
IMOP : a source-to-source compiler framework for
OpenMP C programs
PART B : Code Review Document

AMAN NOUGRAHIYA, Indian Institute of Technology Madras

V. KRISHNA NANDIVADA, Indian Institute of Technology Madras

This code-review document provides a class-by-class walk-through of the code for some of the most
important and elementary portions of IMOP. It has been written with an aim to help the users of IMOP
understand the intent of each method and class of importance, so that they can use, modify, and extend
them with ease.

This document is, by no means, exhaustive in nature. The code of IMOP is ever-evolving. Periodically,
while attempts are made to keep this document up-to-date, many portions of it might not re�ect the current
state of the code, and many new portions of the code might not have any corresponding review section in
this document.

It is suggested to read this document alongside the code, mainly because it liberally refers to various
identi�ers (class, �eld, method or variable names) present in the code, while discussing the concepts denoted
by them. In order to read the higher-level abstractions of any concept, kindly refer to the preliminary
technical report of IMOP.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice
and the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all
other uses, contact the owner/author(s).
© 2019 Copyright held by the owner/author(s). Manuscript submitted to ACM

Manuscript submitted to ACM i

ii Aman Nougrahiya and V. Krishna Nandivada

Contents

Abstract i
Contents ii
1 Initialization 1
2 Parsing 3
3 Old-style function-declaration removal 5
4 Expression simpli�cation 6
5 Label annotations 6
6 Getting AST strings 6
6.1 Commentors 7
6.2 String getters. 7
7 CFG creation 10
7.1 Creating complete edges 10
7.2 Creating incomplete edges 15
7.3 Identifying CFG Links 17
8 Getting type of an expression 18
9 Symbols 21
9.1 Initialization of Symbol-, Typedef-, and Type-tables 21
10 Cell accesses in a node 23
11 Side e�ects 28
12 Enforcing all bodies to be compound statements 30
13 Implicit barrier removal 31
14 Extra scoping removal 32
15 Unused declarations removal 33
15.1 Removing unused functions 34
15.2 Removing unused variables 35
15.3 Removing unused types 36
15.4 Removing unused typedefs 37
16 Incompatible type-cast on pointers 38
17 Lambda-based graph collectors 38
18 Initialization of dummy �ushes 42
19 MHP analysis, and inter-task data-�ow graph 43
19.1 Data structures 43
19.2 Initialization of MHP information 45
19.3 Initialization of inter-task data-�ow graph 49

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs iii

20 Generic iterative �ow analysis 49
20.1 Generic �ow facts 50
20.2 Base generic �ow analysis pass 52
20.3 Specialized generic �ow passes 54
20.4 Extensible CellMaps 61
20.5 Postorder and reverse postorder collectors 70
21 General guidelines to implement an IDFA 73
21.1 Cellular data-�ow analyses. 74
21.2 Non-cellular data-�ow analyses. 77
21.3 Control-�ow analyses. 77
22 Instantiations of generic �ow passes 78
22.1 Points-to analysis 78
22.2 Reaching-de�nitions analysis 82
22.3 Copy-propagation analysis 85
22.4 Dominance analysis 87
22.5 Control predicate analysis 88
23 Getting assignments in a node 91
24 Single-valued expressions, and Co-existence checks 92
25 Fixed-point stabilization of CFG 101
25.1 Addition of a CFG edge 103
25.2 Removal of a CFG edge 103
26 Elementary transformations 104
26.1 Labels of a statement 108
26.2 Function de�nition 111
26.3 Omp parallel construct 112
26.4 Omp for construct 112
26.5 Omp sections construct 113
26.6 Omp single construct 113
26.7 Omp task construct 113
26.8 Omp master construct 113
26.9 Omp critical construct 113
26.10 Omp atomic construct 114
26.11 Omp ordered construct 114
26.12 Compound statement 114
26.13 If statement 114

Manuscript submitted to ACM

iv Aman Nougrahiya and V. Krishna Nandivada

26.14 Switch statement 114
26.15 While statement 115
26.16 Do-while statement 115
26.17 For statement 115
26.18 Call statement 115
27 Higher-level CFG transformations 116
28 Automated Updates 116
28.1 IDFA 116
28.2 MHP analysis 116
28.3 Labels 116
28.4 Data-�ow graphs 116
28.5 Access lists 116
28.6 SVE information 116
28.7 Other memoized data 116
29 Expansion of parallel constructs 117
30 Selective function-inlining 117
31 Driver module 117
31.1 Copy propagation and replacement 117
32 Loop-instruction rescheduling 117
33 Z3 integration, and �eld-sensitivity 117
34 Fence percolation 117
35 Builder 117
36 Basic transformations 117
37 Node-information objects 117
38 CFG-information objects 117
39 Miscellaneous methods/visitors 117

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 1

This code-review document provides a class-by-class walk-through of the code for some of the
most important and elementary portions of IMOP. It has been written with an aim to help the
users of IMOP understand the intent of each method and class of importance, so that they can use,
modify, and extend them with ease.

Note 0.1
This code-review document is, by no means, exhaustive in nature. The code of IMOP is

ever-evolving. Periodically, while attempts are made to keep this document up-to-date, many
portions of it might not re�ect the current state of the code, and many new portions of the
code might not have any corresponding review section in this document.

1 INITIALIZATION

Program.parseNormalizeInput(args), the usual starting point for the framework, takes the
string of command-line arguments as input, and performs the parsing and normalization steps on
the input program. Certain points to note about this method (along with the steps that it performs) :

• First of all, this method sets the default values for various global �ags via a call to the method
Program.defaultCommandLineArguments(). Following are various �ags and globals that
are set by this method :
– Program.isPrePassPhase, which is used to indicate whether this call of the framework is

done in the pre-pass mode or not. The default value of this �ag is true.
– Program.proceedBeyond, which is used to indicate whether this call of the framework

should exit after the pre-pass phase, or proceed beyond it. The default value of this �ag is
true.

– Program.removeUnused, which is used to indicate whether the unused symbols, types, etc.,
are removed by the pre-pass or not. The default value of this �ag is true.

– Program.sveSensitive, and Program.fieldSensitive, which specify various analysis dimen-
sions, as their names suggest. By default, both these dimensions are kept enabled.

– Program.enableUnmodifiability is, by default, kept disabled. When enabled, various read-
only sets are returned to the user code as unmodi�able-sets.

– Program.maxThreads is, by default, set to 13 – this number is assumed to be the maximum
number of threads with which the input program will be executed. This value is used to
bound the state-space exploration in the Z3 solver.

– Program.z3TimeoutInMilliSecs is kept to 5000 milliseconds – this is the maximum amount
of time that is given to the solver for each query.

Manuscript submitted to ACM

2 Aman Nougrahiya and V. Krishna Nandivada

– Program.oneEntryPerFDInCallStack, when set, ensures that corresponding to each function-
de�nition, there can be only one entry in a context-sensitive call-stack. This �ag is, by
default, kept as enabled.

– UPDATE: “Program.prceiseDFDEdges, when set, ensures that an inter-task edge
exists between two DummyFlushDirectives only if a communication may happen
across them using at least one shared variable; when this �ag is not set, the edges
would exist between all pairs of DummyFlushDirectives that may share a phase.”

– Apart from setting these �ags, this method is also used to obtain the relative path of the .i
input �le, which is returned via the value of filePath variable.

• Then, this method overrides the default values as per the provided command line switches.
Following is a list of command-line switches that are currently available in IMOP : (Note : For
most of the switches their corresponding negations are available as well.)
∗ --prepass, or -p : when used, it enables the pre-pass mode, and the call exits after the pre-pass

phase. (Negation : --noPrepass.)
∗ --file, or -f : used to specify that the immediately succeeding string is the relative (or absolute)

�le path for the input program.
∗ --removeUnused, or -ru : sets Program.removeUnused, to specify that unused symbols and

types get removed. (Negation : --noRemoveUnused.)
∗ --sveSensitive, or -sve : enables SVE sensitivity, by setting the �ag Program.sveSensitive.

(Negation : --noSveSensitive.)
∗ --fieldSensitive, or -fs : enables �eld-sensitivity, by setting the �ag Program.fieldSensitive.

(Negation : --noFieldSensitive.)
• Then, this method saves the name of the input �le (without �le extension) in Program.fileName.
• Next, this method makes a call to FrontEnd.parseAndNormalize() (discussed below), after

ensuring that the standard input stream is set to the speci�ed �le. This call may or may not
return, depending upon the –prepass and –proceedBeyond switches.
• Finally, this method prints the output program into the �le with -postpass.i su�x, after pre-pass

is complete, and returns. For cases where we just need to use/inspect the pre-pass code, we can
simply make a call to this method, and exit from the framework.

FrontEnd.parseAndNormalize(String|InputStream) is used to perform the actual pre-pass of the
input. Various normalization steps have already been discussed in the preliminary technical report
of IMOP. We discuss some other observations from the code in next few sections.
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 3

2 PARSING

For parsing a code versus a snippet, two di�erent (overloaded) methods are used, with name
parseAndNormalize() in FrontEnd. While parsing a full program, rooted at a node of type
TranslationUnit, following are the key observations :

• The variable Program.root is automatically set to the root of the newly parsed AST.
• Depending upon the type of a node being parsed, following extra steps are carried out, apart

from construction of its subtree :
– In the constructor of FunctionDefinition, at the end, a call is made to the visitor OldFunc-

tionStyleRemover, which is used to remove the old style of function declaration.
– In order to obtain an ExpressionStatement, we need to call its factory methods. With the

help of a static method CallStatement.getCallIfAny(Expression):Statement, this factory
method will return a CallStatement if this expression directly represents a CallStatement
lexically; otherwise, this method returns an ExpressionStatement,

Note 2.0.1
Note that the method CallStatement.getCallIfAny(Expression) would return null if the argu-
ment does not lexically represent a simpli�ed call-statement; otherwise, the corresponding
CallStatement object is created and returned back. Also note that this method does not
simplify any expression which contains function call(s) somewhere within it.

– The constructors of EnumSpecifier and StructOrUnionSpecifier call the visitor StructU-
nionEnumTagger, which ensures that unnamed structs/unions/enums are provided with a
unique name.

Note 2.0.2
Note that certain internal nodes of struct/union/enum will get parsed again if it is unnamed.

– When a Statement is getting constructed, if it wraps a LabeledStatement, the wrapping
is done for the constituent of the LabeledStatement instead (while pushing label as an
annotation on that constituent.) Note that this also happens whenever the constituent
node is changed to a LabeledStatement. This processing is done via a call to LabelRe-
mover.populateLabelAnnotations(Statement).

– In the constructor of OmpConstruct, we plan to (haven’t yet) implement a call to split-
ParForAnSections which can split the combined OpenMP constructs. This code would be
extracted from ExpressionSimplifier. (We should modularize and reuse that portion of code.)

– In parsing of a Node (i.e., all AST nodes), each node is given a unique integral id. If the
parsed node is a leaf node, then it is stored in a static array, allLeafCFGNodes of Node.

Manuscript submitted to ACM

4 Aman Nougrahiya and V. Krishna Nandivada

Also note that a back-pointer, named parent is automatically maintained in the constructor of
each node, or while modifying any of its children.
• If the pre-pass �ag is enabled, this method calls FrontEnd.prePass(); certain points to note

about the same:̇
– This method calls expression simpli�cation pass (ExpressionSimplifier) on the parsed pro-

gram, to regenerate a new AST with simpli�cations performed on the input. The output is
dumped in a �le with -simplified.i extension.

