. Kanamori

and Weise [67] propose several heuristics for choosing a node-ordering for points-to informa-

tion propagation, e.g., Greatest Input Rise, Greatest Output Rise and Least Recently Fired.

Pearce et al. [99] find that the Least Recently Fired strategy works very well in practice over

other heuristics especially for large programs. Our work on prioritizing constraint evaluation

(Chapter 7) is related, but deals with constraint evaluation ordering rather than points-to in-

formation propagation. It can be easily combined with any propagation related optimization

for enjoying joint benefits.

Kahlon [66] proposes bootstrapping an analysis with the result of a prior analysis to improve

scalability. He illustrates his technique by running a fast, imprecise analysis like Steensgaard’s

[123] to find disjoint alias sets and then running a slow but more precise analysis like Andersen’s

[3] on each of these alias sets to regain precision. The technique has been shown to scale well

for moderately sized programs [66].

Chapter 3. A Survey of Pointer Analysis Methods 35

3.6 Exact Methods

In this section, we discuss the work which uses an inclusion-based approach for its analysis.

Inclusion-based points-to analysis is introduced by Andersen [3]. It is a flow-insensitive

and context-insensitive points-to analysis that approximates the realizable points-to informa-

tion based on inclusion of points-to sets. Approximations are inevitable since precise points-to

analysis is NP-Hard [12]. For a pointer assignment pexpr = qexpr, it adds the points-to in-

formation of qexpr into that of pexpr, achieving pointsto(pexpr) ⊇ pointsto(qexpr), which is

essentially a set-inclusion constraint. For various pointer manipulating statements, Andersen’s

analysis adds such set-inclusion constraints and finally solves those constraints to achieve a

fixed-point which represents a sound approximation to the points-to information.

Hind et al. [55] propose an approximation algorithm for interprocedural alias analysis.

They also propose a technique for function pointer analysis that constructs a program call

graph during alias analysis. They find that a flow-insensitive analysis with kill information

does not improve precision over a flow-insensitive analysis without the kill information.

Liang and Harrold [78] find that Andersen’s analysis [3] and Landi and Ryder’s analysis [73]

may not scale to large programs. Therefore, they propose a flow-insensitive, context-sensitive

points-to analysis. Salient features of their analysis are that, similar to Steensgaard’s analysis

[123], it processes each pointer-related statement only once, computes a separate points-to

graph for each procedure, and is modular. They demonstrate that their algorithm is almost as

precise as Andersen’s analysis, and its running time is within six times that of Steensgaard’s

analysis.

Yong et al. [135] propose a points-to analysis to handle structures and type-casting. They

observe that supporting field-sensitivity can significantly improve the analysis precision. They

also illustrate that making conservative assumptions when casting is involved usually does not

cost much in terms of analysis time, space or precision.

Cheng and Mei [17] propose a modular interprocedural pointer analysis based on access-

paths for pointers. They illustrate that access-paths can reduce the overhead of representing

context-sensitive transfer functions.

Martena and Pietro [85] apply model checker SPIN to compute precise alias analysis infor-

mation. They show that in the case of intra-procedural alias analysis, a model checking tool

can enhance precision as well as efficiency.

Chapter 3. A Survey of Pointer Analysis Methods 36

Pearce et al. [98, 97] propose a field-sensitive points-to analysis for modeling aggregates

and function pointers. They find that a field-sensitive analysis is more expensive to compute,

but yields significantly better precision over a field-insensitive analysis.

Lattner et al. [75] propose a heap-cloning based context-sensitive points-to analysis. For

achieving a scalable implementation, they illustrate several algorithmic and engineering design

choices such as, using a flow-insensitive and unification-based analysis, and sacrificing context-

sensitivity within strongly connected components.

Sotin and Jeannet [120] address the problem of interprocedural analysis in the presence

of pointers to the stack. They use abstract interpretation to define local semantics for their

language and then apply relational interprocedural analysis to the local semantics to generate

a forward semantics manipulating sets of activation records. Finally, they apply their interpro-

cedural analysis for verifying relational properties on program variables.

Rountev et al. [109] propose points-to analysis for Java using annotated constraints. They

use the annotated inclusion constraints to precisely and efficiently model the semantics of

virtual calls and the flow of values via object fields.

Fahndrich et al. [35] propose a context-sensitive flow-analysis using instantiation con-

straints. They apply their analysis to develop a points-to analysis algorithm. They show that

flow information can be computed efficiently while considering only the paths with well-defined

call-return sequences, even for higher-order programs.

Foster et al. [38] propose the use of annotated type-qualifier restrict to specify that certain

pointers are not aliased to other pointers within a lexical scope. Aiken et al. [1] extend it

to support another annotation called confine for restricting expressions, rather than single

variables. They also give algorithms to infer restricted variables and confined expressions.

They find that the use of annotation can significantly improve the analysis precision and can

help in finding several real-world bugs.

Heintze and Tardieu [54] propose a database-centric analysis architecture called compile-

link-analyze (CLA) and an algorithm for computing dynamic transitive closure to develop a

very fast points-to analysis. Their system is able to analyze about a million lines of unprocessed

C code in less than a second without using more than 10 MB of memory.

Whaley and Lam [128] use Heintze and Tardieu’s points-to analysis [54] and Cheng and

Mei’s access paths [17] to develop an efficient reference analysis for Java. They show the

Chapter 3. A Survey of Pointer Analysis Methods 37

effectiveness of their field-sensitive and intra-procedural flow-sensitive method by computing

precise static call-graphs for very large Java programs.

Hardekopf and Lin [50] propose a semi-sparse flow-sensitive analysis for efficient handling

of strong updates. They convert non-address-taken or top-level variables to Static Single As-

signment (SSA) form to improve analysis efficiency.

Yu et al. [136] propose a field-sensitive, flow-sensitive and context-sensitive pointer analysis

by analyzing pointers according to their levels. Their analysis is fully sparse flow-sensitive

which is a generalization of Hardekopf and Lin’s semi-sparse flow-sensitivity [50].

Our work on solving points-to analysis as a set of linear equation is an exact (inclusion-

based) analysis (Chapter 6).

3.7 Methods Achieving Explicit Trade-offs

In this section, we discuss those works which offer an explicit control over the trade-off between

precision and scalability (in terms of analysis time and/or memory requirement).

Ryder [113] discusses several analysis dimensions that affect precision, including flow-

sensitivity, context-sensitivity, field-sensitivity, program representation, directionality of in-

formation flow. Various choices for implementing these dimensions lead to different trade-offs

between precision and scalability. For instance, a flow-sensitive, context-sensitive analysis is

more precise and requires more time than its flow-insensitive, context-insensitive counterpart.

In the context of object oriented languages, Milanova et al. [88] propose parameterized

object sensitivity, which analyzes a method separately for each object name on which that

method is invoked. Their parameterization framework offers an explicit control over the trade-

off between precision and analysis time by changing the parameters.

Buss et al. [11] propose an analysis space for pointer analysis based on ordering of program

statements, modeling of conditionals and handling of strong updates. By choosing various

values for these three configurable parameters, they show that one can design an analysis with

the desired precision and scale.

In Steensgaard’s analysis [123], every pointer has a single outgoing points-to edge for all its

pointees, whereas in case of Andersen’s analysis [3], a pointer has one outgoing points-to edge

for each of its pointees. By choosing k outgoing edges between these two extremes, Shapiro

Chapter 3. A Survey of Pointer Analysis Methods 38

and Horwitz [117] propose an algorithm which can be tuned so that its worst-case time and

space requirements and its precision range from those of Steensgaard’s analysis to those of

Andersen’s analysis.

Hasti and Horwitz [52] propose an iterative algorithm to make the results of flow-insensitive

analysis more and more precise using Static Single Assignment (SSA) form. Depending upon

a client requirement, the algorithm can iterate only for a limited number of times to achieve

the desired trade-off between analysis time and precision, still guaranteeing a sound result.

The concept of offline variable substitution [108] is widely known for maintaining the pre-

cision of the original analysis. However, as suggested by the authors in their paper, it can also

be used to offer a trade-off between scalability and precision. This can be done by identifying a

set of pointer variables and substituting them with a representative. If all the variables in the

set are pointer equivalent, there is no loss in analysis precision. However, by adding pointers to

this set which are not pointer equivalent, the number of variables tracked during the analysis

can be reduced resulting in a more efficient analysis. This imprecise substitution results in

some loss of precision. A client, depending upon its requirement, can select an appropriate

precision-scalability trade-off.

Approximate pointer analysis [94] identifies pointers with mostly similar points-to sets

as pointer equivalent and identifies pointees with mostly similar pointed-by sets as location

equivalent. A client may choose an appropriate similarity threshold to achieve a desired trade-

off between analysis precision and scalability.

The work on program decomposition [138] helps an analysis choose different parts of a

program to be analyzed with varying levels of precision. Zhang et al. [138] present a program

decomposition technique that partitions program statements to allow separate pointer analyses

to be used on independent parts of the program. This decomposition enables exploration of

trade-off between algorithm efficiency and precision.

Various configuration parameters in our work on points-to analysis using bloom filters

(Chapter 4) offer a client an explicit control over the precision-scalability trade-off. By choosing

different values for the number of bits in each bucket B, the number of context bits C, the

number of hash functions D, etc., the analysis time, memory and precision can be tuned as per

the requirement. We also show that with minimal precision loss, which can be probabilistically

bounded, our bloom filter based points-to analysis achieves significant reductions in analysis

Chapter 3. A Survey of Pointer Analysis Methods 39

time and memory requirement.

Selection probability or the degree of randomization in our randomized points-to analysis

(Chapter 5) also allows for explicitly controlling the scalability-precision trade-off. Further, a

client can choose the number of randomized runs as an additional control parameter. Depending

upon the values of these configuration parameters, our randomized analysis is able to achieve

a significant reduction in analysis time at the cost of a small amount of precision.

Several client-driven analyses adjust their analysis time and precision based on the client

needs. We review the work on client-driven analysis in the next section.

3.8 Client-driven and Demand-driven Methods

In this section, we discuss client-driven and demand-driven points-to analyses. A client-driven

analysis adjusts its cost and the achieved precision according to the needs of the client analyses

(or programs). Thus, if a client C1 requires a high precision, a client-driven points-to analysis

can tune its configurable parameters or its algorithm to extract precise points-to information

from the program. In contrast, if the goal of another client C2 is a scalable analysis, the same

client-driven points-to analysis can configure itself to extract sound points-to information with

as little analysis time as possible, at the cost of some precision.

Guyer and Lin [45, 46] propose client-driven pointer analysis for C programs. Their analysis

has two passes. The first pass is a fast, low-precision points-to analysis to discover the precision

demands of various parts of the program. The second pass uses this information along with the

feedback from the client to run a customized precision policy on different parts of the program.

Their analysis treats data objects in a flow-sensitive or flow-insensitive manner and procedures

in a context-sensitive or context-insensitive manner depending upon the precision policy.

Shapiro and Horwitz’s algorithm [117] is an instance of client driven pointer analysis. They

propose a points-to analysis whose worst-case time and space requirements and its precision

range from those of Steensgaard’s analysis [123] to those of Andersen’s analysis [3]. This is

based on the requirement of a client to choose an appropriate, k number of outgoing points-

to edges for a pointer. In Steensgaard’s analysis [123], every pointer has a single outgoing

points-to edge for all its pointees, whereas in case of Andersen’s analysis [3], a pointer has one

outgoing points-to edge for each of its pointees. By choosing k outgoing edges between these

Chapter 3. A Survey of Pointer Analysis Methods 40

two extremes, a client can use their algorithm suitable to its needs.

A client-driven points-to analysis, like a regular points-to analysis, is exhaustive; i.e., it

computes the points-to sets for all the pointers in a program. However, often a client is

interested only in a subset of the points-to information. A demand-driven points-to analysis

computes only the required amount of points-to information to answer a particular query of

the client. As more queries are processed, a demand-driven analysis computes more and more

information on-the-fly. We discuss the work on demand-driven points-to analysis next.

Heintze and Tardieu [53] introduce demand-driven context-insensitive and flow-insensitive

points-to analysis. They use deductive reachability formulation to propose a provably optimal

demand-driven analysis for C. They observe that the performance of their demand-driven

analysis depends heavily on the amount of points-to information that needs to be computed to

answer an alias query. Thus, if a query requires only a small amount of points-to information

to be computed, then the analysis is very fast. However, if a query requires a large amount of

points-to information, then the analysis can be slower than an exhaustive analysis.

Sridharan et al. [122] propose demand-driven points-to analysis for Java. They formu-

late Andersen’s analysis [3] as a context-free language (CFL) reachability problem [106] and

show that Andersen’s analysis for Java is a balanced-parentheses problem. By exploiting this

balanced parentheses structure, they obtain an asymptotically faster analysis. Their analysis

allows a client to set a time-budget for answering a query, terminating the query once the

time-budget is exceeded. They show that their algorithm yields much higher precision than

previous techniques within small time-budgets.

Sridharan and Bodik [121] build upon their previous work [122] to propose a demand-driven,

client-driven refinement-based context-sensitive points-to analysis for Java. Their technique

simultaneously refines handling of method calls and heap accesses allowing the analysis to

precisely analyze important code, skipping irrelevant code. One of the major contributions

of their work is to develop an inclusion-based context-sensitive points-to analysis that has

context-sensitive call-graph and context-sensitive heap abstraction, and is shown to scale for

large programs.

Zheng and Rugina [140] propose a demand-driven alias analysis for C. Similar to the work

on demand-driven points-to analysis for Java [122, 121], they also formulate the computation

of (alias) queries as a CFL-reachability problem. The aliasing relations in their analysis can be

Chapter 3. A Survey of Pointer Analysis Methods 41

described using two, mutually dependent, hierarchical state machines, one for memory aliases

and the other for value aliases. A useful aspect of their approach is that it does not require

building or intersecting points-to sets. Their technique has been shown to be very efficient in

practice, which makes it a good candidate for interactive tools.

3.9 Incremental and Probabilistic Methods

In this section, we discuss the work on incremental points-to analysis and probabilistic points-

to analysis. An incremental analysis allows for dynamic addition and/or deletion of a set

of statements to the already analyzed program and processes the statements without having

to analyze the complete program (original program plus new statements) from scratch. An

incremental points-to analysis allows for on-the-fly addition or deletion of a points-to constraint

over existing constraints with pre-computed points-to information for the existing constraints.

Yur et al. [137] propose an incremental flow-sensitive and context-sensitive points-to anal-

ysis algorithm to handle addition and deletion of single statements in a C program. For an

incremental change, their worklist-based method identifies the affected region and updates the

interprocedural control flow graph to reflect the change. As a next step, their method adds the

relevant aliases onto the worklist which is reiterated to find the final aliasing solution.

Saha and Ramakrishnan [114] describe a framework based on logic programming for imple-

menting various incremental and demand-driven program analyses formulated using deductive

rules. They instantiate their framework for an incremental and demand-driven points-to anal-

ysis.

A definite or a non-probabilistic points-to analysis computes points-to information which

may or must hold at various program points during the execution of the program. Such an

analysis does not quantify the certainty with which a points-to fact would hold at a program

point. A probabilistic points-to analysis, in contrast, assigns a probability with each points-to

fact computed. The result of such an analysis can help optimize the runtime execution of a

program, e.g., speculative execution of such a program can make intelligent decisions based on

the likelihood of a points-to fact.

Hwang et al. [60, 16] introduce probabilistic points-to analysis. To identify the probabilities

with which each points-to fact is generated and preserved, their approach first computes the

Chapter 3. A Survey of Pointer Analysis Methods 42

transfer functions for probabilistic data-flow analysis. The probability of each points-to fact

is then computed using the transfer functions. Chen et al. [15] use the above probabilistic

points-to analysis for speculative multithreading.

Silva and Steffan [23] propose a one-level flow-sensitive and context-sensitive probabilistic

points-to analysis by encoding linear transfer functions as sparse matrices. They demonstrate

that, even without edge-profiling information, their analysis can provide accurate probabilities

for the points-to facts.

In the context of object-oriented programs, Sun et al. [124] propose probabilistic points-to

analysis for Java. In contrast to the former work in the context of C programs, their work

handles object-oriented features such as inheritance and polymorphism.

3.10 Analysis of Parallel Programs and Parallel Analyses

In this section, we discuss the work related to pointer analysis of multithreaded programs and

parallel versions of pointer analysis itself. Due to numerous thread-interleavings possible in a

multithreaded program, the analysis of such programs poses severe challenges from precision

and scalability perspectives.

Rugina and Rinard [111, 112] propose an interprocedural, context-sensitive and flow-sensitive

pointer analysis for multithreaded programs. Their method extracts thread interference to take

into account the shared pointers accessed by parallel threads.

Salcianu and Rinard [116] propose a combined pointer and escape analysis for multithreaded

programs. Their algorithm uses interaction graphs to analyze the interactions between threads

and is compositional, i.e., it analyzes each method or thread once to extract a parameterized

analysis result that can be specialized in a context.

There has been some work on parallelizing the pointer analysis algorithm itself. While

some of the former approaches simply mention that their algorithms could be parallelized

[66, 138, 110], the first parallel pointer analysis is proposed by Mendez-Lojo et al. [86]. They

illustrate that inclusion-based points-to analysis can be formulated entirely in terms of graphs

and graph-rewrite rules. Their algorithm exposes the amorphous data-parallelism in irregular

applications.

Edvinsson et al. [30] propose parallel points-to analysis for object oriented programs. It

Chapter 3. A Survey of Pointer Analysis Methods 43

deals with different target methods of polymorphic function calls and independent control flow

branches.

3.11 Application of Points-to Analysis

Pointer analysis is not an optimization; a client needs to use the computed points-to information

for performing an optimization over the program. In this section, we discuss various clients

which have been shown to make use of pointer analysis.

Livshits and Lam [80] propose an extended form of SSA, called IPSSA, to track pointers

and apply it for finding buffer overruns and format string violations in C programs.

Milanova et al. [87] apply a pointer analysis [138] for precise call-graph construction. They

find that for call-graph construction as a client, an inexpensive pointer analysis may provide

precise enough information.

Wu et al. [133] propose element-wise points-to mapping for loop-based dependence anal-

ysis. An element-wise points-to mapping summarizes the relation between a pointer and the

heap object it points to, for every instance of the pointer inside a loop and for every array

element directly accessible through the pointer. They demonstrate that element-wise points-to

information can significantly improve the precision of loop-based dependence analysis.

Avots et al. [4] use a context-sensitive, field-sensitive points-to analysis to detect security

vulnerabilities in C programs. By assuming a restricted, but common usage C syntax, they

improve the pointer analysis precision. They show that their optimistic pointer analysis can

be used to reduce the overhead of a dynamic string-buffer overflow detector.

Buss et al. [11] propose an analysis space for pointer analysis based on ordering of program

statements, modeling of conditionals and handling of strong updates. By choosing various

values for these three configuration parameters, they show that one can design an analysis with

the desired precision and scale. They apply the developed points-to analyses for bug finding

and show that the precision of the underlying points-to analysis directly affects the precision

of the bug finding tool.

Mock et al. [90] apply dynamic points-to information to improve the precision of static

program slicing for C. They find that programs with many call sites that make calls through

Chapter 3. A Survey of Pointer Analysis Methods 44

function pointers experience a significant reduction in slice size when dynamic points-to infor-

mation is used. However, for other programs which do not make much use of function pointers

for calling functions, there is little reduction in slice size.

Ghiya and Hendren [41] use pointer information to develop a shape analysis for C programs.

Their analysis can detect if a data structure has a tree-like structure, a directed acyclic graph

or whether it is cyclic.

Tonella et al. [125] apply their flow-insensitive and context-insensitive points-to analysis

for C++ to reaching definitions analysis and slicing.

Guyer and Lin [45, 46] apply a client-driven pointer analysis for C programs to several error

detection problems. Their analysis has two passes. The first pass is a fast, low-precision points-

to analysis to discover the precision demands of various parts of the program. The second pass

uses this information along with the feedback from the client to run a customized precision

policy on different parts of the program. Their analysis treats data objects in a flow-sensitive or

a flow-insensitive manner and procedures in a context-sensitive or a context-insensitive manner

depending upon the precision policy. They claim that typical clients need a small amount of

extra precision applied to selected parts of each program and one can trade off precision for

scalability for the remaining parts.

Silva and Steffan [23] propose a one-level flow-sensitive and context-sensitive probabilistic

points-to analysis for speculative optimizations.

Orso et al. [95] classify data dependences in the presence of pointers and then make use of

the classification for data-flow testing and to develop an incremental slicing algorithm.

Hind and Pioli [57] compare the effect of various pointer analyses on different clients includ-

ing Mod/Ref analysis, live variable analysis, reaching definitions analysis, conditional constant

propagation and dead code elimination.

In Chapter 4, we apply our bloom filter-based points-to analysis for Mod/Ref analysis. We

find that the effect of false positives incurred by our approximate representation is very less on

the client.

Chapter 3. A Survey of Pointer Analysis Methods 45

3.12 Evaluations and Quantifications

In this section, we discuss the work which focus on the experiments to obtain insights about

the usage of pointers in programs and properties of a pointer analysis.

Hackett and Aiken [47] study four applications to identify common aliasing patterns that

arise in practice. They find that almost all pointers are used as one of the following nine

use-cases: parent pointers are references to data closer to the root of a data structure, child

pointers are references to data stored deeper in a data structure, shared immutable pointers

are multiple references to the data and all are used only for reading, shared I/O pointers are

two references to the data where one is used only for writing and the other only for reading,

global pointers are references to the globals, index cursors to support an additional index for

a structure, tail cursors to hold the end point of an index, query cursors to read data internal

to an index, and update cursors to write data internal to an index.

Lhotak and Hendren [77] present a framework of BDD-based context-sensitive points-to

analyses for Java. Using their framework, they evaluate the precision of various context-

sensitive analyses. Two of their main findings are (i) object-sensitive analyses are more precise

than comparable variations of other approaches, and (ii) context-sensitive heap-abstraction

improves precision more than extending the length of the context string.

Hind and Pioli [56, 57] compare different points-to analyses on C programs. The analyses

vary in their use of control-flow information and their work quantifies the effect of varying

flow-sensitivity on the analysis performance in terms of analysis time and precision. They also

report their findings on how the points-to information computed by each of the analyses affects

different clients, namely, Mod/Ref analysis, live variable analysis, unreachable code identifica-

tion, reaching definitions analysis, dependence analysis, and conditional constant propagation.

One of the main findings of their study is that a flow-sensitive pointer analysis offers only a

small amount of additional precision over a flow-insensitive analysis [57]. They also find that

the time and space efficiency of a client analysis improves as the pointer analysis precision is

increased.

Das et al. [25] estimate the impact of scalable flow-insensitive and context-insensitive

analyses on compiler optimizations. Their major finding is that limited forms of context-

sensitivity and subtyping provide the same precision as algorithms with full context-sensitivity

and subtyping.

Chapter 3. A Survey of Pointer Analysis Methods 46

Zhang et al. [139] present results of their combined analysis which uses program decompo-

sition to apply different aliasing to independent program segments. They find that combined

analysis allows application of a flow-sensitive analysis to segments of a program which is too

large to be analyzed by a flow-sensitive analysis as a whole. They also find that points-to

analysis is more efficient than an alias analysis.

Mock et al. [91] evaluate the degree of imprecision caused by static pointer analysis for

C programs with respect to the actual behavior of pointers at run-time. They find that the

pointer information produced by existing scalable static pointer analyses is far worse than the

actual behavior observed at run-time. They advocate usage of profile data on pointer values

to improve analysis precision.

Mock et al. [90] apply dynamic points-to information to improve the precision of static

program slicing for C. They find that programs with many call sites that make calls through

function pointers experience a significant reduction in slice size when dynamic points-to infor-

mation is used. However, for other programs which do not make much use of function pointers

for calling functions, there is little reduction in slice size.

Diwan et al. [28] evaluate three alias analyses based on programming language types for

Modula-3. They find that type-compatibility alone yields a very imprecise alias analysis. How-

ever, if it is coupled with field-sensitivity, it significantly improves precision.

In the context of Java, Liang et al. [79] evaluate the precision of static reference analysis

using profiling information. They demonstrate that modeling heap-allocated memory with the

allocation site may be sufficiently precise for most allocation sites. They also find that static

Andersen’s analysis [3] can compute very precise information for some allocation sites, but can

also compute very imprecise information for many allocation sites. Further, they illustrate that

existing approaches may compute very imprecise points-to information for programs that use

sophisticated data structures.

Ribeiro and Cintra [107] also investigate the sources of uncertainty in the points-to informa-

tion computed by a static analysis. Their approach also makes use of the profiling information,

but in contrast to the other works in this direction, they wish to quantify the amount of un-

certainty that is intrinsic to the applications. They find that often static pointer analysis is

very accurate, but for some benchmarks a significant fraction, up to 25%, of their accesses via

pointer-dereferences cannot be statically disambiguated. They claim that the main reasons

Chapter 3. A Survey of Pointer Analysis Methods 47

behind this behavior is the use of pointer arithmetic and the fact that some control paths are

not taken.

3.13 Points-to Analysis for Other Languages

In this section, we discuss various points-to analysis algorithms for other languages such as

Java and Python.

Apart from C, one of the languages for which pointer analysis is developed is Java [63]. Since

the pointers in Java are called references, the analysis is often termed as reference analysis.

We mention the work in the context of Java below. Berndl et al. [6], Whaley and Lam

[129] and Zhu and Calman [142] propose variants of points-to analysis algorithms using BDDs

for Java. Sridharan et al. [122] propose demand-driven points-to analysis. Sridharan and

Bodik [121] build upon their previous work [122] to propose a demand-driven, client-driven

refinement-based context-sensitive points-to analysis. Sun et al. [124] propose probabilistic

points-to analysis for object-oriented programs. Lhotak and Hendren [77] present a framework

of BDD-based context-sensitive points-to analyses. Liang et al. [79] evaluate the precision of

static reference analysis using profiling information.

Gorbovitski et al. [43] propose alias analysis for a dynamic object-oriented language, for

program optimization by incrementalization and specialization. Incrementalization is a lan-

guage optimization for reducing the cost of expensive queries. Specialization is an optimization

technique for generic code. They instantiate their flow-sensitive and context-sensitive analysis

for Python [102].

Tonella et al. [125] propose a flow-insensitive and context-insensitive points-to analysis

for C++, which handles various object-oriented features like polymorphism, templates and

dynamic binding. They show its effectiveness by applying it to reaching definitions analysis

and slicing.

In contrast to traditional languages like C and Java, JavaScript [64] has dynamic features

such as run-time modification of objects through addition of properties and updating of meth-

ods. Jang and Choe [62] propose the first points-to analysis for JavaScript. Their analysis can

identify the use of a structure’s field directly or via a property, to improve precision over a

traditional Andersen’s analysis [3].

Chapter 3. A Survey of Pointer Analysis Methods 48

Jovanovic et al. [65] propose a precise alias analysis for server-side scripting languages like

PHP [101]. They target their analysis towards the unique reference semantics commonly found

in scripting languages and apply it to detect web application vulnerabilities.

While the above work is related to dynamic languages, there has also been some work

on dynamic pointer analysis, i.e., performing pointer analysis while the program is running.

Salami and Valero [115] propose a dynamic interprocedural pointer analysis for multimedia

applications using a memory disambiguation technique called dynamic memory interval test.

Hirzel et al. [58] propose online pointer analysis for Java.

Since most alias analyses are formulated in terms of high-level language features, they

cannot easily handle features such as pointer arithmetic and out-of-bound array references. To

handle these issues, Debray et al. [26] propose alias analysis of executable code. In order to be

practical, their algorithm trades off precision for memory requirement. They show that their

analysis is able to provide non-trivial information about 30% to 60% of the memory references.

3.14 Chapter Summary

In this chapter we presented a survey of various pointer analysis methods. We classified the

analyses in 12 categories and briefly discussed the work in each category.

Chapter 4

Points-to Analysis using Bloom

Filter

4.1 Introduction

A major cause for the non-scalability of context-sensitive points-to analysis is its large memory

requirement. Thus, with an objective of reducing the memory requirement, we propose to

store points-to information in an approximate manner. We call an analysis that does not store

points-to information in an approximate manner as exact. In order to be useful, an approximate

representation should ensure safety. In other words, it should always store a superset of the

points-to information computed by exact. This would ensure that a points-to fact (say, p points

to q) identified by an exact method as exhibited by the program would always be included in

the approximate analysis. That is, there should be no false negatives. The representation may,

however, contain false positives, and may store a few spurious points-to facts. Thus, an alias

query DoAlias(p, q), checking whether pointers p and q alias with each other, may be answered

affirmatively by our approximate analysis while an exact analysis may say otherwise. In order

for our approach to be effective, these false positives should be as few as possible. Thus, our

goal is to develop a data structure for storing points-to information in an approximate manner

which reduces the memory requirement of the points-to analysis significantly while ensuring

that there are no false negatives and minimizing the false positives. We achieve this goal using

bloom filters [7].

A bloom filter is a compact and approximate representation (typically in the form of a bit

49

Chapter 4. Points-to Analysis using Bloom Filter 50

vector) of a set of elements. It trades off some precision for significant savings in memory. It

is a lossy representation that can incur false positives, i.e., an element not in the set may be

answered to be in the set. However, it does not have false negatives, i.e., no element in the set

would be answered as not in the set. To maintain this property, the operations on a simple

bloom filter are restricted so that items can only be added to the set but can never be deleted 1.

Our motivation for using bloom filters for context-sensitive flow-insensitive points to analysis

stems from the following three key observations.

1. Conservative static analysis. As with any other compiler analysis, static points-to

analysis tends to be conservative as correctness is an absolute requirement. Thus, in case

of static may-points-to analysis, a pointer not pointing to a variable at run time can be

considered otherwise, but not vice-versa. Hence a bloom filter that does not have false

negatives, is a safe representation. However, such a representation may answer that a

pointer points to a few extra pointees. This only makes the analysis less precise and does

not pose any threat to correctness. Further, as a bloom filter is designed to efficiently

trade off precision for space, it is an attractive representation to enable scalability of

points-to analysis.

2. Sparse points-to information. The number of pointees that each context-wise pointer

(pointer under a given calling context) actually points to is many orders of magnitude

less than both the number of context-wise pointers and the total number of potential

pointees. Hence, though the points-to set can potentially be very large; in practice, it is

typically small and sparse. A bloom filter is ideally suited to represent data of this kind.

When the set is sparse, a bloom filter can significantly reduce the memory requirement

with a probabilistically low bound on loss in precision.

3. Monotonic dataflow analysis. As long as the underlying analysis uses a monotonic

iterative data flow analysis, the size of the points-to set can only increase monotonically.

This makes a bloom filter a suitable choice as monotonicity guarantees that there is no

need to support deletions.

1Counting bloom filters [36] support limited number of deletions but they suffer from the drawback of allowing
false negatives.

Chapter 4. Points-to Analysis using Bloom Filter 51

The above observations make bloom filter as a promising candidate for representing points-

to information. However, using the bloom filter as originally proposed [7] is not efficient for a

context-sensitive analysis.

We present the necessary background on bloom filter in the next section. We also discuss

why a naive bloom filter is not suited for points-to analysis. In Section 4.3, we extend the

basic bloom filter to a multi-dimensional bloom filter (multibloom) to enable efficient storage

and manipulation of context-aware points-to information. The added dimensions correspond to

pointers, calling contexts, dereferences, and hash functions. The first three dimensions, namely,

pointer, calling contexts and dereferences, are required to efficiently support all the common

pointer manipulation operations (p = &q, p = q, p = *q and *p = q) and the query op-

erations DoAlias(p, q) and DoAlias(p, q, c) for context-insensitive and context-sensitive

analyses respectively. The fourth dimension (hash functions) is essential to control loss in pre-

cision. A multibloom not only suits our purpose, but also gives clients an ability to control the

trade-off between memory and precision. We extend the algorithm for context-sensitivity in

Section 4.4. We evaluate the effectiveness of our approximate points-to analysis using multi-

bloom in Section 4.5. We theoretically show and empirically observe that as the number of

hash functions increases, the precision loss decreases. Further, with a relatively small number

(16 or so) hash functions, we achieve precision loss lower than 1%. In effect, multibloom sig-

nificantly reduces the memory requirement with a very low probabilistically-bound precision

loss. The compact representation of points-to information allows the context-sensitive analysis

to scale well with the program size. In order to evaluate how the precision loss of the under-

lying points-to analysis affect a client, we evaluate Mod/Ref analysis using our approximate

points-to analysis in Section 4.7. We show that our points-to analysis using multibloom does

not adversely affect the client and gives significant savings in memory requirement and analysis

time. We conclude the chapter with a summary in Section 4.9.

4.2 Bloom Filter

A bloom filter is a probabilistic data structure used to store a set of elements and test the

membership of a given element [7]. In its simplest form, a bloom filter is an array of N bits,

with an associated hash function h. An element e belonging to the set is represented by setting

Chapter 4. Points-to Analysis using Bloom Filter 52

the kth bit to 1, where h(e) = k. For instance, if the hash function is h1(e) = (3 ∗ e + 5)

mod 11, then for elements e = 13 and 20, the bits 0 and 10 are set. Membership of an element

e is tested by using the same hash function. Note that element 2 also hashes to the same

location as 13. This introduces false positives, as the membership query would return true for

element 2 even if it is not inserted. Note, however, that there is no possibility of false negatives,

since none of the bits are reset.

The false positive rate of a bloom filter can be reduced drastically by using multiple hash

functions. Thus, if we use a second hash function in the above example, namely, h2(e) =

(8∗e+2) mod 7, then the elements e = 13, 20 and 2 get hashed to bits 1, 1 and 4 respectively.

Note that a membership query for 2 would return false as location 4 corresponding to h2(2)

is 0, even though location 0 corresponding to h1(2) is set. Thus, with two hash functions,

the false positive between elements e1 and e2 can happen if and only if h1(e1) = h1(e2) and

h2(e1) = h2(e2).

For a bloom filter of size N bits and with d hash functions, the false positive rate P , after

n elements are inserted in the bloom filter, has been derived by Bloom [7] as below.

P =
(1/2)d

(1 − nd
N

)
(4.1)

This is under the assumption that the individual hash functions are random and different hash

functions are independent. Note that for fixed values of n and N , P reduces exponentially with

increasing the number of hash functions d.

Traditionally, sparse bitmaps [100] and Binary Decision Diagrams (BDD) [129] are the most

prevalent data structures used to store points-to information. Sparse bitmaps have the desirable

property that the time to insert elements and to check for their membership is independent of

the number of elements added. BDDs improve upon sparse bitmaps by exploiting commonality

across the information being stored, reducing the overall memory requirement. However, points-

to analysis using BDDs is 2× slower than that using sparse bitmaps; whereas using sparse

bitmaps consumes 5.5× more memory than using BDDs [49]. We show that bloom filter allows

us to enjoy the best of both the worlds: it is as fast as sparse bitmaps and its storage requirement

is much less than that of BDDs. This makes bloom filter a promising candidate for scaling

points-to analysis.

Chapter 4. Points-to Analysis using Bloom Filter 53

4.2.1 Issues with a Naive Bloom Filter

A points-to tuple 〈p, x, c〉 represents a pointer p pointing to a variable x in calling context c.

As defined in Section 2.2.3, a context is defined by a sequence of functions and their call-sites.

A naive implementation using bloom filter would store context-sensitive points-to tuples by

hashing the tuple 〈p, x, c〉 and setting that bit in the bloom filter. This simple operation takes

care of statements only of the form p = &x. Other pointer statements, like p = q, p = ∗q,

and ∗p = q require additional care. For example, for handling p = q type of statements, the

points-to set of q has to be copied to p. While bloom filter is very effective for existential

queries, it is well-known that it is inefficient for universal queries like “what is the points-to set

of pointer p under context c?”.

