\qquad

CS6843 Program Analysis at IIT Madras

MidSem June 17, 2014

Total Marks: 25
Duration: 120 minutes

Number of questions: 9 compulsory questions Marking: Q1 carries 1 mark, all others carry 3 marks each

1. Write one advantage and one disadvantage of a contact course to you.
2. For the following program-fragment, find out the flow-sensitive reaching definition information. A reaching definition analysis computes what definitions reach what program points.
```
a = 5; b = a;
for (p = &a; p = p->next; ++p)
    if (p->y == 9) { b = a; a = p; }
    else { a = 10; b = c; }
```

3. For the above program fragment, find out the path-sensitive live variable information. A variable is live at a program point if it will be potentially used at a later program point.
4. What is the inter-procedural context-insensitive points-to information for the following program fragment?
```
main() {
    x = f(&y);
    y = f(&z);
}
```

5. For the following set of statements, compute Andersen's points-to information.
${ }^{*} b=a ; q={ }^{*} c ; c=* a ; b=\& q ; b=\& c ; a=\& a ;$
6. In a graph-based formulation of pointer analysis, whenver cycles occur in the constraint graph, they can be collapased into a representative node. Why doesn't this affect the analysis precision?
7. For the following set of statements, draw (don't explain) each stage of the Steensgaard analysis: $\mathrm{a}=\& \mathrm{a} ; \mathrm{b}=* \mathrm{x} ; \mathrm{c}=\& \mathrm{a} ; \mathrm{b}=\mathrm{a} ; \mathrm{c}=\mathrm{x}$;
8. If pointers $p 1$ and $p 2$ in a program are initially pointing to the same variable, while $p 3$ is pointing to some other variable, compute the D , I and shape values for $p 1, p 2, p 3$ after the following statement using Ghiya-Hendren's method: $\mathrm{p} 3=p 2 \rightarrow$ next;
D
I

9. Find an instrumentation across the edges of the following CFG such that different acyclic paths have a unique number between $0 . . \mathrm{P}-1$ where P is the number of paths. A is the start node and F is the end node.