– This is followed by creation of CFG edges in the newly constructed, simpli�ed AST, us-
ing CFGGenerator.createCFGEdgesIn(Node). The CFG is dumped with an extension of
-nestedDotGraph.gv, in DOT format.

– Then, with the help of CompoundStatementEnforcer pass, it is ensured that for all constructs
of the program, non-CS single-body statements are wrapped within a compound statement.
The output �le contains the extension -enforcer.i.

– Next, a call is made to remove implicit barriers using nowait clause, with the help of
ImplicitBarrierRemover.removeImplicitBarrier(Node). The output �le has an extension of
-explicitBarriers.i.

– Extra scoping, if any, is removed via a call to NodeInfo::removeExtraScopes(). Output �le
contains an extension of -scoped.i.

– If the �ag –removeUnused is set, declarations of unnecessary elements are removed by a call
to NodeInfo::removeUnusedElements(). The �le corresponding to the code with unnecessary
declarations removed, has an extension of -useful.i.

Note 2.0.3
Note that if the Program.proceedBeyond �ag is disabled, the framework will exit at the end
of the method FrontEnd.prePass().

• CFG edges are created for the newly parsed AST. Note that since pre-pass steps might not
trigger automated update of CFG edges, it is important to recreate the edges here, wherever
required. This step overwrites the previously generated DOT �le, which represents the CFG of
the input program.
• Then, various parallelism related steps, executed by a call to FrontEnd.processParallelism(),

whenever the translation unit contains a main() function, are as follows :
– DummyFlushDirectives are inserted at required places (as per the rules discussed in the

preliminary technical report of IMOP), in all the compound statements of the program,
using CompoundStatementCFGInfo::initializeDummyFlushes().

– Then, initial MHP analysis is run, using Misc.performMHPAnalysis(Node).
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 5

– Relying on the MHP information, this method then calls Misc.createDataFlowGraph() to
create inter-task data-�ow edges among various DummyFlushDirectives within every phase.

– Note that the lock-set analysis (LockSetAnalysis) has been disabled for now.
• If �eld-sensitivity is enabled, this method invokes FrontEnd.testIncompatibleTypeCasts() which

uses Type.hasIncompatibleTypeCastOfPointers() to test whether there are any incompatible
type casts of pointers anywhere in the program. If there are, then �eld-sensitivity gets disabled.
• As of now, we have enabled the call to only points-to data �ow analysis (PointsToAnalysis())

in this method. Note that the IDFAs are triggered only if main() function is present in the
translation unit.

While parsing an AST that is rooted at any type of node other than a TranslationUnit, following
steps are performed by the method parseAndNormalize(InputStream, Class<T>) :

• The initial AST gets created, as in the case of parsing of a TranslationUnit. Note that all extra
steps that are carried out in the constructors of various speci�c types of nodes, as mentioned
in the case of parsing of a TranslationUnit above, are performed even here.
• As of now, we do not call simpli�cation pass on this newly constructed tree; we need to handle

this issue. Until then, users must ensure that they do not create any AST that contains anything
that a simpli�ed AST cannot.
• As before, this step is followed by,: (i) creation of CFG edges, (ii) enforcing of compound

statements across non-CS single-statement bodies, (iii) removal of implicit barriers, (iv) re-
moval of extra scoping, (UPDATE: “Disabled now, until next iteration of the module.”)
(v) addition of DummyFlushDirectives at required places, (vi) an initial MHP analysis on all
ParallelConstruct nodes within the newly created node, using MHPAnalyzer.initMHP(), (vii)
creation of inter-task edges, and (viii) testing whether there is any incompatible type-casting
of pointers. Note that after initial MHP run is complete, we remember all the current phases of
each CFG node in the �eld NodePhaseInfo::inputPhaseSet:HashSet<Phase>, using the method
NodePhaseInfo::rememberCurrentPhases().

/* To be tested: Are we able to correctly parse all the benchmarks under review?

*/

3 OLD-STYLE FUNCTION-DECLARATION REMOVAL

This visitor visits each FunctionDefinition of the program, and ensures the following :

• If there is no return type speci�ed with the function, this method adds int as the return type.
• If the function’s declarator has old-style declaration, a new declarator is created (via AST

construction on manipulated string) and used in place of the old declarator. In other words, the
declarator corresponding to the function-name gets parsed again. Various methods utilized

Manuscript submitted to ACM

6 Aman Nougrahiya and V. Krishna Nandivada

during creation of the manipulated string are : Misc.getDeclarator(Declaration, String), and
Misc.getIdNameList(Declaration).

4 EXPRESSION SIMPLIFICATION

We have already listed various expression simpli�cations that this pass performs in the preliminary
technical report of IMOP. In this section, we look into other implementation-level details.

• First of all, we should note that the current implementation is terribly slow since it is string-
based. We need to port the existing logic into a new pass which performs least number of
changes in the given AST to perform expression simpli�cation. (We are planning to do this
task later.)
• Meanwhile, apart from the simpli�cations discussed in the preliminary technical report of

IMOP, we do not have much to discuss here.

5 LABEL ANNOTATIONS

In the setter of �eld stmtF0 of any Statement node, whenever the node to be added is a Labeled-
Statement, we call LabelRemover.populateLabelAnnotations() on that Statement. Some key
points/steps to observe concerning this method :

• Note that a statement may have more than one labels attached to it. Hence, we process even
nested occurrences of LabeledStatement while attempting to store labels as annotations.
• For each labeled-statement of one of the three types (simple, case, or default), �rst

of all, this method creates a corresponding label annotation of type Label. Then,
on the CFG node on which this label will be annotated, this method calls State-
mentInfo::initAddLabelAnnotation(Label), which adds the label to appropriate �eld in
the node, and vice versa.
• After creating all the internal label annotations and attaching them with the appropriate CFG

nodes, this method calls LabelDeleter. This visitor replaces each LabeledStatement in the AST
with the internal CFG node on which the corresponding Label has been annotated. Note that
this change is performed at the AST level, and is not done via any elementary transformation.

6 GETTING AST STRINGS

The class StringGetter, and its supporting static inner classes, provide methods to obtain di�erent
variations of strings corresponding to any given AST node.

In this section, we �rst look at how comments can be added and used for various Nodes. Then,
we discuss other key methods in StringGe�er.
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 7

Note 6.0.1
If a simple String representing a Node is required, along with its default comments, then the

method NodeInfo::toString() should su�ce.
For other speci�c use cases, read this section (Section 6) in detail.

6.1 Commentors

A Commentor is a functional interface, which provides a method getString() that takes a Node,
and provides a String which is relevant to the node. This interface is implemented at a large
number of places for debugging purposes, where it is used to specify debug strings for various
kinds of node.

Each NodeInfo contains a default Commentor, named defaultCommentor which is used in
generating the default comments corresponding to the node. These default comments are read from
the �eld comments:List<String>, to which debug messages can be added by any client code (by
adding new Strings to the return of NodeInfo::getComments()). The respective default comments

Note 6.1.1
Note that any string can be added to NodeInfo::getComments(). It need not follow the syntax
of C comments.

are added as su�x (with proper C syntax of comments) to strings of all the nodes which are
obtained using any variation of StringGe�er.getString().

6.2 String ge�ers.

Following are some key methods from StringGe�er :

getString(). Various overloaded versions of getString() exist within the class StringGe�er. When
it takes only a Node, it internally calls the version that takes a Node and a boolean indicating
whether annotated pragma’s 1, if any, need to be printed, by passing the same node and false

value to it. The invoked method uses the visitor InternalStringGe�er (explained later in this sec-
tion) with two arguments : (i) a list containing the defaultCommentor, and (ii) pragma boolean
as the arguments. The string to be returned gets populated in the �eld InternalStringGe�er::str,
from which extra white-spaces are removed before it is returned.

The variant of getString() which takes a Node, and a list of Commentor, passes its argument
to another variant that also takes a boolean value for indicating whether annotated pragma’s
need to be printed. Similar to one of the variants from the previous paragraph, the invoked
variant utilizes the visitor InternalStringGe�er to obtain the string to be returned. The list

1Note that in the current state of IMOP, user-de�ned pragma annotations are not fully implemented. The only ones
that exist are for specifying SVE annotations.

Manuscript submitted to ACM

8 Aman Nougrahiya and V. Krishna Nandivada

of Commentors obtained as arguments is sent by this method to the visitor, after adding the
defaultCommentor to it, if not already present.

Note that the following key methods rely on StringGe�er.getString(), and hence, will have
respective default comments added to each printed node in the returned strings :
• Node::toString().

Note 6.2.1
As well known, the method toString() is implicitly called on a Java object when the object is
passed as an argument to the print() or related methods of System.out and System.err.
Hence, System.out.print(node);, for example, would print the node, preceded by its default
comments, to stdout. For each constituent CFG node of the given node, the default comments,
if any, of the constituent node would also be printed before the constituent node.

• NodeInfo::printNode(), which prints the node, preceded by its default comments to
stdout. Respective default comments are also printed for any constituent CFG nodes.
• NodeInfo::getString() is used to obtain a string that represents the node, with string for

each constituent CFG node (including the receiver node) preceded by its default comment.
This method optionally takes a list of Commentors which are used to append other comments
to the strings of the default comments.
• NodeInfo::getDebugString() is a special variation of string getters, which can be used as a
Detail Formatter for Nodes in the Debug mode in Eclipse, or at any other places where a node
needs to be identi�ed in the context in which it appears (along with its phase information).
Given a node, this method returns a String of its enclosing function, (or of the node itself, if
no enclosing function exists, or if the node is not a CFG node) with a string of #’s preceding
the node to highlight it. Each constituent leaf CFG node is also preceded with a list of phase
id’s in which that node may get executed. 2

• Another relevant method is Misc.printToFile(), which takes a node, name of the �le to be
generated (along with proper extension), and optionally a list of Commentors. It creates
the �le in directory output-dump in the root of the project, and pretty prints the given
node, with its default comments and any other comments provided by the argument list of
Commentors, if any.

The visitor InternalStringGetter works as follows :
• This visitor takes a list of Commentors as an argument, along with a boolean that indicates

whether annotated pragma’s of any node need to be printed.
• The string created by this visitor is stored in its �eld str:StringBuilder, which is initialized

to an empty StringBuilder.
2Note that NodeInfo::getDebugString() does not trigger automatic stabilization of the phase information.
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 9

• This visitor creates a string which contains proper tabs and newlines to pretty print the
visited node.
• Visit of every CFG node also invokes the method InternalStringGet-

ter::printCommentorsAndPragmas(), which appends str with the string obtained
from various Commentors (and annotated pragmas, if any) provided to the visitor, in the
form of multi-line comments.
• All labels, which are present as metadata of form Label in various statement CFG nodes,

are prepended to the string of the relevant statements, with the help of calls to Internal-
StringGe�er::printLabels() from appropriate places.

getStringNoLabel(). This method is invoked when a node’s string is required without any labels
in it. Such situation occurs, for example, when attempting to create a duplicate of the given
node, which needs to be added within the same function (or switch statement), as having two
statements with same label in a function (or at the same level of a switch statement) would be
incorrect.

The required e�ect of this method is achieved by using a subclass InternalStringNoLabel of
InternalStringGe�er which simply overrides the method printLabels() with an empty body.