One way to solve this problem is to keep track of the set of all pointees (objects). This

way, the query FindPointsTo(p, c) to find the points-to set for a pointer p under context c is

answered by checking the bits that are set for each of the pointees. Although this is possible

in theory, it requires storing all possible pointees, making it storage inefficient. Further, going

through all the pointers every time to process a copy operation p = q makes this strategy

time-inefficient as well. Therefore, we propose an alternative design that has more dimensions

than a conventional bloom filter in order to support the pointer operations.

4.3 Multi-dimensional Bloom Filter

Our proposed multi-dimensional bloom filter (multibloom) is a generalization of the basic bloom

filter introduced in Section 4.2. It has 4 dimensions, one each for pointers, contexts, hash

functions and a bit vector along the fourth dimension. It is represented as mb[P][C][D][B].

The configuration of a multibloom is specified by a 7-tuple 〈P, C, D, B, Mp, Mc, H〉 where P is

the number of entries for pointers, C is the number of entries for contexts, D is the number

of hash functions, B is the bit-vector size for each hash function2, Mp is the hash function

mapping pointers to an integer in the range 1..P , Mc is the function mapping contexts to an

integer in the range 1..C and H is the family of hash functions. The first 4 entries (P, C, D, B)

denote the number of unique values that can be taken along each dimension. For example

2We assume that all hash functions use the same number of bits, although it is possible to have different sizes
for each hash function.

Chapter 4. Points-to Analysis using Bloom Filter 54

C = 16 would mean that the multibloom has space for storing the pointee set for 16 different

contexts in which a pointer is accessed. We will have to map every context of a given pointer

to one among 16 entries. The total size of the structure is Size = P × C × D× B. Functions

Mp and Mc map the pointer p and context c to integers Pidx and Cidx in the range [1..P]

and [1..C] respectively. A family of hash functions H=(h1, h2, · · · , hD) map the pointee x to D

integers Hidx1, Hidx2, · · · , HidxD respectively. These play the same role as the hash functions

in the previous section.

Given a points-to tuple 〈p, x, c〉, it is stored into the multibloom as follows. Let Mp(p) =

Pidx, Mc(c) = Cidx, and hi(x) = Hidxi,∀i ∈ [1..D]. Then the tuple is added to multibloom

by setting the following D bits to 1:

mb [Pidx] [Cidx] [i] [Hidxi] = 1, ∀i ∈ [1..D]

It should be emphasized that a multibloom does not store complete context information

explicitly. The context is hashed and accordingly appropriate multibloom bits are set. For a

context-sensitive query the input context specified in the query is again hashed using the same

hash function(s) and appropriate multibloom bits are checked. By not storing the context

information explicitly, a multibloom achieves large savings in the memory requirement of the

analysis, albeit at the expense of some loss of precision. Note that, in contrast, a sparse bitmap

or a BDD is forced to store complete (possibly k-limited) context information explicitly.

Next we discuss how copy, load and store constraints are processed using multibloom.

4.3.1 Handling Copy Constraint

While processing p = q type of statement under context c, all we need to do is to find the B×D

source bits from the multibloom that correspond to pointer q under context c and bitwise-OR

them with the B×D destination bits corresponding to pointer p under context c. This logically

copies the pointees of q on to p without having to universally quantify all the pointees that q

points to. The pseudo-code is given in Algorithm 2. Note that the operation X∨ = Y in Line 7

logically performs the operation X = X ∨ Y .

Example. Consider the program fragment given in the first column of Figure 4.1. Consider

Chapter 4. Points-to Analysis using Bloom Filter 55

Algorithm 2 Handling statement p = q under context c in multibloom, with D hash functions
and a B-bit vector

1: Pidxsrc = Mp [q]
2: Cidxsrc = Mc [c]
3: Pidxdst = Mp [p]
4: Cidxdst = Mc [c]
5: for i = 1 to D do
6: for j = 1 to B do
7: mb [Pidxdst] [Cidxdst] [i] [j] ∨ = mb [Pidxsrc] [Cidxsrc] [i] [j]
8: end for
9: end for

1

1

1

1d = b

p = &a

b = &y

a = &x a

b

p

d

set bit 2 corresponding to x.

set bit 0 corresponding to a.

set bit 6 corresponding to y.

bitwise−OR b’s bucket.

commentstatement multibloom processing

Figure 4.1: Example program to illustrate points-to analysis using bloom filters

a multibloom having the following configuration

〈P, C, D, B, Mp, Mc, H〉 = 〈6, 1, 1, 8, I, C0, (h1)〉

For illustration purpose, we consider a multibloom with a single hash function (D=1), a single

context (C=1) and 8 bits per hash function. The map Mp is an identity function I that returns

a different value for each pointer variable. C0 maps every context to entry 0, since C = 1. The

hash function h1 is defined as h1(x) = 2, h1(y) = 6, h1(a) = 0. As there is only one entry

for context and each statement modifies one pointer, we illustrate the multibloom as 4 bloom

filters. For clarity, we depict the multibloom as multiple bit-vectors in Figure 4.1. Initially,

all the bits in the buckets of each pointer are set to 0. The state of the bloom filters after

processing each constraint for the example code is shown in Column 2. To avoid clutter, empty

cells indicate a zero bit.

The address-of constraints set appropriate bit corresponding to the hashed value of the

Chapter 4. Points-to Analysis using Bloom Filter 56

1
a

1

commentstatement multibloom processing

set bits corresponding to x.a = &x

1bb = &y set bits corresponding to y.

1
pp = &a set bits corresponding to a.

1dd = b bitwise−OR b’s buckets.

1

1

1

Figure 4.2: Example program using two hash functions

address-taken variable. The copy constraint d = b performs a bitwise-OR operation of b’s

bucket with that of d and stores the result into d’s bucket.

Figure 4.2 shows the same example with two hash functions. The buckets corresponding to

the two hash functions for a pointer are shown one below the other. Let the first hash function

h1 be defined as before and the second hash function h2 is defined as h2(x) = 4, h2(y) =

2, h2(a) = 7. Each address-of constraint of the form p = &q now sets two bits in the bloom

filter for p, one corresponding to each hash function. A copy constraint d = b performs a

bitwise-OR operation of each of the b’s buckets with the corresponding buckets of d, storing

the result in the buckets of d. Thus, the bucket corresponding to h1 (respectively h2) of b

is bitwise-ORed with the bucket corresponding to h1 (respectively h2) of d and the result is

stored in the bucket corresponding to h1 (respectively h2) of d.

4.3.2 Handling Load and Store Constraints

There are two ways to handle statements of the form ∗p = q and p = ∗q. One way is to extend

the above strategy for copy constraints by adding more dimensions to the multibloom. This is

extensible to multiple levels of indirection. This strategy would add more dimensions to our

4-dimensional bloom filter, one for each level of pointer dereference. Thus, each pointer deref-

erence would be handled by a dimension and by appropriately copying bits from a dimension

Chapter 4. Points-to Analysis using Bloom Filter 57

(as explained below), one can handle load and store instructions. Clearly, this adds to storage

and analysis time requirements. For S number of added dimension, the storage requirement

would increase by a multiplicative factor of S bits and the time requirement would increase by

a (small) constant amount of time required for an additional hash function calculation corre-

sponding to the new dimension. The second way is to assume that multi-level pointers (**p,

***p, and so on) point to the universal set of pointees and process the statements conserva-

tively. This would make each multi-level pointer point to all the address-taken variables in

the program, adding some spurious points-to information. However, the number of multi-level

pointers is much less in programs compared to single-level pointers. Therefore, depending on

the client analysis, one may be willing to lose some precision by following this conservative

approach.

To obtain a good balance of storage requirement, analysis time and precision, we employ a

combination of the above two techniques. We extend multibloom for two-level pointers (**p)

and use the conservative strategy (universal set of pointees) for higher-level pointers (***p,

****p and so on). This conservative strategy results in little precision loss considering that

on an average less than 1% of all dynamic pointer statements contain more than two levels of

pointer indirections (obtained empirically).

Extending multibloom for two-level pointers makes it look like mb[P][S][C][D][B] where S is

the number of entries for pointers that are pointees of a two-level pointer. For higher-level point-

ers (***p and above) an additional bit is set to indicate that the pointer points to the universal

set of pointees. This approach makes the multibloom a 9-tuple 〈P, S, C, D, B, Mp, Ms, Mc, H〉

where Ms is the function mapping two-level pointers.

To handle load statement p = ∗q where q is a two-level pointer, all the cubes mb[q][s] (i.e.,

C×D×B bits) corresponding to pointer q, for each s = 1..S are bitwise-ORed to get a resultant

cube. This cube is then bitwise-ORed with that of p, i.e., with mb[p][1]. This makes p point

to the pointees pointed to by all pointers pointed to by q.

To handle store statement ∗q = p where q is a two-level pointer, the cube mb[p][1] of p is

bitwise-ORed with each cube mb[q][s] of q, for each s = 1..S. It makes each pointer pointed to

by q point to the pointees pointed to by p.

Handling context-sensitive load/store statements requires a modification to address-of as-

signment p = &q. If p is a two-level pointer, then to process the address-of statement in context

Chapter 4. Points-to Analysis using Bloom Filter 58

c, D × B bits of q are bitwise-ORed with D × B bits of p in the appropriate hash entry for q

(see example below).

Example. Consider the program fragment given in the first column of Figure 4.3. Consider

an extension of the multibloom in Section 4.3.1, with configuration

〈P, S, C, D, B, Mp, Ms, Mc, H〉 = 〈6, 2, 1, 1, 8, I, hs,−, (h)〉

Here, the map Mp is an identity function I that returns a unique value for each pointer variable.

The hash function h is defined as h(x) = 2, h(y) = 6 and h(a) = 0. The mapping function hs

is defined as hs(x) = 0 hs(y) = 1 and hs(a) = 0. Note that Figure 4.3 shows two buckets for

each pointer although the number of hash functions is 1. This is because, S = 2. If the number

of hash functions D had been 2, there would have been a total of 2 × 2 = 4 such buckets.

Initially, all the bits in the buckets for each pointer are set to 0. The state of the bloom filters

after each statement is processed is shown in the second column of Figure 4.3. Third column

describes the multibloom operation.

For the address-of constraint a = &x, since hs(x) = 0 and h(x) = 2, bit number 2 in the

first bucket of a is set to 1. Then, x’s buckets, which are all empty, are bitwise-ORed with the

corresponding buckets of a. Similarly, the next address-of constraint b = &y is processed. The

next address-of constraint p = &a is processed as follows. Since hs(a) = 0, bucket 0 of p is

selected. Further, since h(a) = 0, bit 0 of bucket 0 is set to 1. After this, the corresponding

buckets of p and a are bitwise-ORed and stored in the buckets of p. This sets bit 2 of bucket 0

of p as shown in the third bloom filter of Figure 4.3. This extra operation makes sure that a’s

points to information is available with p when a dereference on p, i.e., ∗p, is performed. The

next copy constraint d = b is processed as before and bit 6 of bucket 1 of d is set, suggesting that

now d points to y. The last constraint d = ∗p is processed by bitwise-ORing the corresponding

buckets of p and d. This makes sure that a’s points to information, which was in the bucket

0 of p, is now available with d. Thus, now a membership query for the points-to fact d → x

would be returned in affirmative, because hx(0), h(x) = 2 and bit 2 of bucket 0 of d is set to 1.

Note that the above strategy of using an additional dimension for two-level pointers can

be extended to include more dimensions to accommodate higher-level pointers. The modified

Chapter 4. Points-to Analysis using Bloom Filter 59

1
a

commentmultibloom processing

a = &x

bb = &y set bits corresponding to y

1
pp = &a set bits corresponding to a

dd = b bitwise−OR b’s buckets.

d = *p d

set bits corresponding to x
and bitwise−OR x’s bucket.

and bitwise−OR y’s bucket.

and bitwise−OR a’s bucket.

1

11 bitwise−OR p’s buckets.

1

1

1

statement

a x y

Figure 4.3: Example program to illustrate handling complex statements

pseudo-code for handling copy statement p = q is given in Algorithm 3.

A flow-insensitive analysis iterates over the constraints until a fixed-point. Figure 4.4 shows

our points-to analysis using multibloom using an extension of the example in Section 4.3.2. This

example has an additional constraint a = &z and requires another iteration to reach the fixed-

point. In this case, additionally, hs(z) = 1, h(z) = 4. Thus, the address-of constraint a = &z

sets bit 4 of bucket 1 of a. In the second iteration, the address-of constraint p = &a makes

a’s points-to information available to p, which sets bit 4 of bucket 1 of p. Later, d receives the

corresponding points-to information from p making d point to z. The fixed-point is achieved

at the end of the third iteration (not shown).

4.3.3 Extracting Information from Multibloom

In this section, we describe in detail the procedure for extracting points-to information from

multibloom.

Checking for a points-to fact. To check if a pointer p points to an object o under a context

c, the analysis maps p to its entry into the multibloom, maps c to its entry and determines

Chapter 4. Points-to Analysis using Bloom Filter 60

Algorithm 3 Modified algorithm for handling statement p = q under context c

1: Pidxq = Mp [q]
2: Cidxq = Mc [c]
3: Pidxp = Mp [p]
4: Cidxp = Mc [c]
5: for s = 1 to S do
6: for i = 1 to D do
7: for j = 1 to B do
8: mb [Pidxp] [s] [Cidxp] [i] [j]∨ = mb [Pidxq] [s] [Cidxq] [i] [j]
9: end for

10: end for
11: end for

Algorithm 4 Checking if p points to o under context c

1: Pidx = Mp [p]
2: Cidx = Mc [c]
3: for i = 1 to D do
4: Hidxi = hi(o)
5: if mb[Pidx][Cidx][i][Hidxi] = 0 then
6: return false
7: end if
8: end for
9: return true

the hash value for each hash function. In order for the points-to fact to be present, each of

the hashed bits in the mapped entries must be set to 1. This is because while inserting the

points-to fact, the analysis must have set each of the hashed bits to 1 and it never reset any bit.

However, it should be noted that some other points-to facts may have set all these bits and the

analysis would falsely claim that the points-to fact is indeed present in the multibloom resulting

in a false positive. This happens with a low probability as we demonstrate in Section 4.5. The

procedure for checking a points-to fact is given in Algorithm 4.

Copying points-to set of a pointer. Points-to set of a pointer p can easily be copied to (or

merged with that of) another pointer q by simply copying (bitwise-ORing) all the buckets of

p to those of q. The procedure is the same as that for handling copy statement as shown in

Algorithm 3.

Enumerating pointees of a pointer: FindPointsTo(p). Multibloom does not support

Chapter 4. Points-to Analysis using Bloom Filter 61

1
a

1
a

1
pp = &a 1

d 11
1

statement

a = &x

bb = &y

dd = b

1

1

d = *p

a = &z 1

iteration 1

1
p 1

1

no change

d 11
1 1

no change

no change

no change

iteration 2

Figure 4.4: Example program to illustrate multiple analysis iterations

identifying which objects a pointer is pointing to. This is because it does not have a reverse

mapping from a bit in a bucket to the corresponding pointee(s). As discussed in Section 4.2.1,

maintaining this reverse mapping is inefficient. If a client analysis is interested only in checking

if two pointers alias with each other rather than obtaining a detailed list of objects a pointer

is pointing to, then an efficient procedure, discussed below, can be used.

Context-sensitive alias query: DoAlias(p, q, c). The ultimate goal of points-to analysis

is to answer whether two pointers p and q alias with each other. A context-sensitive query

is of type DoAlias(p, q, c). To answer this query, for each hash function the algorithm needs

to determine if the corresponding bit-vectors have at least one common bit with the value 1

indicating that both p and q potentially point to the same object and hence may alias. If

no such bit exists for any one hash function, then p and q do not alias. The pseudo-code for

handling context-sensitive query is given in Algorithm 5.

Chapter 4. Points-to Analysis using Bloom Filter 62

Algorithm 5 Handling context-sensitive query DoAlias(p, q, c)

1: Pidxp = Mp [p]
2: Cidxp = Mc [c]
3: Pidxq = Mp [q]
4: Cidxq = Mc [c]
5: for s = 1 to S do
6: for i = 1 to D do
7: hasPointee = false
8: for j = 1 to B do
9: if mb [Pidxp] [s] [Cidxp] [i] [j] = 1 and mb [Pidxq] [s] [Cidxq] [i] [j] = 1 then

10: hasPointee = true
11: break
12: end if
13: end for
14: if hasPointee = false then
15: return NoAlias
16: end if
17: end for
18: end for
19: return MayAlias

Algorithm 6 Handling context-insensitive query DoAlias(p, q)

for c = 1 to C do
if DoAlias(p, q, c) = MayAlias then

return MayAlias
end if

end for
return NoAlias

Context-insensitive alias query: DoAlias(p, q). A context-insensitive query is of type

DoAlias(p, q). The query is answered by iterating over all possible values of the context c

and calling the context-sensitive version of DoAlias: DoAlias(p, q, c). If p and q alias in any

context c, then it returns with an indication that p and q alias; otherwise they do not alias. The

pseudo-code is shown in Algorithm 6. Note that enumerating all contexts means iterating over

all possible context c ∈ 1..C rather than actual calling contexts of a function. This makes the

context-insensitive alias query efficient, as checking for the latter is many orders of magnitude

higher than the former.

Chapter 4. Points-to Analysis using Bloom Filter 63

4.4 Context-sensitive Analysis

We extend Andersen’s analysis [3] for context-sensitivity using an invocation-graph-based ap-

proach [32]. It enables us to disallow non-realizable interprocedural execution paths. We

maintain a stack of function invocations, similar to that occuring at runtime, as we analyze

the program starting from main. Thus, a return from a function always matches the function

invocation at the top of the stack. This helps in mapping-unmapping of input arguments and

return values of the function. In the presence of recursion, there are potentially infinite number

of execution paths (contexts) and bounding the number is a major issue. We handle recursion

by iterating over the cyclic parts of the call-chain and computing a fixed-point of the points-to

tuples. Although this reduces analysis precision compared to a k-cfa [118] approach, which

keeps track of k contexts inside recursion, the reduction is not substantial as we track complete

contexts outside recursion. Our analysis is field-insensitive, i.e., we assume that any reference

to a field inside a structure is to the whole structure. However, field-sensitivity does not pose

any special challenges to our technique and our approach can be easily applied to field-sensitive

points-to analysis. The context-sensitive version is outlined in Algorithm 7.

The algorithm takes four parameters: the function f to be processed, its calling context

cc which includes f, the set of constraints C to be generated and the set of variables V to be

created. The analysis starts by creating an entry in V for each global variable g as (g, {}) where

{} denotes an empty context (not shown in the algorithm). It is then followed by the first call

to the algorithm with parameters <main, {main}, C={}, V>. The procedure goes over all

statements in the function and generates context-sensitive points-to constraints C. C is then

evaluated as shown in the previous subsections. Lines 2–5 in Algorithm 7 create a new variable

on encountering an alloc statement outside recursion. Lines 6–11 handle a non-recursive call.

The first step is to add the callee to the call-chain followed by mapping the actual arguments

to the formal arguments. The algorithm then recursively calls itself in Line 9 to process the

invocation graph of the callee. The callee is analyzed the same way and the set of constraints

C keeps getting updated. When the callee returns, the return value of the callee is mapped

to the ℓ-value in the call statement. Finally, the calling context is updated by removing the

callee. Lines 12–21 handle a recursive call by iterating over the cyclic call-chain and computing

a fixed-point of the constraints in C-cycle. Note that the recursive call to Algorithm 7 in

Line 17 uses the same call-chain. The fixed-point over the constraints C-cycle generated

Chapter 4. Points-to Analysis using Bloom Filter 64

Algorithm 7 Context-sensitive analysis

Require: Function f, call-chain cc, constraints C, variable set V
1: for all statements s ∈ f do
2: if s is of the form p = alloc() then
3: if not inrecursion then
4: V = V ∪ {(p, cc)}
5: end if
6: else if s is of the form non-recursive call fnr then
7: cc.add(fnr)
8: add copy constraints to C for the mapping between actual and formal arguments
9: call Algorithm 7 with parameters < fnr, cc, C >

10: add copy constraints to C for the mapping between the return value of fnr and ℓ-value
in s

11: cc.remove()
12: else if s is of the form recursive call fnr then
13: inrecursion = true
14: C-cycle = {}
15: repeat
16: for all functions fc ∈ cyclic call-chain do
17: call Algorithm 7 with parameters < fc, cc, C-cycle >
18: end for
19: until no new constraints are added to C-cycle
20: inrecursion = false
21: C = C ∪ C-cycle
22: else if s is an address-of, copy, load, store statement then
23: c = constraint(s, cc)
24: C = C ∪ c

25: end if
26: end for

in the cyclic call graph is then merged with C in Line 21. Lines 22–25 add the corresponding

context-sensitive constraints for address-of, copy, load and store statements. A context-sensitive

constraint contains variables in a particular context. For instance, a copy constraint is of the

form ac1 = bc2 where a and b are variables and c1 and c2 are contexts. The two sets, C and

V are finally passed to a constraint solver. The reason for designing the analysis as a two-step

process (generating constraints and solving them), rather than interleaving the two tasks, is to

have a common constraint solving phase (with minor modifications) for context-sensitive and

context-insensitive analyses.

Chapter 4. Points-to Analysis using Bloom Filter 65

LLVM

Linking

Post−linking

Analyses

Transformations

LLVM
Executable

LLVM bytecode
Transformations

Analyses Optimized
bytecode

P1

LLVM bytecode
Transformations

Analyses Optimized
bytecode

P2

LLVM bytecode
Transformations

Analyses Optimized
bytecode

Pn

...

Figure 4.5: Placement of our analysis in LLVM compilation

4.5 Experimental Evaluation

Our implementation has been carried out in the LLVM compiler infrastructure [81] and the

analysis is run as a post-linking phase. The block diagram of the complete compilation phase

in LLVM is shown in Figure 4.5. The filled circle shows the placement of our analyses (all the

pointer analyses in this thesis) in LLVM compilation. A (possibly partial) program Pi is first

compiled into an LLVM bytecode. A set of analyses and transformations analyzes and optimizes

the bytecode. Several such partial programs Pi are then linked by the LLVM linker which

resolves external references. At this stage, post-linking optimizations and transformations are

run on the linked bytecode. All our points-to analyses algorithms are implemented as post-

linking analyses. This allows our analyses to take advantage of the resolved references to

improve precision. The linking phase finally results into an executable image of the program

components.

For bloom-filter-based analysis, we implement two points-to analyses, one which has an

exact representation (without false positives) of the points-to set and the other uses our pro-

posed multibloom representation. For an exact representation we store points-to information

using sparse bitmaps, similar to Pereira and Berlin [100]. Both versions are implemented by

extending Andersen’s algorithm [3] for context-sensitivity as discussed in Section 4.4. Each

aggregate (like arrays and structures) is represented using a single memory location, i.e., indi-

vidual elements in an array and individual fields in a structure are not distinguished from other

Chapter 4. Points-to Analysis using Bloom Filter 66

Benchmark KLOC # Total # Pointer # Func
Inst Inst

gcc 222.185 328,425 119,384 1,829
perlbmk 81.442 143,848 52,924 1,067
gap 71.367 118,715 39,484 877
vortex 67.216 75,458 16,114 963
mesa 59.255 96,919 26,076 1,040
crafty 20.657 28,743 3,467 136
twolf 20.461 49,507 15,820 215
vpr 17.731 25,851 6,575 228
eon 17.679 126,866 43,617 1,723
ammp 13.486 26,199 6,516 211
parser 11.394 35,814 11,872 356
gzip 8.618 8,434 991 90
bzip2 4.650 4,832 759 90
mcf 2.414 2,969 1,080 42
equake 1.515 3,029 985 40
art 1.272 1,977 386 43

httpd 125.877 220,552 104,962 2,339
sendmail 113.264 171,413 57,424 1,005
ghostscript 438.204 906,398 488,998 6,991
gdb 474.591 576,624 362,171 7,127
wine-server 178.592 110,785 66,501 2,105

Table 4.1: Benchmark characteristics

elements and fields. Both versions are optimized with online cycle elimination [34] which iden-

tifies pointer equivalent variables by checking for cycles dynamically in a constraint graph and

offline variable substitution [108] which identifies pointer equivalent variables without running

pointer analysis.

We evaluate the performance of the points-to analysis versions over 16 C/C++ SPEC

2000 benchmarks and five large open source programs: httpd, sendmail, ghostscript, gdb and

wine-server. Their characteristics are given in Table 4.1. KLOC is the number of kilo lines

of unprocessed source code, Total Inst is the total number of static LLVM instructions after

optimizing at -O2 level, Pointer Inst is the number of static pointer-type LLVM instructions

processed by the analysis and Func is the number of functions in the benchmark. The LLVM

intermediate representations of SPEC 2000 benchmarks and open source programs were run

using the opt tool of LLVM on an Intel Xeon machine with 2 GHz clock, 4 MB L2 cache and

4 GB RAM.

To quantify the loss in precision with a multibloom implementation, we use the NoAlias

Chapter 4. Points-to Analysis using Bloom Filter 67

percentage metric used in LLVM. It is calculated by making a set of alias queries for all pairs

of pointer variables within each function in a program and counting the number of queries

that return NoAlias. The NoAlias percentage metric is the ratio of the NoAlias count to the

number of possible pointer pairs across all functions. Note that the NoAlias percentage need

not (will not) be 100% even for the exact analysis. The NoAlias percentage metric represents,

in some sense, the sparseness in the points-to pairs. The alias relationships between pointers

become more and more sparse as the NoAlias percentage increases. Further, larger the NoAlias

percentage, more precise is the analysis (upper bounded by the precision of the exact analysis).

Since it covers all pairs of pointers in the program, the NoAlias percentage is a good way

of estimating the precision loss due to false positives in the multibloom. We use NoAlias

percentage normalized with respect to the exact analysis. Note that the normalized NoAlias

percentage also represents the analysis precision. We define precision loss as below.

Precision loss =

(

1 −
NoAlias percentage of multibloom

NoAlias percentage of exact

)

We evaluate the performance of a multibloom for many different configurations and compare

it with the exact implementation. In all evaluated configurations we allow the first dimension

(P) to be equal to the number of unique pointers. This is done by choosing Mp to be an

identity function that returns a unique value for each pointer. The number of pointers in a

program is determined by making a quick initial pass over the program. The hash family H,

the context mapper Mc and the pointer-location mapper Ms are hand-coded and are based on

the hash functions at Arash Partow’s website [96].

4.5.1 Performance of Exact Analysis: Baseline

We first present the results of our exact analysis that stores points-to information using sparse

bitmaps and does not incur any false positives. This would allow us to present the remaining

results of our approximate analysis using multibloom normalized with respect to the exact

analysis. Normalized results would be easy to reason about and understand. Further, if neces-

sary, the absolute performance numbers can be easily computed using the results of the exact

analysis.

Table 4.2 shows the memory requirement in MB, precision as NoAlias percentage and

Chapter 4. Points-to Analysis using Bloom Filter 68

Benchmark Memory (MB) Precision (NoAlias %) Analysis time (s)

gcc 2859 89.4 329.5
perlbmk 2133 93.6 143.4
vortex 1857 92.5 91.3
eon 1276 96.8 93.5
parser 478 98.0 35.4
gap 457 97.5 128.5
vpr 735 94.2 29.5
crafty 672 97.6 29.3
mesa 894 99.4 89.4
ammp 427 99.2 34.2
twolf 624 99.3 41.5
gzip 514 90.9 25.2
bzip2 633 88.0 23.3
mcf 403 94.5 22.4
equake 546 97.7 24.3
art 597 88.6 26.5
httpd 791 93.2 224.5
sendmail 914 90.4 172.7
ghostscript 1958 87.8 4384.2
gdb 2194 86.4 9338.2
wine-server 774 91.4 201.3

average 1035 93.6 737.5

Table 4.2: Performance of exact analysis.

analysis time in seconds for the exact analysis. On an average, each benchmark requires 1 GB

of memory and over 12 minutes for its points-to analysis. 93.6% of the pointer pairs in the

LLVM intermediate representation do not alias with each other and the remaining are indicated

to be may-aliases.

Considering the benchmark characteristics in Table 4.1, we observe that roughly, larger

benchmarks require more computation time and memory. However, program size alone, either

as KLOC or the number of constraints, is not a good indicator of computational complexity of

its points-to analysis. In general, the performance of points-to analysis also depends heavily on

the underlying structure of the program and is affected by various subjective factors like com-

plexity of the data structures manipulated and how much skewness is involved while accessing

data, etc.

Chapter 4. Points-to Analysis using Bloom Filter 69

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4-
4-

10
4-

8-
10

4-
8-

20
8-

4-
10

4-
4-

20
4-

4-
50

4-
4-

10
0

8-
4-

20
8-

8-
10

4-
8-

50
4-

12
-1

0
8-

4-
50

4-
8-

10
0

8-
8-

20
8-

4-
10

0
16

-8
-2

0
16

-8
-1

0
16

-4
-2

0
16

-4
-1

0
4-

12
-2

0
16

-4
-5

0
4-

12
-5

0
16

-4
-1

00
16

-8
-5

0
8-

8-
50

4-
16

-1
0

8-
12

-1
0

4-
16

-2
0

4-
12

-1
00

16
-1

2-
20

16
-1

2-
10

16
-8

-1
00

8-
12

-2
0

16
-1

2-
50

8-
8-

10
0

4-
16

-5
0

16
-1

2-
10

0
16

-1
6-

10
8-

12
-5

0
8-

16
-1

0
8-

16
-2

0
16

-1
6-

20
8-

12
-1

00
4-

16
-1

00
8-

16
-5

0
8-

16
-1

00
16

-1
6-

50
16

-1
6-

10
0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
N

or
m

al
iz

ed
 M

em
or

y
R

eq
ui

re
m

en
t

N
or

m
al

iz
ed

 A
na

ly
si

s
tim

e

P
re

ci
si

on
 L

os
s

C-D-B

Precision Loss
Normalized Analysis Time

Normalized Memory

Figure 4.6: Overall effect of various configurations.

4.5.2 Performance of Multibloom: Overall Effect

We experimented with several combinations of parameters C, D, B: C = (4, 8, 16), D =

(4, 8, 12, 16) and B = (10, 20, 50, 100). Figure 4.6 shows the overall effect of all these con-

figurations on precision, analysis time and memory requirement. X-axis indicates a configu-

ration C-D-B. Y-axis represents memory requirement, precision loss and analysis time of a

configuration, all normalized with respect to those of an exact analysis. Thus, the memory

requirement and the analysis time of exact analysis are 100 each and its precision loss is 0. The

configurations along X-axis are sorted based on their precision loss. For all the three quantities

(memory, analysis time and precision loss), smaller values are better.

We observe that all the configurations we experimented with have normalized analysis

time less than 70% of that of exact, with memory requirement ranging from 18% to 30%. The

precision loss for these configurations varies from 0.7% to 15%. There are several configurations

for which the precision loss is less than 5% with improvements both in terms of analysis time

and memory requirement. For instance, the configuration 8-12-100 has a precision loss of 1.8%

with normalized analysis time of 60% and normalized memory requirement of 25% compared

Chapter 4. Points-to Analysis using Bloom Filter 70

to exact.

These results show that, overall, multibloom offers great benefits in terms of analysis time

and especially in terms of memory requirement trading off minimal amount of precision. Below,

we study the effect of individual parameters on the performance of multibloom.

4.5.3 Effect of Parameter C

First we evaluate the sensitivity of our multibloom approach to variation in the number of

context bins C = 4, 8 and 16. In this experiment, we keep the number of hash functions (D)

fixed at 16, the bit-vector size (B) at 100 and the number of entries for two level pointers (S)

at 5. The results are shown in Table 4.3. We observe that parameter C has only a marginal

impact on normalized precision which improves from 98.6% to 99.3% with increasing C. The

average analysis time varies from 60.4% to 69.5% of exact Andersen’s method. There is also a

proportional change in the memory requirement with a change of C.

From the performance numbers, we would like to conclude that C should only be increased

when it is justified in terms of precision. This is because increasing C is going to result in a

corresponding increase in the time and memory requirements. Thus, choosing a good value of

C requires a trade-off between time/memory requirements and precision.

4.5.4 Effect of Parameter D

To estimate the effect of the number of hash functions, we kept other parameters fixed at S = 5,

C = 8 and B = 100 varying D = 4, 8, 12, 16. The results are shown in Table 4.4. Amongst all

the configuration parameters, D has the highest impact on performance. The precision varies

from 90.0% to 99.1% with increasing D. The analysis time also increases from 48.5% to 63.8%

of exact. The normalized memory requirement also varies in proportion with D ranging from

20.8% to 27.1%.

Choosing an appropriate value of D requires a trade-off between memory requirement and

precision. Increasing D from 4 to 16 improves precision by 9.1%, but increases the normalized

memory requirement and normalized analysis time by 6.3% and 15.3% respectively. Therefore,

a judicious selection of D can help achieve a good balance between memory requirement and

precision. In general, this balance is guided by the requirements of the client.

Chapter 4. Points-to Analysis using Bloom Filter 71

Benchmark Normalized memory Normalized precision Normalized analysis time
C=4 C=8 C=16 C=4 C=8 C=16 C=4 C=8 C=16

gcc 37.8 42.0 48.1 99.2 99.3 99.6 49.0 49.4 50.0
perlbmk 22.6 23.5 27.0 98.2 99.6 100.0 70.0 70.8 71.9
vortex 11.2 12.4 14.8 98.6 99.5 99.8 95.7 97.2 99.5
eon 28.4 32.4 35.9 99.2 99.8 99.9 95.7 98.0 101.3
parser 26.4 31.2 36.8 99.6 99.9 100.0 78.4 86.9 104.5
gap 63.0 65.9 73.5 99.0 99.4 99.5 67.6 77.6 96.7
vpr 13.6 15.2 18.4 98.8 99.2 99.4 65.8 69.9 75.8
crafty 13.8 14.3 15.6 99.1 99.6 99.8 65.0 73.3 85.3
mesa 23.8 24.9 27.7 99.1 99.4 99.5 85.2 88.7 96.7
ammp 22.7 24.1 30.7 98.8 99.2 99.4 76.9 80.0 88.4
twolf 21.0 24.5 30.1 99.0 99.3 99.4 89.1 92.8 103.7
gzip 12.5 13.8 15.4 98.4 98.9 99.1 94.0 99.5 116.0
bzip2 10.0 10.7 11.2 97.7 98.0 98.2 93.2 100.3 114.7
mcf 15.6 16.9 17.4 99.3 99.5 99.5 91.7 95.6 105.1
equake 11.4 12.5 12.8 99.6 99.7 99.8 77.4 85.2 92.9
art 10.4 10.9 11.7 99.4 99.6 99.6 65.9 68.8 74.5
httpd 90.0 93.4 104.2 98.0 98.2 98.5 19.1 20.4 21.9
sendmail 45.3 48.4 54.3 98.0 98.4 98.8 11.6 11.8 12.1
ghostscript 66.2 67.5 70.7 97.6 98.1 98.5 58.7 60.1 61.6
gdb 82.7 88.0 93.1 96.8 97.4 97.8 31.6 31.8 32.1
wine-server 44.8 49.7 53.5 98.1 98.8 99.0 35.7 41.1 45.6

average 25.0 27.1 30.2 98.6 99.1 99.3 60.4 63.8 69.5

Table 4.3: Sensitivity to parameter C

4.5.5 Effect of Parameter B

Table 4.5 shows the effect of parameter B on the analysis performance. We fixed C = 8,

D = 16 and S = 5 varying B = 10, 20, 50, 100. We found that, similar to C, B has only a

marginal effect on performance. On an average the normalized memory requirement increases

from 22.1% to 27.1% with only a small increase in normalized NoAlias percentage from 97.7%

to 99.1%. There is also a corresponding increase in analysis time from 51.3% to 63.8% seconds.

As in the case of parameter C, we would like to conclude that parameter B should be

increased only when precision is of prime importance over memory.

