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Overview

• Local invariant features
• Keypoint localization

- Hessian detector
- Harris corner detector

• Scale Invariant region detection
- Laplacian of Gaussian (LOG) detector
- Difference of Gaussian (DOG) detector

• Local feature descriptor
- Scale Invariant Feature Transform (SIFT)
- Gradient Localization Oriented Histogram (GLOH)

• Examples of other local feature descriptors



Motivation
• Global feature from the whole image is often not desirable

• Instead match local regions which are prominent to the 
object or scene in the image.
• Application Area

- Object detection
- Image matching
- Image stitching



Requirements of a local feature

• Repetitive : Detect the same points independently in each image.

• Invariant to translation, rotation, scale.

• Invariant to affine transformation.

• Invariant to presence of noise, blur etc.

• Locality :Robust to occlusion, clutter and illumination change.

• Distinctiveness : The region should contain “interesting” 
structure.

• Quantity : There should be enough points to represent the image.

• Time efficient.



Others preferable (but not a must):

o Disturbances, attacks, 

o Noise

o Image blur

o Discretization errors

o Compression artifacts

o Deviations from the mathematical model
(non-linearities, non-planarities, etc.)

o Intra-class variations



General approach

1. Find the interest points.
2. Consider the region 

around each keypoint.
3. Compute a local 

descriptor from the 
region and normalize 
the feature.

4. Match local descriptors
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Slide credit: Bastian Leibe



Some popular detectors
• Hessian/ Harris corner detection
• Laplacian of Gaussian (LOG) detector 
• Difference of Gaussian (DOG) detector
• Hessian/ Harris Laplacian detector
• Hessian/ Harris Affine detector
• Maximally Stable Extremal Regions (MSER)
• Many others ….

Looks for change in image gradient in two direction - CORNERS

Change in both 
the directions

Change in one 
direction only

No change in 
any directionSlide credit: 

Fei Fei Li



Hessian Corner Detector
[Beaudet, 1978]

Searches for image locations which have strong change in 
gradient along both the orthogonal direction.
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• Perform a non-maximum suppression using a 3*3 window.
• Consider points having higher value than its 8 neighbors.
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Hessian Detector – Result 

Effect: Responses mainly on corners and strongly textured areas.



Harris Corner
[Forstner and Gulch, 1987]

• Search for local neighborhoods where the image content has 
two main directions (eigenvectors).
• Consider 2nd moment autocorrelation matrix
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If λ1 or λ2 is about 0, the 
point is not a corner.    

Gaussian sums over all the pixels in circular local 
neighborhood using weights accordingly.
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Harris corner
Eigen decomposition: visualization

Slide credit: K. Grauman, B. Leibe



Harris Corner: Different approach

Instead of explicitly computing the eigen values, the 
following equivalence are used
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these 
points

α in the range 0.04 – 0.25, experimentally verified
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Harris Corner : Example

1. Image 
derivatives

2. Square of 
derivatives

3. Gaussian 
filter G(σI)
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4. Cornerness 
function – both 
eigenvalues are 
strong

Slide credit: K. Grauman, B. Leibe



α = .04 α = .08 α = .1

α = .17 α = .2 α = .25α = .14

CORNERNESS – HARRIS CORNER



Harris Corner : Result

Effect: A very precise corner detector.



Harris Corner

Hessian 
Detector



Scale Invariant region detection
Hessian and Harris corner detectors are not scale invariant.

Solution:
Use the 

concept of 
Scale Space
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Laplacian of Gaussian (LOG) 
detector [Lindeberg, 1998]

• Using the concept of Scale Space.
• Instead of taking zero crossing (for edge detection), consider 
the point which is maximum among its 26 neighbors  (9+9+8).
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• LOG can be used for finding the characteristic 
scale for a given image location.
• LOG can be used for finding scale invariant 
regions by searching 3D (location + scale) extrema
of the LOG.
• LOG is also used for edge detection.
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LOG detector : Flowchart



LOG detector : Result



Difference of Gaussian (DOG) 
Detector [Lowe, 2004]

Approximate LOG using DOG for computational efficiency
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K = 0, 1, 2, … , constant

Consider the region where the 
DOG response is greater than 
a threshold and the scale lies 
in a predefined range [ ]maxmin s,s



X is selected 
if it is larger 
or smaller 
than all 
neighbors.

DOG detector : Flowchart



DOG detector : Result



Feature detector Edge Corner Blob

Canny X

Sobel X

Harris & Stephens / 
Plessey X X

SUSAN X X

Shi & Tomasi X

Level curve curvature X

FAST X X

Laplacian of Gaussian X X

Difference of 
Gaussians X X

Determinant of 
Hessian X X

MSER X

PCBR X

Grey-level blobs X



Local Descriptors
• We have detected the interest points in an image.
• How to match the points across different images of 
the same object? 