Assuming that the string obtained from this method is required for the purpose of some
internal processing (such as parsing a duplicate), we do not print the default commentors or
pragma’s of any of the printed nodes.

getRenamedString(). Given a node, and a map over the set of strings, which maps the string of
an identi�er to some new string, this method returns the string of the node modi�ed in such a
way that each occurrence of the identi�er is replaced by the new string for that identi�er as
per the map, if any.

Note that this is not same as simple substring replacement as some other non-identi�er parts
of the given node too may have same string as that of an identi�er – in such cases, we do not
replace that occurrence of the string with the new string from the map, if any, unlike what a
substring replacement method would do.

This method relies upon the visitor RenamedStringGe�er, which extends from Internal-
StringGe�er, and works as follows : It takes a map renamingMap:Set<String, String> as an
argument. Now, while creating the string to be returned, it replaces all nodes of type NodeToken
that represents an IDENTIFIER lexeme, with the associated mapping for that identi�er’s string
in the given map, if any.

Note that in any of the internal scopes within the given node, the identi�er that exists with
a given name, would shadow the identi�er from the outer scope. Hence, in such cases, the
mapping corresponding to the identi�er from the outer scope should not be used. To ensure

Manuscript submitted to ACM

10 Aman Nougrahiya and V. Krishna Nandivada

this, before entering the body of any FunctionDefinition or CompoundStatement, this visitor
removes all those keys from the given map that may have same string as the string of any of
the symbols de�ned in the scope of the visited FunctionDefinition or CompoundStatement.
After coming out of the visit of such scopes, all the removed entries are added back.

getNodeReplacedString(). This method does not rely on any visitors within the class StringGet-
ter. Given a base node, and any of its constituent nodes that needs to be replaced with a
given string this method utilizes BasicTransform.crudeReplaceOldWithNew() to obtain the
desired strong for the base node, where the string of the constituent node is replaced with the
given string. Note that the given string must get successfully parsed as the type to which the
constituent node belongs.

7 CFG CREATION

CFG edges are created within a node via a call to CFGGenerator.createCFGEdgesIn(Node). Af-
ter creation of complete edges, where both, source and destination nodes of the edge are available,
this method generates incomplete edges. For such edges, either source or destination is not avail-
able. For example, if the provided node contains within it a case or default labelled statement such
that there is no enclosing switch statement to which these labels can bind to, then we maintain an
incomplete edge with unknown source for each of these statements. Both these steps are explained
in detail next.

7.1 Creating complete edges

Corresponding to each non-leaf node, an internal CFG node is created as per the semantics of the
associated construct in C language. Each non-leaf node is handled in its own visit() method in
CFGGenerationVisitor. Furthermore, extra edges are created as per the four jump statements of C.

In this section, we describe the methods that create these edges. Note that these methods do
not create any inter-function or inter-task edges. Following is a quick (obvious) description of the
graph structure, corresponding to each non-leaf node, and jump statement :

FunctionDe�nition. The BeginNode of the function-de�nition is connected to the �rst parame-
ter, if any. Otherwise, it is connected to the function body. If the function contains any parameter,
then each parameter connects to its next parameter, if any; the last parameter is connected
to the function body. This visitor is then called on the function’s body, to create the nested
CFG. If end of the function body may be reachable for any control-�ow (checked using the
method CFGInfo::isEndReachable()), then the function body is connected to the EndNode of
the function. Note that an AssertionException is thrown if this function-de�nition has old-style
of function signature.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 11

ParallelConstruct. First of all, all the executable OpenMP clauses are collected for the given
parallel-construct. These include : IfClause, and NumThreadsClause. The order (and number
of times) in which these clauses need to be evaluated is implementation speci�c. If there are

Note 7.1.1
In IMOP, we assume that all the executable clauses are executed once, in the order of their
appearance.

no clauses present, then the BeginNode of the parallel-construct is connected to the body of
the parallel construct. Otherwise, the BeginNode is connected to the �rst clause; each clause
is connected to the next clause, and the last clause is connected to the body of the parallel
construct. This visitor is then called on the body of this parallel construct, to create the nested
CFG. If the end of the body is reachable, then the body is connected to the EndNode of the
parallel construct.

ForConstruct. The BeginNode of the for-construct is connected to the initialization term, Omp-
ForInitExpression, which, in turn, is connected to the termination check expression, OmpFor-
Condition. This expression condition is connected to the EndNode of this for-construct, as
well as to its body. This visitor is then called on the body of this for construct, to create the
nested CFG. If the end of the body of this for-construct is reachable, then it is connected to the
step change expression, OmpForReinitExpression. Either way, the step-change expression is
connected to the termination-check expression.

SectionsConstruct. For each OpenMP section in this construct, the BeginNode of the construct
is connected to the body (CompoundStatement) of the section. After calling the visitor on
the body of a section, it is checked if the end of the body is reachable. If the end is reachable,
the body is connected to the EndNode of the construct. Note that if the construct contains no
OpenMP section, then the BeginNode is connected to the EndNode.

TaskConstruct. First of all, we collect all the executable clauses that may be present in the
construct. These clauses can be IfClause or FinalClause. If there are no executable clauses, the
BeginNode of the construct is connected to its body. Otherwise, the BeginNode is connected to
the �rst executable clause; each clause connects to its next one; and, the last clause connects to
the body of this construct. This visitor is then called on the body of this construct to create the
nested CFG. If the end of this body is reachable, the body is connected to the EndNode of this
construct.

Other OpenMP constructs. For other OpenMP constructs, namely, SingleConstruct, Master-
Construct, CriticalConstruct, AtomicConstruct, and OrderedConstruct, the CFG structure is
created in a similar fashion. First of all, the visitor is called on the body of the construct. After

Manuscript submitted to ACM

12 Aman Nougrahiya and V. Krishna Nandivada

Note 7.1.2
Note that this simplistic view of TaskConstruct doesn’t help us model the �ow semantics
correctly. However, in the current state of IMOP, we do not handle the �ow analyses for
programs that contain TaskConstruct. We do have a scheme that can be implemented to
change the edges of the CFG such that a TaskConstruct can be naturally modelled in the
�ow analyses. However, that scheme would break the invariants concerning the number of
successors and predecessors certain CFG nodes may have – these invariants are used in all
�ve higher-level CFG transformation modules. Hence, we will have to make changes in all
�ve of these, upon implementing the scheme. This task has been added as a TODO.

that, the BeginNode of the construct is connected to its body. Then, if the end of the body is
reachable, the body is connected to the EndNode of the construct.

CompoundStatement. If there are no statements in this construct, the BeginNode of the con-
struct is connected to its EndNode. Otherwise, the BeginNode is connected to the �rst statement
or declaration within the construct. For each element of the construct, we call the visitor on
the element to create the nested CFG. If the end of an element is reachable, then the element
is connected to its immediately succeeding element, except for the last element, which is
connected to the EndNode.

IfStatement. The BeginNode of the construct is connected to its predicate (an Expression). The
predicate is connected to the then-body. The visitor is called on the then-body to create the
nested CFG. If the end of the then-body is reachable, it is connected to the EndNode of the
construct. If the else part is present in the construct, the predicate is also connected to the
else-body; the visitor is called on the else-body; and if the else-body is reachable, then it is
connected to the EndNode. Otherwise, if the else part is not present, the predicate is connected
to the EndNode of the construct.

SwitchStatement. The BeginNode of the construct is connected to its predicate. This visitor
is called on the body of the construct, to create the nested CFG. If the end is reachable, the
body is connected to the EndNode of the construct. Then, we collect all those nodes that
are annotated to those case and default labels that are associated with this construct. The
predicate is connected to all these nodes. If there is no associated default label, the predicate
gets connected to the EndNode.

WhileStatement. The BeginNode is connected to the predicate of the construct. The predicate
is connected to the body of the construct, and to the EndNode of the construct. The visitor is
called on the body of the construct, to create CFG for nodes nested within the body. If the end
of the body is reachable, the body is connected to the predicate of the construct.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 13

DoStatement. The BeginNode connects to the body of the construct. The visitor is called on
the body. If the end of the body is reachable, it is connected to the predicate. The predicate is
connected back to the body, as well as to the EndNode of the construct.

ForStatement The visitor is called on the body of the construct, to create the nested CFG. The
BeginNode of the construct is connected to either the initialization expression, termination
expression, or the body of the construct, whichever is present (checked in that order). The
initialization expression, if any, is connected to the termination expression, or the body of the
construct, whichever is available (checked in that order). The termination expression, if any,
connects to the body and the EndNode of the construct. If the end of the body is reachable, it
connects to either the step expression, termination expression, or itself, whichever is present
(checked in that order). Finally, the step expression, if any, is connected to the termination
expression, body of the construct, or itself, whichever is present (checked in that order).

CallStatement. The BeginNode connects to the PreCallNode, which connects to the PostCallN-
ode, which connects to the EndNode.

JumpStatement. Corresponding to all four types of jump statements, an incomplete, or a com-
plete edge is created, if possible. Here, we discuss the approach of creating a complete edge,
if the desired source/destination is available. In the next section, we look into the creation of
incomplete edges for these nodes.
• GotoStatement : First of all, we obtain the outermost non-leaf encloser for the given state-

ment, using NodeInfo::getOuterMostNonLeafEncloser(). If there is no such encloser, then
the edge cannot be complete. Otherwise, we search for the statement with required label in
the outermost encloser. If no such statement is found, then we need to add an incomplete
edge. Otherwise, the goto statement is connected to the statement with required label.
• ContinueStatement : We check if there is any enclosing serial or parallel loop for this state-

ment. If none exists, then an incomplete edge needs to be created. Otherwise, if this encloser
is a while loop or a do-while loop, we connect the node to the termination expression of the
loop; In case of a for loop, we connect the node to either the step expression, termination ex-
pression, or body of the loop, depending upon whichever is available (checked in that order).
If the encloser is an omp-for loop, we connect the node to the OmpForReinitExpression of
the omp-for loop.
• BreakStatement : In case of a break-statement, we �nd the enclosing serial loop or switch

statement. If no such encloser exists, then an incomplete edge needs to be created at this
node. Otherwise, we connect this node to the EndNode of the encloser.
• ReturnStatement : If there exists any enclosing function, we connect this return-statement

to the EndNode of the function; otherwise, an incomplete edge is added.

Manuscript submitted to ACM

14 Aman Nougrahiya and V. Krishna Nandivada

The method CFGInfo::isEndReachable() is de�ned on CFG nodes as follows : If the node is a
jump-statement (goto, break, continue or return), then the end of this node is not considered to be
reachable. For all other leaf CFG nodes, the end is considered to be reachable. For each non-leaf
node, if and only if its EndNode has any predecessor, then the end of the non-leaf is considered to
be reachable.

Note 7.1.3
The method CFGInfo::isEndReachable() assumes that CFG edges have already been populated
within the visited node. One should never call this method on those nodes for which CFG
edges are not yet created/maintained.