4.5.6 Effect of Parameter S

We evaluated the sensitivity of the analysis to parameter S. We kept other parameters fixed at

C = 8, D = 16 and B = 100 and varied S = 1, 2, 3, 4, 5. The results are given in Table 4.6. We

observe a small increase in the memory requirement with the increasing value of S from 25.5%

C
h
a
p
te

r
4
.

P
o
in

ts-to
A

n
a
ly

sis
u
sin

g
B

lo
o
m

F
ilte

r
72

Benchmark Normalized memory Normalized precision Normalized analysis time
D=4 D=8 D=12 D=16 D=4 D=8 D=12 D=16 D=4 D=8 D=12 D=16

gcc 33.4 34.5 38.0 42.0 84.4 92.2 97.2 99.3 46.6 47.3 47.9 49.4
perlbmk 19.5 21.0 22.5 23.5 85.1 92.8 96.9 99.6 54.7 63.3 68.2 70.8
vortex 8.5 10.0 11.0 12.4 86.1 93.7 98.4 99.5 89.6 92.5 94.7 97.2
eon 25.0 26.3 28.4 32.4 86.3 94.3 99.1 99.8 85.8 91.8 94.8 98.0
parser 20.1 22.2 26.6 31.2 90.3 95.3 99.1 99.9 57.3 63.8 75.3 86.9
gap 51.9 58.9 63.2 65.9 92.2 96.5 99.0 99.4 54.4 62.0 70.5 77.6
vpr 10.7 11.7 13.6 15.2 86.9 95.3 98.7 99.2 55.3 60.4 64.5 69.9
crafty 12.1 12.6 13.7 14.3 93.4 98.3 99.5 99.6 49.4 59.0 63.4 73.3
mesa 19.7 21.7 23.6 24.9 93.6 97.9 99.4 99.4 77.2 83.3 86.0 88.7
ammp 17.6 19.9 23.0 24.1 95.7 98.6 99.2 99.2 55.2 64.8 73.3 80.0
twolf 15.1 17.8 21.2 24.5 96.3 98.7 99.2 99.3 72.8 81.7 87.2 92.8
gzip 10.9 11.7 12.6 13.8 96.5 98.2 98.9 98.9 77.3 88.4 93.9 99.5
bzip2 8.7 9.3 10.1 10.7 97.0 97.6 98.0 98.0 85.8 93.0 100.3 100.3
mcf 13.9 14.6 16.1 16.9 98.6 99.2 99.4 99.5 68.8 78.6 92.0 95.6
equake 10.1 10.6 11.7 12.5 96.6 97.6 99.7 99.7 62.1 69.5 77.3 85.2
art 9.0 9.7 10.4 10.9 99.2 99.5 99.6 99.6 45.7 57.4 63.1 68.8
httpd 83.3 86.0 90.3 93.4 87.6 93.1 97.5 98.2 12.9 16.1 18.7 20.4
sendmail 40.3 43.2 45.3 48.4 84.6 92.1 97.3 98.4 6.8 9.0 10.2 11.8
ghostscript 53.7 60.2 64.5 67.5 84.1 89.2 96.0 98.1 51.9 55.2 57.7 60.1
gdb 58.7 64.5 77.1 88.0 79.8 87.8 94.5 97.4 30.8 31.3 31.6 31.8
wine-server 39.3 42.2 46.1 49.7 80.4 90.4 95.0 98.8 27.2 33.4 37.4 41.1

average 20.8 22.6 25.0 27.1 90.0 95.1 98.2 99.1 48.5 54.9 59.7 63.8

Table 4.4: Sensitivity to parameter D

C
h
a
p
te

r
4
.

P
o
in

ts-to
A

n
a
ly

sis
u
sin

g
B

lo
o
m

F
ilte

r
73

Benchmark Normalized memory Normalized precision Normalized analysis time
B=10 B=20 B=50 B=100 B=10 B=20 B=50 B=100 B=10 B=20 B=50 B=100

gcc 33.3 36.1 40.3 42.0 97.9 98.4 99.0 99.3 47.9 48.1 48.4 49.4
perlbmk 19.5 21.0 22.6 23.5 98.0 98.5 99.1 99.6 66.9 67.6 69.7 70.8
vortex 9.4 10.5 11.3 12.4 98.2 98.7 99.2 99.5 90.7 91.9 94.0 97.2
eon 27.2 29.4 31.1 32.4 98.7 99.0 99.4 99.8 91.3 93.8 95.6 98.0
parser 23.8 25.7 28.9 31.2 98.9 99.1 99.5 99.9 60.9 65.7 72.2 86.9
gap 53.2 58.0 62.4 65.9 98.7 99.0 99.2 99.4 60.5 63.9 69.5 77.6
vpr 11.7 12.8 13.7 15.2 98.4 98.9 99.0 99.2 52.6 56.4 60.8 69.9
crafty 10.6 11.5 12.8 14.3 98.7 99.1 99.3 99.6 47.7 51.8 60.0 73.3
mesa 20.7 22.4 23.6 24.9 98.7 99.0 99.2 99.4 65.7 70.0 77.2 88.7
ammp 20.6 21.5 22.7 24.1 90.5 90.8 99.1 99.2 57.0 60.2 66.3 80.0
twolf 17.1 18.3 21.8 24.5 98.8 99.0 99.3 99.3 78.3 81.9 85.5 92.8
gzip 11.7 12.1 13.0 13.8 98.4 98.6 98.7 98.9 71.7 77.3 88.4 99.5
bzip2 9.2 9.5 10.1 10.7 97.4 97.8 97.9 98.0 86.2 86.2 93.0 100.3
mcf 14.4 15.1 16.1 16.9 99.1 99.2 99.4 99.5 76.4 78.1 83.9 95.6
equake 10.8 11.4 11.7 12.5 99.4 99.5 99.7 99.7 62.1 69.5 77.3 85.2
art 9.4 9.7 10.4 10.9 99.2 99.4 99.6 99.6 54.4 57.4 60.1 68.8
httpd 84.6 87.6 90.1 93.4 96.8 97.3 97.9 98.2 16.4 17.6 18.4 20.4
sendmail 42.2 44.5 46.6 48.4 96.9 97.3 97.7 98.4 9.7 10.0 10.9 11.8
ghostscript 60.6 62.1 65.8 67.5 96.8 97.0 97.6 98.1 55.5 55.9 57.5 60.1
gdb 77.3 79.7 83.6 88.0 95.9 96.4 96.9 97.4 29.2 29.3 30.0 31.8
wine-server 34.8 36.8 43.4 49.7 97.5 97.9 98.2 98.8 27.4 29.1 32.2 41.1

average 22.1 23.5 25.4 27.1 97.7 98.1 98.8 99.1 51.3 53.6 57.4 63.8

Table 4.5: Sensitivity to parameter B

Chapter 4. Points-to Analysis using Bloom Filter 74

to 27.1%. There is a corresponding increase in the time requirement from 60.6% to 63.8%.

However, we did not find much difference in the precision (less than 1% change). Therefore,

we conclude that S only marginally affects the analysis precision. This is in line with our

observation that programs typically have very few number of pointers at higher dereference

levels.

4.5.7 Effect of Selected Configurations

In this section, we study the effect of a few carefully chosen configurations on the analysis

performance. Specifically, we chose four configurations: tiny with C-D-B=4-4-10, small with

C-D-B=8-8-10, medium with C-D-B=8-12-50 and large with C-D-B=8-16-100. For all the

above configurations S=5. These configurations range over the spectrum of configurations and

allow us to draw certain conclusions with respect to the use of a particular configuration for

different applications. In addition to the overall effect studied in Section 4.5.2, we also study

the effect on individual benchmarks.

The performance numbers for different configurations are reported in Table 4.7. The tiny

configuration achieves a significant reduction in memory requirement and analysis time. Specif-

ically, its memory requirement is only 18.2% and analysis time is 51.3%. However, it has a

somewhat higher precision loss of 15.6%. The tiny configuration can be well suited for clients

that have stringent memory and analysis time requirements but can tolerate some amount of

precision loss.

At the other extreme, the large configuration achieves almost full precision, still yielding

73% improvement in the memory requirement and 36.2% improvement in the analysis time.

With an exception of bzip2 3 where the large configuration of multibloom performs slightly

worse, the configuration requires lesser time on all the benchmarks compared to the exact

analysis. This configuration is greatly suited for clients that require high precision, at lower

analysis time and memory requirement.

The small and the medium configurations prove to be excellent trade-off points. Their

memory, analysis time and precision lie between those of tiny and large configurations. A

client or a meta-analyzer may select a particular configuration to suit its needs.

3The absolute analysis time of bzip2 for the exact method is only 23.3 seconds.

C
h
a
p
te

r
4
.

P
o
in

ts-to
A

n
a
ly

sis
u
sin

g
B

lo
o
m

F
ilte

r
75

Benchmark Normalized memory Normalized precision Normalized analysis time
S=1 S=2 S=3 S=4 S=5 S=1 S=2 S=3 S=4 S=5 S=1 S=2 S=3 S=4 S=5

gcc 33.5 34.0 34.5 38.2 42.0 98.0 98.4 98.7 99.1 99.3 49.1 49.2 49.3 49.4 49.4
perlbmk 22.8 23.0 23.2 23.4 23.5 98.2 98.4 99.1 99.4 99.6 70.4 70.6 70.7 70.8 70.8
vortex 12.0 12.1 12.2 12.3 12.4 99.0 99.1 99.3 99.4 99.5 95.7 96.2 96.6 97.2 97.2
eon 31.8 32.0 32.2 32.3 32.4 99.3 99.6 99.7 99.8 99.8 97.1 97.2 97.6 98.0 98.0
parser 26.2 27.6 28.9 30.1 31.2 98.9 99.2 99.7 99.9 99.9 83.6 84.4 85.7 86.9 86.9
gap 63.5 64.1 64.8 65.0 65.9 98.7 99.0 99.2 99.3 99.4 72.2 74.8 75.9 77.6 77.6
vpr 13.7 14.0 14.4 14.7 15.2 98.6 98.7 98.9 99.1 99.2 63.1 64.5 67.6 69.9 69.9
crafty 13.4 13.7 13.8 14.0 14.3 98.9 99.1 99.5 99.6 99.6 66.1 68.3 70.5 73.3 73.3
mesa 24.4 24.4 24.6 24.7 24.9 99.2 99.3 99.3 99.4 99.4 86.0 86.9 87.8 89.0 88.7
ammp 23.0 23.2 23.4 23.7 24.1 99.1 99.1 99.2 99.2 99.2 78.0 79.1 79.6 80.0 80.1
twolf 24.0 24.2 24.2 24.4 24.5 99.1 99.2 99.3 99.3 99.3 89.0 90.8 90.8 93.3 92.7
gzip 13.6 13.8 13.8 13.8 13.8 98.6 98.7 98.8 98.9 98.9 93.9 99.4 99.4 99.9 99.4
bzip2 10.3 10.4 10.4 10.6 10.7 97.7 97.9 98.0 98.0 98.0 93.0 100.2 100.2 96.5 100.2
mcf 16.6 16.6 16.6 16.6 16.9 99.5 99.5 99.5 99.5 99.5 88.0 89.9 91.9 96.5 95.7
equake 12.1 12.3 12.3 12.3 12.5 99.6 99.6 99.7 99.7 99.7 85.2 85.2 85.2 85.2 85.2
art 10.6 10.7 10.7 10.9 10.9 99.6 99.6 99.6 99.6 99.6 63.0 65.9 68.8 68.8 68.8
httpd 91.8 92.0 92.5 93.0 93.4 97.8 97.9 98.1 98.2 98.2 18.2 18.5 19.6 20.4 20.4
sendmail 47.4 47.6 48.0 48.2 48.4 98.2 98.2 98.4 98.4 98.4 10.5 11.5 11.6 11.8 11.8
ghostscript 61.8 63.8 65.5 66.6 67.5 97.3 97.4 97.6 97.9 98.1 59.3 59.6 59.9 60.1 60.1
gdb 84.1 84.4 85.4 86.6 88.0 95.9 96.3 96.8 97.1 97.4 31.7 31.8 31.8 31.8 31.8
wine-server 42.8 44.7 46.4 48.2 49.7 95.0 96.3 96.3 97.5 98.8 37.4 39.0 40.5 41.0 41.1

average 25.5 25.9 26.2 26.6 27.1 98.4 98.6 98.8 99.0 99.1 60.6 62.0 63.0 63.7 63.8

Table 4.6: Sensitivity to parameter S

C
h
a
p
te

r
4
.

P
o
in

ts-to
A

n
a
ly

sis
u
sin

g
B

lo
o
m

F
ilte

r
76

Benchmark Normalized memory Normalized precision Normalized analysis time
4-4-10 8-8-10 8-12-50 8-16-100 4-4-10 8-8-10 8-12-50 8-16-100 4-4-10 8-8-10 8-12-50 8-16-100
tiny small medium large tiny small medium large tiny small medium large

gcc 12.7 18.6 23.4 42.0 84.5 86.5 96.4 99.3 35.5 38.5 41.6 49.4
perlbmk 10.2 13.1 14.7 23.5 82.6 86.6 98.1 99.6 53.4 55.2 59.5 70.8
vortex 6.4 7.8 8.2 12.4 83.5 87.8 97.3 99.5 70.5 72.7 78.2 97.2
eon 18.4 22.6 23.4 32.4 83.2 88.2 98.2 99.8 72.8 74.6 79.2 98
parser 19.2 21.6 24.7 31.2 82.9 88.4 98.6 99.9 79.4 80.2 82.5 86.9
gap 40.3 49.2 52.6 65.9 84.7 87.5 98.1 99.4 60.6 62.5 66.2 77.6
vpr 8.4 10.7 12.6 15.2 84.2 88.2 97.7 99.2 50.2 51.6 54.6 69.9
crafty 9.1 10.5 11.5 14.3 89.3 92.3 99.6 99.6 54.1 56.9 60.1 73.3
mesa 11.7 15.7 18.2 24.9 83.9 86.7 97.0 99.4 62.9 64.9 70.7 88.7
ammp 11.9 17.2 18.9 24.1 85.7 88.7 98.7 99.2 61.5 63.2 65.7 80
twolf 12.3 17.6 19.1 24.5 85.6 89.0 98.6 99.3 68.2 71.4 75.3 92.8
gzip 8.1 8.6 10.7 13.8 87.2 90.5 98.0 98.9 63.6 65.7 73.4 99.5
bzip2 7.2 8.1 8.8 10.7 88.4 90.8 96.5 98.0 77.4 79.6 84.1 100.3
mcf 8.8 10.2 11.9 16.9 90.1 93.4 99.4 99.5 66.2 68.6 72.6 95.6
equake 8.3 8.8 10.3 12.5 89.5 92.4 99.6 99.7 47.7 49.7 56.8 85.2
art 6.5 7.5 8.2 10.9 91.1 93.1 99.6 99.6 37.8 39.5 43.5 68.8
httpd 52.1 62.6 75.3 93.4 80.2 84.3 94.5 98.2 14.5 15.3 17.3 20.4
sendmail 22.1 29.6 33.5 48.4 81.3 83.7 95.2 98.4 8.6 8.6 9.2 11.8
ghostscript 34.3 44.9 49.6 67.5 77.6 80.6 93.6 98.1 42.0 41.1 44.7 60.1
gdb 49.3 59.4 66.6 88.0 76.7 79.9 92.7 97.4 21.7 22.6 25.3 31.8
wine-server 25.2 32.5 36.1 49.7 79.2 81.4 94.2 98.8 28.6 30.7 33.8 41.1

average 18.2 22.7 25.6 27.0 84.4 87.6 97.2 99.1 51.3 53.0 56.9 63.8

Table 4.7: Effect of select configurations on performance.

Chapter 4. Points-to Analysis using Bloom Filter 77

Benchmark Time(sec) Memory(MB)
exact bddlcd bloom exact bddlcd bloom

gcc 329.5 17411.2 137.1 2859 2534 669
perlbmk 143.4 5879.9 85.4 2133 1723 314
vortex 91.3 4725.7 71.4 1857 1358 152
eon 93.5 2391.8 74.0 1276 1425 299
parser 35.4 618.3 29.2 478 345 118
gap 128.5 330.2 85.1 457 362 240
vpr 29.5 199.5 16.1 735 692 93
crafty 29.3 155.0 17.6 672 566 77
mesa 89.4 21.7 63.2 894 729 163
ammp 34.2 54.6 22.5 427 336 81
twolf 41.5 27.4 31.2 624 617 119
gzip 25.2 6.5 18.5 514 522 55
bzip2 23.3 4.7 19.6 633 588 56
mcf 22.4 32.0 16.3 403 389 48
equake 24.3 4.1 13.8 546 527 56
art 26.5 7.7 11.5 597 582 49
httpd 224.5 47.4 38.8 791 825 596
sendmail 172.7 117.5 15.9 914 851 306
ghostscript 4384.2 20612.8 1959.8 1958 1672 971
gdb 9338.2 24871.7 2362.6 2194 1859 1461
wine-server 201.3 36.7 68.0 774 690 279

average 737.5 3693.2 245.6 1035 914 295

Table 4.8: Time(seconds) and memory(MB) required for context-sensitive analysis

4.6 Comparison with Other Analyses

In this section we compare our bloom filter based approach with a Binary Decision Diagram

(BDD) based approach. The BDD-based points-to analyses, referred to as bddlcd, is due to

Hardekopf and Lin [49]. We extended the original implementation, obtained from the first

author’s website [51], for context-sensitivity. It uses Lazy Cycle Detection (LCD) as an op-

timization technique for deciding how frequently cycle detection algorithm should be invoked

during points-to information computation. We use medium configuration for the comparison

(see Section 4.5.7).

Table 4.8 shows the performance of Andersen’s analysis [3], referred to as exact, of bddlcd

and of our approach referred to as bloom on our set of benchmarks. All the points-to analysis

methods are context-sensitive, flow-insensitive and field-insensitive.

We observe that, on an average, bloom is 3× faster than exact and 15× faster than bddlcd.

Chapter 4. Points-to Analysis using Bloom Filter 78

Except for small programs like art, equake, etc., bloom consistently performs better than the

other two methods. The large improvement in analysis time is largely due to the fast, hash-

based access functions in the bloom filter. Another reason for the significant analysis time

reduction is due to the improvement in the spatial locality of the points-to information stored

in the bloom filter. Further, various points-to operations are implemented as fast bitwise-OR

operations.

Table 4.8 also shows the memory requirement of various methods. We observe that, on

an average, bloom requires 3.5× less memory than exact and 3× less memory than bddlcd.

Further, the memory requirement of bloom is consistently lower than both the other methods.

Note that bddlcd is known for its space efficiency and, despite that, with minimal precision

loss, our bloom filter based analysis offers greater savings in the memory requirement.

4.7 Mod/Ref Analysis as a Client

Next we analyze how the loss in precision in the points-to analysis due to false positives in-

troduced by our multibloom method affects the client analyses. We use the Mod/Ref analysis as

the client of our multibloom-based points-to analysis. For a query GetModRef(callsite, pointer),

the Mod/Ref analysis checks whether callsite reads or modifies the memory pointed to by

pointer. It has four outcomes:

• NoModRef: call-site does not read from or write to memory pointed to by pointer.

• Ref: call-site reads from the memory pointed to by pointer.

• Mod: call-site writes to (but does not read from) the memory pointed to by pointer.

• ModRef: call-site reads from and writes to the memory pointed to by pointer.

ModRef is the most conservative outcome, and should be returned, when it is not possible

to establish otherwise for a safe analysis. Consider two Mod/Ref analyses MR1 and MR2. The

NoModRef percentage computed by each of them for the same program is upper bounded by

that of an exact analysis on the program. If MR1 computes a higher NoModRef percentage

than that computed by MR2, then we say that MR1 is more precise than MR2.

Figure 4.7 shows the percentage of queries answered NoModRef by the analysis. From the

figure, it can be seen that the NoModRef percentage with multibloom is 90.7% of the exact

Chapter 4. Points-to Analysis using Bloom Filter 79

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

gc
c

pe
rlb

m
k

vo
rt

ex

eo
n

pa
rs

er

ga
p

vp
r

cr
af

ty

m
es

a

am
m

p

tw
ol

f

gz
ip

bz
ip

2

m
cf

eq
ua

ke ar
t

ht
tp

d

se
nd

m
ai

l

gh
os

ts
cr

ip
t

gd
b

w
in

e-
se

rv
er

av
er

ag
e

N
oM

od
R

ef
 %

Benchmarks

exact
tiny (4-4-10)

small (8-8-10)
medium (8-12-50)

large (8-16-100)

Figure 4.7: Mod/Ref client analysis.

analysis even with a tiny configuration. For small configuration, it improves further to 95.8%.

With large configuration, the precision is upto 99%. Thus, a client can enjoy the benefits of

reduced memory and analysis time incurring little precision loss. Further, even in some cases

where the difference in precision was discernible when calculating NoAlias percentage, it is not

so with a client analysis. For example, a medium multibloom matches the exact version when

calculating NoModRef percentage for gzip. The NoAlias percentage showed a difference of 2.0%

between exact and multibloom with medium configuration. Thus the loss in precision with an

approximate representation may not even affect the client analysis.

4.8 Related Work

In this section we discuss the work related to the use of novel data structures for representing

points-to information and the use of bloom filters in other application domains.

Chapter 4. Points-to Analysis using Bloom Filter 80

4.8.1 Methods using Novel Data Structures

Our points-to analysis uses a novel data structure (bloom filter) to store points-to information.

Earlier approaches stored alias pairs explicitly [70]. Thus, if p and q are aliases, an earlier

analysis would store the alias pair (*p, *q) explicitly. Storing alias pairs is storage-intensive.

For instance, if p, q, r and s point to the same memory location, following is the set of alias

pairs stored: {(*p, *q), (*p, *r), (*p, *s), (*q, *r), (*q, *s), (*r, *s)}. To re-

duce the storage requirement, compact representation has been proposed which stores only a

few basic alias pairs explicitly and new alias pairs are derived based on dereference, transitivity

and commutativity [18]. Later, a more crisp representation in the form of points-to pairs has

been devised [31] which significantly reduced the storage requirement. Thus, if pointer p, q,

r and s point to the same symbolic memory location x, following is the set of points-to pairs

stored: {(p, x), (q, x), (r, x), (s, x)}. We store points-to information, instead of alias

pairs, throughout our work.

Heintze and Tardieu [54] propose the use of sparse bitmaps for storing points-to information.

Since for most programs, the points-to information is actually sparse — i.e., only a few pointers

have a large number of pointees while most others have very few pointees — and accessing a

sparse bitmap is very efficient, sparse bitmap is a desirable data structure for storing points-

to information. It is used in GCC 4.1 [49]. However, bitmaps cannot take advantage of the

commonality across various points-to sets, i.e., if the points-to sets of pointers p and q is

mostly same with a few differences, a sparse bitmap would still store the duplicate points-to

information for both p and q. Therefore, for a context-sensitive analysis, the use of bitmaps

requires a large amount of memory.

Zhu [141] was the first one to observe that the vast amount of points-to information can

be encoded in a space-efficient manner using binary decision diagrams (BDD) [8]. Until then,

BDDs were used in symbolic model checking [9] and to represent large sets and maps [84]. Due

to the storage efficiency, BDDs were quickly adapted for solving points-to analysis algorithms.

Berndl et al. [6], Whaley and Lam [129] and Zhu and Calman [142] have proposed variants

of points-to analysis algorithms using BDDs for Java. The scalability aspect of using BDDs is

evident from the fact that as the number of contexts (and, in turn, the points-to information)

grows, the storage requirement may come down [129].

However, the use of BDDs comes with a downside. Hardekopf and Lin [49] compared

Chapter 4. Points-to Analysis using Bloom Filter 81

the performance of BDD-based and bitmap-based points-to analyses. They found that a BDD-

based implementation is, on an average, 2× slower than a sparse bitmap-based implementation,

but uses 5.5× less memory.

Bloom filters offer the best-of-both-the-worlds: its access time is as low as that for bitmaps

and its memory requirement is even below that of BDDs. Although it incurs a minimal amount

of precision loss, a bloom-filter-based analysis is likely to scale well with program size both in

terms of memory and analysis time.

4.8.2 Use of Bloom Filters in Other Applications

Bloom filter was also used in distributed networks to implement compact caches at proxy

servers [36]. Since the routing tables stored at the proxy servers tend to get bigger and are

needed to be periodically sent to other proxy servers for synchronization, a bloom-filter-based

representation of the routing tables offers benefits both in terms of the storage requirement and

the network bandwidth. Bloom filter was also used for distributed database joins [82]. The

idea is to send a compact bloom filter based approximate representation of a table to another

node in the network and perform an initial join locally on that node. Since due to the condition

in the join command, the total size of this intermediate result would reduce, this intermediate

join can then be sent back to the originating node. The originating node can then perform

a join operation with this intermediate result to filter out some more tuples. The overall

benefit is achieved by reducing the amount of data sent across the network. Gremillion [44]

used bloom filters to improve the performance of differential files in a database environment.

He uses bloom filters to check if two files contain the same data. Thus, if the bloom filter

representations of the two files differ, the two files definitely contain different data. Manber

and Wu [83] used bloom filters in checking validity of proposed passwords against previous

passwords used and against dictionary words. This is done by maintaining a checksum and

checking a new password’s checksum against the old checksum. Similarly, a dictionary of words

can be stored in an approximate manner in a bloom filter for fast hash-based lookup.

Bloom filters also underwent several advances. Mitzenmacher [89] and Fan et al. [36]

proposed compressed bloom filters to enable more efficient transmission of bloom filter across

servers on a network. The compression further reduces the storage requirement, but incurs a

small cost in compression-decompression. However, its main usage is in reducing the network

Chapter 4. Points-to Analysis using Bloom Filter 82

traffic where the network latency dominates the compression-decompression time. For faster

performance while using external storage, Manber and Wu [83] imposed a locality restriction

on the hash functions used in a bloom filter. To support deletions, Fan et al. [36] proposed

counting bloom filters. Counting bloom filters maintain a counter per data element, instead of

a bit as in the case of a simple bloom filter. This counter is increased when an element which

hashes to this location is added and reduced when the element is deleted. However, since the

number of bits per counter is fixed, the number of additions and deletions should not exceed

beyond a limit. Unless the number of bits is sufficiently large, a counting bloom filter suffers

from the possibility of a false negative. To support multisets, i.e., to allow (and distinguish

between) multiple occurrences of the same element in the bloom filter, Cohen and Matias [20]

proposed spectral bloom filters.

We introduced multi-dimensional bloom filters, an extension of naive bloom filters [7], suited

for queries in points-to analyses.

4.9 Chapter Summary

In this chapter we proposed a multi-dimensional bloom filter for storing points-to information.

The proposed representation may introduce false positives, but it significantly reduces the

memory requirement and provides a probabilistic lower bound on loss of precision. As our

multibloom representation introduces only false positives, but no false negatives, it ensures

safety for (may-)points-to analysis. We demonstrate the effectiveness of multibloom on 16

SPEC 2000 benchmarks and five real-world applications. Compared to an exact analysis, a

multibloom configuration offers 75% reduction in memory requirement and 40% reduction in

analysis time with less than 2% precision loss. We also showed that compared to a BDD-based

analysis, a multibloom configuration is 15× faster and uses 3× less memory. Using Mod/Ref

analysis as a client, we show that the effect of our approximate representation on the precision

of this client is even less.

Unlike traditional data-structures for storing points-to information, like bitmaps and BDDs,

bloom filters provide user a control on the memory requirement, yet giving a probabilistic

lower bound on the precision loss. This control, coupled with huge savings in the memory

requirement, makes bloom filters a promising data-structure for storing points-to information.

Chapter 5

Sound Randomized Points-to

Analysis

5.1 Introduction

Precise points-to analysis is undecidable when dynamic memory allocation is allowed [103].

When dynamic memory allocation is disallowed, the problem (even context-insensitive, flow-

insensitive) is still NP-Hard [59, 12]. These complexity results suggest that for a scalable

points-to analysis, approximations cannot be avoided. In fact, several techniques proposed in

literature employ such approximations either explicitly or implicitly. For instance, Steensgaard

[123] proposed unification to design an almost-linear-time alias analysis, trading off precision

for efficiency. Andersen [3] proposed an approximate points-to analysis based on inclusion of

points-to information to achieve a polynomial-time algorithm. For context-sensitive analysis,

Lattner et al. [75] proposed unification of contexts to achieve a scalable implementation at the

cost of some precision. Our storage representation using multibloom (Chapter 4) approximately

stores the points-to information using hashing.

In a similar spirit, in this chapter we propose to design a scalable algorithm using random-

ization, a powerful approximation technique. Despite using randomization, the analysis must

preserve soundness, i.e., the points-to information computed by the analysis should be a su-

perset of that computed by an existing sound points-to analysis. Our randomization technique

works as follows. It applies a “more precise” analysis to a randomly chosen subset and a “less

precise” analysis to the rest of the processing entities (e.g., points-to constraints). An important

83

Chapter 5. Sound Randomized Points-to Analysis 84

challenge in developing randomized points-to analysis is how to summarize and compose the

points-to information obtained from the less precise subset without compromising soundness.

We develop such summarization and composition for various types of points-to analysis. By

executing this analysis over a few runs of randomly-chosen processing entities, and applying

summarization and composition, we get different results across the runs. By defining a suitable

meet operator over the results, we get a good approximation to the most precise solution. Note

that soundness is preserved in each run and if the meet operator is defined carefully, soundness

is preserved in the final approximation as well.

This chapter is organized as follows. In Section 5.2 we describe our randomization technique

in detail using unification-inclusion as the base. The important components of our technique,

viz., selection, summarization and composition, for this analysis dimension are also explained

in this section. In Section 5.3 we present our randomized context-sensitive algorithm using an

example. Subsequently, in Section 5.4 we prove its soundness. The effectiveness of our ap-

proach is evaluated in detail in Section 5.5. We identify several configurations where significant

improvements in analysis time can be obtained with minimal precision loss. We also study the

effect of various configuration parameters on performance in this section. Finally, we conclude

the chapter with a summary in Section 5.8.

5.2 Unification versus Inclusion

We explain our randomization approach using unification versus inclusion.

5.2.1 Overview of the Approach

Consider a flow-insensitive, context-insensitive and field-insensitive points-to analysis. We have

two well-known methods for computing points-to information: Steensgaard’s unification-based

approach [123] and Andersen’s inclusion-based approach [3]. Steensgaard’s analysis runs in

almost linear time in the number of constraints; whereas Andersen’s analysis has a cubic running

time complexity. However, Steensgaard’s analysis is very imprecise compared to Andersen’s

analysis [59]. Further, since a unification constraint adds at least as much points-to information

as that added by an inclusion constraint, the points-to information U computed by a unification-

based approach is a superset of that computed by an inclusion-based analysis I, as depicted in

Chapter 5. Sound Randomized Points-to Analysis 85

U

I

R1

R2

R3

Figure 5.1: Unification versus Inclusion

Figure 5.1. Using set notation, it can be written as I ⊆ U.

Now consider a run of an analysis R1 that combines unification and inclusion. The proposed

analysis divides the set of points-to constraints C into two disjoint subsets CI1 and CU1 such that

CI1 ∪ CU1 = C and CI1 ∩ CU1 = φ. A points-to constraint c ∈ C is included in CI1 with probability

ρ1 and in CU1 with probability 1− ρ1. The analysis processes constraints in CI1 using inclusion

and those in CU1 using unification. Thus, the analysis processes each points-to constraint using

inclusion with a probability ρ1 and using unification with a probability 1− ρ1. To compute a

sound points-to solution, we require a way to compose the results of unification and inclusion

which we describe in Section 5.2.2. Thus, at the end of the analysis, depending upon the

probability ρ1 of selecting a constraint, R1 computes a points-to information that is at least as

precise as unification and at most as precise as inclusion. Therefore, using the same symbol for

a run and its computed points-to information, we have I ⊆ R1 ⊆ U.

If the probability ρ1 is set to 0, then all the constraints are processed using unification and

we get the same information as U. By setting ρ1 = 1, all the constraints are processed using

inclusion and we get the same information as I. By choosing an appropriate value (depending

upon the client needs) for ρ1, we can get an analysis with the desired precision and analysis

time.

However, by doing a small amount of additional work, we can improve the analysis pre-

cision sharply. We can partition the constraint set C into CI2 and CU2 in a different manner

using probability ρ2 (ρ2 may be same as ρ1) and process them using inclusion and unification

respectively. Thus, we get a run R2 that computes the points-to information in the same way

as computed by run R1. Therefore, we get I ⊆ R2 ⊆ U.

Continuing this way a few times, say N number of times, we obtain different-sized points-to

Chapter 5. Sound Randomized Points-to Analysis 86

information R1...RN. Each run Ri satisfies the following set relationship

I ⊆ Ri ⊆ U (5.1)

Now consider the following points-to set

R = ∩N
i=1Ri (5.2)

Thus, we have

R ⊆ Ri (5.3)

Equation 5.3 implies that the run R is at least as precise as any of the runs Ri. From Equa-

tions 5.1 and 5.2, we obtain the following result.

R ⊆ U (5.4)

Further, since I ⊆ Ri for each i,

I ⊆ R = ∩N
i=1Ri (5.5)

From Equations 5.4 and 5.5, we have

I ⊆ R ⊆ U (5.6)

In effect, by running the randomized analysis a few times, we obtain a points-to information

that is likely to be more precise than any of the individual runs. By choosing appropriate values

for ρi and N, we can get close to the precision of Andersen’s inclusion-based analysis.

5.2.2 Selection, Summarization and Composition

Next, we describe three important operations, namely, selection, summarization and compo-

sition for the randomized unification-inclusion method. These operations need to be defined

appropriately when we extend the randomized approach for other analysis dimensions such as

flow-sensitivity, context-sensitivity and field-sensitivity. In case of unification-inclusion, the se-

lection of program entity involves choosing points-to constraints; whereas for context-sensitivity,

we select it to be a program function. Each constraint in the above analysis need not be pro-

cessed separately. In fact, for optimization purposes, all the constraints chosen for unification

Chapter 5. Sound Randomized Points-to Analysis 87

are grouped to form an aggregate A. The aggregate information computed for this group (of

constraints) is later reused while processing the other set of constraints using inclusion.

After selection, the aggregate must compute a summary information corresponding to the

precision level of the analysis dimension. In case of unification-inclusion, summarization step

turns out to be an identity function. However, as we will see in the next section, summarization

is an essential aspect for other analysis dimensions.

In defining a run in the previous section, we omitted an important detail. We mentioned

that some constraints would be processed using unification and the others using inclusion. The

two processing sequences need to be composed to generate a single sound points-to information.

The composition involves processing the points-to constraints using unification and then operate

on the remaining constraints using inclusion, starting with the points-to information computed

using unification. The summarization and composition turn out to be simple for this analysis

dimension. As we will see in Section 5.3, it could be complex in case of context-sensitivity. It

should be noted that composing the two partial results is a necessary requirement for soundness.

If the results of the less precise analysis and the more precise analysis are not composed, then

the points-to analysis may not be able to compute certain points-to information, resulting in

an unsound analysis.