Use Local Descriptors
Slide credit: Fei Fei Li



List of local feature descriptors

• Scale Invariant Feature Transform (SIFT)
• Speed-Up Robust Feature (SURF)
• Histogram of Oriented Gradient (HOG)
• Gradient Location Orientation Histogram (GLOH)
• PCA-SIFT
• Pyramidal HOG (PHOG)
• Pyramidal Histogram Of visual Words (PHOW)
• Others….(shape Context, Steerable filters, Spin images).

Should be robust to viewpoint change or 
illumination change



SIFT [Lowe, 2004]
• Step 1: Scale-space extrema Detection - Detect 

interesting points (invariant to scale and orientation) using DOG.

• Step 2: Keypoint Localization – Determine location 
and scale at each candidate location, and select them 
based on stability.

• Step 3: Orientation Estimation – Use local image 
gradients to assigned orientation to each localized keypoint. 
Preserve theta, scale and location  for each feature.

• Step 4:  Keypoint Descriptor - Extract local image 
gradients at selected scale around keypoint and form a 
representation invariant to local shape distortion and 
illumination  them.



SIFT [Lowe, 2004]

Step 1: Detect interesting points using DOG.

832 DOG extrema



SIFT : Step 2
Step 2: Accurate keypoint localization

- Aim : reject the low contrast points and the points 
that lie on the edge.

Low contrast points elimination:
Fit keypoint at      to nearby data using quadratic approximation.

Where,

Calculate the local maxima of the fitted function.

Discard local minima (for contrast)
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Low contrast points elimination:
Fit keypoint at      to nearby data using quadratic approximation.

Calculate the local maxima of the fitted function { X = (x, y, σ)}.
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Eliminating edge response:
DOG gives strong response along edges – Eliminate those responses
Solution: check “cornerness” of each keypoint.
• On the edge one of principle curvatures is much bigger than 

another.
• High cornerness No dominant principle curvature component.
• Consider the concept of Hessian and Harris corner

SIFT : Step 2
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Discard points with 
response below threshold;
Value of r = 10, is used;



SIFT : Step 2

536 out of 729 are left after cornerness thresholding
Slide credit: David Lowe

729 out of 832 are left after contrast thresholding



SIFT : Step 3
Step 3: Orientation Assignment

- Aim : Assign constant orientation to each keypoint based 
on local image property to obtain rotational invariance.

The magnitude and orientation of gradient of an image patch 
I(x,y) at a particular scale is:
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relative data 
accordingly



SIFT : Step 3
Step 3: Orientation Assignment

• Create weighted (magnitude + 
Gaussian) histogram of local 
gradient directions computed at 
selected scale

• Assign dominant orientation of 
the region as that of the peak of 
smoothed histogram

• For multiple peaks create multiple 
key points

Slide credit: David Lowe



SIFT : Step 4

Step 4: Local image descriptor
Aim – Obtain local descriptor that is highly distinctive yet 
invariant to variation like illumination and affine change

• Consider a rectangular grid 16*16 in the direction of the 
dominant orientation of the region.
• Divide the region into 4*4 sub-regions.
• Consider a Gaussian filter above the region

which gives higher weights to pixel closer
to the center of the descriptor.

Already obtained precise location, scale and orientation to each keypoin



SIFT : Step 4
Step 4: Local image descriptor

• Create 8 bin gradient histograms for each sub-region
Weighted by magnitude and Gaussian window ( σ is half the 

window size)

Feature vector (128)
8*4*4 = 128

Finally, normalize 128 dim vector to make it illumination invariant



SIFT : Some Result
Object detection



SIFT : Some Result
Panorama 



GLOH
First 3 steps – same as SIFT
Step 4 – Local image descriptor

• Consider log-polar location grid with 3 different radii and 8 
angular direction for two of them, in total 17 location bin
• Form histogram of gradients having 16 bins
• Form a feature vector of 272 dimension (17*16)
• Perform dimensionality reduction and project the features 
to a 128 dimensional space.

192 correct 
matches 
(yellow) and 
208 false 
matches 
(blue).



Some other examples

SURF

HOG

PHOW



Other Feature descriptors  - old and new:

- LBP,  LTP and variants, HAAR;

- PCA-SIFT, VLAD, MOSIFT, 

- deep features, CNN,  Fisher vector, 

- SV-DSIFT,   BF-DSIFT,  LL-MO1SIFT,  1SIFT,  VM1SIFT,  VLADSIFT,

- DECAF,  Fisher vector pyramid,  IFV  

- Dirichlet Histogram

- Simplex based STV (3-D), MSDR;

BOV-W, Steak flow, tracklets, spatio-temporal gradients, 
LCS, LTDS, MRF, LDA, RFT, LCSS, MDA, DFM, Dynamic textures, 
BOAW, HFST, SRC based MHOF, LBPTOPS, HOP
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