For each edge creation that is requested as per the scheme described above, the following steps
are taken in the method connect(Node pred, Node succ) :

• If the edge to be created is precise (described below), then the edge is modelled by
saving the successor in CFGInfo::getSuccBlocks() of the predecessor, and predecessor in
CFGInfo::getPredBlocks() of the successor. If the edge is not considered to be precise, we
don’t create the edge. We ensure that there always exists only one edge between any two pair
of nodes.
• When a predicate’s value is a compile-time constant, we know the precise edge from the

predicate to one of its destinations – all the other edges are considered to be imprecise (i.e.,
these edges are not created in the CFG). An edge is checked for precision by passing the source
and destination nodes to the method CFGGenerator.verifyEdgePrecision(), which proceeds
as follows :
– If the source is not a predicate expression that evaluates to a constant at compile-time,

then the edge is considered to be precise. Given an expression, Misc.evaluatesToConstant()
decides whether it is a compile-time constant as follows : the type of the expression is
obtained using Type.getType(Expression) (refer to Section 8); if the expression is not an
arithmetic type, then the expression is not considered to be a constant; if an arithmetic
�oating-type expression evaluates to a known �oat value (of Java), or if an arithmetic
integer-type expression evaluates to a known integer or character constant value (of Java),
then the edge is considered to be precise; otherwise, the edge is considered to be imprecise.

Note 7.1.4
Note that the precision of the method Misc.evaluatesToConstant() can be improved by
performing a pass of constant propagation and replacement �rst. We haven’t yet implemented
the same.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 15

– Next, we check whether the constant expression evaluates to false (= 0), or true (= any
non-zero value), and obtain the CFG link of the source node. A CFG link for a given node
speci�es what component of its enclosing CFG node is a given node. (Refer to Section 7.3
for more details).

– If the link corresponding to the source node isn’t a WhilePredicateLink, IfPredicateLink,
DoPredicateLink, ForTermLink, or a SwitchPredicateLink, then the edge is considered to be
precise.

– When the source node’s link is a WhilePredicateLink, and the predicate is false, then
the edge from source to the EndNode of the while loop is precise, and the edge from
source to the body of the loop is considered as imprecise. If the predicate is true then edge
between source and body is considered to be precise, whereas the one between source
and the EndNode is considered to be imprecise. Similar logic is applied for the case of
IfPredicateLink, DoPredicateLink, and ForTermLink, as per the semantics of C language.

– Now, let’s look at the case when source node link is of type SwitchPredicateLink. Depending
upon the type of the switch’s predicate, we obtain the target statement that corresponds to
the given integer or character constant. If no such target statement could be found, then
only that edge from the source is precise which connects it to the EndNode of the switch
construct; all other edges originating at the source are considered as imprecise. If the target
statement is found, but is not same as the destination node, then the edge is considered to
be imprecise. If the target statement is found to be same as the destination node, then the
edge is considered to be precise.

7.2 Creating incomplete edges

When the source or destination of a CFG edge is not available in a given snippet of a code, we
create incomplete edges.UPDATE: “we do nothing.” An incomplete edge can be of any of the
following types (which are enum members of TypeOfIncompleteness) :

Note 7.2.1
UPDATE: Fri Aug 30 18:18:21 IST 2019

Now, we do not save the incomplete edges explicitly with any node; instead, they are created
by looking into a node locally, whenever requested.

UNKNOWN_CASE_SOURCE : an incomplete edge terminating at a case statement that doesn’t
have any enclosing switch statement (and hence, the source predicate is unavailable).

UNKNOWN_DEFAULT_SOURCE : an incomplete edge terminating at a default statement that
doesn’t have any enclosing switch statement (and hence, the source predicate is unavailable).

Manuscript submitted to ACM

16 Aman Nougrahiya and V. Krishna Nandivada

UNKNOWN_GOTO_DESTINATION : an incomplete edge originating at a goto, such that there
is no destination statement in the enclosing function/snippet, annotated with the target label.

UNKNOWN_BREAK_DESTINATION : an incomplete edge originating at a break, such that
there is no enclosing loop or switch (to whose EndNode this break would have connected to).

UNKNOWN_CONTINUE_DESTINATION : an incomplete edge originating at a continue, such
that there is no enclosing loop (to whose predicate this continue would have connected to).

UNKNOWN_RETURN_DESTINATION : an incomplete edge originating at a return statement,
such that there is no enclosing function (to whose EndNode this return would have connected
to).

There are various ways in which these incomplete edges are created for a given node, during/after
creation of the complete edges. During the visit of following types of nodes by CFGGenerator, the
incomplete edges are created as described :

• GotoStatement : If in the outermost non-leaf encloser of this node, there doesn’t exist
any statement that is annotated with the target label, then we add an incomplete edge
of type UNKNOWN_GOTO_DESTINATION via a call to the method IncompleteSeman-
tics::addToEdges(IncompleteEdge).
• ContinueStatement : When the continue statement is not enclosed within a serial or parallel

loop, we add an incomplete edge of the type UNKNOWN_CONTINUE_DESTINATION.
• BreakStatement : In the absence of an enclosing serial loop or switch statement, we add an

incomplete edge of type UNKNOWN_BREAK_DESTINATION.
• ReturnStatement : When no enclosing statement exists for a return-statement, we add an

incomplete edge of type UNKNOWN_RETURN_DESTINATION.

Once the visitor for creation of CFG edges returns, we invoke CFGGenera-
tor.handleIncompleteSwitchLabels() on all the relevant CFG statements. In this method, we
check if any other incomplete edges need to be added for internal case or default labels, in case if
there is no surrounding switch statement for the given node. When no enclosing switch statement
exists, we obtain the set of all those statements within node which contain case or default labels
that are not bound to any enclosed switch statement. This collection is obtained using the visitor
SwitchRelevantStatementsGetter. In the visitor, we ensure that no statements within any enclosed
switch-statement are visited. For all other visited CFG statements, if the statement contains any
case or default label, then we collect it into our set of interest.

For each collected statement, we add an incomplete edge of the type UN-
KNOWN_CASE_SOURCE or UNKNOWN_DEFAULT_SOURCE for each case or default
label that the statement is annotated with.
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 17

Note 7.2.2
Update : Thu Aug 29 10:57:48 IST 2019.
Now, we do not explicitly save any incomplete edges with a node, but create them locally on
demand instead.
After looking at all their current usages, we realized that we do not gain much in terms of
computation by maintaining the incomplete edges explicitly. However, maintaining these
incomplete edges during each elementary update involves complicated and costly logic.
Corresponding to each incomplete edge, following are the alternative methods that can be
used to infer the notion of incompleteness in a CFG :
UNKNOWN_GOTO_DESTINATION. At any given GotoStatement, if the list of CFG suc-

cessors is empty, then it implies that the destination label of this GotoStatement does not
exist in the relevant context.

UNKNOWN_BREAK_DESTINATION. At any given BreakStatement, if the list of CFG
successors is empty, then it implies that the relevant context does not contain the EndNode
of the enclosing LoopStatement or SwitchStatement (i.e., there is no enclosing LoopState-
ment or SwitchStatement for the given BreakStatement).

UNKNOWN_CONTINUE_DESTINATION. At any given ContinueStatement, if the list
of CFG successors is empty, then it implies that the relevant context does not contain the
increment expression (if applicable), or predicate, of the enclosing LoopStatement (i.e.,
there is no enclosing LoopStatement for the given ContinueStatement).

UNKNOWN_RETURN_DESTINATION. If there is no successor of a ReturnStatement,
then it implies that there is no enclosing FunctionDefinition for this statement, as otherwise
this statement would have connected to the EndNode of that FunctionDefinition.

UNKNOWN_CASE_SOURCE and UNKNOWN_DEFAULT_SOURCE. For any state-
ment that contains a CaseLabel or a DefaultLabel if there does not exist any predicate
of a SwitchStatement in its list of predecessors, then it implies that there is no enclosing
SwitchStatement for the statement.

7.3 Identifying CFG Links

A CFGLink denotes the nesting relation of a CFG node with its enclosing CFG node. For exam-
ple, given an expression that is the predicate of a while-statement, when we invoke CFGLink-
Finder.getCFGLinkFor() on the expression, we will get a WhilePredicateLink object as the result,
which will contain references to this expression, as well as to the while-statement.

In the method CFGLinkFinder.getCFGLinkFor(), we �rst �nd the CFG node corresponding
to the given argument. Then, we obtain the enclosing non-leaf CFG node for the argument. On this
parent, we call the visitor CFGLinkGe�er to obtain the link corresponding to the nesting relation
between the parent and the given argument. In this visitor, we have overridden the visits of all
non-leaf CFG nodes, such that the provided argument is checked for equality with the immediately

Manuscript submitted to ACM

18 Aman Nougrahiya and V. Krishna Nandivada

nested CFG components of the non-leaf node. Accordingly, a link is created and returned back by
the visitor.

8 GETTING TYPE OF AN EXPRESSION

The method Type.getType(Expression) utilizes the visitor ExpressionTypeGe�er in order to
obtain the type information for the given expression. In this visitor, each visited expression returns
back the type of that expression. From visits of nodes that do not correspond to an expression,
null is returned.

When a variable is accessed in an expression, we attempt to obtain its symbol using
Misc.getSymbolEntry(String name, Node node). The working of this method is explained in
detail in the Section 9. If no symbol is found corresponding to a variable, then we assume the type
of such free-variable to be SignedIntType. (Note that later we are planning to use a FreeType here.)

Note 8.0.1
A note on pointer generation.
As per the semantics of C language, the following holds. A symbol of type array of T will
remain to be of that type; however, when that symbol is used, its type becomes pointer to
T. Similarly, a function symbol of type function returning T will remain to be of that type;
when that function is used, its type becomes pointer to function returning T. These automatic
pointer generation will not happen when the symbol is being used an operand of unary &,
++, –, sizeof operators, or is present in the LHS of an assignment or a dot operator.

When visiting a comma expression, the type of the expression is denoted by the type of the
last expression in the comma-operands. In case of a NonConditonalExpression, we undo any
automated pointer generation and return the original type of the LHS.

For a conditional expression, the type is provided as the usual arithmetic conversion of the
types of the second and third expressions, if they both are arithmetic types. This conversion is
provided by Conversion.getUsualArithmeticConvertedType(Expression, Expression). Otherwise, if
they both are struct type, or both are union type, or both are void type, then the returned type is
that of the second (which is equal to the third) expression.

Upon visiting a logical OR, or logical AND expressions, the returned type is SignedIntType.
For bitwise inclusive OR, bitwise exclusive OR, and bitwise AND expressions, the return type is
the usual arithmetic conversion of the types of both the operands. In case of an equality-check
expression (== or !=), or a relational expression, the return type is SignedIntType. For a bitwise left
or bitwise right shift operation, the resulting type is the integer-promoted type of the left operand.

The resulting type of an additive operation is the usual arithmetic conversion of both the
operands, if the operands are of arithmetic type; if one of the operands is of pointer type, and another
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 19

is an integer type, then the resulting type is same as the pointer type; when both the operands are
pointers, then the resulting type is a signed long int (which should have been ptrdi�_t as de�ned in
stddef.h instead). For multiplication operation, the resulting type is the usual arithmetic conversion
of the types of the operands. In case of a cast expression, the resulting type is same as the cast type.
This type is obtained from the given type name using Type.getTypeTree(TypeName, Scopeable),
where the second argument is the enclosing scope (a CompoundStatement, FunctionDefinition, or
TranslationUnit) in which the expression occurs. For pre-increment and pre-decrement operators,
the returned type is same as the original type of the operand (i.e., pointer generation, if any, is
undone).

The resulting type of applying & operator is the pointer to the original type of the operand.
On the other hand, if the operand is of type pointer to T, then the resulting type upon applying
* operator would be T. In case of a unary +, unary -, or unary ∼ operator, the resulting type is
the integer promoted type of the operand, obtained using Type::getIntegerPromotedType. The
resulting type upon application of the logical negation operator (!) is SignedIntType. For sizeof
operator, the resulting type is UnsignedLongIntType.