5.2.3 Implementation Challenges

In addition to the above composition rule to ensure correctness, the approach also poses a cer-

tain implementation non-triviality. Unification would typically be implemented using a union-

find data structure whereas inclusion may use bitmaps or binary decision diagrams (BDD)

to store the points-to information. Thus, we need to convert the points-to information from

one representation to another; more specifically, from union-find to bitmaps/BDD. One way

to avoid the conversion and still achieve the effect of unification is to process each points-to

constraint in A bi-directionally using inclusion, i.e., a constraint a = b will be processed using

inclusion as a = b and b = a. However, this only adds to the analysis complexity and we lose

the benefit of using a union-find data structure. Hence, we implement the conversion by keep-

ing track of the leaf nodes (nodes that are not parents of any other node) in a union-find data

structure and by traversing each alias group, i.e., a connected component in the union-find data

structure, upwards (from a node to its parent) to convert the alias information to the points-to

Chapter 5. Sound Randomized Points-to Analysis 88

Algorithm 8 Randomized Points-to Analysis using Unification and Inclusion

Require: program P as a list of points-to constraints
Ensure: each variable in P has a set of variables indicating its points-to set
1: for run = 1..N do
2: choose ρuirun
3: A = {} {A contains constraints to be processed using unification}
4: for all points-to constraints e ∈ P do
5: e.inclusionflag = getRandom(ρui

run)
6: if e.inclusionflag is reset then
7: A = A ∪ {e}
8: end if
9: end for

10: Asummary = summarize(A)
11: repeat
12: for all points-to constraints e ∈ P do
13: if e ∈ A then
14: union-find = processU (Asummary)
15: RA = convert(union-find)
16: Rrun = Rrun ∪ RA

17: else
18: Rrun = Rrun ∪ processI(e)
19: end if
20: end for
21: until fixed point
22: end for
23: R = ∩runRrun

24: return R

information.

5.2.4 The Algorithm

The complete randomized analysis for unification-inclusion is given in Algorithm 8. The for

loop at Line 1 is executed N times for N runs of the analysis. The selection step identifies a

points-to constraint as the program entity to be processed. The for loop at Line 4 selects

constraints to be processed using unification with probability ρuirun where run ∈ 1..N and ui

denotes the analysis dimension as unification-inclusion. The function summarize() at Line 10

creates a summary of the selected points-to constraints. For unification-inclusion, it can either

be an identity function or can represent the constraints in an optimized manner in order

to process them faster. The repeat-until loop from Lines 11–21 iteratively computes the

points-to information until a fixed-point. In every iteration, depending upon the selection,

Chapter 5. Sound Randomized Points-to Analysis 89

Algorithm 9 Randomized Context-sensitive Points-to Analysis

Require: program P as a list of functions to be processed
1: for run = 1..N do
2: A = select(P)
3: Asummary = summarize(A)
4: repeat
5: for all functions e ∈ P do
6: if e ∈ A then
7: Rrun = Rrun ∪ compose(process(Asummary))
8: else
9: Rrun = Rrun ∪ process(e)

10: end if
11: end for
12: until fixed-point
13: end for
14: R = ∩Rrun,∀run
15: return R

the constraint is processed using inclusion (Line 18) by function processI() or the summary

information is processed using unification (Line 14) by function processU(). The function

convert() implements the composition rule to convert the points-to information in union-

find data structure to a bitmap as explained in the previous subsection. Finally, at Line 23,

the points-to information from different runs is intersected to get a more precise points-to

information R.

5.3 Randomized Context-sensitivity

In this section, we illustrate how the randomization technique can be applied to context-

sensitivity. The trade-off between precision and analysis time (and memory) gives a solid

use-case for randomizing the context-sensitive analysis. Unlike unification-inclusion where the

processing entity was a points-to constraint, in this case, the processing entity would be a

function signature (or a declaration). The randomized context-sensitive analysis, based on

selection, summarization and composition, is given in Algorithm 9. The functions select(),

summarize() and compose() are given in Algorithm 10.

The selection step selects a set of functions to be processed in a context-insensitive manner

and groups them into a set. The summarization step adds copy edges from actual arguments

of the callers to the corresponding formal arguments of all the selected functions. It also adds

Chapter 5. Sound Randomized Points-to Analysis 90

Algorithm 10 Selection, Summarization and Composition for Randomized Context-sensitivity

function select(P) {
for all functions e ∈ P do

if e.csflag is reset then
A = A ∪ {e}

end if
end for
return A
}

function summarize(A) {
for all functions e ∈ A do

for all callers c of e do
for all actual-formal argument pairs (aa, fa) do

add copy edge from aa to fa
end for
for all return value pairs (ar, fr) do

add copy edge from fr to ar
end for

end for
end for
return A
}

function compose(R) {
for all functions e ∈ A do

Re = points-to information of e out of R
for all points-to facts r ∈ Re do

r ⊢ re

end for
end for
return R

}

copy edges from the formal return values of the callee to the actual return values of the caller.

Note that this merges information across callers and makes the analysis context-insensitive.

The composition simply tags (represented as ⊢) all the points-to information computed in each

of the selected functions e with a context information of “e” alone. This means the calling

context is ignored and only the current context “e” is available to the callees of e. The context-

sensitive analysis may make use of any mechanism to process functions (summary based [35]

or cloning based [129, 75] etc.).

Summarization has the effect of merging various nodes in an invocation graph. The merged

nodes correspond to the functions processed in a context-insensitive manner. Merging reduces

Chapter 5. Sound Randomized Points-to Analysis 91

(a) (b)

main

f f

g ggg

main

f

gg

Figure 5.2: Context-sensitivity (a) Original invocation graph (b) Modified invocation graph
with function f summarized

g(type *d) {

}

f(type *a, type *b) {
 4: if (...) {
 5: a.f = b;
 6: a = &x;
 } else {
 7: p = &a;
 8: c.f2 = *p;
 }

main() {
 1: f(&x, &y);
 2: f(&z, &w);
 3:
}

 9: g(&z);
10: g(&y);
}

Figure 5.3: Example to illustrate randomized context-sensitivity

the invocation graph size and thus the processing complexity. Figure 5.2 pictorially shows the

effect of summarization on an invocation graph.

Example 5.1. Consider the program fragment shown in Figure 5.3. The program’s main

function calls function f twice with different parameters. The function f has a branch using

if-else construct followed by two calls to function g with different parameters. The function

g is empty.

The points-to information computed by a context-insensitive (also, flow-insensitive and

field-insensitive) analysis for the above program is:

RCI = [a → {x, z, y, w}, b → {y, w}, c → {x, z, y, w}, p → {a}, d → {y, z}]

The points-to information computed by a context-sensitive (but, flow-insensitive and field-

insensitive) analysis is as below.

RCS = [

along 1− 9 : a → {x, y}, b → {y}, c → {x, y}, d → {z}, p → {a}

along 2− 9 : a → {x, z, w}, b → {w}, c → {x, z, w}, d → {z}, p → {a}

along 1− 10 : a → {x, y}, b → {y}, c → {x, y}, d → {y}, p → {a}

Chapter 5. Sound Randomized Points-to Analysis 92

along 2− 10 : a → {x, z, w}, b → {w}, c → {x, z, w}, d → {y}, p → {a}

]

Let function f be selected by the randomized analysis to be processed in a context-insensitive

manner. Figure 5.2 pictorially shows the effect of summarization on the invocation graph of

this example program. Note that compared to four contexts in a context-sensitive analysis

(number of paths in the invocation graph of Figure 5.2(a)), our randomized context-sensitive

analysis contains only two contexts (number of paths in the invocation graph of Figure 5.2(b)).

The merging of contexts invokes merging of the points-to information across the calls at labels

1 and 2. Thus, the pointees x and z are added to the points-to set of argument a of function

f. Similarly, the pointees y and w are added to the points-to set of argument b of function f.

However, since function g is processed in a context-sensitive manner, the argument d continues

to have different points-to information across the two calls to itself from function f. After

applying Algorithm 9 specialized with Algorithm 10, we get

RrandomCS = [

along 1− 9, 2− 9 : a → {x, y, z, w}, b → {y, w}, c → {x, y, z, w}, d → {z}, p → {a}

along 1− 10, 2− 10 : a → {x, y, z, w}, b → {y, w}, c → {x, y, z, w}, d → {y}, p → {a}

]

Note that RCS ⊆ RrandomCS ⊆ RCI. Thus, the precision of the randomized context-sensitive

points-to analysis is between those of the deterministic context-insensitive and deterministic

context-sensitive analyses.

5.4 Soundness

In this section we prove that our randomized context-sensitive analysis is sound. For proving

soundness, it is sufficient to prove that it computes points-to information which is a superset

of that computed by Andersen’s analysis (extended for context-sensitivity). In other words, we

need to prove that if RCS is the points-to information computed by context-sensitive Andersen’s

analysis CS, RrandomCS is the points-to information computed by randomized context-sensitive

analysis randomCS, and r is a points-to fact, then r ∈ RCS =⇒ r ∈ RrandomCS.

The proof is based on the soundness of the summarization and the composition steps which

we prove next. Summarization is sound if the points-to information computed by summarizing

Chapter 5. Sound Randomized Points-to Analysis 93

a set of functions in the input program is a superset of that computed by a context-sensitive

analysis of any context-length. Composition is sound if composing points-to information results

in over-approximating it, i.e., the composed points-to information is a superset of that computed

by a context-sensitive analysis of any context-length.

Lemma 5.1. The function summarize() is sound.

Proof. We assume that CS is k-context-sensitive, i.e., it uses the last k callers in the call-chain

of a function f to determine f’s context, and k ≥ 0. We make use of the fact that for two values

k′ and k′′ of k, the following holds.

k′ ≥ k′′ =⇒ Rk′ ⊆ Rk′′ (5.7)

Thus, as the value of k reduces, the context-sensitive points-to information computed goes

on increasing. This is because by reducing the context-length, the analysis is able to differentiate

between a smaller number of contexts, which results in the merging of context information

beyond k callers of a function. This merging is similar to the one described in Figure 5.2. As

a special case, for k = 0, the information from all the contexts for a function gets merged and

is essentially the one computed by an interprocedural context-insensitive points-to analysis.

Thus,

R0 = RCI (5.8)

The function summarize() in Algorithm 10 adds copy edges between the formal and actual

arguments and return values for all the callers of a function. This merges the points-to infor-

mation across all the callers without distinguishing between contexts. Therefore, the points-to

information computed by summarization (for the selected set of functions) is the same as that

computed by a context-insensitive analysis for the set of functions.

Rsummarize = RCI (5.9)

From Equations 5.8 and 5.9, we get

Rsummarize = R0 (5.10)

Chapter 5. Sound Randomized Points-to Analysis 94

From Equations 5.7 and 5.10, we get

Rk′ ⊆ Rsummarize (5.11)

In other words, the points-to information computed by summarizing the select set of func-

tions is always a superset of that computed by a context-sensitive analysis of any context-length.

This proves the claim.

Lemma 5.2. The function compose() is sound.

Proof. The function compose() in Algorithm 10 simply specializes each of the context-insensitive

points-to facts with a zero-length context, i.e., it simply instantiates the context information

for a points-to fact to contain a zero-length context. From Equations 5.8, since the context-

insensitive points-to information is the same as the context-sensitive points-to information

with a zero-length context, the specialization operation does not result in a loss of information.

Therefore, composition is sound.

While Lemmas 5.1 and 5.2 show that the soundness is preserved for the function calls, the

soundness of the points-to information computation and propagation is still not proved. We

prove that next.

Theorem 5.3. Algorithm 9 computes a sound points-to information.

Proof. We prove that for any points-to fact r, r ∈ RCS =⇒ r ∈ RrandomCS. For the sake of

contradiction, assume that r ∈ RCS and r /∈ RrandomCS, i.e., the points-to fact is computed by

Andersen’s analysis but is not computed by the randomized context-sensitive analysis. Since

summarization and composition do not result in any loss of information (from Lemmas 5.1

and 5.2), the only possibility is that r is not computed by the function process() in Algo-

rithm 9. However, the implementation of the process() function remains the same in CS and

in randomCS. This means r does not computed by process() due to another points-to fact

r′, on which the computation of r depends, but r′ is missing from the computed points-to

information RrandomCS. Using the same argument for r′ as that for r, let r′′ be the points-

to fact on which r′ depends and which is missing from RrandomCS. Continuing the argument,

let r be the first points-to fact that does not depend upon any other points-to fact for its

Chapter 5. Sound Randomized Points-to Analysis 95

computation, but is missing from the computed points-to information RrandomCS. The only non-

dependent facts in points-to analysis are those computed by address-of constraints (p = &q).

However, whether present in aggregate A or not, i.e., whether processed in a context-insensitive

manner or not, each address-of constraint computes the same points-to information. Thus,

RaddressofCS = RaddressofrandomCS .

Since, all the points-to facts r are computed in the randomized analysis, the only other way

a fact r, r′ or r′′ is not computed by randomCS is because the program functions, the processing

of which generates r and r, say, fr and fr, are in different partitions, and the information is

not getting propagated from one partition to another. Recall that the functions in one parti-

tion, referred to as A, are processed in a context-insensitive manner, while those in the other

partition are processed in a context-sensitive manner. Based on this, we have two cases.

Case 1: fr ∈ A and fr /∈ A.

Since fr ∈ A, it gets processed in a context-insensitive manner. From Lemma 5.1, Rfr ⊇ RfCS ,

i.e., processing the function in a context-insensitive manner, using function process() in Line 7

of Algorithm 9 generates at least the information as computed by processing the function in

a context-sensitive manner. Therefore, the only way the points-to fact r does not get propa-

gated to the other partition (via Rrun) is if the function compose() drops it. However, from

Lemma 5.2, the composition does not lose any information. Thus, r gets added to Rrun on

Line 7 of Algorithm 9, which is eventually (in a later iteration) available to the other partition

in Line 9. The function process() on Line 9 will then compute the dependent points-to fact

r.

Case 2: fr /∈ A and fr ∈ A.

Since fr /∈ A, the function gets processed in a context-sensitive manner similar to CS. Once

the fact r is computed, it is added to Rrun in Line 9 of Algorithm 9. Eventually, in a later

iteration, the points-to fact is made available to the other partition A. Since the points-to fact

r is present, its dependent points-to facts are computed by function process() on Line 7.

By Lemma 5.1 and 5.2, the number of points-to facts computed by randomCS may be more

than that computed by CS. However, all the facts r computed by CS are definitely computed by

randomCS. Therefore, the information propagates successfully across partitions in this case also.

Chapter 5. Sound Randomized Points-to Analysis 96

Generalizing the above two cases for any points-to fact r, we conclude the following.

r ∈ RCS =⇒ r ∈ RrandomCS

This proves the soundness of Algorithm 9.

5.4.1 Remark

With the soundness guarantee, one may be tempted to view the technique as an application of

Las Vegas randomization [21]. A Las Vegas algorithm, unlike a Monte Carlo algorithm [21], is

a randomized algorithm which is guaranteed to give a correct (i.e., sound) result. However, it

should be noted that a Las Vegas randomized algorithm may explore the complete search space

(even if exponential) for reaching a sound result and, in the worst case, may degenerate to a

deterministic behavior. In contrast, our technique is solely guided by the probability ρadrun of the

analysis dimension and will not behave in a deterministic fashion unless explicitly specified (by

making ρadrun = 1. More importantly, irrespective of the degree of randomization, our technique

always guarantees a sound result.

5.5 Experimental Evaluation

As before, we evaluate our approach using 16 SPEC 2000 C/C++ benchmarks and five large

open source programs, namely httpd, sendmail, ghostscript, gdb and wine-server. We use LLVM

framework [81] for all our experiments (refer to the block diagram in Figure 4.5 in Chapter 4).

All the experiments are carried out on the same platform, with an Intel Xeon machine with 2

GHz clock, 4 MB L2 cache and 4 GB RAM.

Our randomized analysis stores points-to information in sparse bitmaps. The baseline

approach uses Andersen’s points-to analysis [3]. It also performs optimizations like offline vari-

able substitution [108] and online cycle elimination [34]. We show the effect of our randomized

approach specifically for context-sensitive analysis which poses major challenge in terms of

scalability for large programs. Our empirical results also reveal that the randomized approach

does not yield significant benefits for other analysis dimensions, for which the analysis times are

Chapter 5. Sound Randomized Points-to Analysis 97

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

gc
c

pe
rlb

m
k

vo
rt

ex
eo

n
pa

rs
er

ga
p

vp
r

cr
af

ty
m

es
a

am
m

p
tw

ol
f

gz
ip

bz
ip

2
m

cf
eq

ua
ke ar

t
ht

tp
d

se
nd

m
ai

l
gh

os
ts

cr
ip

t
gd

b
w

in
e-

se
rv

er
av

er
ag

e

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

pr
ec

is
io

n
lo

ss

no
rm

al
iz

ed
 ti

m
e

benchmarks

configuration = 0.6x8

precision loss
normalized time

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

gc
c

pe
rlb

m
k

vo
rt

ex
eo

n
pa

rs
er

ga
p

vp
r

cr
af

ty
m

es
a

am
m

p
tw

ol
f

gz
ip

bz
ip

2
m

cf
eq

ua
ke ar

t
ht

tp
d

se
nd

m
ai

l
gh

os
ts

cr
ip

t
gd

b
w

in
e-

se
rv

er
av

er
ag

e

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

pr
ec

is
io

n
lo

ss

no
rm

al
iz

ed
 ti

m
e

benchmarks

configuration = 0.8x2

precision loss
normalized time

Figure 5.4: Effect of two representative configurations

already very small (see Section 5.6). Hence we focus on context-sensitive, flow-insensitive, field-

insensitive analysis in this section. Context-sensitivity is implemented as an invocation-graph

based approach as detailed in Section 4.4 (Chapter 6).

5.5.1 Overall Effect of Representative Configurations

We first illustrate the effect of two representative configurations on each benchmark. The

configurations are: (i) selection probability ρ = 0.6, number of runs N = 8 represented as ‘0.6x8’

and (ii) selection probability ρ = 0.8, number of runs N = 2 represented as ’0.8x2’. Figure 5.4

shows the results for these two configurations. Left y-axis represents the precision loss while

Chapter 5. Sound Randomized Points-to Analysis 98

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0x
1

0.
5x

1
0.

2x
16

0.
2x

10
0.

6x
1

0.
3x

4
0.

4x
2

0.
7x

1
0.

3x
8

0.
8x

1
0.

5x
2

0.
3x

10
0.

4x
4

0.
9x

1
0.

6x
2

0.
3x

16
0.

4x
8

0.
5x

4
0.

7x
2

0.
6x

4
0.

4x
10

0.
4x

16
0.

5x
8

0.
5x

10
0.

7x
4

0.
6x

8
0.

5x
16

0.
6x

10
0.

8x
2

0.
6x

16
0.

7x
10

0.
7x

8
0.

8x
4

0.
9x

2
0.

7x
16

0.
8x

8
0.

8x
10 1x
1

 0

 0.2

 0.4

 0.6

 0.8

 1

av
er

ag
e

pr
ec

is
io

n
lo

ss

no
rm

al
iz

ed
 ti

m
e

probability x runs

average precision loss
normalized time

Figure 5.5: Overall effect across various configurations

right y-axis represents the normalized analysis time. The analysis time is normalized with

respect to that of the most precise analysis, i.e., Andersen’s analysis extended for context-

sensitivity. Precision is defined as the ratio of the size of points-to set (of all pointer variables)

in Andersen’s analysis (extended for context-sensitivity) to that of the randomized approach

for a given configuration. Precision loss is simply 1 - precision. We calculate the normalized

analysis time as the ratio of the analysis time of the randomized approach to the analysis times

of Andersen’s analysis for each benchmark.

We observe that for each of the two configurations, our randomized analysis is almost three

times faster with 20 out of 21 benchmarks being 99% as precise as Andersen’s analysis. This

shows significant reduction in analysis time (by a factor of 3x – 5x) with negligible precision loss.

These two are not the only configurations that exhibit this benefit. After an extensive empirical

evaluation of 54 configurations (ρcsrun ∈ [0.1...0.9] and N ∈ [1, 2, 4, 8, 10, 16]), we identified 36

configurations that give normalized analysis time less than 1. The effect of these configurations

across all benchmarks is shown in Figure 5.5 sorted on precision loss. We plot the average

precision loss (arithmetic mean of precision loss across all benchmarks) and the normalized

analysis time (for all the benchmarks). The normalized analysis time is obtained as the ratio

of the sum of the analysis times for all benchmarks in the randomized approach to that in

Andersen’s method. The labels on x-axis are of the form a x b where a is the probability

of selection ρcsrun and b is the number of times the analysis is run. Thus, for context-sensitive

Chapter 5. Sound Randomized Points-to Analysis 99

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
0.

1x
2

0.
2x

2

0.
3x

2

0.
4x

2

0.
5x

2

0.
6x

2

0.
7x

2

0.
8x

2

0.
9x

2

 0

 0.2

 0.4

 0.6

 0.8

 1

pr
ec

is
io

n
lo

ss

no
rm

al
iz

ed
 ti

m
e

probability x runs

runs = 2

precision loss
normalized time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.
1x

4

0.
2x

4

0.
3x

4

0.
4x

4

0.
5x

4

0.
6x

4

0.
7x

4

0.
8x

4

0.
9x

4

 0

 0.2

 0.4

 0.6

 0.8

 1

pr
ec

is
io

n
lo

ss

no
rm

al
iz

ed
 ti

m
e

probability x runs

runs = 4

precision loss
normalized time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.
1x

8

0.
2x

8

0.
3x

8

0.
4x

8

0.
5x

8

0.
6x

8

0.
7x

8

0.
8x

8

0.
9x

8

 0

 0.2

 0.4

 0.6

 0.8

 1

pr
ec

is
io

n
lo

ss

no
rm

al
iz

ed
 ti

m
e

probability x runs

runs = 8

precision loss
normalized time

Figure 5.6: Effect of selection probability ρ

randomized analysis, 0x1 represents completely context-insensitive analysis while 1x1 represents

a context-sensitive analysis. We observe that for several configurations, the randomized analysis

requires normalized analysis time of less than 0.3, while still achieving an average precision loss

less than 5%.

5.5.2 Effect of Selection Probability

Next we evaluate the impact of configuration parameters. Figure 5.6 shows the result of

varying selection probability ρcsN for 2, 4, 8 runs. The graph shows a single line representing

the normalized analysis time on the right y-axis and the precision loss on the left y-axis as a

box plot with five values: minimum, 25th percentile, average, 75th percentile and maximum.

We observe that with the increase in the selection probability, average precision improves

significantly. While configurations with low selection probability (ρcs < 0.3) result in very

high precision loss (≥ 30%), configurations with ρcs ≥ 0.5 achieve an average precision loss of

Chapter 5. Sound Randomized Points-to Analysis 100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
0.

4x
1

0.
4x

2

0.
4x

4

0.
4x

8

0.
4x

10

0.
4x

16
 0

 0.05

 0.1

 0.15

 0.2

pr
ec

is
io

n
lo

ss

no
rm

al
iz

ed
 ti

m
e

probability x runs

probability = 0.4

precision loss
normalized time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.
6x

1

0.
6x

2

0.
6x

4

0.
6x

8

0.
6x

10

0.
6x

16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

pr
ec

is
io

n
lo

ss

no
rm

al
iz

ed
 ti

m
e

probability x runs

probability = 0.6

precision loss
normalized time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.
8x

1

0.
8x

2

0.
8x

4

0.
8x

8

0.
8x

10

0.
8x

16

 0

 0.2

 0.4

 0.6

 0.8

 1

pr
ec

is
io

n
lo

ss

no
rm

al
iz

ed
 ti

m
e

probability x runs

probability = 0.8

precision loss
normalized time

Figure 5.7: Effect of number of runs N

less than 5%, while the normalized analysis time remains less than 0.2. Specifically, for the

configuration 0.7x4, the average and maximum precision loss are 0.3% and 0.8% respectively,

while the normalized analysis time is 0.2. The configurations 0.6x8 and 0.7x8 achieve very

high precision with normalized analysis times less than 0.4. When the number of runs is

increased to 8, the normalized analysis time increases beyond 1 for selection probability above

0.8. However, there are several combinations of the selection probability and the number of

runs that achieve an average precision loss of less than 2% with the analysis time ranging from

0.2 – 0.5 times that of the baseline Andersen’s analysis. These combinations are the ones that

form the configuration sweet spots which would prove beneficial to the clients that can afford

to trade off a small amount of precision for a large improvement in analysis time.

Chapter 5. Sound Randomized Points-to Analysis 101

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35
0.

4x
4

0.
4x

8

0.
5x

4

0.
6x

4

0.
4x

10

0.
5x

8

0.
5x

10

0.
6x

8

0.
6x

10

0.
7x

4

0.
6x

16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

pr
ec

is
io

n
lo

ss

no
rm

al
iz

ed
 ti

m
e

probability x runs

wine-server

precision loss
normalized time

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

0.
5x

10

0.
6x

8

0.
5x

8

0.
7x

4

0.
6x

8

0.
4x

4

0.
6x

4

0.
6x

10

0.
4x

10

0.
4x

8

0.
5x

4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

pr
ec

is
io

n
lo

ss

no
rm

al
iz

ed
 ti

m
e

probability x runs

equake

precision loss
normalized time

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

0.
4x

4

0.
7x

4

0.
6x

8

0.
4x

10

0.
5x

4

0.
6x

8

0.
6x

10

0.
5x

8

0.
6x

4

0.
4x

8

0.
5x

10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

pr
ec

is
io

n
lo

ss

no
rm

al
iz

ed
 ti

m
e

probability x runs

ammp

precision loss
normalized time

Figure 5.8: Effect of some configurations over programs with high precision loss

5.5.3 Effect of Number of Runs

Figure 5.7 shows the effect of varying the number of runs N for a fixed ρcsrun where ρcsrun ∈ [0.4, 0.6, 0.8].

Note that scales of the right y-axis differ across the plots. For a given probability, increasing

N improves precision with a linear increase in analysis time. These results also reveal some

interesting configurations that achieve a very precise analysis (with an average precision loss

of 0.05) with significant reduction in analysis time (greater than 70%).

5.5.4 Benchmarks with High Precision Loss

The box plots in Figure 5.6 and 5.7 show that while the average precision loss is very low

for most of the configurations, the maximum precision loss and the last quartile are relatively

higher. This means that 25% of the benchmarks, i.e., 5 out of 21, still incur a precision loss of

1 – 10% for some of the good configurations (e.g., 0.5x8, 0.7x4, etc.) and 1 – 2% for some very

good configurations (e.g., 0.6x8, 0.7x8, etc.). We investigate these benchmarks in this section.

Chapter 5. Sound Randomized Points-to Analysis 102

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0x
1

0.
5x

1
0.

2x
16

0.
2x

10 k1
0.

3x
4

0.
4x

2
0.

7x
1

0.
3x

8
0.

8x
1

0.
5x

2
0.

3x
10

0.
4x

4 k2
0.

6x
2

0.
3x

16
0.

4x
8 k3

0.
7x

2
0.

6x
4

0.
4x

10
0.

4x
16 k4

0.
5x

10
0.

7x
4

0.
6x

8
0.

5x
16

0.
6x

10
0.

8x
2

0.
6x

16
0.

7x
10

0.
7x

8
0.

8x
4 k5

0.
7x

16
0.

8x
8

0.
8x

10 1x
1

 0

 0.2

 0.4

 0.6

 0.8

 1

av
er

ag
e

pr
ec

is
io

n
lo

ss

no
rm

al
iz

ed
 ti

m
e

probability x runs

average precision loss
normalized time

precision loss for k-cs
normalized time for k-cs

Figure 5.9: Randomized versus k -context-sensitive analysis

To analyze such programs, we study the effect of a few configurations over three benchmarks

that have a higher precision loss, namely, wine-server, equake and ammp. The results are

given in Figure 5.8. We observe, for wine-server, that there exist configurations (like 0.7x4

and 0.6x16) that provide a precision loss of less than 1% with normalized analysis time less

than 0.4. Thus, even for those programs that incur a high precision loss in one configuration,

there are configurations for randomized approach that achieve very high precision but still with

significant reduction in the analysis time. Therefore, it is essential to use a proper configuration

for a given program. We address this issue in Section 5.5.7 by designing an adaptive algorithm

that chooses appropriate configuration in each run to achieve a scalable performance.

5.5.5 Comparison with k-Context-sensitivity

A k -context-sensitive analysis keeps track of last k callers of a function in the call-stack. The

context beyond k callers is ignored. Thus, k = 0 implies a context-insensitive analysis. With

increasing k, the context information tracked also increases which results in a higher analy-

sis precision and usually a higher analysis time. Both randomized context-sensitivity and k -

context-sensitivity can be viewed as merging of nodes in an invocation graph (see Figure 5.2).

However, the difference lies in identification of nodes for the merge operation. In case of k -

context-sensitivity, the nodes beyond k callers are merged irrespective of how much precision

is lost due to merging or irrespective of the non-merged (tracked) nodes offering little precision

Chapter 5. Sound Randomized Points-to Analysis 103

improvement. In contrast, randomized context-sensitivity merges nodes randomly in the invo-

cation graph. It too, does not consider the precision offered by not merging nodes; but being

random, it is not susceptible to a specific configuration that would arbitrarily skew its benefits

in terms of analysis time and precision. In fact, in practice, randomization works much better

than a deterministic k -context-sensitive approach as shown in Figure 5.9. The plot is essen-

tially Figure 5.5 with results of k -context-sensitivity superimposed for k = 1,2,3,4,5, denoted

by k1, k2, k3, k4, k5 respectively. Note that the plot is sorted based on average precision loss

of randomized context-sensitivity results. The precision-loss plot for k -context-sensitivity also

includes the maximum and minimum precision-loss values, and the analysis time for k -context-

sensitivity also shows the 25th and 90th percentile.

We observe that the analysis for k = 1, i.e., the analysis that tracks only one caller, denoted

as k1, requires normalized analysis time of only 0.054. However, it results in 12.6% (maximum

29.2%) precision loss. The precision loss is higher in several benchmarks where a separate

memory allocation wrapper function is used for customized memory or error management

(e.g., gcc, perlbmk, parser, twolf, httpd, sendmail, ghostscript, gdb etc.). The precision loss

reduces considerably with increasing k. However, the normalized analysis time sharply goes

on increasing. k = 2 and 3 offer a nice sweet-spot between analysis time (0.28 and 0.48) and

precision (95% and 98%).

However, randomized context-sensitivity steadily outperforms k -context-sensitivity. Several

configurations (like 0.4x10, 0.6x8, etc.) have less than 1% precision loss with analysis time less

than 0.2. This suggests that merging nodes randomly in an invocation graph achieves higher

benefits than strictly merging callers beyond k levels.

5.5.6 Effect of Mixed Randomization

In our experiments so far, the selection probability ρcsrun was fixed across different runs. However,

as shown in Figures 5.6 and 5.7, although precision improves with the number of runs, the gain

in precision reduces after a few runs. In order to check if a selection probability varying

across runs can lead to lower precision loss without significantly increasing the analysis time

compared to a fixed value of ρcsrun, we study the effect of mixed randomization. For this, we

carefully identify the selection probabilities that together require normalized analysis time less

than 1. Here, a configuration a-b-c-d represents selection probabilities of a, b, c and d

Chapter 5. Sound Randomized Points-to Analysis 104

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

0.
4x

4
0.

4-
0.

4-
0.

4-
0.

2
0.

4-
0.

4-
0.

6-
0.

2
0.

4-
0.

4-
0.

6-
0.

6

0.
5x

4
0.

5-
0.

5-
0.

5-
0.

3
0.

5-
0.

5-
0.

7-
0.

3
0.

5-
0.

5-
0.

7-
0.

7

0.
6x

4
0.

6-
0.

6-
0.

4-
0.

4
0.

6-
0.

6-
0.

6-
0.

4
0.

6-
0.

6-
0.

8-
0.

3
0.

6-
0.

6-
0.

7-
0.

7

0.
7x

3
0.

7-
0.

7-
0.

3
0.

7-
0.

7-
0.

5
0.

7-
0.

7-
0.

8

0.
8x

3
0.

8-
0.

8-
0.

4
0.

8-
0.

8-
0.

6

 0

 0.1

 0.2

 0.3

 0.4

av
er

ag
e

pr
ec

is
io

n
lo

ss

no
rm

al
iz

ed
 ti

m
e

probabilities over runs

average precision loss
normalized time

Figure 5.10: Effect of mixed randomization

in successive runs. We present only those results here that have an average precision loss of

less than 10%. Figure 5.10 shows average precision loss (left y-axis) and analysis time (right

y-axis) for various configurations (x-axis) across all the benchmarks. The configurations are

partitioned according to ρcs1 of the first run where ρcs1 ∈ [0.4− 0.8]. The first bar in each

partition recalls the effect of the relevant configuration with a fixed selection probability. The

rest of the bars in each partition are sorted on precision loss. We observe that in each case,

a mixed configuration gives a nice trade off between analysis time and precision compared to

the corresponding fixed configuration. For instance, the configuration 0.5-0.5-0.7-0.7 reduces

average precision loss from 3% to less than 1% while being more than 6× faster than the exact

context-sensitive analysis.

5.5.7 Adaptive Analysis

Choosing an appropriate selection probability for a run to analyze a given program is a non-

trivial task. It depends upon various program characteristics like number of constraints, number

of contexts, etc. A randomly chosen configuration may take a large amount of time or may

end up being very imprecise. Therefore, we develop an adaptive approach for choosing an

appropriate amount of randomization beyond two runs. The idea is to start with a selection

probability that in general gives a good trade-off between analysis time and precision. After

Chapter 5. Sound Randomized Points-to Analysis 105

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

0.
4x

4

0.
4-

-

0.
4=

=

0.
5x

4

0.
5-

-

0.
5=

=

0.
6x

4

0.
6-

-

0.
6=

=

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

pr
ec

is
io

n
lo

ss

no
rm

al
iz

ed
 ti

m
e

configuration / starting probability

precision loss
normalized time

Figure 5.11: Adaptive analysis

two runs, depending upon the change in the points-to information, the next selection prob-

ability is calculated. This process is repeated in the succeeding runs. The initial two runs

have the same selection probability ρcs1,2 ∈ [0.4, 0.5, 0.6, 0.7, 0.8]. If the amount of points-to

information changes by more than thresholdmax%, then the randomized approach continues

with the same selection probability. If the amount of points-to information changes by less

than thresholdmin%, then it shows that having another run will not change a lot of points-to

information and we stop the analysis (note that the soundness is not compromised). We em-

pirically set thresholdmax and thresholdmin to 20% and 2% respectively. When the amount of

points-to information changes between the two thresholds, we have two options (represented,

for example, as 0.4af and 0.4av respectively): (i) increase the selection probability with a fixed

amount, say 0.1. (ii) increase the selection probability with a variable amount proportional

to the changed points-to information (e.g., increase by 0.07 for 18% change whereas increase

by 0.04 for 5% change). Figure 5.11 shows the results averaged over all the benchmarks after

implementing the above two options, along with the corresponding result for a fixed selec-

tion probability for all the runs represented, for example, as 0.4x4. The graph is once again

partitioned according to the initial selection probability. We observe that both the adaptive

versions improve upon the precision. For instance, for the starting selection probability of 0.4,

the precision loss reduces by around 15% and 55% for the two adaptive versions. Note that the

selection probabilities in the second run onwards may differ across benchmarks. Similar to the

Chapter 5. Sound Randomized Points-to Analysis 106

mixed randomization, adaptive analysis reveals several interesting configurations which can be

used to trade off analysis time versus precision. The configuration 0.8x2 changes less than 2%

information in the second run, and hence the adaptive analysis stops after two iterations, but

still achieves an average precision loss less than 1%.

5.6 Other Analysis Dimensions

In this section we discuss how our randomization technique can be applied to other analysis

dimensions. Specifically, we discuss randomized flow-sensitive points-to analysis and random-

ized field-sensitive points-to analysis. In each case, appropriate selection, summarization and

composition operations need to be modeled. For flow-sensitivity, the selection step selects ba-

sic blocks that are to be processed in a less precise way, i.e., in a flow-insensitive manner and

groups them in an aggregate A. The summarization step updates the incoming and the outgo-

ing edges for such basic blocks to come to and go out of A. The composition steps specializes

the computed flow-insensitive points-to information to become flow-sensitive, i.e., it tags the

information as that computed at A.

For randomizing field-sensitivity, the selection step selects statements with field-accesses to

be processed in a field-insensitive manner. The summarization step rewrites all field-accesses

to be to the aggregate. The composition step is empty as aggregate accesses are considered

valid in a field-sensitive analysis.

It is possible to randomize multiple analysis dimensions simultaneously. For instance, a

randomized context-sensitive, field-sensitive analysis may choose a set of program functions to

be processed in a context-insensitive manner and, at the same time, may choose to process

certain field-accesses in a field-insensitive manner.