A PostfixExpression comprises of a PrimaryExpression, optionally followed by a sequence of
post�x operators. If the type of the primary expression is unknown, and if the �rst operator is a
list of arguments, then this post�x expression corresponds to a call of a function with unknown
signature. In such a case, we assume the type of this expression (i.e., the return type of the unknown
function) to be SignedIntType, instead of relying on any type inference algorithm. Otherwise, if
the �rst post�x operand of an unknown primary-expression is something else, then we assume
that the type of this post�x-expression is null.

Given a list of post�x operations on a primary expression with known type, we proceed as
follows : We take each operator one-by-one, from left to right, and keep on obtaining the type of
the partial post�x expression visited so far, upon application of each operand, starting with the
type of the primary expression. When the current type is an ArrayType or a FunctionType, we
perform pointer generation on the type, if applicable. (However, this case might not occur ever as
the type for each symbol has already undergone pointer generation.) When the next operator is
a BracketExpression, we need to �nd whether the index expression is an integer, or the partial
expression visited so far is. Then, if the other expression is of type pointer to T, the type for the
partial expression so far, after application of this operator, would be T. If the next operator is an
argument list, then the partial expression so far should be of type pointer to function returning T;
upon application of the argument list, the new type would then be T. For DotId, �rst of all we undo
the pointer generation on the current type. Then, the current type would either be a StructType or
a UnionType. In that type, we search for the member corresponding to the identi�er on RHS of

Manuscript submitted to ACM

20 Aman Nougrahiya and V. Krishna Nandivada

the dot operator. The type of that member becomes the type of the partial expression on which
the dot operator has been applied. When the next operator is a ArrowId, then the current type
must be a pointer-type. We obtain the type of the pointee, which would either be a StructType or a
UnionType. As before, we obtain the type of the member being dereferenced, which becomes the
type of the partial expression on which dereference has been performed. When the next operator
is a post�x increment, or decrement, then the type of the partial expression after application of
the operator remains same as the current type.

When a PrimaryExpression is an identi�er, as described above, we obtain the symbol corre-
sponding to that identi�er. If none exists, we return null, else we return the type of that symbol
after performing pointer generation on it, if applicable.

Given a Constant, �rstly we try to collect a list ArithmeticTypeKey’s corresponding to the
constant. In case of an integer constant, we check if the constant is a long and/or unsigned with the
help of appropriate pre�xes (e.g., l, L, u, U, etc.), apart from being an int, and create the arithmetic
keys accordingly. For a �oating-point constant, we check for the appropriate su�xes to determine
whether the constant is a single-precision float, or a double, and create the keys accordingly. In
case of a character constant, or a string literal, we assume that char is the only key. After collecting
all the arithmetic type keys, we use the method Type.getTypeFromArithmeticKeys() to obtain the
inferred type of the integer, �oating, or character constants. In case of a string literal, we wrap the
obtained type in a pointer-type, and return it.

A SimplePrimaryExpression can either be a constant or an identi�er. If it is a constant, then
we return the type, as obtained during the visit of that constant, as it is. In case of an identi�er,
we try to obtain the corresponding symbol (variable or function). If no such symbol exists in the
snippet, then we return null. Otherwise, we return the type of the symbol, after applying pointer
generation, if applicable.
UPDATE: “16-May-2019” In order to ensure that pointer generation and degeneration are done
correctly, we have performed the following changes :

• We have created the following two methods : ExpressionTypeGe�er.performPointerGeneration()
and ExpressionTypeGe�er.performPointerDegeneration(). The former takes a type, and per-
forms pointer generation on it, if applicable, to obtain the type to be returned. Whereas, the
latter returns back the type on which pointer generation might have been applied to obtain the
passed type.
• In each visit, we ensure that all inferred types, or types read from symbol tables, undergo pointer

generation. While passing the type up the expresison-tree, we do not perform any pointer
generation or degeneration. To obtain the type of the unary operands of &, ++, −−, sizeof,

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 21

and LHS operand on assignment operators and dot operator, we perform pointer degeneration
on the type obtained by the visitor.

9 SYMBOLS

Conceptual details about the notion of a symbol are present in the preliminary technical report of
IMOP. Given an identi�er, and a program point (i.e., a Node), we use Misc.getSymbolEntry() to
obtain the symbol corresponding to the identi�er at that program point. In this method, starting
with the given node, we traverse upwards on the AST, and see if any scope contains declaration of
a symbol with this name; if we �nd one, we return it.

Note 9.0.1
Note that if the node itself is a scope, its internal symbol table too is checked in
Misc.getSymbolEntry(), while searching for the symbol.
Question : Is this logical to do? If we don’t consider the internal symbol table, will it require
changes in any part of the code?

Otherwise, if the node is not connected to the program (i.e., the traversal ended without reaching
a TranslationUnit), then we search for the symbol in the global scope of the program. Otherwise,
we resort to checking into the list of built-in library symbols. Finally, if the symbol is not found
anywhere, we return null. Note that while attempting to read the symbol table of the built-in
library methods, we should not save the observed cells/symbols in the set of all the cells/symbols
of the program. Also, while checking in the built-in libraries, we ignore the pre�x __builtin_.

The symbol table of a scope is obtained by the methods : RootInfo::getSymbolTable(), Function-
DefinitionInfo::getSymbolTable(), or CompoundStatementInfo::getSymbolTable(). These methods
either return the symbol-table of the scope if it has been populated already, or call the corresponding
populateSymbolTable() �rst (which also reinitializes the type and typedef tables).

9.1 Initialization of Symbol-, Typedef-, and Type-tables

The method CompoundStatementInfo::populateSymbolTable() is used to populate the symbol-
table, typedef-table, and type-table of a given compound statement. Firstly, we obtain the list of
declarations that are made at the level of the compound-statement. Each of these declarations could
be a declaration of a symbol, type, or a typedef. For each declaration, we obtain the list of identi�ers
declared in the declarator. If the list is empty, then the declaration is a type declaration that contains
no declarators of that type. For such cases, we utilize the method Type.getTypeTree(Declaration,
Scopeable) to visit and collect the declared type. If the list of declarators is not empty, then for
each declarator, we obtain the type of the declarator using the same method, Type.getTypeTree().
If the declaration is a typedef, then we see if a mapping already exists for this declarator in the

Manuscript submitted to ACM

22 Aman Nougrahiya and V. Krishna Nandivada

typedef table – if so, then we ignore this declarator; otherwise, we add a mapping from this
declarator’s name to a new Typedef (which comprises of the name, type, declaring node, and the
declaring scope, of the typedef.) Finally, if the declarator declares a Symbol, we proceed as follows.
If the mapping already exists for this name, we ignore the declarator. Otherwise, we create a new
mapping for this name with the associated symbol. Generally, we create a new symbol object,
with the appropriate name, type, declaring node, and declaring scope. However, there are times
when a declaration is removed from the program and added somewhere else; in such cases, we
try and reuse the symbol, as explained next. We maintain a set of cells that have been deleted
from the program. If there exists any cell which is a symbol with same name as the one provided
to this method, then we reuse it to create the mapping in the symbol table, under the following
additional constraints : the old symbol should have a declaring node of type Declaration, it should
have its declaring scope of type CompoundStaement, and this scope should either enclose, or be
enclosed by the scope of the provided declaration. (Assuming that there are no naming con�icts
during movement of a declaration across nesting of scopes, the last condition here ensures that
such movements do not generate recreation of a new Symbol.)

In case of the method FunctionDefinitionInfo::populateSymbolTable(), note that a function’s
signature would not contain any type or typedef declaration; it is comprised up of a list of
parameter declarations, instead. Firstly, we obtain the symbol corresponding to this function in the
symbol table of the program’s TranslationUnit. Given the function symbol, we iterate over all the
parameters, and create a mapping in the symbol table of the function, from parameter’s name (or a
new name, if none exists) to the symbol corresponding to that parameter. A symbol corresponding
to a parameter comprises of the parameter’s name, type, corresponding ParameterDeclaration,
and the function itself (which is the scope, in this scenario). Note that while the temporary name
of the parameter is used as a placeholder at various places, this name is not re�ected in the AST of
the program (to prevent any surprises).

To initialize the global symbol table of the program, i.e., of the associated TranslationUnit, we
use the method RootInfo::populateSymbolTable(). Like compound statement, the declarations in
the global scope too may correspond to a symbol, type, or a typedef. Hence, all three corresponding
tables (symbol table, type table, and typedef table) are initialized by this method. Also note that
each symbol can either correspond to a variable, or a function. For each function symbol, there
may exist more than one declarations, only one of which may contain the body of the function.
The method proceeds as follows. We consider each element in the translation unit, one-by-one.

If the element is not a Declaration or a FunctionDefinition, we ignore the element. When the
element is a FunctionDefinition, we �rst obtain its name. Then, type of the function is obtained
using Type.getTypeTree(FunctionDefinition, TranslationUnit). Using the name of the function, we

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 23

add a new mapping (overridding any existing ones) to the function symbol. A function symbol
comprises of the function’s name, type, function-de�nition node, and a reference to the Translatio-
nUnit corresponding to the program (which is the scope of this symbol). When the element is a
Declaration, we check the list of declarators declared in it. If the list is empty, then this is a type
declaration, for which the type-tree is created and added to the type table. Otherwise, for each
element in the list, we �rst obtain its type. If the declaration is a typedef declaration, then we add a
mapping from the declarator’s name to the associated Typedef in the typedef table, if no mapping
already exists for that name. Otherwise, the element corresponds to a symbol declarator, for which
we add a mapping in the symbol table, from the declarator’s name, to the newly created symbol, if
there is no mapping corresponding to the symbol already. (Note that this last clause is important,
so that a function declaration should not override information about a function de�nition.)

10 CELL ACCESSES IN A NODE

The class CellAccessGe�er contains various visitors and methods that are used to obtain the
locations (cells) represented by any given Expression, sets of cells that may have been read or
written within a given Node, etc. Following are the key methods of this class :

getReads(). This method is used to get a list of cells that may be read in a given node. If the
given node is an Expression, we invoke the visitor AccessGe�er on it, and return the concate-
nation of the returned list (which would represent the locations represented by the CFG node
corresponding to the Expression) with the list AccessGe�er::cellReadList.

Otherwise, we take each leaf CFG node that is inter-procedurally present within the CFG
node corresponding to the given node, and process it in a similar fashion, using AccessGe�er. As
before, the result of processing of each node is the return of the visitor’s invocation, concatenated
with the list AccessGe�er::cellReadList. Finally, the result of each processed leaf is concatenated
and returned back.

Note that the �rst argument of the constructor of an AccessGe�er indicates whether the lists
are collected only for shared cells (selected by sending true), or for all cells (selected by sending
false). This method sends false in all its invocations of the constructor of AccessGe�er.

getSymbolReads(). This method is used to get a list of symbols (and not other kinds of cells)
that may be read in a given node. This method is exactly similar to the method getReads(),
except that it utilizes the visitor SymbolAccessGe�er instead of AccessGe�er.

getWrites(). This method is used to get a list of cells that may be written in a given node. If
the given node is an Expression, we invoke the visitor AccessGe�er on it, and return the list
AccessGe�er::cellWriteList.