5.7 Related Work

We presented a bloom-filter based points-to analysis in Chapter 4 and a randomized points-to

analysis in this chapter. Both the methods provide a mechanism to alter their configuration

parameters to achieve a trade-off between precision and analysis time. A few analyses [117,

49, 46] provide such a trade off. For instance, Hardekopf and Lin [49] propose eager, lazy

and hybrid cycle detection. Depending upon the frequency of cycle detection, the gain in the

Chapter 5. Sound Randomized Points-to Analysis 107

analysis time by collapsing cycles is traded off for the overhead of cycle detection. Guyer and

Lin [46] propose a client-driven pointer analysis that adjusts precision according to the client

needs.

The work by Shapiro and Horwitz [117] is very close to our work on randomized analysis.

It proposes an algorithm based on multiple out-degrees for the nodes in the points-to graph

(instead of unity as in Steensgaard’s analysis [123]), so that the precision and the analysis time

can be tuned between those of Steensgaard’s analysis [123] and Andersen’s analysis [3]. The

work also involves multiple runs to compose the results of various runs. However, the work

is illustrated specifically for flow-insensitive, context-insensitive and field-insensitive analysis.

In contrast, we illustrate how our technique can be applied to various analysis dimensions.

Further, randomization forms the basis of our technique, whereas the approximation in their

work is either client-driven or based on heuristics, and does not involve any randomization.

The work on program decomposition [138, 110] has some resemblance to our randomization

technique. Program decomposition involves analyzing a program to create groups of program

elements (say statements) such that a different kind of analysis could be run on each of them. It

is based on the assumption of skewness in typical programs wherein a small part of a program

adds a large number of data flow facts. In contrast, our randomization technique does not

depend upon the skewness. Further, program decomposition can be applied in a complementary

manner to identify the set of program elements to be processed with a different precision level.

This would add some determinism to our technique.

The work on combined analysis [139] is similar in spirit to our work, although it involves no

randomization. It requires an equivalence relation on the program names to partition variables.

Each program segment induced by the equivalence relation is then analyzed with a different

alias analysis. Our technique is more general and does not require an equivalence relation using

decomposition.

To the best of our knowledge, ours is the first work on sound randomized points-to analysis.

5.8 Chapter Summary

A randomized algorithm is typically simpler than its deterministic counterpart and achieves a

good result in substantially less amount of time. However, typical randomized algorithms for

Chapter 5. Sound Randomized Points-to Analysis 108

program analysis often compromise the analysis soundness. This also reduces the applicability

of such analyses. For instance, randomization has been mainly used only in testing and pro-

gram debugging. We proposed a sound randomized technique to scale pointer analysis in this

chapter. Our method selectively applies different kinds of analyses on different partitions of

the program entities to be processed and then composes the results carefully to get a sound

approximation to the points-to solution. We illustrated the technique to develop a randomized

context-sensitive points-to analysis. Our empirical evaluation using a set of 21 benchmarks

revealed several configurations that achieve less than 5% precision loss with over 50% reduc-

tion in context-sensitive analysis time. Based on our analysis of the results, we developed an

adaptive randomized points-to analysis which can be used for a program for which the right

configuration is unknown. We hope that the technique would prove useful to other program

analyses.

Chapter 6

Points-to Analysis as a System of

Linear Equations

6.1 Introduction

In order to achieve scalability, one way is to formulate the points-to analysis problem P into

a well-studied problem Q, solve Q using the most efficient methods available in literature and

map the solution of Q back to the solution of P. If the conversions between P and Q can be

done efficiently, then we can hope for an overall efficient solution for points-to analysis.

With this high-level picture in mind, we observe that finding a flow-insensitive solution of

points-to constraints in an iterative manner is similar in spirit to obtaining a solution to a

system of linear equations. Each equation defines a constraint on the feasible solution and a

linear solver progressively approaches the final solution in an iterative manner. Similarly, every

points-to statement forms a constraint on the feasible points-to information and every iteration

of a points-to analysis refines the points-to information obtained over the previous iteration.

We exploit this similarity to map the input source program to a set of linear constraints,

solve it using a standard linear equation solver and unmap the results to obtain the points-

to information. As we show in the next section, a naive approach of converting points-to

statements into a linear form faces several challenges due to (i) the distinction between ℓ-

value and r-value in points-to statements, (ii) multiple dereferences of a pointer and (iii) the

same variable being defined in multiple statements. We address these challenges with novel

mechanisms based on prime factorization of integers.

109

Chapter 6. Points-to Analysis as a System of Linear Equations 110

a = &y
p = &a
b = *p
c = b

a = y − 1
p = a − 1
b = p + 1
c = b

 0 −1 1 0 0 a −1
 −1 1 0 0 0 y −1

 c
 0 0 0−1 1 b 0
 0 0 −1 1 0 p = 1

(a) (b) (c)

Figure 6.1: Example to illustrate points-to analysis as a system of linear equations

In the following section, we describe a simple method to convert a set of points-to state-

ments into a set of linear equations. Using it as a baseline, we discuss several challenges such

a method poses. Consequently, in Section 6.3, we introduce our novel transformation that ad-

dresses all the discussed issues and present our points-to analysis algorithm in Section 6.4. We

prove the soundness and precision of the algorithm in Section 6.5. We describe how our novel

representation of points-to information can improve client analyses in Section 6.6. Finally, in

Section 6.7, we demonstrate the scalability promise in our technique by running our analysis

on our benchmark suite consisting of SPEC 2000 benchmarks and five large open source pro-

grams, namely, httpd, sendmail, ghostscript, gdb and wine-server. We discuss related work in

Section 6.8. We conclude the chapter with a summary in Section 6.9.

6.2 Naive Approach

In this section, we develop a simple transformation to convert points-to constraints into linear

equations and explain its limitations.

Consider the set of C statements given in Figure 6.1(a). Let us define a transformation that

translates &x into (x− 1), *x to (x + k), **x to (x + 2k), etc., and ∗nx into x + nk, where

n is the number of ’∗’s used in dereferencing. If we choose k = 1 then *x is translated to (x

+ 1), **x to (x + 2) and so on. A singleton variable without any operations is copied as it

is, thus, x translates to x. The transformed program with k = 1 now looks like Figure 6.1(b).

This becomes a simple linear system of equations that can be written in matrix form AX = B

as shown in Figure 6.1(c).

This small example illustrates several interesting aspects. First, the choices of transfor-

mation functions for ’∗’ and ’&’ are not independent, because ’∗’ and ’&’ are complementary

Chapter 6. Points-to Analysis as a System of Linear Equations 111

operations by language semantics, which should be carried to the linear transformation. Sec-

ond, selecting k = 0 is not a good choice because we lose information regarding the address-of

and dereference operations, resulting in loss of precision in the analysis. Third, every row in

matrix A has at most two non-zero elements, i.e., every equation has at most two unknowns.

All the entries in matrices A and B are 0, 1 or −1.

Solving the above linear system using a solver yields the following parameterized result:

y = r, a = r− 1, p = r− 2, b = r− 1, c = r− 1.

From the result, we can quickly conclude that a, b and c are aliases because they have the

same value. Further, since the value of p is one smaller than that of a, we say that p points to

a, and in the same manner, a points to y. This conclusion is derived due to our transformation

of a dereference ∗x as x + 1.

Andersen’s analysis [3] over our example program in Figure 6.1(a) gives the following points-

to information.

y → {}, a → {y}, p → {a}, b → {y}, c → {y}

We see that our naive analysis of the example using a linear solver as explained above

computes all the points-to information obtained using Andersen’s analysis. Thus, for this

example, the linear solver method gives a safe solution.

6.2.1 Issues

The naive transformation illustrated above suffers from the following issues.

Imprecision in the analysis. Note that our naive solver added a few spurious points-to

pairs. Specifically, because p is one smaller than that of b as well as c, the following facts

are also derivable from the result: p → {b, c}. This means that our naive approach, although

sound, computes an over-approximation of the information computed by Andersen’s analysis

[3]. Therefore, the first-cut approach described above gives an imprecise result.

Cyclic dependences. The naive method illustrated above can handle cyclic dependences for

a type-safe language. For instance, a set of statements like a = b; b = c; c = a can be easily

transformed into a linear system. However, it cannot handle cyclic dependences that do not

respect type-safety. For instance, a set of statements a = &b; b = c; c = &a generates a system

Chapter 6. Points-to Analysis as a System of Linear Equations 112

of equations that does not have any solution. A minimal example of such a weakly-typed cyclic

dependence is a = &a. Being a type-unsafe language, C allows coercions of this form. Our

naive method would transform such a statement into the equation a = a− 1 which does not

have a solution.

More formally, each equation in the system of equations transformed using the naive

method is of the form ai − aj = bij where bij ∈ {0, 1,−1}. We can build a constraint graph1

G = (V, E, w) where

V = {a1, ..., an} ∪ {a0}, w(ai, aj) = bij, w(a0, ai) = 0 and

E = {(ai, aj) : ai − aj = bij is a constraint}∪{(a0, a1), ..., (a0, an)}.

The above linear system has a feasible solution iff the corresponding constraint graph has no

cycle with negative weight [21]. A negative cycle corresponds to a type-unsafe situation. For

instance, the type-unsafe sequence of statements a = &b; b = c; c = &a generates a negative

weight cycle when tranformed into a linear system as shown above. However, a linear solver

would not output any solution for a system with such a cycle. Our modified algorithm (pre-

sented below) uses appropriate variable renaming that allows a standard linear solver to solve

such equations.

Inconsistent equations. The above naive approach also fails for multiple assignments to

the same variable. For instance, a = &x; a = &y is a valid program fragment. However,

a = x− 1, a = y− 1 does not form a consistent equation system unless x = y. This issue is

addressed in the context of bug-finding by Ganapathy et al. [39]. However, since they [39]

allowed false positives as well as false negatives, the approach taken was to progressively find

and remove irreducibly inconsistent sets (IIS) in order to obtain a feasible solution which can

then be solved using a linear solver. However, since we want our static points-to analysis to be

safe, we cannot afford our algorithm to generate false negatives. Therefore, we cannot simply

find an IIS out of the inconsistent points-to equations and solve them.

One way of handling inconsistent equations is to assume that all the variables involved in

more than one assignment point to a universal set of pointees. This would make the system

feasible but at the cost of precision.

Yet another way to solve the issue is to convert the program into Static Single Assignment

1Note that this constraint graph is different from the one defined in Section 2.5.

Chapter 6. Points-to Analysis as a System of Linear Equations 113

(SSA)[52] form which would guarantee single assignment to each variable (although it would

not guarantee feasibility of the solution). However, the same issue resurfaces when we consider

the same set of assignment across multiple iterations of the analysis. For instance, if we convert

a = x and a = y into SSA form to get a1 = x and a2 = y, at the end of the first iteration both

a1 and a2 would have some value computed which needs to be carried forward in the second

iteration. However, that cannot be done because doing so can result into an inconsistent set

of equations (across iterations) if the points-to sets of x and y have changed, in which case,

it would be different instantiations of x and y. Therefore, we need a mechanism which is an

extension of SSA that works across multiple iterations. Our solution works irrespective of

whether the program is in SSA form or not.

Nonlinear system of equations. One way to handle inconsistent equations is to multiply the

constraints having the same unknown to generate a non-linear set of equations. Thus, a = &x

and a = &y would generate a non-linear constraint (a− x + 1)(a− y + 1) = 0. The above non-

linear equation defines a second order curve that has zeros at (x− 1) and (y− 1), defining the

points-to set of a. Adding another pointee to a increases the degree of the curve and has an

additional zero. The set of all zeros for all curves defines the feasible region (actually, a set of

discrete points) of the set of equations. The solution to the system would be the minimal set

of zeros obtained using the non-linear constraints which would be calculated using an iterative

analysis until a fixed-point over zeros is reached. However, non-linear analysis is often more

expensive than a linear analysis. Further, maintaining integral solutions across iterations using

standard techniques is a difficult task.

As shown in the next section, it is possible to take care of inconsistent equations without

disturbing the linearity of the system.

Equations versus inequations. The inclusion-based analysis semantics for a points-to state-

ment a = b imply points-to-set(a) ⊇ points-to-set(b). Transforming the statement into an

equality a− b = 0 instead of an inequality can be imprecise, as equality in mathematics is

bidirectional. Thus, in mathematics, a = b also implies b = a, which is not the case according

to the inclusion-based analysis semantics. In fact, that is the semantics of a unification-based

Chapter 6. Points-to Analysis as a System of Linear Equations 114

analysis. For inclusion-based analysis, we need to transform a statement a = b into an in-

equality constraint a− b ≥ 0. It is easy to verify, however, that if a set of linear constraints

contains each ℓ-value exactly once and this holds across iterations of the analysis, the solution

sets obtained using inequalities and equalities would be the same. We exploit this observation

in our algorithm and use linear equalities in our approach.

Dereferencing. As per our first-cut approach, transformations of points-to statements a = &b

and ∗a = b would be a = b− 1 and a + 1 = b respectively. According to the algebraic seman-

tics, the above equations are equivalent, although the two points-to statements have different

semantics. This happens because ∗a is a points-to expression generating an ℓ-value whereas

a + 1 is an algebraic expression generating an r-value. This naive transformation can easily add

spurious points-to information. Further, dereferencing pointer a in a store statement ∗a = b

may generate multiple ℓ-values which cannot be easily captured using a system of equations.

This necessitates one to take care of the store constraints separately. Note that load constraints

of the form a=*b also generate multiple r-values but do not pose an issue for the solver.

6.3 Prime-Factorization Approach

We solve the issues with the above naive approach with a modified mechanism. Our approach

is iterative, and in each iteration, it goes through four major steps, viz., (i) preprocessing, (ii)

solving the linear system of equations, (iii) post-processing and (iv) evaluating store constraints.

A limitation of our approach is that it can handle only upto k levels of dereferencing, for a

fixed k. This is not a serious limitation, as, in practice, programs contain only 3 or 4 levels

of dereferencing (as in ***p and ****q) and no more. We illustrate our approach using the

following example.

a = &x; b = &y; p = &a; c = ∗p; ∗p = b; q = p; p = ∗p; a = b.

6.3.1 Step 1: Preprocessing

First, we move store constraints, i.e., constraint of the form *p = q, from the set of equations

to a set of generative constraints (as they generate more linear equations) that are processed

specially. We proceed with the remaining non-store constraints.

Chapter 6. Points-to Analysis as a System of Linear Equations 115

Second, all constraints of the form v = e are converted to v = vi−1 ⊕ e. Here, vi−1 is the

value of the variable v obtained in the last iteration. Initially, v = v0 ⊕ e. This transformation

ensures monotonicity required for a flow-insensitive points-to analysis. The operator ⊕ would

be explained shortly. v0 is a constant, since it is already computed from the previous iteration.

Next, we assign unique prime numbers from a select set P to the right-hand side expression

in each address-of constraint. We defer the definition of P to a later part of this subsec-

tion. In the above example, let &x, &y and &a be assigned arbitrary prime numbers, say

&x = 17; &y = 29; and &a = 101. The addresses of the remaining variables (b, p, q, c) are as-

signed a special sentinel value χ. Further, all the variables of the form v and vi are assigned

an initial r-value of χ. Thus, x, y, a, b, c, p, q and x0, y0, a0, b0, c0, p0, q0 equal χ. We keep

two-way maps of variables to their r-values and addresses. This step of assigning prime num-

bers is performed only once in the analysis. In the rest of the chapter, the term “address of a

variable” refers to the prime number assigned to it by the preprocessing step of our analysis.

Next, a dereference ∗q in every load statement p = ∗q is replaced by expression qi−1 + 1

where i is the current iteration. Therefore, c = ∗p becomes c = c0 ⊕ (p0+1) and p = ∗p be-

comes p = p0 ⊕ (p0 + 1). Note that by generating different versions of the same variable in this

manner, we remove cyclic dependences altogether. This happens because the variables vi are

never defined explicitly in the constraints. Hence they are not dependent on any other variable.

The renaming is only symbolic and appears only for exposition purposes. Since values from

only the previous iteration are required, we simply make a copy vcopy for each variable v at the

start of each iteration.

Last, we rename multiple occurrences of the same variable as an ℓ-value in different con-

straints to convert it to an SSA-like form. For each such renamed variable v′, we store a

constraint of the form v = v′ in a separate merging constraint set. Thus, assignments to vari-

able a in a = x0 and a = b0 are replaced as a = x0 and a′ = b0 and the constraint a = a′ is

added to the merging constraints set. The constraints now look as follows.

Linear constraints: a = a0 ⊕ &x; b = b0 ⊕ &y; p = p0 ⊕ &a; c = c0 ⊕ (p0 + 1);

q = q0 ⊕ p; p′ = p0 ⊕ (p0 + 1); a′ = a0 ⊕ b.

Generative constraints: ∗p = b.

Merging constraints: a = a′; p = p′.

Chapter 6. Points-to Analysis as a System of Linear Equations 116

Substituting the r-values and the primes for the addresses of variables, we get

a = χ ⊕ 17; b = χ ⊕ 29; p = χ ⊕ 101; c = χ ⊕ (χ + 1);

q = χ ⊕ p; p′ = χ ⊕ (χ + 1); a′ = χ ⊕ b.

χ and ⊕. We unfold the mystery behind the values of χ and ⊕ now. The rationale behind

replacing the address of every address-taken variable with a prime number is to have a non-

decomposable element defining the variable. We make use of prime factorization of integers to

map a value to the corresponding points-to set. The first trivial but important observation

towards this goal is that any pointee of any variable has to appear as address taken in at least

one of the constraints. Therefore, the only pointees any non-null pointer can have would exactly

be the address-taken variables. Thus, a composition v = vi ⊕ vj ⊕ ... of the primes vi, vj, ...

representing address-taken variables defines the pointer v pointing to all these address-taken

variables. The composition is defined by operator ⊕ and it defines a lattice over the finite set

of all the pointers and pointees (Figure 6.2). The top element ⊤ defines a composition of all

address-taken variables (v0 ⊕ v1 ⊕ ... ⊕ vn) and the bottom element ⊥ defines the empty set.

Since we use prime factorization, ⊕ becomes the multiplication operator × and χ is the identity

element, i.e., 1. The reason behind using ⊕ and χ as placeholders is that it is possible to use

an alternative lattice with different ⊕ and χ and achieve an equivalent transformation (as long

as the equations remain linear).

Since every positive integer has a unique prime factorization, we guarantee that the value

of a pointer uniquely identifies its pointees. For instance, if a → {x, y} and b → {y, z, w},

and we assign arbitrary primes to &x, &y, &z, &w as &x = 11, &y = 19, &z = 5, &w = 3, then

the values of a and b would be calculated as a = 11× 19 = 209 and b = 19× 5× 3 = 285.

Since, 209 can only be factored as 11× 19 and 285 does not have any other factorization than

19× 5× 3, we can obtain the points-to sets for pointers a and b from their prime factors.

Unfortunately, prime factorization is not known to be polynomial [69]. Therefore, for

efficiency reasons, our implementation keeps track of the prime factors explicitly. We use a

prime-factor-table for this purpose which stores all the prime factors of a value. We initially

store all the primes p corresponding to the address-taken variables as p = p× 1.

Thus, the system of equations now becomes

Chapter 6. Points-to Analysis as a System of Linear Equations 117

11*17*23*...

2311 17

253187

1

(12−−16) (18−−22) (24−−28)

(188−−192) (254 −− 258)

(2−−6)

...

...

...

Figure 6.2: Lattice over the compositions of primes guaranteeing five levels of dereferencing

Linear constraints: a = 17; b = 29; p = 101; c = 2; q = p; p′ = 2; a′ = b.

Generative constraints: ∗p = b.

Merging constraints: a = a′; p = p′.

6.3.2 Step 2: Solving the System

Solving the above system of equations using a standard linear solver gives us the following

solution.

a = 17, b = 29, p = 101, c = 2, q = 101, p′ = 2, a′ = 29.

6.3.3 Step 3: Post-processing

Interpreting the values in the above solution obtained using a linear solver is straightforward

except for those of c and p′ (2 is not chosen to be one of the primes.). In the simple case,

a value v + k denotes kth dereference of v. To find v, our method checks each value ϑ

in (v + k), (v + k− 1), (v + k− 2), ... in the prime-factor-table. For the first ϑ that appears

in the prime-factor-table, v = ϑ and k′ = v + k− ϑ represents the level of dereferencing. We

obtain the prime factors of ϑ from the table, which would correspond to the addresses of

variables, reverse-map the addresses to their corresponding variables, then obtain the r-values

of the variables from the map whose prime factors would denote the points-to set we want for

expression v + k. Another level of reverse mapping-mapping would be required for k = 2 and

so on. We explain dereferencing method later (Algorithm 13).

Note that since our method can handle only a limited number of dereferences (k), the num-

ber of iterations required in the dereferencing step is also limited (and is typically small in

practice). Therefore, in the example, the value 2 of the variables c and p′ is represented as

Chapter 6. Points-to Analysis as a System of Linear Equations 118

1 + 1 where the second 1 denotes a dereference and the first 1 is the value of the variable being

dereferenced. In this case, since v = 1, which is the sentinel χ, its dereference results in an

empty set and thus, both c and p′ are assigned a value of 1.

Selection of primes. In general, a value ϑ may be interpreted as v1 + k1 as well as v2 + k2,

if the values v1 and v2 happen to be close to each other. To avoid this ambiguity, the ranges

(v1...v1 + k) and (v2...v2 + k) must be non-overlapping for all possible v1 and v2 where k cor-

responds to the maximum level of dereferencing allowed by the analysis. This is accomplished

by a careful selection of the prime numbers representing the address-taken variables. Our anal-

ysis selects primes offline and guarantees that a certain k number of dereferences will never

overlap with one another. Our prime number set P is also defined for this specific k. More

specifically, for any prime numbers p ∈ P, the products of any one2 or more p are distance

more than k apart. Thus, |pi − pj| > k and and |pi ∗ pj − pl| > k and |pi ∗ pj − pl ∗ pm| > k

and |pi ∗ pj ∗ pl − pm ∗ pn ∗ po| > k and so on. Note that P needs to be computed only once

and can be done offline, i.e., prior to running our analysis. Also, typically, the number of

dereferences in real-world programs is very small (< 5). The lattice for the prime number

set P chosen for k = 5 is shown in Figure 6.2. Here, the values in bold are the values that

are attained by variables. The bracketed values beside a value ϑ in bold-face denote possible

dereferencings of a variable which is assigned the value ϑ. For instance, (12,13,...,16) denote

possible dereferencings of a variable which is assigned the value 11 for k = 1..5.

The next step is to merge the points-to sets of renamed variables, i.e., evaluating merging

constraints. This changes a and p as a = 17× 29 and p = 101× 1 = 101.

After merging, we discard all the renamed variables.

Thus, at the end of the first iteration, the points-to set contained in the values is:

x → {}, y → {}, a → {x, y}, b → {y}, c → {}, p → {a}, q → {a}.

6.3.4 Step 4: Evaluating Special Constraints

The final step is to evaluate the generative constraints and generate more linear constraints. In

the first iteration, the store constraint ∗p = b generates the copy constraint a = b which already

exists in the system. Thus, no new linear constraints are generated. Note that the generative

2product of one number is the number itself.

Chapter 6. Points-to Analysis as a System of Linear Equations 119

constraints set is retained as more constraints may need to be added in further iterations. At

the end of each iteration, our algorithm checks if any variable value is changed since the last

iteration. If yes, then another iteration is required.

6.3.5 Subsequent Iterations

The constraints, ready for iteration number two, are

Linear constraints: a = a1 × &x; b = b1 × &y; p = p1 × &a; c = c1 × (p1 + 1);

q = q1 × p; p′ = p1 × (p1 + 1); a′ = a1 × b.

Generative constraints: ∗p = b.

Merging constraints: a = a′; p = p′.

Here, v1 is the value of the variable v obtained in iteration 1. Thus the constraints to be solved

by the linear solver are:

a = 17× 29× 17, b = 29× 29, p = 101× 101, c = 101 + 1, q = 101× p,

p′ = 101× (101 + 1), a′ = 17× 29× b.

The linear solver offers the following solution.

a = 17× 29× 17, b = 29× 29, p = 101× 101, c = 102, q = 101× 101× 101,

p′ = 101× 102, a′ = 17× 29× 29× 29.

The solver returns each value as an integer (e.g., 8381) and not as factors (e.g., 17× 29× 17).

Our analysis finds the prime factors using the prime-factor-table.

Post-processing over the values starts with pruning the powers of the values containing

repeated prime factors, as they do not add any additional points-to information to the solution.

Thus, we obtain

a = 17× 29, b = 29, p = 101, c = 102, q = 101, p′ = 101× 102, a′ = 17× 29.

The next step is to dereference variables to obtain their points-to sets. Since, 17, 29, and 101 are

directly available in prime-factor-table, the values of a, b, p, q, a′ do not require a dereference. In

case of c, 102 is not present in the prime-factor-table, so the next value 101 is searched for, which

indeed is present in the table. Thus, (102− 101) dereferences are done on 101. Further, 101

reverse-maps to &a and a forward-maps to the r-value 17× 29. Hence c = 17× 29, suggesting

that c points to x and y.

The value of p′ is an interesting case. The solution returned by the solver (10302) is neither

Chapter 6. Points-to Analysis as a System of Linear Equations 120

a prime number, nor a short offset from the product of primes. Rather, it is a product of

a prime and a short offset of the prime. We know that it is the value of variable p′ whose

original value was p1 = 101. This original value is used to find out the points-to set contained

in value 10302. To achieve this, our method (always) divides the value obtained by the solver

by the original value of the variable. Thus, we get 10302/101 = 102. Our method then applies

the dereferencing algorithm on 102 to get its points-to set, which, as explained above for c,

computes the value 17× 29 corresponding to the points-to set {x, y}. This updates p′ to

101× 17× 29.

Such a division is not only required for a load statement, but also for a regular copy

statement. This is because of our use of prime-factor-table for finding the factors of a number.

If the linear solver assigns a value x× y to a variable v, the value may not be present in the

table and we will not know its factors. However, one of x and y would definitely be present (as

original value of v prior to the current iteration) and we can obtain both x and y as factors by

dividing the value by the original value vi of the variable v.

It should be emphasized that our method never performs the computationally expensive

primality testing. It only does a look-up, subtraction (corresponding to a dereference) and

division. After prime-factor-table is populated initially with a set of primes as a multiple of the

prime and unity, and updated with the factors of the compositions obtained in each iteration

of the analysis, a lookup in the table suffices for primality testing. Further, it is easy to verify

that the division is integral.

The next step is to evaluate the merging set to obtain the following.

a = 17× 29× 17× 29, p = 101× (101× 17× 29).

On pruning this gives

a = 17× 29, p = 17× 29× 101.

Thus, at the end of the second iteration, the points-to sets are

x → {}, y → {}, a → {x, y}, b → {y}, c → {x, y}, p → {a, x, y}, q → {a}.

Executing the final step of evaluating the generative constraints, we obtain two additional lin-

ear constraints: x = b, y = b.

Following the same process, at the end of the third iteration we get

x = 29, y = 29, a = 17× 29, b = 29, c = 17× 29, p = 17× 29× 101, q = 17× 29× 101

Chapter 6. Points-to Analysis as a System of Linear Equations 121

which corresponds to the points-to set

x → {y}, y → {y}, a → {x, y}, b → {y}, c → {x, y}, p → {a, x, y}, q → {a, x, y}

and no new linear constraints are added.

The fourth iteration makes no change to the values of the variables suggesting that a fixed-

point solution is reached.

6.4 The Algorithm

First, we describe our approach for field-insensitive, flow-insensitive and context-insensitive

points-to analysis. Our points-to analysis is outlined in Algorithm 11. To avoid clutter, we

have removed the details of pruning of powers, which is straightforward. The analysis takes a

set of constraints C and a set of variables V used in C as inputs. An important data structure

is the prime-factor-table which is implemented as a hash-table, mapping a key to a set of prime

numbers that form the factors of the key. Insertion of the tuple (a× b, a, b) assumes existence

of a and b in the table (our analysis guarantees that). This is done by combining the prime

factors ∈ P for a and b from the table. The product of their unique prime factors is then stored

into the table (which may be smaller than a× b).

Lines 1–3 initialize each variable to the sentinel value χ = 1. Before iterative procedure

begins, the analysis goes over the constraints to evaluate address-of constraints by assigning

a distinct prime to each address-taken variable (Lines 5–9). Our algorithm also moves store

constraints to the generative constraints set (Lines 10–12) and transforms load constraints

(Lines 13–14). Each variable has a two-way mapping to its r-value and address (&x). If the

variable is an address-taken variable, its address would be represented by a unique odd prime

number; otherwise, it would be 1. Its r-value is a composition of addresses of its pointees. This

mapping allows us to dereference variables during post-processing. In the algorithm, for the

sake of readability, we use v to mean its r-value. As a part of initialization, our algorithm also

updates the prime-factor-table to denote that a prime number could not be dereferenced, since

one of its factors is 1 (Line 8). This helps us not invoke a primality test for a value. Address-of

constraints are removed from C prior to the iterative analysis (Line 9).

The iterative analysis begins with making a copy of each variable’s r-value in Lines 19–21.

In Lines 22–31, the constraint variables are renamed to use the copies (vcopy) and to define new

Chapter 6. Points-to Analysis as a System of Linear Equations 122

Algorithm 11 Points-to analysis as a system of equations

Require: set C of points-to constraints, set V of variables
Ensure: each variable in V has a value indicating its points-to set
1: for all v ∈ V do
2: v = 1

3: end for
4: for each constraint c in C do
5: if c is an address-of constraint a = &b then
6: address-of(b) = nextprime()
7: prime-factor-table.insert(a× address-of(b), a, address-of(b))
8: a = a× address-of(b);
9: C.remove(c)

10: else if c is a store constraint ∗a = b then
11: generative-constraints.add(c)
12: C.remove(c)
13: else if c is a load constraint a = ∗b then
14: c = constraint(a = b + 1)
15: end if
16: end for
17:

18: repeat
19: for all v ∈ V do
20: vcopy = v

21: end for
22: for all c ∈ C of the form v = e do
23: renamed = defined(v)
24: if renamed == 0 then
25: c = constraint(v = vcopy × e)
26: else
27: c = constraint(vrenamed = vcopy × e)

28: merge-constraints.add(constraint(v = vrenamed))
29: end if
30: ++defined(v)
31: end for
32: V = linear-solve(C)
33: for all v ∈ V do
34: v = interpret(v, vcopy, V, prime-factor-table) {Algo. 13}
35: end for
36: for all c ∈ merging-constraints of the form v1 = v2 do
37: prime-factor-table.insert(v1 × v2, v1, v2)
38: v1 = v1 × v2
39: end for
40: for all c ∈ generative-constraints of the form ∗a = b do
41: S = get-points-to(a, prime-factor-table) {Algo. 12}
42: for all s ∈ S do
43: C.add(constraint(s = b))
44: end for
45: end for
46: until V == set(vcopy)

Chapter 6. Points-to Analysis as a System of Linear Equations 123

Algorithm 12 Finding points-to set

Require: Value v, prime-factor-table
1: S = {}
2: P = get-prime-factors(v, prime-factor-table)
3: for all p ∈ P do
4: S = S∪ {reverse-address(p)}
5: end for
6: return S

variables (vrenamed, i.e., v′, v′′, ...). When a new variable is defined, a new merge-constraint

to unify its value with that of the original variable is generated in Line 28. The mapping

defined(v) tracks how many times a variable v has been renamed. An initial value of zero

indicates that the variable has not been renamed yet. The renaming helps in making the

equations consistent. The set of equations thus obtained is then solved using a standard linear

solver to get a solution, mapping each variable in V to an r-value (Line 32).

The important step of interpreting the solution is done in Lines 33–35 using Algorithm 13.

The algorithm checks for an entry of a variable’s value in the prime-factor-table to see if it

is a valid composition of primes. If yes, then no dereferencing is required and the value is

returned as it is (Lines 3–4 of Algorithm 13). Otherwise, the value is divided by the original

value of the variable at the start of the iteration (vcopy). The division is guaranteed to be

integral since right hand side of each equation defining v was multiplied by vcopy (Lines 25 and

27 of Algorithm 11). If the quotient is not found in prime-factor-table then it implies that one

or more dereferences are required. A linear downward search from the value of the variable

is performed in the prime-factor-table (Lines 11–13). The number of entries visited in the

process corresponds to the number of dereferences to be performed. The dereferencing is done

by unmapping from the primes corresponding to the addresses of variables and then mapping

the variables to their r-values (Line 19 of Algorithm 13). The above procedure is performed

for all pointees of the variable (Line 18 of Algorithm 13). The value of prod denotes the prime

composition of pointees obtained at a dereference level. The composition obtained at the end

of this procedure denotes the new pointees computed in the current iteration. This, multiplied

by vcopy, is the new value of v.

After interpreting the values, Lines 36–39 of Algorithm 11 evaluate the merging constraints.

Merging is done by multiplying the original value of the variable with the new value (Line 38).

prime-factor-table is updated to reflect the new product (Line 37). Finally, Lines 40–45 add

Chapter 6. Points-to Analysis as a System of Linear Equations 124

Algorithm 13 Interpreting values

Require: Value v, Value vcopy, set of variables V, prime-factor-table
1: if v == 1 then
2: return v

3: else if v ∈ prime-factor-table then
4: return v

5: else if v/vcopy ∈ prime-factor-table then
6: prime-factor-table.insert(v, vcopy, v/vcopy)
7: return v

8: else
9: v = v/vcopy

10: k = 1
11: while (v− k) /∈ prime-factor-table do
12: ++k

13: end while
14: v = (v− k)
15: for i = 1 to k do
16: S = get-points-to(v, prime-factor-table) {Algo. 12}
17: prod = 1

18: for all s ∈ S and s 6= 1 do
19: r = reverse-lvalue(s)
20: prod = prod× r

21: prime-factor-table.insert(prod, prod/r, r)
22: end for
23: v = prod

24: end for
25: end if
26: return v× vcopy

copy constraints to C by evaluating generative constraints. The expanded set C is then evaluated

in the next iteration. The iterative analysis proceeds until r-values of all variables match those

of vcopy (Line 46) which indicates a fixed-point.

Both Algorithms 11 and 13 make use of Algorithm 12 for computing points-to set of a

pointer. It finds the prime factors of the r-value of the pointer (Line 2) followed by an un-

mapping from the primes to the corresponding variables (Line 4). Note again that the prime

factors are obtained from the prime-factor-table and not by any factorization algorithm.

At the end of Algorithm 11, the r-values of variables in V denote their computed points-to

sets. C is no longer required. If a client does not need a pointer’s points-to set and queries only

for alias information of pointers, then the prime-factor-table can also be freed.

Chapter 6. Points-to Analysis as a System of Linear Equations 125

6.4.1 Solution Properties

Following properties can be derived based on the values of the pointers.

Property 1: If the r-value of a pointer is a prime, then it is a must points-to relation, else it

is considered to be a may points-to relation.

Property 2: If a pointer has an r-value of 1, then it is a non-pointer. A non-pointer is a

variable with empty points-to set [108].

Property 3: If the r-values of two pointers are the same, then they are pointer-equivalent.

Two pointers are pointer-equivalent if their points-to sets are the same [48].

Property 4: Two variables are location-equivalent when address of one variable divides some

pointer’s r-value and it simultaneously holds that the product of the addresses of the two

variables also divides the r-value. Two variables are location-equivalent if both of them always

appear together in the points-to sets of pointers, i.e., if one variable is pointed to by a pointer,

then the other variable is also pointed to by the same pointer [48].

Pointer-equivalence and location-equivalence are useful to reduce the number of variables

tracked during a points-to analysis, and help in making the analysis efficient.