Manuscript submitted to ACM

24 Aman Nougrahiya and V. Krishna Nandivada

Otherwise, we take each leaf CFG node that is inter-procedurally present within the CFG node
corresponding to the given node, and process it in a similar fashion, using AccessGe�er. The
result of each processed leaf is the list AccessGe�er::cellWriteList, which is then concatenated
for all leaves, and returned back.

This method sends false as the �rst argument to all invocations of the constructor of
AccessGe�er.

getSymbolWrites(). This method is used to get a list of symbols (and not other kinds of cells)
that may be written in a given node. This method is exactly similar to the method getWrites(),
except that it utilizes the visitor SymbolAccessGe�er instead of AccessGe�er.

mayWrite(). When we need to check whether a given node may write to any cell, it would be
too ine�cient to �rst obtain the list of cells that may be written in the node, and then check if
the list is empty. In such scenarios, we use this method which informs whether there are any
writes in the given node.

If the given node is an Expression, this method invokes the visitor MayWriteCheker on it,
and returns the boolean MayWriteCheker::mayWrite.

Otherwise, this method traverses through each inter-procedurally contained leaf node for
this node, one by one, and performs the check. If any leaf node may write to any location,
then this method immediately returns true. Otherwise, after checking all the leaf nodes, this
method returns false.

Note that a similar method could be written for checking for reads instead of writes. However,
we have not yet encountered any possible utility of such a method.

getSharedReads(). This method is used to obtain a set of shared cells that may have been read
within a node. It is exactly similar to the method getReads(), except that : (i) it returns a set
instead of a list, and (ii) it passes true to the visitor AccessGe�er.

getSharedWrites(). This method is used to obtain a set of shared cells that may have been written
within a node. It is exactly similar to the method getWrites(), except that : (i) it returns a set
instead of a list, and (ii) it passes true to the visitor AccessGe�er.

getLocationsOf(). Given an expression, in many scenarios we wish to obtain the list of cells that
the expression might denote. For example, *ptr denotes all those cells that are in the points-to
set of ptr, at the leaf CFG node in which the expression *ptr appears. For such situations, we
use the method getLocationsOf().

If the given expression is lexically equal to a (void *) 0 or 0, then we conservatively consider
the expression to represent the null cell (i.e., Cell.nullCell).

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 25

Otherwise, we invoke the visitor AccessGe�er on the expression, passing false as the �rst
argument, and then simply returning the list returned by the visitor. If the returned list is null,
we return an empty list instead.

mayRelyOnPointsTo(). Given a node, this method checks whether any of the access lists of this
node may depend on the points-to information. Such knowledge is quite useful in deciding
whether we need to stabilize the global points-to information before recalculating the access
lists for a given node.

If the given node is an Expression, then the visitor PointsToRelianceGe�er is invoked, and
its �eld PointsToRelianceGe�er::reliesOnPointsTo is returned.

Otherwise, similar processing is done on all inter-procedurally contained leaf nodes of
the given node, and true is returned as soon as a leaf node is found for which PointsToRe-
lianceGe�er::reliesOnPointsTo is true; if no such leaf node is found, then this method returns
false.

mayRelyOnPointsToForSymbols(). This method is similar to the method mayRelyOn-
PointsTo(), except that it checks whether the accesses of any symbols in the node (and not
necessarily those of any cells of other kinds) require stabilization of points-to information. It
uses the visitor PointsToForSymbolsRelianceGe�er instead of PointsToRelianceGe�er; rest of
the code remains same.

mayUpdatePointsTo(). This method is used to check whether execution of the given node may
update the points-to information.

If the node is an Expression, this method invokes the visitor MayUpdatePointsToGe�er, and
returns its �eld MayUpdatePointsToGe�er::mayUpdatePointsTo.

Otherwise, the similar processing is done for each lexically enclosed leaf CFG node of the
given node, and true is returned as soon as a leaf node is found for which the �eld MayUp-
datePointsToGe�er::mayUpdatePointsTo is set. Otherwise, the similar steps are performed on
all leaf CFG nodes that are lexically present in any of the other FunctionDefinitions that are
reachable from the given node. If the �eld MayUpdatePointsToGe�er::mayUpdatePointsTo is
not set for any of the leaf nodes, then this method returns false.

Note 10.0.1
Note that corresponding to all static methods of CellAccessGe�er, there exists a member

method with same name in NodeInfo (or ExpressionInfo, in case of getLocationsOf()), which
should be preferred over the static methods of CellAccessGe�er, as the member methods
memoize various results, which can reduce re-computation e�orts.
The invalidation/update of the memoized data is done automatically under any transforma-
tions of the program that are performed, directly or indirectly, using elementary transforma-
tions.

Manuscript submitted to ACM

26 Aman Nougrahiya and V. Krishna Nandivada

Now, we discuss key points about various visitors that have been utilized by di�erent methods
listed above :

AccessGetter. This visitor maintains two lists, cellReadList, and cellWriteList, which are popu-
lated by the visitor with list of cells that may have been read or written by the visited node. If
its �eld isForShared is set, then both these lists contain only shared cells.

Each visit in this visitor performs the following steps : (i) adds all/shared cells that are clearly
read from at the node into cellReadList, (ii) adds all/shared cells that are clearly written to at
the node into cellWriteList, and (iii) returns the list of cells, if any, that the visited node denotes.

The following two methods of AccessGe�er are used to perform the �rst two tasks above :
(i) addReads() Given a node and a list of cells that may have been read at the node, this method

adds the universal cell to the list cellReadList, if the given list contains a universal cell. Other-
wise, if the �ag isForShared is set, then it adds all those cells from the given list to cellReadList
which are shared at the given node (i.e., invocation of NodeInfo::getSharingA�ribute() for
that cell returns DataSharingA�ribute.SHARED). If the �ag is not set, then all elements of
the given list are added to the cellReadList.

(ii) addWrites() This method is similar to addReads(), except that it adds the given elements to
cellWriteList instead of cellReadList.

Note 10.0.2
Note that a more precise (but slower) version of code exists for the scenario where the given
list contains the universal cell. To enable the more precise version, set the �ag morePrecise
within addWrites().

Next, we discuss some key observations concerning various kinds of visits in AccessGe�er :
• A NodeToken that represents an <IDENTIFIER> lexeme, denotes the Symbol or FreeVariable

returned by invocation of Misc.getSymbolOrFreeEntry().
• A Declaration is always considered as a write to the symbol being declared, unless it is a

typedef declaration.
If the symbol being declared in an InitDeclarator is of type ArrayType, then we assume
that its FieldCell gets written as well. If there exists any Initializer, then the cells that
it denotes are considered as read, and the visitor is called recursively on it. Similarly, a
ParamaterDeclaration is considered to be a write of the parameter that it declares.
• An IfClause, a FinalClause and a NumThreadsClause read the cells denoted by their expres-

sions.
• An ExpressionStatement and a ReturnStatemnet are considered as reads of the cells denoted

by their expressions.
• Expressions within the sizeof() operators are not considered as read or written.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 27

• A PreCallNode is considered as read of the cells denoted by all its arguments. Furthermore,
if the corresponding CallStatement does not have any known destinations, then conser-
vatively we assume that the PreCallNode can be read/write of all the cells that may be
accessible via the arguments. All such accessible cells are obtained by the method Access-
Ge�er::getOptimizedPointsToClosure – this method returns the closure of the points-to
sets of the given arguments.
• The operands of various unary and post�x operators are added to the read and write lists as

per the semantics of the operators. 3

• Any other operator with no side-e�ects reads the cells denoted by its operands. If there
are any side-e�ects, then the cells denoting the corresponding operands are considered as
written as well.

SymbolAccessGetter. This visitor works similar to the way AccessGe�er works, except that it
utilizes Program.getCellsThatMayPointToSymbols() to avoid triggering unnecessary calls to
stabilization of the points-to information. This method is used to obtain the set of all those
cells that may contain a Symbol in its points-to set. This processing is done in �ow-insensitive
manner, without having to rely on the full-�edged points-to analysis. It is based on the notion
of address-taken symbols, where the method attempts to �nd all those cells that may have been
assigned the address of any of the symbols, directly or indirectly.

MayWriteChecker This visitor simply visits over all the nodes and sets the �ag May-
WriteChecker::mayWrite at all those places where the visitor AccessGe�er would have added
any cells to the set cellWriteList.

PointsToRelianceGetter. This visitor sets its �ag PointsToRelianceGe�er::reliesOnPointsTo at
all those places where a cell may have been dereferenced using a * ->, or [] operators. It also
sets its �eld if there exists any CallStatement with missing target, such that it contains an
argument which is not of ArithmeticType.

PoinstToForSymbolsRelianceGetter This visitor relies on the method Pro-
gram.getCellsThatMayPointToSymbols(); the visitor would set its �eld PoinstToForSymbolsRe-
lianceGe�er::reliesOnPointsTo if there exists any dereference (using *, [], or -> operators)
on a cell that may be present in the return of Program.getCellsThaMayPointToSymbols().

MayUpdatePointsToGetter. This visitor sets its �eld MayUpdatePointsToGet-
ter::mayUpdatePointsTo at all those places where the visitor AccessGe�er would have
added any cells of type PointerType to the set cellWriteList.

3This code review document currently does not contain review for visits of the unary and post�x operators as they
have already been tested earlier.

Manuscript submitted to ACM

28 Aman Nougrahiya and V. Krishna Nandivada

11 SIDE EFFECTS

Due to various syntactic and semantic constraints, any CFG transformation may result in generation
of various side-e�ects in the program 4.

Note 11.0.1
Each elementary and higher-level transformation returns a list of side-e�ects back to the
caller; the onus of handling these side-e�ects in the client code is on the caller.

In IMOP, we represent a side-e�ect using an enumerator UpdateSideE�ects. While we will
discuss their exact usage in proper contexts later, following is a list of various side-e�ects :

• ADDED_DFD_SUCCESSOR, ADDED_DFD_PREDECESSOR,
REMOVED_DFD_SUCCESSOR, and REMOVED_DFD_PREDECESSOR : When a
request is made to insert an OpenMP construct/directive in the program, such that the
construct/directive contains an implicit �ush at the entry to or exit from the construct, then we
need to ensure that we insert the corresponding DummyFlushDirectives as the predecessor
and/or successor of the inserted construct/directive. This side-e�ect is conveyed back to the
caller by adding ADDED_DFD_PREDECESSOR and/or ADDED_DFD_SUCCESSOR to
the return list.