6.4.2 Implementation Issues

Similar to other works on finding linear relationships among program variables [22, 92], our

analysis suffers from the issue of large values. Since we store points-to set as a multiplication

of primes, the resulting values quickly go beyond the integer range of 64 bits. For very small

dereference sizes (upto 16), the transformation works within 64 bits. However, since our analy-

sis is flow-insensitive, the dereference sizes of pointers are well above a few tens. Hence we are

required to use an integer library (GNU MP Bignum Library [42]) that emulates integer arith-

metic over large unsigned integers. Fortunately, our analysis requires only simple arithmetic

operations such as addition, subtraction, multiplication and division which can be implemented

acceptably fast.

6.5 Soundness and Precision

Soundness states that our algorithm identifies every points-to fact identified by an inclusion-

based analysis. Precision states that our analysis does not compute a (proper) superset of the

Chapter 6. Points-to Analysis as a System of Linear Equations 126

information compared to an inclusion-based analysis.

We first prove three essential properties of the solution to the system of linear equations: feasi-

bility, uniqueness and integrality. Feasibility means that the solution exists. Uniqueness means

that only one solution exists. Integrality means that the solution is integral. These properties

are added to validate our approach of solving a set-based points-to analysis as a system of

linear equations.

Property 1: Feasibility.

Proof: A system of linear equations, as discussed in Section 6.2.1 has a feasible solution if and

only if the corresponding constraint graph has no cycle with negative weight [21]. By renaming

the variable occurring in multiple assignments as a′, a′′, ..., we guarantee at most one definition

per variable. Further, all constants involved in the equations are positive. Thus, there is no

negative weight cycle in the constraint graph (see Section 6.2.1). In fact, there is neither a

cycle nor a negative weight. This guarantees a feasible solution to the system.

Property 2: Uniqueness.

Proof: A variable attains a unique value if it is defined exactly once. In each iteration, which

corresponds to one run of the linear solver, the variable renaming creates copies of multiply-

defined variables ensuring that each variable is defined only once. Further, our algorithm

initializes all the variables to the value of χ = 1. This removes the problem of infinite number of

solutions. For instance, let the system have only one constraint: a = b. In general, this system

has infinite number of solutions because b is not restricted to any value. In our analysis, we

initialize both (a and b) to 1. This ensures a unique solution in each iteration of the analysis.

In other words, in each iteration, every equation defines a single variable and no variable

is defined multiple times due to renaming; thus, when the system of equations is transformed

into a matrix form, it has full row rank. A full row rank indicates that all the rows of the

coefficient matrix are linearly independent. Further, by initializing all the undefined variables

to χ = 1, our algorithm ensures that there are no free parameters in the system. When the

definitions of these originally undefined variables are also added to the system of equations,

the coefficient matrix continues to have a full row rank. Thus, the rank of the matrix is equal

Chapter 6. Points-to Analysis as a System of Linear Equations 127

to the number of variables. A fundamental theorem in linear algebra is that a solution to a

system of equations is unique if and only if its rank equals the number of variables [21]. Thus,

in each iteration, our analysis ensures a unique solution to the transformed system of equations.

Property 3: Integrality.

Proof: We are solving (and not optimizing) a system of equations that involves only addition,

subtraction and multiplication over positive integers (vi and constants). Further, each equa-

tion is of the form v = vi × e where both vi and e are integral. Hence the system guarantees

an integral solution.

We now prove soundness and precision of our analysis.

Lemma 1.1: The analysis in Algorithm 11 is monotonic.

Proof: Every address-taken variable is represented using a distinct prime number. Second,

every positive integer has a unique prime factorization. Thus, as far as the representation of

points-to information is concerned, it does not lead to a precision loss. Multiplication by an

integer corresponds to including addresses represented by its prime factors. Division by an in-

teger maps to the removal of the unique addresses represented by its prime factors. Multiplying

the equations by vcopy in iteration i (Lines 25 and 27) thus ensures encompassing the points-to

set computed in iteration i− 1. The division operation is performed only in Algorithm 13

(Line 9) which is guaranteed to be without a remainder. However, the product is restored in

Line 26, and hence there is no information loss. Thus, no points-to information is ever killed

and we guarantee monotonicity.

Lemma 1.2: Address-of statements are transformed safely.

Proof: The effect of address-of statement is computed by assigning the prime number of the

address-taken variable to the r-value of the destination variable (Lines 5–9 of Algorithm 11).

Since this represents each address-taken variable in a unique manner, the transformation is safe.

Lemma 1.3: Variable renaming is sound.

Proof: According to the set-constraint based semantics, for a variable a and expressions ei,

Chapter 6. Points-to Analysis as a System of Linear Equations 128

statements a = e1, a = e2, ..., a = en mean a ⊇ e1, a ⊇ e2, ..., a ⊇ en which implies a ⊇ (e1 ∪ e2 ∪ ... ∪ en).

Renaming gives a′ = e1, a
′′ = e2, ..., a

′n = en which adds constraints a′ ⊇ e1, a
′′ ⊇ e2, ..., a

′n ⊇ en

which implies (a′ ∪ a′′ ∪ ... ∪ a′n) ⊇ (e1 ∪ e2 ∪ ... ∪ en). Merging the variables as a = a′, a = a′′, ..., a = a′n

adds constraint a ⊇ (a′ ∪ a′′ ∪ ... ∪ a′n). By transitivity of ⊇, a ⊇ (e1 ∪ e2 ∪ ... ∪ en). Thus,

variable renaming is sound.

Corollary 1.1: Copy statements are transformed safely.

Lemma 1.4: Store statements are transformed safely.

Proof: We define a points-to fact f to be realizable by a constraint c if evaluation of c may

result in the computation of f. f is strictly-realizable by c if for the computation of f, evalu-

ation of c is a must. For the sake of contradiction, assume that there is a valid points-to fact

a → {x} that is strictly-realizable by the store constraint a = ∗p and that does not get com-

puted in our algorithm. Since the store statement, added to the generative constraint set, adds

copy constraints a = b1, a = b2, ..., a = bn where p → {b1, b2, ..., bn} at the end of an iteration

after points-to information computation and interpretation is done, the contradiction means

that x /∈ (∗b1 ∪ ∗b2 ∪ ... ∪ ∗bn). This implies, (x /∈ ∗b1) ∧ (x /∈ ∗b2) ∧ ... ∧ (x /∈ ∗bn). This sug-

gests that the pointee x propagates to the pointer a via some other constraints, implying that

the points-to fact a → {x} is not strictly-realizable by a = ∗p, contradicting our hypothesis.

Lemma 1.5: Decomposing an r-value of p into its prime factors, unmapping the addresses as

the primes to the corresponding variables, and mapping the variables to their r-values corre-

sponds to a pointer dereference ∗p.

Lemma 1.6: Load statements are transformed safely.

Proof: For a k-level dereference ∗kv in a load statement, every ’*’ adds 1 to v’s r-value. Thus,

for a unique v + k, the evaluation involves k dereferences. Lines 15–24 of Algorithm 13 do

exactly this, and by Lemmas 1.3 and 1.5, load statements compute a safe superset.

Theorem 1: The analysis is sound with respect to an inclusion-based analysis for a derefer-

encing level k.

Chapter 6. Points-to Analysis as a System of Linear Equations 129

Proof: Follows from Lemma 1.1—1.6 and Corollary 1.1.

Lemma 2.1: Address-of statements are transformed precisely.

Proof: Address of every address-taken variable is represented using a distinct prime value.

Further, in Lines 5–9 of Algorithm 11, for every address-of statement a = &b, the only primes

that a is multiplied with are those corresponding to the addresses of the variables represented

by b.

Lemma 2.2: Variable renaming is precise.

Proof: Since each variable is defined only once and by making use of Lemma 1.3, a = (e1 ∪ e2 ∪ ... ∪ en).

Lemma 2.3: Copy statements are transformed precisely.

Proof: From Lemma 2.2 and since for a transformed copy statement a = acopy × b, only the

primes computed as the points-to set of a so far (i.e., acopy) and those of b are included. This

inclusion is guaranteed to be unique due to the uniqueness of prime factorization. Thus, the

analysis does not include any spurious pointees for a.

Lemma 2.4: Store statements are transformed precisely.

Proof: We prove this by contradiction. Assume that a points-to fact a → {x} is computed spuri-

ously by evaluating a store constraint a = ∗p in Algorithm 11. This means at least one of the fol-

lowing copy constraints computed the fact: a = b1, a = b2, ..., a = bn where p → {b1, b2, ..., bn}.

Thus, at least one of the copy constraints is imprecise. However, Lemma 2.3 falsifies the claim.

Lemma 2.5: Load statements are transformed precisely.

Proof: The number of dereferences denoted by v + k is the same as that denoted by ∗kv. By

Lemma 1.5 and 2.3 and by the observation that Algorithm 13 does not include any extra pointee

in the final dereference set.

Theorem 2: The analysis is precise with respect to an inclusion-based analysis for a deref-

erencing level k.

Proof: Follows from Lemma 2.1–2.5.

Chapter 6. Points-to Analysis as a System of Linear Equations 130

Algorithm 14 Alias query

Require: Pointers p, q
1: vp = get-rvalue(p)
2: vq = get-rvalue(q)
3: return gcd(vp, vq) 6= 1

Theorem 3: Our analysis computes the same information as an inclusion-based points-to

analysis for a dereferencing level k.

Proof: Immediate from Theorems 1 and 2.

6.6 Client Analysis

In this section, we illustrate how our prime-factorization based points-to analysis can be effec-

tively used in some of the client analyses.

Several clients (e.g., constant propagation, parallelism extractors, etc.), which use points-to

analysis, query for alias information in the form alias(p, q). An alias query alias(p, q) returns

true if pointers p and q share any pointee, and false otherwise. Using our prime-factorization

approach, this query can be easily answered by finding the greatest common divisor (GCD) of

values vp and vq, which are the integral values computed by our points-to analysis algorithm for

pointers p and q. If the GCD is 1, the pointers do not alias; otherwise, p and q have a common

(prime) factor and the pointee denoted by the factor is pointed by both p and q. Hence, they

alias. Algorithm 14 outlines the alias query.

It works because GCD corresponds to the common pointees across the two pointers. This

can be easily observed from the lattice of values (Figure 6.2).

The second example that we consider is the Mod/Ref analysis, which we used as a client

analysis in Chapter 4. As mentioned in Section 4.7, the Mod/Ref analysis checks if a function

call reads or writes to a (symbolic) memory location. A useful form of Mod/Ref analysis is to

find out which global (or heap) variables are only referenced and not modified by any pointers

in the program. This helps in determining the read-only globals and is immensely helpful in

parallelization of programs. A first step towards this goal is to find all pointers pointing to

a given set of (global or heap) variables. Searching for the variables of interest in a sparse

pointee list of a pointer would be costly. In contrast, if the underlying representation is using a

Chapter 6. Points-to Analysis as a System of Linear Equations 131

composition of primes to represent points-to information, then we simply need to check whether

for each variable v of interest, the address-value of v divides the r-value of the pointer. Thus,

a representation based on prime factorization helps in speeding up the client analyses (offset

by the cost of emulating large integer arithmetic).

The third example that we consider is program slicing [126]. To compute a slice with respect

to a variable v at a program point, one may encounter a statement with a pointer dereference

∗p. Although slicing is typically flow-sensitive, the pointer analysis can be flow-insensitive and

check whether the pointer dereference may point to v. If the points-to information is stored

as proposed above, then one simply needs to check whether the r-value of p is divisible by

the address (prime number) of v which is much faster compared to looking up a pointee v in

the sorted points-to set of p. Thus, prime-factorization is an attractive alternative for storing

points-to information.

6.7 Experimental Evaluation

We evaluate the effectiveness of our approach using the same set of benchmarks that we used in

Chapter 4, namely, a set of 16 SPEC C/C++ benchmarks and five large open source programs,

httpd, sendmail, ghostscript, gdb and wine-server. As before, we have implemented our method

in the LLVM compiler framework [81] as a post-linking phase (refer to the block diagram in

Figure 4.5 in Chapter 4). When run on an input program, our method generates a set of

linear equations from the program’s points-to constraints. For solving the equations, we use

C++ language extension of CPLEX R© solver from IBM ILOG toolset [61]. A reader may be

interested to know that we did not get good performance out of other linear solvers like Matlab.

All the experiments are carried out on the same platform, with an Intel Xeon machine with 2

GHz clock, 4 MB L2 cache and 4 GB RAM.

We compare our approach, referred to as linear, with the following implementations. We

consider both context-sensitive (cs) and context-insensitive (ci) versions.

• anders: This is the base Andersen’s algorithm [3] which we used to assess the effectiveness

of our bloom-filter based approach (Chapter 4, Section 4.5).

• bddlcd : This is the Lazy Cycle Detection (LCD) algorithm implemented using Binary

Decision Diagrams (BDD) from Hardekopf and Lin [49] which we used to assess the

Chapter 6. Points-to Analysis as a System of Linear Equations 132

effectiveness of our bloom-filter based approach (Chapter 4, Section 4.5)

• bloom: The bloom filter method (as described in Chapter 4) stores context-sensitive

points-to information in a bloom filter. We recall here that this representation is ap-

proximate and results in false-positives and introduces some loss in precision. For our

experiments, we use the medium configuration which results in roughly 3% of precision

loss for the chosen benchmarks.

All the above implementations are considered in both context-insensitive (ci) and context-

sensitive (cs) forms. The context-sensitive version is implemented as discussed in Chapter 4 in

Section 4.4. We also compare a context-insensitive, flow-insensitive and field-insensitive version

of our prime-factorization based analysis (referred to as linear-ci) with Deep Propagation [100].

• deep: This is the context-insensitive deep-propagation method from [100]. This method

propagates points-to information in the constraint graph to all the reachable nodes along

a path, before the other paths are considered. It uses a sparse bitmap representation to

store points-to sets.

6.7.1 Analysis Time

The analysis times in seconds required for each benchmark by different methods are given in

Table 6.1 for context-insensitive analysis and in Table 6.2 for context-sensitive analysis. The

analysis time is composed of reading an input points-to constraints file, applying the analysis

over the constraints and computing the final points-to information as a fixed-point.

Context-insensitive analysis. As seen from Table 6.1, the timing numbers for context-

insensitive version of our approach are moderately low, requiring 15 seconds per benchmark

on an average and a maximum of 143 seconds for gdb. More specifically, linear-ci outperforms

the exact versions anders-ci, bddlcd-ci and deep-ci. linear-ci is 5× faster than anders-ci, 3.7×

faster than bddlcd-ci and 2.8× faster than deep-ci. Although bloom-ci performs significantly

better than linear-ci, linear-ci is more precise than bloom-ci as bloom-ci is an approximate

analysis. A large part (around 70%) of the analysis time in linear-ci is spent in solving the

equations in different iterations. This suggests that optimizing the constraint solving in the

Chapter 6. Points-to Analysis as a System of Linear Equations 133

Benchmark anders-ci bddlcd-ci bloom-ci deep-ci linear-ci

gcc 151.618 5.154 3.028 1.740 13.243
perlbmk 65.969 3.078 1.374 1.744 5.863
vortex 1.457 2.282 0.964 0.116 2.850
eon 29.625 2.339 1.209 11.701 6.172
parser 0.831 2.020 0.477 0.176 1.715
gap 6.689 2.527 1.148 0.092 4.576
vpr 0.465 1.290 0.443 0.024 0.750
crafty 0.453 1.528 0.451 0.004 0.551
mesa 1.029 2.231 0.985 0.248 2.657
ammp 0.372 1.347 0.365 0.032 0.651
twolf 0.614 2.056 0.543 0.032 1.250
gzip 0.221 0.955 0.228 0.004 0.158
bzip2 0.199 0.889 0.208 0.004 0.125
mcf 0.175 1.228 0.183 0.004 0.153
equake 0.176 0.856 0.185 0.004 0.057
art 0.167 0.643 0.177 0.004 0.176
httpd 58.624 1.856 0.824 53.727 21.358
sendmail 37.276 1.521 0.796 12.729 8.126
ghostscript 425.362 343.579 4.636 207.030 95.665
gdb 852.622 758.473 6.221 587.829 142.583
wine-server 62.545 45.512 2.992 8.165 6.339

average 80.785 56.255 1.307 42.162 15.001

Table 6.1: Time required in seconds for context-insensitive analysis

linear solver may help in improving the analysis time of linear-ci further.

Context-sensitive analysis. From Table 6.2, we observe that linear outperforms both an-

ders and bddlcd : linear is 1.76× faster than anders and almost 9× faster than bddlcd. Most of

the time lost by bddlcd is due to the complex BDD operations that need to be performed for

maintaining points-to information. bloom is 2× faster than linear and its higher performance

is attributed to fast hash functions used to store the context-sensitive points-to information,

instead of going over the absolute contexts. Further, the spacial locality offered by a multi-

bloom greatly enhances the analysis speed. However, it should be noted here that bloom is

an approximate analysis and has around 3% precision loss in these applications (Chapter 4)

compared to anders, bddlcd and linear. We believe that the analysis time of linear can be

further improved by taking advantage of sharing of tasks across iterations and by exploiting

properties of simple linear equations in the linear solver.

Chapter 6. Points-to Analysis as a System of Linear Equations 134

Benchmark Time(sec) Memory(MB)
anders bddlcd bloom linear anders bddlcd bloom linear

gcc 329.5 17411.2 137.1 189.7 2859 2534 669 2473
perlbmk 143.4 5879.9 85.4 124.6 2133 1723 314 2041
vortex 91.3 4725.7 71.4 66.3 1857 1358 152 1741
eon 93.5 2391.8 74.0 102.7 1276 1425 299 942
parser 35.4 618.3 29.2 53.2 478 345 118 434
gap 128.5 330.2 85.1 91.4 457 362 240 452
vpr 29.5 199.5 16.1 46.2 735 692 93 673
crafty 29.3 155.0 17.6 50.7 672 566 77 646
mesa 89.4 21.7 63.2 62.5 894 729 163 625
ammp 34.2 54.6 22.5 23.3 427 336 81 413
twolf 41.5 27.4 31.2 24.9 624 617 119 652
gzip 25.2 6.5 18.5 22.1 514 522 55 642
bzip2 23.3 4.7 19.6 21.6 633 588 56 558
mcf 22.4 32.0 16.3 23.4 403 389 48 489
equake 24.3 4.1 13.8 20.9 546 527 56 579
art 26.5 7.7 11.5 21.3 597 582 49 522
httpd 224.5 47.4 38.8 86.4 791 825 596 814
sendmail 172.7 117.5 15.9 91.6 914 851 306 922
ghostscript 4384.2 20612.8 1959.8 3144.2 1958 1672 971 1852
gdb 9338.2 24871.7 2362.6 4384.4 2194 1859 1461 2259
wine-server 201.3 36.7 68.0 142.5 774 690 279 637

average 737.5 3693.2 245.6 418.8 1035 914 295 970

Table 6.2: Time(seconds) and memory(MB) required for context-sensitive analysis

6.7.2 Memory

The memory requirement in MB of each analysis for the set of benchmarks is given in Table 6.3

for context-insensitive analysis and in Table 6.2 for context-sensitive analysis.

Context-insensitive analysis. From Table 6.3, it can be observed that our approach linear-ci

requires 131 MB on an average (maximum 924 MB for gdb) which is quite reasonable for today’s

desktops/servers. Although bddlcd-ci and bloom-ci implementations require substantially less

amount of memory than linear-ci, we observe that linear-ci requires 1.8× less memory than

anders-ci, and 2.9× less memory than deep-ci. Major memory saving in linear-ci happens as

the approach does not store the points-to sets explicitly. The mappings and the reverse map-

pings between variables, their r-values and address-values are the data structures that consume

a large portion of the memory (around 60%). The prime-factor-table consumes most of the

remaining space.

Chapter 6. Points-to Analysis as a System of Linear Equations 135

Benchmark anders-ci bddlcd-ci bloom-ci deep-ci linear-ci

gcc 1269 27 6 83 125
perlbmk 669 17 3 100 97
vortex 10 18 2 16 24
eon 383 64 3 248 137
parser 8 3 1 4 7
gap 87 6 2 8 7
vpr 1 1 1 2 2
crafty 1 1 1 1 5
mesa 3 4 2 14 16
ammp 1 2 1 3 2
twolf 3 3 1 4 3
gzip 1 2 1 1 2
bzip2 1 2 1 1 2
mcf 1 1 1 1 1
equake 1 1 1 1 2
art 1 1 1 1 1
httpd 469 49 5 674 327
sendmail 353 64 5 256 183
ghostscript 547 177 6 2871 672
gdb 631 218 6 3556 924
wine-server 444 94 4 185 222

average 233 36 3 382 131

Table 6.3: Memory required in MB for context-insensitive analysis

Context-sensitive analysis. From Table 6.2, we observe that our approach linear requires

slightly (6%) more memory than bddlcd. The bddlcd method, which is known for its space

efficiency, requires 914 MB on an average. linear also requires around 6% less memory than

anders. The bloom method, with its lossy representation, uses the minimum amount of memory.

Thus, we observe that linear offers benefits both in terms of analysis time and memory

requirement and helps in achieving a scalable implementation.

6.7.3 Comparison with Bitwise Operations3

In order to assess the effect of a standard linear solver for solving points-to constraints, we

implemented a variant called nrec. nrec is a version which is a mix of linear and anders. It

converts the initial set of constraints (except the store constraints) into a non-recursive SSA-like

3We acknowledge the reviews of the anonymous reviewer who suggested this comparison.

Chapter 6. Points-to Analysis as a System of Linear Equations 136

Context-insensitive Context-sensitive
Benchmark Time(sec) Memory(MB) Time(sec) Memory(MB)

linear-ci nrec-ci linear-ci nrec-ci linear-cs nrec-cs linear-cs nrec-cs

gcc 13.243 8.322 125 274 189.7 193.3 2473 2743
perlbmk 5.863 3.509 97 152 124.6 132.3 2041 2558
vortex 2.850 2.692 24 32 66.3 68.2 1741 1866
eon 6.172 7.835 137 189 102.7 95.1 942 977
parser 1.715 1.141 7 8 53.2 53.2 434 446
gap 4.576 3.604 7 9 91.4 81.9 452 481
vpr 0.750 1.391 2 2 46.2 37.3 673 703
crafty 0.551 0.436 5 5 50.7 43.6 646 704
mesa 2.657 1.949 16 20 62.5 58.3 625 663
ammp 0.651 0.423 2 2 23.3 22.6 413 435
twolf 1.250 0.887 3 3 24.9 22.1 652 692
gzip 0.158 0.135 2 1 22.1 22.0 642 670
bzip2 0.125 0.073 2 1 21.6 18.4 558 595
mcf 0.153 0.086 1 1 23.4 22.0 489 490
equake 0.057 0.095 2 1 20.9 19.6 579 585
art 0.176 0.147 1 1 21.3 20.9 522 536
httpd 21.358 16.598 327 427 86.4 73.8 814 853
sendmail 8.126 5.744 183 215 91.6 85.9 922 1201
ghostscript 95.665 57.363 672 806 3144.2 3216.3 1852 2052
gdb 142.583 102.526 924 1027 4384.4 4492.1 2259 2758
wine-server 6.339 6.472 222 274 142.5 126.3 637 656

average 15.001 10.544 131 164 418.8 424.0 970 1077

Table 6.4: Time and memory comparison with bitwise operations

format, creating generative constraints as in linear. These non-recursive constraints are then

evaluated similar to anders to generate new points-to information. As part of post-processing,

the generative constraints are evaluated to merge the points-to information for a variable from

its copies and to generate more constraints using store constraints. This process is repeated

until a fixed-point. The points-to information is stored in sparse bitmaps. Comparing against

nrec enables us to better evaluate the effect of using a linear solver in linear.

Time and memory requirements of linear and nrec are given in Figure 6.4. In case of context-

insensitive analysis, we find that nrec-ci outperforms linear-ci and is around 30% faster. This

suggests that although solving a set of linear equations using an external solver is practically

fast, it has overheads, which can be superseded by a standard constraint solver. However, as

evident from the table, the memory requirement of nrec-ci is also more by 25% than that of

linear-ci. Once again, the major memory savings in case of linear-ci occur due to not storing

Chapter 6. Points-to Analysis as a System of Linear Equations 137

the points-to information explicitly, offset by the additional storage requirement to represent

big integers.

In contrast, in case of context-sensitive analysis, the behavior of benchmarks differs across

the two methods. For most of the smaller benchmarks (e.g., vpr, crafty, mesa, ammp, ...)

nrec-cs requires slightly lesser time than that required by linear-cs. However, for the large

benchmarks (e.g., gcc, perlbmk, vortex, ghostscript and gdb), the analysis time of nrec-cs is

considerably more than that required by linear-cs. It is interesting to see that for the same

set of large benchmarks, the memory requirement of nrec-cs is also considerably high. These

observations suggest that linear is better suited for context-sensitive analysis of large programs.

For context-sensitive analysis, the cost of solving the constraints is much higher compared to

the cost of invoking an external linear solver. Although the exact reason for better performance

of the IBM ILOG solver would require drilling down the proprietary solver code, the solver’s

documentation [61] also confirms that the efficiency of the solver improves as the data-set

increases in size. We believe that the solver is able to take advantage of the simple equations and

perform optimizations, which are not being done by nrec. The advantage of these optimizations

becomes visible when the data-set size is large, which happens in case of context-sensitive

analysis of large programs. The reason for higher memory requirement of nrec is a clearly due

to different data representation. The results clearly indicate that storing large points-to sets

as a single (big) integer is storage-efficient compared to a bitmap representation.

6.8 Related Work

We formulated the points-to analysis problem as that of solving a system of linear equations.

An important use of linear algebra in program analysis has been to compute affine relations

among program variables [92]. They describe an interprocedural flow-sensitive analysis which

determines identities that are valid among the program variables whenever control reaches

a program point. Their analysis computes all polynomial relations of bounded degree pre-

cisely in time linear in the program size and polynomial in the number of occurring variables.

Cousot and Halbwachs [22] applied abstract interpretation for discovering equality or inequal-

ity constraints among program variables. However these methods are not applicable to pointer

dereferences. Fecht and Seidl [37] proposed an SML (Standard Markup Language) [119] based

Chapter 6. Points-to Analysis as a System of Linear Equations 138

solver for computing a partial approximate solution for a general system of equations used in

logic programs. Their analysis considers as few variables as necessary to compute the values

of variables of interest and assumes no specific properties of the right-hand-side expression of

an equation. Another area where analyses based on linear systems has been used is in finding

security vulnerabilities. Ganapathy et al. [39] proposed a context-sensitive light-weight analy-

sis modeling string manipulations as a linear program to detect buffer-overrun vulnerabilities.

Dor et al. [29] presented a tool C String Static Verifyer (CSSV) to find string manipulation

errors. CSSV converts a program written in a restricted subset of C into an integer program

with assertions. A violation of an assertion signals a possible vulnerability. It uses Das’s

one-level flow algorithm [24] to perform pointer analysis. In another method, Esparza et al.

[33] proposed Newtonian Program Analysis as a generic framework to solve iterative program

analyses using Newton’s method. They propose Newton’s method as an efficient alternative

to Kleene’s iterative method of finding a join-over-all-paths (JOP) solution to the system of

linear equations over basic blocks.

To the best of our knowledge, our work is the first one modeling points-to analysis as a

system of linear equations and using prime factorization to store the points-to information.

We empirically showed that our context-sensitive analysis is, on an average, 8.8× faster

than BDD-based Lazy Cycle Detecton [49] and is 1.8× faster than an optimized Andersen’s

analysis [3]. Further, our context-insensitive analysis is, on an average, 3.7× faster than BDD-

based Lazy Cycle Detecton [49], 5.3× faster than an optimized Andersen’s analysis [3], and

2.8× faster than Deep Propagation [100]. In case of memory requirement, we find that our

context-sensitive analysis requires almost the same memory as Andersen’s analysis [3], whereas

the context-insensitive version of our analysis, on an average, requires 1.8× less memory than

Andersen’s analysis [3], 2.9× less memory than Deep Propagation [100], but 3.6× more memory

than the BDD-based analysis [49].

6.9 Chapter Summary

In this chapter, we proposed a novel approach to transform a set of points-to constraints into

a system of linear equations using prime factorization. We overcame the technical challenges

by partitioning our inclusion-based analysis into a linear solver phase and a post-processing

Chapter 6. Points-to Analysis as a System of Linear Equations 139

phase that interprets the resulting values and updates points-to information accordingly. The

novel way of representing points-to information as a composition of primes allowed us to keep

the equations linear in every iteration. We show that our analysis is sound and precise with

respect to an inclusion-based analysis for a fixed dereference level. Using a set of 21 programs,

we showed that our approach is not only feasible, but is also competitive to the state-of-the-art

solvers. More than the performance numbers reported here, the main contribution of this work

is the novel formulation of points-to analysis as a linear system based on prime factorization.

Chapter 7

Prioritizing Constraint Evaluation

for Efficient Points-to Analysis

7.1 Introduction

It is well-known that for a flow-insensitive points-to analysis, the order in which the points-to

constraints are evaluated does not affect the fixed-point computed. In this chapter we study

the effect of evaluating constraints in a particular order to reach the same fixed-point. Our

goal is to devise a dynamic constraint ordering to compute the fixed-point of the points-to

information as efficiently as possible.

A flow-insensitive analysis iterates over a set of points-to constraints until a fixed-point is

obtained. Typically, the flow of points-to information is represented using a constraint graph

G, in which a node denotes a pointer variable and a directed edge from node n1 to node n2

represents propagation of points-to information from n1 to n2. Each node is initialized with the

points-to information computed by evaluating the address-of constraints. Edges are added to

G initially by copy constraints and then by complex (load and store) constraints as the analysis

progresses. This is because the edges introduced by complex constraints depend upon the

availability of points-to information at nodes which, in turn, depends upon the propagation.

Thus, as the analysis performs an iterative progression of the points-to information propagation,

new edges get introduced in G due to the evaluation of the complex constraints, resulting in

the computation of more and more points-to information at its nodes. When no more edges

and no more points-to information can be computed, G stabilizes and a fixed-point (points-to

141

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 142

Algorithm 15 Points-to Analysis using Constraint Graph

Require: set C of points-to constraints
1: Process address-of constraints
2: Add edges to constraint graph G using copy constraints
3: repeat
4: Propagate points-to information in G
5: Add edges to G using load and store constraints
6: until fixed-point

information at the nodes) is reached. The information can then be used by various clients. An

outline of this analysis is given in Algorithm 15.

Techniques have been developed for efficient propagation of the points-to information across

the edges of a constraint graph, i.e, Line 4 of Algorithm 15. Online cycle elimination [34] detects

cycles in G on-the-fly and collapses all the nodes in a cycle into a representative node. Cycle

collapsing is possible because all the nodes in a cycle eventually contain the same points-to

information. This significantly reduces the number of pointers tracked and speeds up the

overall analysis. Wave and Deep Propagation [100] techniques perform a topological ordering

of the edges and propagate difference in the points-to information in breadth-first or depth-first

manner respectively. These propagation orders significantly improve the analysis times. In yet

another method, various heuristics like Greatest Input Rise, Greatest Output Rise, and Least

Recently Fired [67] work on the amount and recency of information computed at various nodes

in the constraint graph to achieve a quicker fixed-point.

All of the above techniques essentially focus on the propagation order (Line 4 of Algo-

rithm 15) and prioritize the order in which the points-to propagation takes place. In other

words, these techniques work on the constraint graph after an edge is added. However, these

techniques do not attempt to dictate which evaluation order of the constraints (Line 5 of Al-

gorithm 15) would prove more beneficial for faster points-to information computation. Specif-

ically, there are two aspects of the constraint evaluation that are hitherto not exploited in

literature: (i) how many edges a constraint adds, and (ii) where in G a constraint adds edges.

We observe that both these parameters are important and can significantly influence the speed

of convergence of the fixed-point computation. Intuitively, an analysis should give more priority

to a constraint that adds more edges and that adds edges which appear early in the topological

ordering of G. A constraint that adds more edges provides more opportunities for points-to

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 143

information propagation. A constraint that adds edges earlier in the constraint graph reduces

the number of unnecessary propagations of the points-to information compared to the edges

that appear later in the topological ordering. We address both of these aspects using a single

heuristic in this chapter. It should be noted that neither the propagation order nor the con-

straint evaluation order changes the fixed-point of the points-to solution. Thus, the analysis

precision is not affected by these techniques.

We develop a framework that deals with the priority ordering of the points-to constraints

and the propagation of points-to information. The two criteria mentioned above give rise to

a priority assigned to each constraint. The priority is dynamic in nature and can change as

the analysis progresses. Our prioritized analysis not only evaluates constraints in the priority

order, but also evaluates certain constraints repeatedly based on priority. The result is a skewed

evaluation of important and useful constraints early and in a repeated manner to reach the

fixed-point solution faster.

The chapter is organized as below. We first prove that finding a sequence of the points-

to constraints that ensure reaching the fixed-point in an optimal number of steps in a flow-

insensitive inclusion-based analysis is NP-Complete (Section 7.2). We then explain our priority-

based greedy technique using an example (Section 7.3). In Section 7.4, we develop a priority

based analysis framework. The framework is general and can be used for other static analyses.

In Section 7.5, we instantiate our framework by defining constraint priority based on the

structure of and the number of points-to facts changed by a constraint. Our constraint priority

framework is quite generic and can be applied to different points-to analyses. In Section 7.6,

we evaluate the effectiveness of our approach by applying it on top of the state-of-the-art

algorithms (Andersen’s analysis [3], BDD-based Lazy Cycle Detection [49], Deep Propagation

[100] and Bloom Filters (Chapter 4)) for our benchmark suite. We discuss related work in

Section 7.7. We conclude the chapter with a summary in Section 7.8.

7.2 Optimal Constraint Ordering

Given our observation that prioritizing the processing of points-to constraints in Line 5 of

Algorithm 15 may improve the analysis time, it raises the question: does there exist an order

in which the constraints should be processed which can ensure optimal number of steps for

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 144

reaching the fixed-point? For instance, given a set of points-to constraints

a = &x; b = &y; p = &q; ∗q = b; ∗p = a,

it takes two iterations to reach the fixed-point (third iteration is required to confirm the fixed-

point), if they are processed in the above order. The processing for each iteration is given in

the following table.

Constraint New points-to information New points-to information

added in iteration 1 added in iteration 2

a = &x a → x

b = &y b → y

p = &q p → q

∗q = b x → y

∗p = a q → x

However, processing the above set of constraints in the following order ensures fixed-point

in one iteration (second iteration is required to confirm the fixed-point).

a = &x; b = &y; p = &q; ∗p = a; ∗q = b.

The processing is given in the following table.

Constraint New points-to information

added in iteration 1

a = &x a → x

b = &y b → y

p = &q p → q

∗p = a q → x

∗q = b x → y

Since existing techniques decouple propagation and evaluation of the complex constraints,

they do not reorder the constraints, which results in requiring multiple iterations to reach the

fixed-point.

In this section, we prove that computing such a sequence even for a restricted scenario

where only copy constraints are allowed is NP-Complete.

Theorem 1. Computing the flow-insensitive inclusion-based points-to solution in an optimal

number of steps from a set of copy constraints is NP-Complete.

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 145

Proof. In order to prove this, we reduce Set Cover problem [21] to points-to analysis. Consider

a Set Cover instance SC(U ,S, K) with universe U and a set S of subsets Si. The decision

version of the Set Cover problem states that given a universe U and a set S with subsets Si

possibly having elements in common, whether there exists a set of K subsets whose union

contains all the elements contained in any Si. Formally, given U and S, a cover is a subfamily

F ⊆ S of sets whose union is U . The problem SC(U ,S, K) is known to be NP-Complete [21].

We reduce SC(U ,S, K) to PTA(C, S, K) which is a flow-insensitive points-to analysis over

a set of points-to (copy) constraints C with an initial points-to information and the fixed-point

defined with respect to pointer S. The decision version of PTA checks whether the constraints

in C can be evaluated in a manner such that the fixed-point with respect to S is reached in K

steps. A step indicates evaluation of a constraint.

The reduction is performed as below. For each element s ∈ Si, we create an initial points-

to information Si → {s}, i.e., Si points-to s. For each set Si, we create a copy statement

S = Si. Note that there are no dependence cycles (a = b, b = a) in the constraints and the

fixed-point can be obtained without iterating over the constraints. This transformation from

SC(U ,S, K) to PTA(C, S, K) is linear in the number of sets and the number of elements.

Thus, SC polynomially reduces to PTA.

If an efficient (polynomial) solution exists for PTA, then the solution can be mapped back

to SC. Thus, if there is a sequence of K steps to obtain the fixed-point, and since the fixed-point

would contain all the points-to information, then the subsets Si corresponding to the chosen

copy constraints (S = Si) would cover all the elements s ∈ U that correspond to the points-to

facts in the fixed-point, forming the set cover.

Similarly, if a set cover of size K exists, then no other subset would be able to add any new

points-to information to S and the K subsets would form an optimal sequence of K steps to

obtain the fixed-point over the constraints.

Thus, PTA is NP-Hard. (a)

It is easy to see that a given sequence of K constraints can act as a polynomial time verifier

to check if PTA evaluates to a fixed-point. Thus, PTA is in NP. (b)

From (a) and (b), PTA is NP-Complete.

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 146

7.3 Prioritized Computation of Constraints

Since finding an optimal constraint ordering is NP-Complete, we propose a greedy heuristic,

based on constraint priority, for efficient computation of points-to constraints. We first explain

our priority-based approach using an example, then discuss various priority schemes followed

by our prioritization framework. Our priority based approach may be viewed similar to the

maximum benefit approach in the online set cover problem [5].

7.3.1 Example

Consider the program fragment given in Figure 7.1(a). Let the initial points-to information due

to the address-of constraints be a → {a, q, r, s, t} and p → {b, c, d}. Figure 7.1(b) illustrates

the constraint graph G at the end of different iterations of Deep Propagation [100]. As described

in Algorithm 15, Deep Propagation uses the constraint graph with the propagation order similar

to a depth-first search mechanism, i.e., points-to information is propagated along the complete

subtree (or graph) starting from a child of a node before another child of the node is considered.

For simpler exposition, we assume that online cycle elimination [34] is not performed.

A node is represented as n{P} where n is a pointer and {P} is its points-to set computed

so far. Directed edge from node n1 to n2 represents the propagation of points-to information

from n1 to n2. As the behavior of the pointers q, r, s, t is the same in this example, we use a

single node to represent all of them. Prior to Iteration 1, edges d to e and a to b are added to G

using copy constraints (refer Algorithm 15). Iteration 1 starts with propagating the points-to

set {a,q,r,s,t} from node a to b. Since the points-to set of d is empty, no information flows

to e. The next step of processing complex constraints adds the edges as indicated below.

*e = c: none.

c = *a: a to c, qrst to c.

*a = p: p to a, p to qrst.

The new edges introduced in this iteration are shown as thick lines. Thus, at the end of the

first iteration, the points-to information computed at different nodes as well as the constraint

graph are shown in Figure 7.1(b), Iteration 1.

The analysis continues propagating more points-to information and then adding more edges

(shown as thick lines) in each iteration until it reaches the fixed-point in Iteration 5. The final

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 147

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

d {bcd}

e {bcd}

p {bcd}

qrst {bcd}

Iteration 3

d {}

e {}

p {bcd}

Iteration 0

c {}

b {}

a {aqrst}

qrst {}

a {aqrst}

b {aqrst}

c {}

d {}

e {}

p {bcd}

qrst {}

Iteration 1

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

d {}

e {}

p {bcd}

qrst {bcd}

Iteration 2

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

d {abcdqrst}

e {abcdqrst}

p {bcd}

qrst {bcd}

Iteration 4

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

d {abcdqrst}

e {abcdqrst}

p {bcd}

qrst {abcdqrst}

Iteration 5

Fixed processing ordere = d, b = a; *e = c, c = *a, *a = p

*e = c, c = *a, e = d, b = a, *a = pInput constraints

Deep Propagation(b)

(a)

Figure 7.1: (a) Input constraints and fixed constraint ordering for Deep Propagation (b) Con-
straint graphs for Deep Propagation

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 148

*a = p (18)
c = *a (8)
*e = c (0)

Constraint ordering

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

d {}

e {}

p {bcd}

qrst {bcd}

Iteration 1

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

d {abcdqrst}

e {abcdqrst}

p {bcd}

qrst {bcd}

Iteration 2

*a = p (6)
c = *a (0)
*e = c (10)

Constraint ordering

*e = c (20)
*a = p (0)
c = *a (0)

Constraint ordering a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

d {abcdqrst}

e {abcdqrst}

p {bcd}

qrst {abcdqrst}

Iteration 3

a {abcdqrst}

b {abcdqrst}

c {abcdqrst}

d {abcdqrst}

e {abcdqrst}

p {bcd}

qrst {abcdqrst}*e = c (0)
*a = p (0)
c = *a (0)

Constraint ordering

Iteration 4

*e = c, c = *a, e = d, b = a, *a = pInput constraints

(b) Prioritized Deep Propagation

(a)

Figure 7.2: (a) Input constraints (b) Constraint graphs for Prioritized Deep Propagation

points-to information computed at the nodes by Deep Propagation is shown in Figure 7.1(b)

Iteration 5. In all the iterations of the analysis, a fixed ordering of the constraints is used,

which is typically the order in which the constraints appear in the program (Figure 7.1(a)).

Next, we explain how a prioritized version of Deep Propagation would reorder the con-

straints and hence improve the fixed-point computation. Our priority scheme can use various

mechanisms for ordering the constraints. We use a mechanism wherein the priority of a con-

straint is the number of new points-to facts it adds in the previous iteration. Thus, the con-

straint priority is dynamic and may change across iterations. At the start of the analysis, i.e.,

before Iteration 1, the constraints can be ordered using any ordering, including the program

order. In this example, we choose to use a dependence order. That is, a constraint c1 gets more

priority over another constraint c2 if c1 may define a variable that c2 uses. Thus, p = q gets

higher priority over r = p, r = ∗p, ∗p = r. The constraint ordering at the start of Iteration 1

is shown in the top drawing of Figure 7.2(b). The value in parentheses following a constraint

is the number of new points-to pairs the constraint adds in that iteration. For instance, the

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 149

constraint *a = p adds 18 new points-to pairs to G in Iteration 1.

As in the case of unprioritized Deep Propagation above, prior to Iteration 1, the copy con-

straints e = d and b = a add edges d to e and a to b respectively. Iteration 1 of our prioritized

approach adds directed edges and computes points-to information as shown in the top drawing

of Figure 7.2(b). Specifically, the constraint *a = p adds edges from p to qrst and p to a. This

allows for addition of the points-to set b,c,d to those of qrst, a and b, i.e., 18 new points-to

pairs. Similarly, the constraint c = *a adds 4 new edges: from nodes qrst, a, b, d to c and

8 new points-to pairs: c → {a, b, c, d, q, r, s, t}1. The last constraint *e = c does not add any

edges or new points-to information. Contrasting the state of G in Iteration 1 of the prioritized

Deep Propagation with that of Deep Propagation, we observe that two additional edges are

added in the prioritized analysis, namely b to c and d to c. Thus, compared to Iteration 1 of

Deep Propagation, Iteration 1 of the prioritized version adds the following additional points-to

information to the solution: a, b, q, r, s, t → {b, c, d}, c → {a, b, c, d, q, r, s, t}. In general, our

priority-based analysis enables addition of more edges to the constraint graph early resulting

in more possibilities for early propagation of points-to information. Further note that if the

constraint *a = p is evaluated twice, then the edges from p to b,c,d would be added, making

provision for propagation of more points-to pairs. We exploit this fact for skewed evaluation

in our algorithm (Section 7.5).

Our priority-based analysis framework keeps track of the number of points-to facts that are

newly added by each constraint evaluation and accordingly assigns priority to the constraint.

Multiple constraints may receive the same priority forming clusters of constraints. A customary

way of representing various priorities is using levels. Thus, constraints which add i new points-

to facts are assigned a priority level Pi. As the analysis progresses, constraints are mapped to

different priority levels. As an example, since c = ∗a adds 8 new points-to pairs in Iteration 1,

it is moved to P8 (to be used in Iteration 2). Similarly, the constraint ∗a = p is moved to P18.

The constraint ∗e = c remains at P0.

The prioritized ordering of the constraints at the start of Iteration 2 (shown in Figure 7.2(b)

Iteration 2) remains the same as in Iteration 1. The new edges added (thick lines) and the

1We use a right-arrow (→) to indicate a points-to relation, whereas, an edge in the constraint graph is worded
as from node x to node y.

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 150

points-to information computed at various nodes are as shown in Figure 7.2(b). In this it-

eration, the constraint ∗a = p adds 6 new points-to pairs (d, e → {b, c, d}), the constraint

c = ∗a adds no new points-to information and the constraint ∗e = c adds 10 new points-to

pairs (d, e → {a, q, r, s, t}). Note that the edges c to b and c to d get added in this iteration,

whereas in the case of the original Deep Propagation, the same edges are added in Iteration 3

(Figure 7.1(b)). The points-to information at node e depends upon the information propagated

via this edge (pointee set {a, q, r, s, t}). The third drawing of Figure 7.2(b) shows the priori-

tized ordering of the constraints at the start of Iteration 3, sorted by the number of points-to

pairs each constraint added in Iteration 2. The points-to information computed is as shown in

Figure 7.2(b). In this iteration, only ∗e = c adds 20 new points-to pairs (qrst → {a, q, r, s, t}).

The method converges after Iteration 4.

As shown in the example, a priority-based analysis evaluates constraints in such an order

that it enables addition of more edges and more useful edges early in the constraint graph to

ensure quick fixed-point computation. The propagation of the points-to information via these

edges is done by the underlying analysis (Andersen’s method [3] or Deep Propagation [100],

etc.) which is not dictated by our method. The above example also suggests that the fixed-

point computation of an analysis can be improved by going beyond the conventional mechanism

of treating all the complex constraints with the same priority. The above example illustrated

two different priority schemes – one based on the dependence across constraints based on def-

use chain and another based on the amount of information a constraint changes. We carefully

categorize different priority schemes and formalize the prioritization framework in the next

section.

7.4 Prioritization Framework

We now formalize our notion of a priority based framework. A prioritized framework R is a

4-tuple.

R = 〈C,P,F ,≤〉, where

• C is the set of input constraints,

• P is the set of priority levels of size NP ,

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 151

• F = {f1, f2, ..., fk} is a family of priority functions. In the ith iteration, the analysis uses

one of fj for some j ∈ 1..k. Then, a constraint c ∈ C is assigned a priority p if fj(c) = p,

and

• ≤ is a partial order defined on the priority levels assigned to a pair of constraints cx and

cy at the ith iteration. If fi(cx) = px and fi(cy) = py, then px ≤ py iff py is at a higher

priority level than px.

Examples. R = 〈C,P,F ,≤〉 defines Andersen’s inclusion based analysis, where P = {p0} and

f(c) = p0 for all f ∈ F and c ∈ C.

R = 〈C,P,F ,≤〉 is a linguistic prioritized framework with f ∈ F defined as f(c) ≡

|dependents(c)| where |dependents(c)| gives the number of dependent constraints over c using

def-use chains (as used for ordering constraints before Iteration 1 of the example in Section 7.3).

7.4.1 Priority Schemes

There are several ways in which the points-to constraints can be prioritized. We classify them

into two types.

• Linguistic scheme: In this scheme, the constraints are prioritized based on their structure

and the constraint variables. For instance, the priority mechanism in the last subsection

for ordering constraints prior to Iteration 1 is a linguistic scheme. Another linguistic

scheme may prioritize all load and store constraints over copy constraints.

• Effect-driven scheme: In this scheme, the constraints are prioritized based on the eval-

uation effects, e.g., the number of times a constraint gets evaluated or the number of

points-to facts it adds (as in the example above).

It is possible to come up with a hybrid scheme that uses a combination of the above

two schemes. For instance, one could assign different priority levels based on an effect-driven

scheme, and a linguistic scheme can be used to order the constraints within the same priority

level.

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 152

Algorithm 16 Prioritized Points-to Analysis

Require: set C of points-to constraints
1: process address-of constraints and remove from C

2: add edges to G using copy constraints and remove from C

3: sort C using dependence order
4: partition the constraints in different priority levels
5: repeat
6: for all level ∈ Highest priority level .. Lowest priority level do
7: times = 0

8: repeat
9: for all c ∈ Plevel do

10: diff = evaluate(c)
11: new-level = priority-level(diff)
12: Plevel = Plevel \ {c}
13: Pnew-level = Pnew-level ∪ {c}
14: end for
15: until inner fixed-point or ++times > threshold

16: end for
17: until outer fixed-point

7.5 The Algorithm

We instantiate our prioritization framework with a set of two functions. The first function f1

is used for the first iteration whereas the other function f2 is used for the subsequent iterations

of the analysis. Thus, F = {f1, f2}. The function f1 assigns priority to a constraint according

to its depth in the dependence graph of constraints. Thus, it uses a linguistic scheme to

define a constraint priority. For instance, if c1 defines a variable that c2 uses, then c1 gets

higher priority than c2. Note that one could use any suitable priority function of choice. The

function f2 assigns a priority level to a constraint c in iteration i+1 according to the amount of

points-to information newly added by c in iteration i. The complete analysis developed using

the prioritization framework is given in Algorithm 16. The function evaluate() in Line 10

implements a single iteration of the points-to information computation and propagation using

any method like Andersen’s analysis [3], Deep Propagation [100] or Lazy Cycle Detection [48].

Similar to Algorithm 15, our algorithm first processes the address-of and copy constraints

(Lines 1–2). Line 3 finds the dependence across constraints and and Line 4 partitions them in

different priority levels depending upon the topological ordering of the nodes.

The repeat-until loop at Lines 5–17 iterates through various constraints at various priority

levels until none of the constraint evaluations changes the points-to information, suggesting that

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 153

the fixed-point is reached. Each iteration of this loop corresponds to the different iterations of

the points-to analysis illustrated in Figure 7.2 of Section 7.3.

Constraints in each priority level are processed, starting from the highest priority level,

in the for loop (Lines 6–16). In Line 10, the points-to information is computed using an

underlying points-to analysis method. The method returns a single integer suggesting the

amount of new points-to information computed. Based on the returned integer value, a new

priority level is assigned to the constraint (Line 11). If the new priority level is the same as

the current priority, the same constraint may get processed again shortly, as it has changed

the points-to information. The repeat-until loop (Lines 8–15) shows that the constraints in

the same priority level get processed repeatedly until an inner fixed-point (fixed-point for the

constraints within the same priority level). This essentially allows the skewed processing of

some constraints, as they get evaluated more often than others.

Lines 12 and 13 remove a constraint from its current priority level and put it in a new level, if

its new priority level is different from the current one. Note that the new priority level computed

is directly proportional to the change in the points-to information. This essentially means that

the constraints which add more new points-to pairs are given higher priority. Since adding

more edges typically results in the propagation of more points-to information, constraints that

add more edges get higher priority.

We explain the computation of the new priority level at Line 11 next. The number of

priority levels used in our method requires to be carefully chosen. Keeping this number same

as the difference (diff) in the points-to information may require a large number of priority

levels to be considered, as a few constraints may change hundreds of points-to facts. Moreover,

this, in most cases, is unnecessary, as the fixed-point computation benefits from clusters of

constraints having approximately the same priorities, rather than an isolated high-priority

constraint. Therefore, we combine a range of priority values into a single priority level. This

bucketization proves helpful in skewed evaluation of constraints in a priority level.

Further, bucketization exploits an important observation about constraint solving (as a

side-effect): several interdependent constraints, at different times during the analysis, modify

the same amount of points-to information. We observed this empirically and on inspection,

realized that after initial warm-up, several of the load and store constraints, of the form p = ∗q

and ∗p = q, start adding a fixed number of points-to information. Therefore, interdependent

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 154

constraints, due to bucketization, get grouped at the same priority level. Thus, iterating over

these interdependent constraints helps in reaching the fixed-point faster.

However, the importance of iterating over the constraints at the same priority level should

not be over-emphasized. Due to the cyclic nature of (self or transitive) dependence, in most

cases, it suffices to iterate only twice over the constraints at a priority level. The number of

indirections present in hand-written programs is typically quite small. Hence, looping beyond

two iterations gradually reduces the gain (the amount of points-to information added). There-

fore, the repeat-until loop from Lines 8–15 iterates for at most threshold number of times

over the constraints at the same priority level. The condition inner fixed-point takes care

of not iterating an (i + 1)th time if the ith iteration does not change the points-to information.

Since our analysis evaluates constraints from higher to lower priority order and since a

constraint priority changes dynamically, it could lead to an interesting paradoxical situation.

Consider constraints c1 and c2, which are at priority level Pi at the start of an iteration

i. In that iteration, let c1’s priority increase and let it jump to a priority level above Pi.

Let the constraint c2, in contrast, jump to a priority level below Pi by adding less amount

of points-to information. Since the for loop at Line 6 traverses the priority levels from the

highest to the lowest priority order, the constraint c1, which has a higher priority, does not

get evaluated more than once in iteration i. However, the constraint c2 which has a lower

priority, gets evaluated again in iteration i at the lower priority level. Intuitively, we expect c1

to be evaluated more number of times than c2. However, due to the nature of our algorithm,

exactly the reverse may happen. An intuitively better way would be to evaluate the current

highest priority constraint. In order to evaluate the effect of evaluating the current highest

priority constraint, we implemented our analysis using a priority queue (see Section 7.6.6 for

details). Thus, we modify Lines 6 to 16 of Algorithm 16 to extract an element from a priority

queue which returns the constraint with maximum priority. After evaluating the constraint,

the constraint is pushed back into the queue with the updated priority. This guarantees that,

at each stage, a constraint with the highest priority is evaluated. We observed that our current

implementation outperforms the priority queue based implementation by a large margin (over

33%). This suggest that choosing a strict priority ordering does not achieve the maximum

performance. Alternative approaches to handle priority, other than the ones discussed here,

could be proposed. We leave this aspect as a future work.

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 155

We remark that the priority scheme does not require the constraint graph to be constructed.

The algorithm works on constraints rather than on individual pointers.

7.6 Experimental Evaluation

We evaluate the effectiveness of prioritized points-to analysis using our benchmark suite con-

sisting of 16 SPEC C/C++ benchmarks and five large open source programs (httpd, sendmail,

gdb, wine-server and ghostscript). As before, we evaluate the impact of our prioritization

approach on Andersen’s analysis [3] referred to as anders, Lazy Cycle Detection (LCD) [49]

referred to as bddlcd, Bloom Filter based points-to analysis (Chapter 4) referred to as bloom

and Deep Propagation [100] referred to as deep.

To recall, deep is context-insensitive while other implementations are context-sensitive; fur-

ther, all methods are flow-insensitive and field-insensitive. Context-sensitivity is implemented

using an invocation-graph based approach [32], as discussed in Section 4.4. For each method a,

we denote its prioritized version as p-a (e.g., p-anders, p-bloom etc.). All prioritized versions

implement effect-driven scheme with all the optimizations described in Section 7.5 with the

number of priority levels set to 203 (see Section 7.6.4 for a discussion on selecting the number

of priority levels). The experiments are carried out on the same platform, with an Intel Xeon

machine with 2 GHz clock, 4 MB L2 cache and 4 GB RAM.

7.6.1 Analysis Time

The analysis times (in seconds) of various methods are shown in Table 7.1. Comparing anders

versus p-anders, we observe a 13%–41% reduction in the analysis time (average 33%) due

to prioritized scheduling of points-to constraints. This emphasizes the importance of a good

constraint order.

In case of bddlcd, we observe a larger benefit due to prioritization (44% on an average,

excluding gdb). The benefit is an outcome of an interplay between bddlcd algorithm and

prioritized scheduling. Cycle detection benefits from evaluating the cyclic constraints together

which change an equal number of points-to pairs and hence get grouped into the same priority

level. The prioritized scheduling approach evaluates all of them in close-proximity, often giving

correct hints to the cycle detection mechanism, resulting in an overall efficient analysis. In case

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 156

Context-sensitive Context-insensitive
Benchmark anders p-anders bddlcd p-bddlcd bloom p-bloom deep p-deep

gcc 329.5 286.5 17411.2 7984.5 137.1 119.2 1.740 1.176
perlbmk 143.4 98.4 5879.9 3159.5 85.4 72.6 1.744 1.396
vortex 91.3 69.7 4725.7 3397.2 71.4 63.2 0.116 0.088
eon 93.5 79.3 2391.8 1515.1 74.0 52.4 11.701 2.320
parser 35.4 26.4 618.3 331.0 29.2 26.1 0.176 0.072
gap 128.5 85.0 330.2 186.8 85.1 72.9 0.092 0.044
vpr 29.5 20.1 199.5 95.6 16.1 11.9 0.024 0.008
crafty 29.3 22.1 155.0 91.6 17.6 13.4 0.004 0.004
mesa 89.4 65.1 21.7 12.1 63.2 58.9 0.248 0.108
ammp 34.2 23.3 54.6 31.4 22.5 19.5 0.032 0.012
twolf 41.5 33.8 27.4 13.5 31.2 25.5 0.032 0.016
gzip 25.2 14.9 6.5 3.1 18.5 12.4 0.004 0.004
bzip2 23.3 14.0 4.7 3.9 19.6 18.3 0.004 0.004
mcf 22.4 17.1 32.0 18.4 16.3 16.3 0.004 0.004
equake 24.3 17.2 4.1 3.7 13.8 11.3 0.004 0.004
art 26.5 19.2 7.7 4.1 11.5 10.0 0.004 0.004
httpd 224.5 193.3 47.4 24.8 38.8 32.8 53.727 23.722
sendmail 172.7 136.2 117.5 96.6 15.9 11.6 12.729 10.613
ghostscript 4384.2 3183.8 20612.8 12372.0 1959.8 1652.4 207.033 126.140
gdb 9338.2 5847.3 24871.7 OOM 2362.6 1941.3 587.829 294.066
wine-server 201.3 147.3 36.7 23.5 68.0 55.0 8.165 5.488

average 737.5 495.2 3693.2 1468.4* 245.6 204.6 42.162 22.157

* The average is calculated ignoring the OOM entry.

Table 7.1: Analysis time (seconds)

of gdb, the prioritized LCD version goes out of memory (see discussion in Section 7.6.2).

In case of bloom, both the versions (bloom and p-bloom) analyze all the benchmarks suc-

cessfully to completion, with p-bloom achieving 16% reduction in the analysis time.

The execution times of context-insensitive analysis (deep and p-deep) are significantly lower

due to the relatively lower computational requirements of the context-insensitive algorithm. But

even in this case, introducing prioritization results in an improvement that is either smaller

for benchmarks which require few hundred milliseconds analysis time or not observed (for the

benchmarks where the analysis time is a few milliseconds). However, for the larger benchmarks

such as httpd, ghostscript and gdb, the improvements are significant, resulting in more than

50% reduction in the analysis time. The reason is quite similar to that in case of bddlcd. On-

line cycle detection implemented as part of deep benefits from prioritized scheduling. However,

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 157

Context-sensitive Context-insensitive
Benchmark anders p-anders bddlcd p-bddlcd bloom p-bloom deep p-deep

gcc 2859 2174 2534 3651 669 664 83 73
perlbmk 2133 1878 1723 2940 314 312 100 93
vortex 1857 1553 1358 2030 152 146 16 16
eon 1276 907 1425 1882 299 295 248 66
parser 478 419 345 488 118 112 4 4
gap 457 397 362 472 240 238 8 8
vpr 735 688 692 973 93 93 2 2
crafty 672 600 566 716 77 76 1 1
mesa 894 825 729 1069 163 161 14 14
ammp 427 372 336 478 81 80 3 2
twolf 624 485 617 837 119 115 4 4
gzip 514 446 522 685 55 54 1 1
bzip2 633 582 588 856 56 57 1 1
mcf 403 379 389 505 48 49 1 1
equake 546 501 527 847 56 56 1 1
art 597 524 582 852 49 49 1 1
httpd 791 686 825 1252 596 594 674 425
sendmail 914 799 851 1297 306 303 256 224
ghostscript 1958 1644 1672 2389 971 969 2871 2364
gdb 2194 1635 1859 OOM 1461 1363 3556 2765
wine-server 774 615 690 1100 279 274 185 149

average 1035 862 914 1266 295 289 382 296

* The average is calculated ignoring the OOM entry.

Table 7.2: Memory requirement (MB)

another artifact of deep facilitates higher benefits with prioritized scheduling. Deep Propaga-

tion works on the topological ordering of the directed copy edges across pointer nodes in the

constraint graph. Effect-driven prioritization of constraints adds copy edges that propagate

(approximately) the same number of points-to constraints in an iteration, resulting in most of

the propagation path available for deep propagation.

7.6.2 Memory

The memory requirements (in MB) for various methods are shown in Table 7.2. In general,

one would expect the memory requirements to remain almost the same. However, the in-

ternal structure and implementation of the algorithm play a key role in the overall memory

requirement.

The p-anders method consistently requires significantly less memory than anders, with an

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 158

average memory reduction of 16.7%. The memory savings are largely due to the difference prop-

agation (propagating only the difference in the points-to sets across a constraint-graph edge)

and the use of temporary data structures during constraint evaluation. Instead of keeping small

difference information for propagation across iterations as in anders, our effect-driven prior-

itized scheme combines difference information together and propagates them along complete

paths in consecutive evaluations. This benefit is similar in spirit to what Deep Propagation

achieves over Wave Propagation [100].

Both the bloom and p-bloom methods complete successfully on all the benchmarks and do

not use difference propagation. Hence the memory requirements are quite similar (295 MB

versus 289 MB on an average). The small drop observed in the memory requirement for the

prioritized version is due to the reduction in the temporary data structures used for holding

points-to information during propagation.

The p-deep method outperforms deep in terms of the memory requirement by 22.5% on an

average. Memory savings are largely due to difference propagation.

On the other hand, the p-bddlcd method requires 38.5% more memory than bddlcd. In

fact, in case of gdb, p-bddlcd runs out of memory whereas the non-prioritized version completes

successfully. The increase in the memory requirements in p-bddlcd is due to the nature of bddlcd

algorithm. Unlike other algorithms discussed here, bddlcd is worklist based. A constraint may

get added to the worklist while its another instance is already present. Thus, the worklist size

is not bound by the total number of points-to constraints. Having a prioritized scheme requires

multiple such worklists to be created, pushing different instances of the same constraint into

different worklists based on the current priority of the constraint. Thus, using multiple worklists

increases the amount of memory consumed. Thus, in case of bddlcd, introducing prioritization

decreases the analysis time though at the expense of increased memory requirement.

7.6.3 Overall Effect

We counted the average number of new points-to facts generated by each constraint for anders

and p-anders in each iteration2. We present results for four representative benchmarks, namely,

vortex, art, vpr and gap in Figure 7.3. The results of other benchmarks are similar. We observe

that in all cases, the prioritized version computes points-to facts in earlier iterations and thus

2Due to constraints getting evaluated multiple times in p-anders, the notion of iteration is not well defined.

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 159

computes fixed-point faster compared to the non-prioritized version. As a specific example,

in case of vortex, due to prioritizing appropriate constraints, our p-anders method computes

the points-to facts earlier and reaches the fixed-point in 8 iterations compared to 10 as in the

anders method.

7.6.4 Effect of Bucketization

First, we experimented with several values for the number of priority levels. The sensitivity of

the analysis time (execution time to complete the points-to analysis) to the number of priority

levels (buckets) for p-anders is shown in Figure 7.4. Note that the values are normalized with

respect to anders. To avoid clutter, we show the effect on only four representative benchmarks

ghostscript, gdb, perlbmk and gzip along with the average over all the benchmarks listed in

Table 4.1. We observe that the analysis time steadily reduces with the increasing number of

buckets. However, the number of buckets should not be arbitrarily increased. It is important

to keep related constraints together so that an inner fixed-point over the related constraints

would be beneficial (refer to a discussion in Section 7.5). Using too many priority levels may

move related constraints in different priority levels and would reduce the benefit of the inner

fixed-point. Further, after a point, increasing the number of buckets starts giving diminishing

returns.

7.6.5 Effect of Skewed Evaluation

As certain constraints may get evaluated multiple number of times, it is important to measure

the effect of this skewed evaluation. In Algorithm 16, we removed the threshold check for inner

fixed point (Line 15) and allowed each priority level to be evaluated until fixed-point. We

measured the total amount of new points-to information added by each inner iteration across

all the priority levels. Figure 7.5 shows the effect over our benchmark suite. X-axis shows

the inner iteration number. Y-axis shows the percentage of new points-to information added

at an iteration. We observe that 61% of the total points-to information is added in the first

iteration while a total of 93% points-to information is added in the first two iterations. The

later iterations (iteration 3 onwards) add only a very small amount of information and, in the

interest of overall analysis time, we restrict the threshold for inner iterations to 2.

We would like to note that values of the configuration parameters play an important role

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 160

Figure 7.3: Effect of prioritization for vortex, art, vpr and gap respectively

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 161

Figure 7.4: Effect of bucketization

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5

P
er

ce
nt

ag
e

of
 n

ew
 p

oi
nt

s-
to

 in
fo

rm
at

io
n

ad
de

d

inner iterations

Figure 7.5: Effect of skewed evaluation

in the analysis efficiency and must be chosen carefully. However, our experience suggests that

the parameters vary according to the program characteristics and there is no simple rule to

arrive at the optimal values for all the programs.

7.6.6 Comparison with Priority Queue

In all our experiments the buckets are implemented as a hashtable wherein the priority level

acts as the key. One may argue that the prioritization can possibly be more efficiently imple-

mented as a priority queue. Theoretically, a priority queue incurs, on an average, an O(log n)

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 162

Benchmark p-anders p-anders-pq

gcc 151.618 952.368
perlbmk 65.969 552.173
vortex 1.457 11.735
eon 29.625 224.621
parser 0.831 24.827
gap 6.689 13.975
vpr 0.465 2.381
crafty 0.453 2.879
mesa 1.029 5.645
ammp 0.372 1.883
twolf 0.614 3.725
gzip 0.221 0.852
bzip2 0.199 0.255
mcf 0.175 0.188
equake 0.176 0.222
art 0.167 0.190
httpd 58.624 407.571
sendmail 37.276 286.395
ghostscript 425.362 503.515
gdb 852.622 5843.766
wine-server 62.545 541.532

average 80.785 446.700

Table 7.3: Comparison with Priority Queue: Analysis Time (seconds)

complexity for each insertion and removal of an element. In our hashtable-based implementa-

tion, insertion and removal are O(1) operations, given a reference to a constraint. To study

how the two implementations perform in practice, we developed a priority-queue-based analysis

with C++ STL. The analysis time for various benchmarks required for our hash-table based

implementation (p-anders) and priority queue based implementation (p-anders-pq) are given

in Table 7.3. We observe that the priority-queue-based Andersen’s analysis (p-anders-pq) is

5× slower than our hash-table-based analysis. The p-anders method requires 81 seconds on

an average for analyzing a benchmark, whereas the p-anders-pq method requires 447 seconds

on an average. This shows that the priority levels implemented as a hashtable perform better

than those implemented as a true priority queue.

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 163

7.7 Related Work

We proposed a framework for prioritizing points-to constraint evaluation. To the best of our

knowledge, no prior work has focused on prioritizing points-to constraints. However, there ex-

ists some work on efficient propagation of points-to information in a constraint graph. Pearce

et al. [99] propose difference propagation to propagate only the difference in the points-to in-

formation across nodes. In order to be efficient, they maintain only an approximate difference

across the end points of an edge. Wave and Deep Propagation [100] propagate points-to infor-

mation in breadth-first and depth-first manner respectively for efficient analysis. The technique

uses (exact) difference propagation [99] for propagating only the changed points-to information.

They show that both the techniques can significantly improve the propagation time and Deep

Propagation can greatly reduce the memory requirement of the analysis. Kanamori and Weise

[67] propose several heuristics for choosing a node-ordering for points-to information propaga-

tion, e.g., Greatest Input Rise, Greatest Output Rise and Least Recently Fired. Pearce et al.

[99] find that the Least Recently Fired strategy works very well in practice over other heuris-

tics especially for large programs. Our work is related, but deals with constraint evaluation

ordering rather than points-to information propagation. It can be easily combined with any

propagation related optimization for enjoying joint benefits.

Our prioritization mechanism may be viewed to be similar to an online set cover problem in

which sets are chosen to maximize the benefit [5] or to minimize the cost [2] in every iteration.

We empirically showed that, on an average, our prioritization mechanism reduces the run-

ning time of optimized Andersen’s analysis [3] by 33%, of BDD-based Lazy Cycle Detection

[49] by 44%, of bloom filter based analysis (Chapter 4) by 16%, and of Deep Propagation

[100] by 48%. Our approach also improves the memory requirement of the algorithms which

use difference propagation. On an average, our prioritization mechanism reduces the memory

requirement of Andersen’s analysis [3] by 16.7%, and of Deep Propagation [100] by 22.5%.

7.8 Chapter Summary

In this chapter, we proposed a prioritized order of processing constraints in the points-to

analysis method to improve its efficiency. First, we proved that finding an optimal sequence

Chapter 7. Prioritizing Constraint Evaluation for Efficient Points-to Analysis 164

of points-to constraints for even a restricted flow-insensitive version is NP-Complete. Sub-

sequently, we identified two new dimensions for evaluating points-to constraints: how many

edges a constraint adds and where in the constraint graph it adds edges. Based on this obser-

vation, we presented a prioritization framework for evaluating a set of points-to constraints.

We illustrated the generality of the proposed framework by implementing prioritized versions

of Andersen’s analysis, Lazy Cycle Detection using BDD, Bloom-filter based analysis and Deep

Propagation. We instantiated the framework with a hybrid priority scheme based on the use-def

chains of variables and the amount of points-to information a constraint changes on evalua-

tion. Experimental evaluation shows that the presented priority scheme can greatly benefit the

state-of-the-art algorithms to reach a fixed-point faster. In addition to improving the analysis

time, the proposed approach also reduces the memory requirement of the algorithms that use

difference propagation.

While the framework is illustrated in the context of points-to analysis, the idea of prioritized

evaluation is general and applicable to other static and dynamic analyses. We believe that

further work on prioritizing constraints can open up interesting possibilities for performing

optimizations.

Chapter 8

Conclusions and Future Work

8.1 Summary

This thesis proposed several novel approaches to improve the scalability of context-sensitive

pointer analysis. We formalized and experimentally validated their practical usefulness and

scalability.

We proposed a multi-dimensional bloom filter for storing points-to information. The pro-

posed representation, though, may introduce false positives, significantly reduces the memory

requirement and provides a probabilistic lower bound on loss of precision. As our multibloom

representation introduces only false positives, but no false negatives, it ensures safety for the

points-to analysis. We demonstrated that compared to an exact analysis, a multibloom con-

figuration offers, on an average, 75% reduction in memory requirement and 40% reduction in

analysis time with less than 2% precision loss. We also showed that compared to a BDD-based

analysis, a multibloom configuration is 15× faster and uses 3× less memory. Using Mod/Ref

analysis as a client, we showed that the effect of our approximate representation on the precision

of the client is even less. Unlike traditional data-structures for storing points-to information,

like bitmaps and BDDs, bloom filter provides user a control on the memory requirement, yet

giving a probabilistic lower bound on the precision loss.

Next, we presented a randomized, yet sound, technique for scaling points-to analysis. Our

method selectively applies different kinds of analyses on different partitions of the program

entities to be processed and then composes the results carefully to get a sound approximation to

the points-to solution. We illustrated the technique to develop a randomized context-sensitive

165

Chapter 8. Conclusions and Future Work 166

points-to analysis. Our empirical evaluation revealed several configurations that achieve less

than 5% precision loss with an average 50% reduction in context-sensitive analysis time. Based

on our analysis of the results, we developed an adaptive randomized points-to analysis which

can be used for a program for which the right configuration is unknown.