Similarly, upon receiving a request to remove a node that contains implicit �ushes at its
entry and/or exit, IMOP automatically removes the corresponding DummyFlushDirectives, if
any, and adds REMOVED_DFD_PREDECESSOR and/or REMOVED_DFD_SUCCESSOR to the
return list.
• UNAUTHORIZED_DFD_UPDATE : Since IMOP automatically ensures the insertion/dele-

tion of DummyFlushDirectives at all places where an implicit/explicit �ush exists, it doesn’t
allow a user to explicitly specify requests to insert or delete DummyFlushDirectives. Whenever
such requests are made, they are ignored, and a side-e�ect UNAUTHORIZED_DFD_UPDATE
is added to the list to be returned to the caller.
• NO_UPDATE_DUE_TO_NAME_COLLISION : When insertion of a node may cause incon-

sistencies in the bindings of the free variables of the node, with the variables declared in the
scope where insertion has to be made, then the transformation does not complete, and adds a
side-e�ect named NO_UPDATE_DUE_TO_NAME_COLLISION to the return list.
• ADDED_EXPLICIT_BARRIER, and ADDED_NOWAIT_CLAUSE : When a request is

made to insert a ForConstruct, SectionsConstruct, or SingleConstruct, then in the absence of a
nowait clause, an explicit barrier is automatically inserted as the immediate successor of the
construct, and the implicit barrier is removed by adding a nowait clause. In such cases, the

4If a transformation cannot be performed, we consider that also as a side-e�ect.
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 29

side-e�ects ADDED_EXPLICIT_BARRIER and ADDED_NOWAIT_CLAUSE are added to the
return list.
• ADDED_ENCLOSING_BLOCK : There are various circumstances where a node to be inserted

is �rst wrapped into a compound statement (i.e., a block). For example, IMOP ensures that bodies
of all C and OpenMP constructs (except for AtomicConstruct) should be compound-statements.
Hence, if a request is made to add a single non-compound-statement (e.g., a function call) as
the body of any of such constructs, then the statement is automatically enclosed within the
basic block, and a side-e�ect ADDED_ENCLOSING_BLOCK is added to the return list.
• MISSING_CFG_PARENT : When an attempt is made to add a snippet of code outside another

base snippet of code (e.g., as the successor or predecessor of the base snippet), then the trans-
formation fails and adds MISSING_CFG_PARENT to the return list. Similarly, this side-e�ect is
also used in the scenario where an attempt is made to remove a snippet of code that does not
contain any enclosing snippet or program.
• SYNTACTIC_CONSTRAINT : There are various types of translations that cannot be per-

formed owing to the syntactic constraints of C, OpenMP, or IMOP. For example, a BeginNode
or EndNode cannot be added or removed manually. For all such cases, the side-e�ect SYNTAC-
TIC_CONSTRAINT is also added to the return list, along with some more speci�c side-e�ect, if
any.
• INDEX_INCREMENTED and INDEX_DECREMENTED : In case of insertion/removal of an

element (let us say, a statement) in a list of elements (let us say, a compound-statement) at a given
index, if the index at which the statement is actually inserted gets incremented or decremented
due to automated addition or removal of special nodes, such as DummyFlushDirectives or
an explicit barrier, then a side-e�ect INDEX_INCREMENTED or INDEX_DECREMENTED is
added to the return list, to indicate the same.
• NAMESPACE_COLLISION_ON_REMOVAL and NAMES-
PACE_COLLISION_ON_ADDITION : As a result of addition/removal of a declaration of
a symbol, say temp, to/from a scope, if the bindings of identi�ers with name temp used
within that scope changes (instead of simply getting converted from/to a FreeVariable),
then such side-e�ects are indicated using NAMESPACE_COLLISION_ON_REMOVAL and
NAMESPACE_COLLISION_ON_ADDITION.
• ADDED_COPY : Due to various syntactic constraints, there might be no place where a single

copy of a node can be inserted, when a request is made to insert the node as an immediate
successor of predecessor of the base node. It may happen that two or more copies of the target
node might have to be created and inserted to attain the expected semantics. For example,

Manuscript submitted to ACM

30 Aman Nougrahiya and V. Krishna Nandivada

while attempting to insert successors/predecessors of various predicates of di�erent loops, such
conditions arise easily where two copies of the target node gets inserted.
• INIT_SIMPLIFIED : When attempting to insert a declaration, if the declaration or its initializer

gets simpli�ed automatically, then the side-e�ect INIT_SIMPLIFIED is returned via the return
list.
• JUMPEDGE_CONSTRAINT : When the source or destination of the labeled or jump state-

ments can get incorrectly matched as a result of a transformation, the transformation fails,
while returning JUMPEDGE_CONSTRAINT as one of the side-e�ects.
• REMOVED_DEAD_CODE : As the name suggests, this side-e�ect is generated when dead

code is removed as a result of some transformation. (Details for the same would be present in
some later section.)

12 ENFORCING ALL BODIES TO BE COMPOUND STATEMENTS

The visitor CompoundStatementEnforcer is used to ensure that the bodies of all the visited
nodes are converted to CompoundStatement, if they are not already so. This invariant is utilized
by various downstream transformations in IMOP.

Note that as per the grammar, a FunctionDefinition would always have a CompoundStatement
as its body. Nodes of type CallStatement or AtomicConstruct do not contain a body. A Compound-
Statement can have a list of statements of any type as its body. For all the other remaining non-leaf
CFG nodes except SectionsConstruct and IfStatement, this visitor performs the transformation in
a top-down manner, as follows :

• First of all, the body of the node is checked for whether it is already a CompoundStatement. If
so, then no further processing is done for this node.
• If the body is not a CompoundStatement, then a new empty compound statement is created,

and the old body is replaced by this new compound statement (with the help of setBody()
methods in various CFGInfo objects for di�erent nodes). Then, the old body is added as the
sole element of this newly added compound statement (using the method CompoundState-
mentCFGInfo::addElement()).
• After processing of the node �nishes, this visitor is called recursively on the body of the node.

In case of a SectionsConstruct, there are multiple sections, all of which should be translated to
have their bodies as CompoundStatement. Firstly, we obtain the list of CFG nodes that represent
various sections present in this construct. If any of the CFG nodes is not a CompoundStatement,
then, as above, an empty CompoundStatement is created; the old CFG node is removed (using
SectionsConstructCFGInfo::removeSection()), and the newly added compound statement is added
at the same index as that of the old CFG node (using SectionsConstructCFGInfo::addSection());
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 31

�nally, the CFG node is inserted as an element in this newly added compound statement. The
visitor is called recursively on all the sections in the construct.

In case of an IfStatement, similar processing as above is applied on both, its true branch, as well
as its false branch, if any.

Note that none of the elementary transformations called from this visitor could have any update
side-e�ects.

13 IMPLICIT BARRIER REMOVAL

The method ImplicitBarrierRemoval.removeImplicitBarrier() is used to make all implicit
barriers within the provided node, explicit, with the help of nowait clauses.

Note 13.0.1
Note that the implicit barrier at the end of a parallel construct is not removable, syntactically.

In this method, we collect a post-order list of ForConstruct, SectionsConstruct, and Single-
Construct nodes that are present within the given node. For each element in the list, we use
ImplicitBarrierRemover.obtainNormalizedNode() which returns a statement that does not contain
any implicit barriers. This method works as follows :

• First of all, the CFG node corresponding to the given node is obtained using
Misc.getCFGNodeFor().
• If the node is a ForConstruct, we check whether the nowait clause is present in the

clause-list, using the method OmpConstructInfo.hasNowaitClause(). If so, then the node
is returned as it is. Otherwise, using string-based AST construction, via the method
FrontEnd.parseAndNormalize(String, Class<? extends Node>), we create a compound
statement that contains the provided for-construct, with a nowait clause attached to it, fol-
lowed by an explicit barrier. Note that the labels of the for-construct are shifted to the created
compound-statement. This compound-statement is then returned by this method.
• Similar steps are applied in the case of SectionsConstruct and SingleConstruct as well.

If the returned statement is not same as the provided element, then we replace the element with
the returned statement using NodeReplacer.replaceNodes(). Note that the call to replaceNodes()
will not return any side-e�ects at this call-site.
Optimization: Why don’t we change the existing structure and insert an explicit barrier as its

successor? Note that due to CS-Enforcer, every OpenMP construct would be present only within a
CompoundStatement, when connected to the program. Of course, if the construct isn’t connected to
the program, it can be present as an standalone entity without any enclosing block (i.e., no successor
or predecessor can be added).

Manuscript submitted to ACM

32 Aman Nougrahiya and V. Krishna Nandivada

14 EXTRA SCOPING REMOVAL

When statements are nested within unnecessary levels of scoping, then various transformations
may get hampered. In order to remove such unnecessary scoping of statements (i.e., within
CompoundStatements), the method NodeInfo::removeExtraScopes() is used (which, in turn,
calls CompoundStatementNormalizer.removeExtraScopes()), as explained in this section.

Using the method NodeInfo::getAllSymbolNamesAtNodeExclusively(), we �rst obtain the set of
names for all those symbols that are accessible at the (AST) parent node of the given node (i.e., if this
node is a Scopeable object, then we do not consider the set of names for symbols present in the sym-
bol table of this node). This set is passed to the visitor CompoundStatementNormalizationVisitor,
which removes extra scopes from all nodes within the given node as follows :

• This visitor visits all the blocks that may contain statements within them. In each visit, it takes
an argument, which corresponds to the set of symbols that are accessible at the (AST-) parent
node of the node being visited. For e�ciency purposes, we truncate traversal at those nodes
(by overriding existing de�nitions with empty bodies) which may not contain any statement
within them.
• While visiting any elements within the TranslationUnit, the set of symbol names present in

the symbol table of the translation unit are sent as an argument to the visit.
• When visiting the body of a FunctionDefinition, the set of symbol names that are sent as an

argument comprises of the set received by the function’s visit, as well as the parameter names.
• The main code for removal of extra scopes lies in the visit of the nodes of type CompoundState-

ment. For any given CompoundStatement, we �rst call the visitor recursively on its elements,
to ensure that the scope removal is done inside out. In order to obtain the set of names to be
passed to the visits of the elements, we take a union of the set obtained as the argument and
the set of names declared in this CompoundStatement.

After the visit of all the elements of a CompoundStatement (say, an enclosing compound-
statement) is complete, we perform the nesting removal as follows. If any given element itself
is a CompoundStatement (say a nested compound-statement), we check whether there can be
any name collisions if all the elements of the nested compound-statement are brought up to
the level of the enclosing compound-statement.

If there are no name collisions, we take each element of the nested compound- statement, and
bring it up to the level of the nested compound-statement one-by-one. Note that if the nested
compound-statement had any labels to begin with, then those labels must be shifted to the �rst
internal statement that has been brought up to the level of the enclosing compound-statement.
This is achieved using the method StatementInfo::addLabelAnnotation(), an elementary trans-
formation. Next, each element of the nested compound-statement is removed using the method

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 33

CompoundStatementCFGInfo.removeElement(). Note that the removal may not succeed if the
element to be removed is a DummyFlushDirective. However, the maintenance of the same is
done automatically by IMOP, hence nothing speci�c needs to be done in this case. No other
consequential side-e�ects will result during removal of the element.

Next, the removed element is inserted at a proper index (calculated by keeping track of
number of elements inserted into the enclosing compound-statement so far, and the index of
the nested compound-statement in the enclosing compound-statement), using CompoundState-
mentCFGInfo.addElement(). If the element to be inserted is a DummyFlushDirective, then the
insertion will not succeed – in such a case, we neither increment the counter for the number of
elements inserted, nor do we increment the insertion index. We do not need to do anything
else, in this scenario. Otherwise, we increment both these counters, and handle the rest of the
side-e�ects of insertion, if any, as follows :
– ADDED_DFD_PREDECESSOR or ADDED_DFD_SUCCESSOR : the counter for number of

elements inserted, and the insertion index, both are incremented further by one.
– No other side-e�ect could have been returned by the addition request.

After bringing up certain declarations from the nested compound-statement to the enclosing
compound-statement, we need to ensure that the set of names for symbols declared in the
enclosing compound-statement gets updated with the newly added names, before processing
any other nested compound-statement for removal.