Next, we proposed a novel approach to transform a set of points-to constraints into a

system of linear equations using prime factorization. We overcame the technical challenges

by partitioning our inclusion-based analysis into a linear solver phase and a post-processing

phase that interprets the resulting values and updates points-to information accordingly. The

novel way of representing points-to information as a composition of primes allowed us to keep

the equations linear in every iteration. We showed that our analysis is sound and precise with

respect to an inclusion-based analysis for a fixed dereference level. Using a suite of benchmarks,

we showed that our approach is not only theoretically feasible, but is also practically viable. On

an average, our context-sensitive analysis is 8.8× faster than BDD-based Lazy Cycle Detecton

[49] and 1.8× faster than an optimized Andersen’s analysis [3].

Finally, we proposed a prioritized order of processing constraints in the points-to analysis

method to improve its efficiency. First, we proved that finding an optimal sequence of points-to

constraints for even a restricted flow-insensitive version is NP-Complete. Subsequently, we pre-

sented a prioritization framework for evaluating a set of points-to constraints. We illustrated

the generality of the proposed framework by implementing prioritized versions of Andersen’s

analysis, Lazy Cycle Detection using BDD, bloom-filter based analysis and Deep Propagation.

We instantiated the framework with a hybrid priority scheme based on the use-def chains of

variables and the amount of points-to information a constraint changes on evaluation. We

demonstrated that the presented priority scheme can greatly benefit the state-of-the-art al-

gorithms to reach a fixed-point faster. Thus, our technique improves the analysis time of

Andersen’s method by 33%, of Lazy Cycle Detection by 44%, of bloom-filter based analysis by

16%, and of Deep Propagation by 45% on an average. In addition to improving the analysis

time, the proposed approach also reduces the memory requirement of the algorithms that use

difference propagation. Thus, our technique reduces the memory requirement of Andersen’s

analysis by 16.7%, and of Deep Propagation by 22.5% on an average.

Chapter 8. Conclusions and Future Work 167

8.2 Future Work

In this section, we mention a few directions along which our work can be extended.

• Flow-sensitive points-to analysis using bloom filters: We explored bloom filters for flow-

insensitive points-to analysis. A flow-sensitive points-to analysis is more memory intensive

than its flow-insensitive counterpart. Since the use of bloom filters to store points-to

information enables large savings in the memory requirement, it could be very well suited

for a flow-sensitive analysis. However, a basic bloom filter operation does not support

deleting an element (resetting a bit), which would be required to implement a kill set

of a flow-sensitive analysis. A variant of bloom filter, called counting bloom filter [36],

supports a limited number of element deletions, but beyond the limit, it may result into a

false negative. Therefore, some innovative ways of managing the kill-set would be required

to implement a flow-sensitive points-to analysis using bloom filters.

• Applying randomization to other program analyses: We presented our randomization

technique for a context-sensitive points-to analysis. However, the technique is general

and can possibly be applied to other analysis dimensions and other program analyses.

For instance, consider an analysis A1 of multi-threaded programs which considers all the

feasible interleavings of the threads, versus an analysis A2 which analyzes the threads

flow-insensitivity. Obviously, A1 is more precise and time-consuming than A2. However,

by applying our randomization technique, a random set of threads could be chosen to be

processed in a more precise manner while the remaining could be chosen to be processed

in a less precise manner and by composing the two results, one may get a sound ap-

proximation to the analysis solution. Depending upon the degree of randomization, the

analysis precision would vary from that of the more precise to the less precise analysis.

• Exploiting the structure of linear constraints: We reduced the pointer analysis problem

to that of solving a system of linear equations. It would be interesting to see the effect

of various optimizations proposed for the set of linear equations on the efficiency of

our analysis. Specifically, in our transformation, each equation has a special structure:

each equation contains not more than two variables, the left hand side variable has a

coefficient of unity and the only constant term that can appear is 1 (since the constraints

Chapter 8. Conclusions and Future Work 168

are normalized; see Section 2.4.1). Due to this special structure, it may be possible to

apply some linear algebra techniques to optimize solving the system of equations.

• Points-to analysis as a network flow problem: Another interesting direction would be to

map the points-to analysis problem to another well-studied problem and take advantage of

the algorithms and optimizations developed for the problem. For instance, one may reduce

points-to analysis to a network flow problem since the former is essentially propagation

of information across nodes in a constraint graph. Such reductions may open up avenues

for asymptotically better points-to analysis algorithm.

• Exploring other prioritization mechanisms for constraint evaluation: Our prioritization

framework was instantiated using one greedy heuristic which depends upon the amount

of new points-to information added by a constraint. However, it is very much possible

to devise a new prioritization scheme to be plugged into our framework. For instance,

calculating the priority of a constraint in the current iteration could be done based on

all the previous iterations rather than only the last iteration. A comparative study of

such schemes would let us better understand the role of constraint evaluation in points-to

analysis and may lead us to a highly efficient algorithm.

To conclude, we believe that our work has advanced the state-of-the-art on pointer analysis.

References

[1] A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi. Checking and Inferring Local

Non-Aliasing. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming

Language Design and Implementation, PLDI ’03, pages 129–140, New York, NY, USA,

2003. ACM.

[2] N. Alon, B. Awerbuch, and Y. Azar. The Online Set Cover Problem. In Proceedings

of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’03, pages

100–105, New York, NY, USA, 2003. ACM.

[3] L. O. Andersen. Program Analysis and Specialization for the C Programming Language,

PhD Thesis, DIKU, University of Copenhagen, 1994.

[4] D. Avots, M. Dalton, V. B. Livshits, and M. S. Lam. Improving Software Security with

a C Pointer Analysis. In Proceedings of the 27th international Conference on Software

Engineering, ICSE ’05, pages 332–341, New York, NY, USA, 2005. ACM.

[5] B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton. Making Commitments in the Face

of Uncertainty: How to Pick a Winner Almost Every Time (Extended Abstract). In

Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,

STOC ’96, pages 519–530, New York, NY, USA, 1996. ACM.

[6] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to Analysis using

BDDs. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language

Design and Implementation, PLDI ’03, pages 103–114, New York, NY, USA, 2003. ACM.

[7] B. H. Bloom. Space/time Trade-offs in Hash Coding with Allowable Errors. Commun.

ACM, 13:422–426, July 1970.

169

REFERENCES 170

[8] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans.

Comput., 35:677–691, August 1986.

[9] J. Burch, E. Clarke, D. Long, K. McMillan, and D. Dill. Symbolic Model Checking

for Sequential Circuit Verification. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 13(4):401 –424, apr 1994.

[10] M. G. Burke, P. R. Carini, J.-D. Choi, and M. Hind. Flow-Insensitive Interprocedural

Alias Analysis in the Presence of Pointers. In Proceedings of the 7th International Work-

shop on Languages and Compilers for Parallel Computing, LCPC ’94, pages 234–250,

London, UK, 1995. Springer-Verlag.

[11] M. Buss, D. Brand, V. Sreedhar, and S. A. Edwards. A Novel Analysis Space for

Pointer Analysis and its Application for Bug Finding. Sci. Comput. Program., 75:921–

942, November 2010.

[12] V. T. Chakaravarthy. New Results on the Computability and Complexity of Points–to

Analysis. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL ’03, pages 115–125, New York, NY, USA, 2003. ACM.

[13] R. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant Context Inference. In Proceed-

ings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’99, pages 133–146, New York, NY, USA, 1999. ACM.

[14] R. Chatterjee, B. G. Ryder, and W. A. Landi. Complexity of Points-To Analysis of Java

in the Presence of Exceptions. IEEE Trans. Softw. Eng., 27:481–512, June 2001.

[15] P.-S. Chen, M.-Y. Hung, Y.-S. Hwang, R. D.-C. Ju, and J. K. Lee. Compiler Support for

Speculative Multithreading Architecture with Probabilistic Points-to Analysis. SIGPLAN

Not., 38:25–36, June 2003.

[16] P.-S. Chen, Y.-S. Hwang, R. D.-C. Ju, and J. K. Lee. Interprocedural Probabilistic

Pointer Analysis. IEEE Trans. Parallel Distrib. Syst., 15:893–907, October 2004.

[17] B.-C. Cheng and W.-M. W. Hwu. Modular Interprocedural Pointer Analysis using Access

Paths: Design, Implementation, and Evaluation. In Proceedings of the ACM SIGPLAN

REFERENCES 171

2000 Conference on Programming Language Design and Implementation, PLDI ’00, pages

57–69, New York, NY, USA, 2000. ACM.

[18] J.-D. Choi, M. Burke, and P. Carini. Efficient Flow-Sensitive Interprocedural Compu-

tation of Pointer-Induced Aliases and Side Effects. In Proceedings of the 20th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’93,

pages 232–245, New York, NY, USA, 1993. ACM.

[19] W. Choi and K.-M. Choe. Cycle Elimination for Invocation Graph-Based Context-

Sensitive Pointer Analysis. Inf. Softw. Technol., 53:818–833, August 2011.

[20] S. Cohen and Y. Matias. Spectral Bloom Filters. In Proceedings of the 2003 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’03, pages 241–

252, New York, NY, USA, 2003. ACM.

[21] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms, McGraw

Hill, 2001.

[22] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints among Variables

of a Program. In Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Prin-

ciples of Programming Languages, POPL ’78, pages 84–96, New York, NY, USA, 1978.

ACM.

[23] J. Da Silva and J. G. Steffan. A Probabilistic Pointer Analysis for Speculative Opti-

mizations. In Proceedings of the 12th international Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS-XII, pages 416–425, New

York, NY, USA, 2006. ACM.

[24] M. Das. Unification-based Pointer Analysis with Directional Assignments. In Proceedings

of the ACM SIGPLAN 2000 Conference on Programming Language Design and Imple-

mentation, PLDI ’00, pages 35–46, New York, NY, USA, 2000. ACM.

[25] M. Das, B. Liblit, M. Fähndrich, and J. Rehof. Estimating the Impact of Scalable Pointer

Analysis on Optimization. In Proceedings of the 8th International Symposium on Static

Analysis, SAS ’01, pages 260–278, London, UK, 2001. Springer-Verlag.

REFERENCES 172

[26] S. Debray, R. Muth, and M. Weippert. Alias Analysis of Executable Code. In Proceed-

ings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’98, pages 12–24, New York, NY, USA, 1998. ACM.

[27] A. Deutsch. Interprocedural May-Alias Analysis for Pointers: Beyond K-Limiting. In

Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language Design

and Implementation, PLDI ’94, pages 230–241, New York, NY, USA, 1994. ACM.

[28] A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-Based Alias Analysis. In Pro-

ceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design and

Implementation, PLDI ’98, pages 106–117, New York, NY, USA, 1998. ACM.

[29] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a Realistic Tool for Statically Detecting

All Buffer Overflows in C. In Proceedings of the ACM SIGPLAN 2003 Conference on

Programming Language Design and Implementation, PLDI ’03, pages 155–167, New York,

NY, USA, 2003. ACM.

[30] M. Edvinsson, J. Lundberg, and W. Löwe. Parallel Points-to Analysis for Multi-Core

Machines. In Proceedings of the 6th International Conference on High Performance and

Embedded Architectures and Compilers, HiPEAC ’11, pages 45–54, New York, NY, USA,

2011. ACM.

[31] M. Emami. A Practical Inter-Procedural Alias Analysis for an Optimizing/Paralleling C

Compiler, Master thesis, School of Computer Science, McGill University, 1993.

[32] M. Emami, R. Ghiya, and L. J. Hendren. Context-Sensitive Interprocedural Points-

to Analysis in the Presence of Function Pointers. In Proceedings of the ACM SIGPLAN

1994 Conference on Programming Language Design and Implementation, PLDI ’94, pages

242–256, New York, NY, USA, 1994. ACM.

[33] J. Esparza, S. Kiefer, and M. Luttenberger. Newtonian Program Analysis. J. ACM,

57:33:1–33:47, November 2010.

[34] M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken. Partial Online Cycle Elimination in

Inclusion Constraint Graphs. In Proceedings of the ACM SIGPLAN 1998 Conference on

REFERENCES 173

Programming Language Design and Implementation, PLDI ’98, pages 85–96, New York,

NY, USA, 1998. ACM.

[35] M. Fähndrich, J. Rehof, and M. Das. Scalable Context-Sensitive Flow Analysis using

Instantiation Constraints. In Proceedings of the ACM SIGPLAN 2000 Conference on

Programming Language Design and Implementation, PLDI ’00, pages 253–263, New York,

NY, USA, 2000. ACM.

[36] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary Cache: A Scalable Wide-Area

Web Cache Sharing Protocol. IEEE/ACM Trans. Netw., 8:281–293, June 2000.

[37] C. Fecht and H. Seidl. An Even Faster Solver for General Systems of Equations. In

Proceedings of the Third International Symposium on Static Analysis, pages 189–204,

London, UK, 1996. Springer-Verlag.

[38] J. S. Foster, T. Terauchi, and A. Aiken. Flow-Sensitive Type Qualifiers. In Proceedings

of the ACM SIGPLAN 2002 Conference on Programming Language Design and Imple-

mentation, PLDI ’02, pages 1–12, New York, NY, USA, 2002. ACM.

[39] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek. Buffer Overrun Detection

using Linear Programming and Static Analysis. In Proceedings of the 10th ACM Con-

ference on Computer and Communications Security, CCS ’03, pages 345–354, New York,

NY, USA, 2003. ACM.

[40] GCC, http://gcc.gnu.org/.

[41] R. Ghiya and L. J. Hendren. Is it a Tree, a DAG, or a Cyclic Graph? A Shape Analysis

for Heap-Directed Pointers in C. In Proceedings of the 23rd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’96, pages 1–15, New York,

NY, USA, 1996. ACM.

[42] GNU MP Integer Library, http://gmplib.org/.

[43] M. Gorbovitski, Y. A. Liu, S. D. Stoller, T. Rothamel, and T. K. Tekle. Alias Analysis for

Optimization of Dynamic Languages. In Proceedings of the 6th Symposium on Dynamic

Languages, DLS ’10, pages 27–42, New York, NY, USA, 2010. ACM.

REFERENCES 174

[44] L. L. Gremillion. Designing a Bloom Filter for Differential File Access. Commun. ACM,

25:600–604, September 1982.

[45] S. Z. Guyer and C. Lin. Client-Driven Pointer Analysis. In Proceedings of the 10th

International Conference on Static Analysis, SAS’03, pages 214–236, Berlin, Heidelberg,

2003. Springer-Verlag.

[46] S. Z. Guyer and C. Lin. Error Checking with Client-Driven Pointer Analysis. Sci. Comput.

Program., 58:83–114, October 2005.

[47] B. Hackett and A. Aiken. How is Aliasing Used in Systems Software? In Proceedings of the

14th ACM SIGSOFT International Symposium on Foundations of Software Engineering,

SIGSOFT ’06/FSE-14, pages 69–80, New York, NY, USA, 2006. ACM.

[48] B. Hardekopf and C. Lin. Exploiting Pointer and Location Equivalence to Optimize

Pointer Analysis. In H. R. Nielson and G. Filé, editors, SAS, volume 4634 of Lecture

Notes in Computer Science, pages 265–280. Springer, 2007.

[49] B. Hardekopf and C. Lin. The Ant and the Grasshopper: Fast and Accurate Pointer

Analysis for Millions of Lines of Code. In Proceedings of the 2007 ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’07, pages 290–

299, New York, NY, USA, 2007. ACM.

[50] B. Hardekopf and C. Lin. Semi-Sparse Flow-Sensitive Pointer Analysis. In Proceedings

of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’09, pages 226–238, New York, NY, USA, 2009. ACM.

[51] Ben Hardekopf, http://www.cs.utexas.edu/users/benh/.

[52] R. Hasti and S. Horwitz. Using Static Single Assignment Form to Improve Flow-

Insensitive Pointer Analysis. In Proceedings of the ACM SIGPLAN 1998 Conference

on Programming Language Design and Implementation, PLDI ’98, pages 97–105, New

York, NY, USA, 1998. ACM.

[53] N. Heintze and O. Tardieu. Demand-Driven Pointer Analysis. In Proceedings of the

ACM SIGPLAN 2001 Conference on Programming Language Design and Implementa-

tion, PLDI ’01, pages 24–34, New York, NY, USA, 2001. ACM.

REFERENCES 175

[54] N. Heintze and O. Tardieu. Ultra-Fast Aliasing Analysis using CLA: A Million Lines

of C Code in a Second. In Proceedings of the ACM SIGPLAN 2001 Conference on

Programming Language Design and Implementation, PLDI ’01, pages 254–263, New York,

NY, USA, 2001. ACM.

[55] M. Hind, M. Burke, P. Carini, and J.-D. Choi. Interprocedural Pointer Alias Analysis.

ACM Trans. Program. Lang. Syst., 21:848–894, July 1999.

[56] M. Hind and A. Pioli. Assessing the Effects of Flow-Sensitivity on Pointer Alias Analyses.

In Proceedings of the 5th International Symposium on Static Analysis, SAS ’98, pages 57–

81, London, UK, 1998. Springer-Verlag.

[57] M. Hind and A. Pioli. Which Pointer Analysis Should I Use? In Proceedings of the 2000

ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA ’00,

pages 113–123, New York, NY, USA, 2000. ACM.

[58] M. Hirzel, D. V. Dincklage, A. Diwan, and M. Hind. Fast Online Pointer Analysis. ACM

Trans. Program. Lang. Syst., 29, April 2007.

[59] S. Horwitz. Precise Flow-Insensitive May-Alias Analysis is NP-Hard. ACM Trans. Pro-

gram. Lang. Syst., 19:1–6, January 1997.

[60] Y.-S. Hwang, P.-S. Chen, J. K. Lee, and R. D.-C. Ju. Probabilistic Points-to Analysis.

In Proceedings of the 14th International Conference on Languages and Compilers for

Parallel Computing, LCPC’01, pages 290–305, Berlin, Heidelberg, 2003. Springer-Verlag.

[61] ILOG Toolkit, http://www.ilog.com/.

[62] D. Jang and K.-M. Choe. Points-to Analysis for JavaScript. In Proceedings of the 2009

ACM Symposium on Applied Computing, SAC ’09, pages 1930–1937, New York, NY,

USA, 2009. ACM.

[63] Java Programming Language, http://www.java.com/.

[64] JavaScript Programming Language, http://www.javascript.com/.

[65] N. Jovanovic, C. Kruegel, and E. Kirda. Precise Alias Analysis for Static Detection of

Web Application Vulnerabilities. In Proceedings of the 2006 Workshop on Programming

REFERENCES 176

Languages and Analysis for Security, PLAS ’06, pages 27–36, New York, NY, USA, 2006.

ACM.

[66] V. Kahlon. Bootstrapping: A Technique for Scalable Flow and Context-Sensitive Pointer

Alias Analysis. In Proceedings of the 2008 ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’08, pages 249–259, New York, NY, USA,

2008. ACM.

[67] A. Kanamori and D. Weise. Worklist Management Strategies for Dataflow Analysis, MSR

Technical Report, MSR-TR-94-12, 1994.

[68] U. Khedker and B. Karkare. Efficiency, Precision, Simplicity, and Generality in Interpro-

cedural Data Flow Analysis: Resurrecting the Classical Call Strings Method. In L. Hen-

dren, editor, Compiler Construction, volume 4959 of Lecture Notes in Computer Science,

pages 213–228. Springer Berlin / Heidelberg, 2008. 10.1007/978-3-540-78791-4 15.

[69] D. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms,

Addison-Wesley, 1997.

[70] W. Landi. Undecidability of Static Analysis. ACM Lett. Program. Lang. Syst., 1:323–337,

December 1992.

[71] W. Landi. Interprocedural Aliasing in the Presence of Pointers, PhD thesis, Rutgers

University, 1992.

[72] W. Landi and B. G. Ryder. Pointer-Induced Aliasing: A Problem Taxonomy. In Pro-

ceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’91, pages 93–103, New York, NY, USA, 1991. ACM.

[73] W. Landi and B. G. Ryder. A Safe Approximate Algorithm for Interprocedural Aliasing.

In Proceedings of the ACM SIGPLAN 1992 conference on Programming language design

and implementation, PLDI ’92, pages 235–248, New York, NY, USA, 1992. ACM.

[74] W. Landi, B. G. Ryder, and S. Zhang. Interprocedural Modification Side Effect Anal-

ysis with Pointer Aliasing. In Proceedings of the ACM SIGPLAN 1993 Conference on

Programming Language Design and Implementation, PLDI ’93, pages 56–67, New York,

NY, USA, 1993. ACM.

REFERENCES 177

[75] C. Lattner, A. Lenharth, and V. Adve. Making Context-Sensitive Points-to Analysis with

Heap Cloning Practical for the Real World. In Proceedings of the 2007 ACM SIGPLAN

conference on Programming Language Design and Implementation, PLDI ’07, pages 278–

289, New York, NY, USA, 2007. ACM.

[76] O. Lhotak. A Tour of Pointer Analysis, Summer School on Theory and Practice of

Language Implementation, University of Oregon, 2009.

[77] O. Lhoták and L. Hendren. Evaluating the Benefits of Context-Sensitive Points-to Analy-

sis using a BDD-Based Implementation. ACM Trans. Softw. Eng. Methodol., 18:3:1–3:53,

October 2008.

[78] D. Liang and M. J. Harrold. Efficient Points-to Analysis for Whole-Program Analysis.

SIGSOFT Softw. Eng. Notes, 24:199–215, October 1999.

[79] D. Liang, M. Pennings, and M. J. Harrold. Evaluating the Precision of Static Reference

Analysis using Profiling. In Proceedings of the 2002 ACM SIGSOFT international Sym-

posium on Software Testing and Analysis, ISSTA ’02, pages 22–32, New York, NY, USA,

2002. ACM.

[80] V. B. Livshits and M. S. Lam. Tracking Pointers with Path and Context Sensitivity for

Bug Detection in C Programs. In Proceedings of the 9th European Software Engineering

Conference held jointly with 11th ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering, ESEC/FSE-11, pages 317–326, New York, NY, USA,

2003. ACM.

[81] The LLVM Compiler Infrastructure, http://llvm.org.

[82] L. F. Mackert and G. M. Lohman. R* Optimizer Validation and Performance Evaluation

for Distributed Queries. In Proceedings of the 12th International Conference on Very

Large Data Bases, VLDB ’86, pages 149–159, San Francisco, CA, USA, 1986. Morgan

Kaufmann Publishers Inc.

[83] U. Manber and S. Wu. An Algorithm for Approximate Membership Checking with

Application to Password Security. Inf. Process. Lett., 50:191–197, May 1994.

REFERENCES 178

[84] R. Manevich, G. Ramalingam, J. Field, D. Goyal, and M. Sagiv. Compactly Representing

First-Order Structures for Static Analysis. In Proceedings of the 9th International Sym-

posium on Static Analysis, SAS ’02, pages 196–212, London, UK, 2002. Springer-Verlag.

[85] V. Martena and P. S. Pietro. Alias Analysis by Means of a Model Checker. In Proceedings

of the 10th International Conference on Compiler Construction, CC ’01, pages 3–19,

London, UK, 2001. Springer-Verlag.

[86] M. Méndez-Lojo, A. Mathew, and K. Pingali. Parallel Inclusion-Based Points-to Analysis.

In Proceedings of the ACM International Conference on Object Oriented Programming

Systems Languages and Applications, OOPSLA ’10, pages 428–443, New York, NY, USA,

2010. ACM.

[87] A. Milanova, A. Rountev, and B. G. Ryder. Precise Call Graphs for C Programs with

Function Pointers. Automated Software Engg., 11:7–26, January 2004.

[88] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized Object Sensitivity for Points-

to Analysis for Java. ACM Trans. Softw. Eng. Methodol., 14:1–41, January 2005.

[89] M. Mitzenmacher. Compressed Bloom Filters. In Proceedings of the Twentieth Annual

ACM Symposium on Principles of Distributed Computing, PODC ’01, pages 144–150,

New York, NY, USA, 2001. ACM.

[90] M. Mock, D. C. Atkinson, C. Chambers, and S. J. Eggers. Improving Program Slicing

with Dynamic Points-to Data. SIGSOFT Softw. Eng. Notes, 27:71–80, November 2002.

[91] M. Mock, M. Das, C. Chambers, and S. J. Eggers. Dynamic Points-to Sets: A Com-

parison with Static Analyses and Potential Applications in Program Understanding and

Optimization. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Pro-

gram Analysis for Software Tools and Engineering, PASTE ’01, pages 66–72, New York,

NY, USA, 2001. ACM.

[92] M. Müller-Olm and H. Seidl. Precise Interprocedural Analysis through Linear Algebra.

In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, POPL ’04, pages 330–341, New York, NY, USA, 2004. ACM.

REFERENCES 179

[93] R. Muth and S. Debray. On the Complexity of Flow-Sensitive Dataflow Analyses. In Pro-

ceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’00, pages 67–80, New York, NY, USA, 2000. ACM.

[94] R. Nasre. Approximating Inclusion-based Points-to Analysis. In Proceedings of the 2011

ACM SIGPLAN Workshop on Memory Systems Performance and Correctness, MSPC

’11, pages 66–73, New York, NY, USA, 2011. ACM.

[95] A. Orso, S. Sinha, and M. J. Harrold. Classifying Data Dependences in the Presence of

Pointers for Program Comprehension, Testing, and Debugging. ACM Trans. Softw. Eng.

Methodol., 13:199–239, April 2004.

[96] A. Partow. General Purpose Hash Function Algorithms, http://www.partow.net/

programming/hashfunctions/.

[97] D. J. Pearce, P. H. Kelly, and C. Hankin. Efficient Field-Sensitive Pointer Analysis of C.

ACM Trans. Program. Lang. Syst., 30, November 2007.

[98] D. J. Pearce, P. H. J. Kelly, and C. Hankin. Efficient Field-Sensitive Pointer Analysis for

C. In Proceedings of the 5th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis

for Software Tools and Engineering, PASTE ’04, pages 37–42, New York, NY, USA, 2004.

ACM.

[99] D. J. Pearce, P. H. J. Kelly, and C. Hankin. Online Cycle Detection and Difference

Propagation: Applications to Pointer Analysis. Software Quality Control, 12:311–337,

December 2004.

[100] F. M. Q. Pereira and D. Berlin. Wave Propagation and Deep Propagation for Pointer

Analysis. In Proceedings of the 7th annual IEEE/ACM International Symposium on

Code Generation and Optimization, CGO ’09, pages 126–135, Washington, DC, USA,

2009. IEEE Computer Society.

[101] PHP: Hypertext Preprocessor, http://www.php.net/.

[102] Python Programming Language, http://www.python.org/.

[103] G. Ramalingam. The Undecidability of Aliasing. ACM Trans. Program. Lang. Syst.,

16:1467–1471, September 1994.

REFERENCES 180

[104] V. Raman. Pointer Analysis – A Survey, CS203 UC Santa Cruz, 2004.

http://www.soe.ucsc.edu/ vishwa/publications/Pointers.pdf.

[105] D. Rayside. Points-to Analysis, 2005. http://www.cs.washington.edu/homes/mernst/

teaching/6.883/lectures/points-to.pdf.

[106] T. Reps, S. Horwitz, and M. Sagiv. Precise Interprocedural Dataflow Analysis via Graph

Reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, POPL ’95, pages 49–61, New York, NY, USA, 1995.

ACM.

[107] C. G. Ribeiro and M. Cintra. Quantifying Uncertainty in Points-to Relations. In Pro-

ceedings of the 19th International Conference on Languages and Compilers for Parallel

Computing, LCPC’06, pages 190–204, Berlin, Heidelberg, 2007. Springer-Verlag.

[108] A. Rountev and S. Chandra. Off-line Variable Substitution for Scaling Points-to Analysis.

In Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design

and Implementation, PLDI ’00, pages 47–56, New York, NY, USA, 2000. ACM.

[109] A. Rountev, A. Milanova, and B. G. Ryder. Points-to Analysis for Java using Annotated

Constraints. SIGPLAN Not., 36:43–55, October 2001.

[110] E. Ruf. Partitioning Dataflow Analyses using Types. In Proceedings of the 24th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’97,

pages 15–26, New York, NY, USA, 1997. ACM.

[111] R. Rugina and M. Rinard. Pointer Analysis for Multithreaded Programs. In Proceedings

of the ACM SIGPLAN 1999 Conference on Programming Language Design and Imple-

mentation, PLDI ’99, pages 77–90, New York, NY, USA, 1999. ACM.

[112] R. Rugina and M. C. Rinard. Pointer Analysis for Structured Parallel Programs. ACM

Trans. Program. Lang. Syst., 25:70–116, January 2003.

[113] B. G. Ryder. Dimensions of Precision in Reference Analysis of Object-Oriented Pro-

gramming Languages. In Proceedings of the 12th International Conference on Compiler

Construction, CC’03, pages 126–137, Berlin, Heidelberg, 2003. Springer-Verlag.

REFERENCES 181

[114] D. Saha and C. R. Ramakrishnan. Incremental and Demand-Driven Points-to Analy-

sis using Logic Programming. In Proceedings of the 7th ACM SIGPLAN international

Conference on Principles and Practice of Declarative Programming, PPDP ’05, pages

117–128, New York, NY, USA, 2005. ACM.

[115] E. Salamı́ and M. Valero. Dynamic Memory Interval Test vs. Interprocedural Pointer

Analysis in Multimedia Applications. ACM Trans. Archit. Code Optim., 2:199–219, June

2005.

[116] A. Salcianu and M. Rinard. Pointer and Escape Analysis for Multithreaded Programs.

In Proceedings of the Eighth ACM SIGPLAN Symposium on Principles and Practices of

Parallel Programming, PPoPP ’01, pages 12–23, New York, NY, USA, 2001. ACM.

[117] M. Shapiro and S. Horwitz. Fast and Accurate Flow-Insensitive Points-to Analysis. In

Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’97, pages 1–14, New York, NY, USA, 1997. ACM.

[118] O. G. Shivers. Control-Flow Analysis of Higher-Order Languages, PhD Thesis, Carnegie

Mellon University, 1991.

[119] SML, http://en.wikipedia.org/wiki/Standard ML.

[120] P. Sotin and B. Jeannet. Precise Interprocedural Analysis in the Presence of Pointers to

the Stack. In Proceedings of the 20th European Conference on Programming Languages

and Systems: Part of the Joint European Conferences on Theory and Practice of Software,

ESOP’11/ETAPS’11, pages 459–479, Berlin, Heidelberg, 2011. Springer-Verlag.

[121] M. Sridharan and R. Bod́ık. Refinement-Based Context-Sensitive Points-to Analysis for

Java. In Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’06, pages 387–400, New York, NY, USA, 2006. ACM.

[122] M. Sridharan, D. Gopan, L. Shan, and R. Bod́ık. Demand-Driven Points-to Analysis for

Java. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA ’05, pages 59–76, New

York, NY, USA, 2005. ACM.

REFERENCES 182

[123] B. Steensgaard. Points-to Analysis in Almost Linear Time. In Proceedings of the 23rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’96, pages 32–41, New York, NY, USA, 1996. ACM.

[124] Q. Sun, J. Zhao, and Y. Chen. Probabilistic Points-to Analysis for Java. In Proceedings of

the 20th International Conference on Compiler Construction: Part of the Joint European

Conferences on Theory and Practice of Software, CC’11/ETAPS’11, pages 62–81, Berlin,

Heidelberg, 2011. Springer-Verlag.

[125] P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo. Flow Insensitive C++ Pointers and

Polymorphism Analysis and Its Application to Slicing. In Proceedings of the 19th Inter-

national Conference on Software Engineering, ICSE ’97, pages 433–443, New York, NY,

USA, 1997. ACM.

[126] M. Weiser. Program Slicing. In Proceedings of the 5th International Conference on

Software Engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981. IEEE Press.

[127] J. Whaley. Program Analysis using BDDs, Talk at MIT, 2005.

[128] J. Whaley and M. S. Lam. An Efficient Inclusion-Based Points-To Analysis for Strictly-

Typed Languages. In Proceedings of the 9th International Symposium on Static Analysis,

SAS ’02, pages 180–195, London, UK, 2002. Springer-Verlag.

[129] J. Whaley and M. S. Lam. Cloning-based Context-Sensitive Pointer Alias Analysis using

Binary Decision Diagrams. In Proceedings of the ACM SIGPLAN 2004 Conference on

Programming Language Design and Implementation, PLDI ’04, pages 131–144, New York,

NY, USA, 2004. ACM.

[130] J. Whaley and M. Rinard. Compositional Pointer and Escape Analysis for Java Programs.

In Proceedings of the 14th ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA ’99, pages 187–206, New York, NY,

USA, 1999. ACM.

[131] Static Program Analysis, http://en.wikipedia.org/wiki/Static program analysis.

[132] R. P. Wilson and M. S. Lam. Efficient Context-Sensitive Pointer Analysis for C Programs.

REFERENCES 183

In Proceedings of the ACM SIGPLAN 1995 Conference on Programming Language Design

and Implementation, PLDI ’95, pages 1–12, New York, NY, USA, 1995. ACM.

[133] P. Wu, P. Feautrier, D. Padua, and Z. Sura. Instance-wise Points-to Analysis for Loop-

Based Dependence Testing. In Proceedings of the 16th International Conference on Su-

percomputing, ICS ’02, pages 262–273, New York, NY, USA, 2002. ACM.

[134] Q. Wu. Survey of Alias Analysis, http://www.cs.princeton.edu/ jqwu/Memory/survey.html.

[135] S. H. Yong, S. Horwitz, and T. Reps. Pointer Analysis for Programs with Structures

and Casting. In Proceedings of the ACM SIGPLAN 1999 Conference on Programming

Language Design and Implementation, PLDI ’99, pages 91–103, New York, NY, USA,

1999. ACM.

[136] H. Yu, J. Xue, W. Huo, X. Feng, and Z. Zhang. Level by Level: Making Flow- and

Context-Sensitive Pointer Analysis Scalable for Millions of Lines of Code. In Proceed-

ings of the 8th Annual IEEE/ACM International Symposium on Code Generation and

Optimization, CGO ’10, pages 218–229, New York, NY, USA, 2010. ACM.

[137] J.-s. Yur, B. G. Ryder, and W. A. Landi. An Incremental Flow- and Context-Sensitive

Pointer Aliasing Analysis. In Proceedings of the 21st international Conference on Software

Engineering, ICSE ’99, pages 442–451, New York, NY, USA, 1999. ACM.

[138] S. Zhang, B. G. Ryder, and W. Landi. Program Decomposition for Pointer Aliasing: A

Step Toward Practical Analyses. In Proceedings of the 4th ACM SIGSOFT Symposium

on Foundations of Software Engineering, SIGSOFT ’96, pages 81–92, New York, NY,

USA, 1996. ACM.

[139] S. Zhang, B. G. Ryder, and W. A. Landi. Experiments with Combined Analysis for

Pointer Aliasing. In Proceedings of the 1998 ACM SIGPLAN-SIGSOFT Workshop on

Program Analysis for Software Tools and Engineering, PASTE ’98, pages 11–18, New

York, NY, USA, 1998. ACM.

[140] X. Zheng and R. Rugina. Demand-Driven Alias Analysis for C. In Proceedings of the 35th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’08, pages 197–208, New York, NY, USA, 2008. ACM.

REFERENCES 184

[141] J. Zhu. Symbolic Pointer Analysis. In ICCAD 2002. IEEE/ACM International Confer-

ence on Computer Aided Design, 2002., pages 150 – 157, nov. 2002.

[142] J. Zhu and S. Calman. Symbolic Pointer Analysis Revisited. In Proceedings of the

ACM SIGPLAN 2004 Conference on Programming Language Design and Implementa-

tion, PLDI ’04, pages 145–157, New York, NY, USA, 2004. ACM.