Finally, we remove the nested compound-statement from its position within the enclosing
compound-statement, and decrement the counter that represents number of elements inserted
by one.
UPDATE: “Currently, we do not perform this transformation on the disconnected
snippets of the code; in future, we plan to update this algorithmby sending only those
names from the enclosing compound-statement to the visit of the nested compound-
statement that are used in any of the elements other than the nested compound-
statement. ”

15 UNUSED DECLARATIONS REMOVAL

During preprocessing, a large number of unused function de�nitions, and unused declarations of
types, typedefs, and symbols get added to the source code, as a result of inclusion of the header
�les. In order to reduce the code size, and more importantly, the size of the universal sets of
types, typedefs, and symbols, we need to remove various unused declarations from the source
code. Similarly, to reduce the number of function symbols, we remove the de�nitions for all those
functions which cannot be reached from the main() function, if any.

Manuscript submitted to ACM

34 Aman Nougrahiya and V. Krishna Nandivada

Towards this goal, we use the function NodeInfo::removeUnusedElements() for all
types of nodes, except TranslationUnit, for which we use the overridden variant Root-
Info::removeUnusedElements(). The latter simply calls RootInfo::removeUnusedFunctions() (to
remove those functions which have not been called from any code reachable from main()),
followed by a call to the former, which performs the following steps : (i) remove unused
variables using NodeInfo::removeUnusedVariables(), (ii) remove unused typedefs using Node-
Info::removeUnusedTypedefs() until no more typedefs can be removed, (iii) remove unused types
using NodeInfo::removeUnusedTypes() until no more types can be removed, and �nally (iv) repeat
the last two steps, until �xed-point is reached.

Now, we look into the details of all these methods.

15.1 Removing unused functions

Since ISO C does not support the notion of nested functions, we allow this method only on a
TranslationUnit (i.e., the whole program).

Given a program, list of all its function de�nitions can be obtained using the visitor AllFunction-
DefintionGe�er, which works quite simply by collecting all visited FunctionDefinition nodes. This
list gets memoized in RootInfo.allFunctionDefinitions) upon �rst use. Using this list, we obtain the
main() function. If none exists, we do not perform removal of unused functions.

In order to gather the names of all those functions corresponding to which a Call-
Statement exists in some reachable code from main(), we use the method Node-
Info::getReachableCallStatementsInclusive() on main(). This method relies on a lambda-based
graph collector (refer to Section 17), with following arguments :

• We obtain the start nodes for the graph traversal (on call-graph) by using the method Node-
Info::getLexicallyEnclosedCallStatements(). For a TranslationUnit, this method recursively calls
itself on all the function de�nitions that are present in the TranslationUnit. In case of any other
node, this method collects all CallStatement nodes that are present within the lexical CFG
contents of the given node. Additionally, when called on CFG nodes, this method memoizes
the return value in the �eld NodeInfo::callStatements.
• The termination condition always returns false (i.e., we traverse all reachable nodes in the

graph).
• For any given node (i.e., a CallStatement) in the graph, we obtain the set of neighbors as a

union of returns of NodeInfo::getLexicallyEnclosedCallStatements() when called on all possible
function-de�nitions that may be a target of that CallStatement.

Once the collector returns, we obtain our reachable call-statements as a union of all nodes that
have been traversed by the collector (including the start and end nodes).
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 35

For each reachable CallStatement, we collect the name of all the symbols that can be the
target of that CallStatement, using the method CallStatementInfo::getCalledSymbols(). In this
method, �rstly, we obtain the function designator cell corresponding to this CallStatement using
CallStatementInfo::getFunctionDesignator() (explained towards the end of this section). If the
cell is a not a function pointer, we directly add it to the list of called functions to be returned.
Otherwise, we add all the function symbols from the points-to set of the cell to the return list. The
return value of this method is memoized as CallStatementInfo::calledFunctions. From this return
value, we collect the list of all the names corresponding to the collected function symbols.

Given the set of names of function symbols that can be called via some call-statement reach-
able from main(), we now proceed with deletion of all those ElementsOfTranslation from the
program that correspond to either the declaration or de�nition of the functions whose name does
not appear in the set, as follows. For every ExternalDeclaration in the program that encloses a
FunctionDefinition, we check whether the function name is present in the collected set or not;
if not, we obtain the enclosing ElementsOfTranslation, and remove it from the TranslationUnit.
Similarly, if an ExternalDeclaration encloses a Declaration which de�nes a function symbol with
name that is not present in the collected set, we remove the enclosing ElementsOfTranslation.
Collecting function designator cell : To obtain the function designator cell using CallState-
mentInfo::getFunctionDesignator(), we proceed as follows : Given the function designator name,
we obtain the corresponding free-variable or symbol using Misc.getSymbolOrFreeEntry(). If the
obtained cell is a symbol, it is returned as it is. However, if the obtained cell is a free-variable, we
return null. Note that the returned cell is memoized as CallStatementInfo::functionDesignatorCell.

15.2 Removing unused variables

In order to remove unnecessary variables from within a given node, we use the method Node-
Info::removeUnusedVariables(). First step in this process is to obtain a set of variables that have
been used lexically (i.e., read from or written to, directly via their names), anywhere within the
node. Note that while we consider all declarations to be writes, we do not assume that to be the
case here. To obtain this set, we use NodeInfo::getUsedCells(), which internally calls UsedCells-
Ge�er::getUsedCells(). This method, in turn, calls the visitor UsedCellsGe�er.AccessGe�er on all
lexically enclosed CFG leaf nodes, individually. The visitor works as follows : Each visit in this
visitor collects the set of those Symbols/FreeVariables which are used within the visited node,
and adds the collected set to the �eld cellAccessSet, while returning the set of those Symbols/
FreeVariables, if any, that the visited node may represent; UsedCellsGe�er::getUsedCells() reads
from the �eld cellAccessSet, and takes a union of it with the set returned by the visitor, to obtain
the return value.

Manuscript submitted to ACM

36 Aman Nougrahiya and V. Krishna Nandivada

Now, given the set of used cells, we process all the scopes that are lexically present within the
given node (including the node if it is of type Scopeable), as follows :

• If the scope is a FunctionDefinition, we do nothing. Currently, we do not remove unused
parameters.
• If the scope is a CompoundStatement, we obtain a set of all the symbols that are present

in the symbol table. For each symbol that is not present in the set of used cells, we obtain
the corresponding declaration (using Symbol::getDeclaringNode()), and remove that decla-
ration using CompoundStatementCFGInfo::removeDeclaration(). Before that, if there exists
any initializer in the declaration (checked using DeclarationInfo::getInitializer()) then we cre-
ate a new ExpressionStatement with that initializer as the Expression. We insert this newly
created statement at the index at which the declaration was present (using CompoundState-
mentCFGInfo::addStatement()).
• When the scope is a TranslationUnit, we collect the set of symbols from its symbol table. For

each symbol that is not present in the set of used cells, we obtain the corresponding declaration,
and remove the enclosing ElementsOfTranslation. Since the method that removes declaration
from the TranslationUnit does not trigger automated update of program abstractions, we
perform changes in the symbol table using RootInfo::removeDeclarationE�ects().

Note 15.2.1
Since the removal of declarations from TranslationUnit does NOT update the semantics of
any program abstractions (except AST, and symbol/type/typedef tables) automatically, the
prepass phase should be used in a di�erent invocation of IMOP than the actual phase.

15.3 Removing unused types

In order to remove declarations for user-de�ned types, like structs, unions, or enums, that have not
been used anywhere, we use the method NodeInfo::removeUnusedTypes(). Note that the removal
of a type may render some other types unused; hence, the removal is done iteratively, until a
�xed-point is reached.

As in the case of removal of unused variables, we �rst collect the set of those types which have
been used anywhere within the given node, by invoking the method NodeInfo::getUsedTypes(). In
this method, we process each scope present within the given node as follows :

• If the scope is a TranslationUnit or a CompoundStatement, we read all the symbols from the
symbol table, and typedefs from the typedef table, of the scope. On the type of each symbol,
we invoke the method Type::getAllTypes() to obtain the set of types that have been used in the

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 37

declaration of that type (including the type itself). The types obtained this way are added to
the set of used types.
• If the scope is a FunctionDefinition, we perform the similar processing for all elements of its

symbol table (i.e., on all the parameters). Furthermore, we also add the return of getAllTypes()
when called on the return type of the function, to the set of used types.

After processing all the scopes, we traverse again on the node (assuming that it might be a statement
or an expression), to collect the set of named types that may have been used in the sizeof operator,
or in cast expression. All the constituent types of these types are also added to the set of used
types.

Next, given the set of used types, we process all the scopes that are nested lexically within the
given node (including the node itself, if it is of type Scopeable), as follows :

• Nothing is done for the case when the scope is a FunctionDefinition.
• If the scope is a TranslationUnit, we traverse over all the user-de�ned types stored in the

type table of the scope, and obtain their corresponding declarations. If the type is complete
(Question : Is the removal of incomplete types incorrect?) and not present in the set of used types,
we obtain the enclosing ElementsOfTranslation and remove it from the program. Note that
this step is followed by a call to RootInfo::removeTypeDeclarationE�ects(), which removes the
type from the type table.

Note 15.3.1
The method RootInfo::removeTypeDeclarationE�ects() does not guarantee automated update
of all program abstractions.

• When the scope is CompoundStatement, we �nd declarations of unused types
from the type table and remove them in a similar fashion, using CompoundState-
mentCFGInfo::removeDeclaration().

15.4 Removing unused typedefs

We use the method NodeInfo::removeUnusedTypedefs() to remove all unused typedefs from the
program. Note that the removal of one typedef may render some other typedef unused. Hence, we
call this method iteratively until �xed-point is reached for removal of typedefs. (As mentioned
before in this section, after reaching the �xed-point of removal of typedefs and of types individually,
we need to reach the �xed-point for removal of both of them.)

To obtain the set of typedefs that have been used, we use a visitor UsedTypedefGe�er via
NodeInfo::getUnusedTypedefs(), which simply collects all the typedefs corresponding to each
visited TypedefName (obtained using Misc.getTypedefEntry()) under the given node.

Manuscript submitted to ACM

38 Aman Nougrahiya and V. Krishna Nandivada

After collecting all the used typedefs, we process each scope lexically nested within the given
node (including the node itself, if applicable) as follows :

• For a FunctionDefinition, nothing needs to be done.
• In case of a TranslationUnit, or a CompoundStatement, we traverse over all the type-

defs from the typedef table, and �nd and remove their declarations if the typedefs are
not present in the set of used types. As before, we use the methods CompoundState-
mentCFGInfo::removeDeclaration(), and RootInfo::removeDeclarationE�ects() for this purpose.

16 INCOMPATIBLE TYPE-CAST ON POINTERS

In IMOP, the �eld-sensitivity dimension for any analysis assumes that there are no incompatible
type-casting of pointers. For example, there should not be any type-cast from a pointer to

pointer to int to a pointer to int. To ensure that �eld-sensitivity is not enabled when any
such type-cast exists in the program, we invoke FrontEnd.testIncompatibleTypeCasts() on
the parsed snippet or program. This method invokes Type.hasIncompatibleTypeCastOfPointers()
on all CastExpressionTyped expressions present within the given node. If any of the invocations
return true, this method disables field-sensitivity and returns immediately. Of course, this method
does not do anything if �eld-sensitivity is disabled, to begin with.

For a given CastExpressionTyped expression, the method
Type.hasIncompatibleTypeCastOfPointers() proceeds as follows :

• Using Misc.getEnclosingBlock(), �rst of all, the enclosing scope of the expression is obtained.
Then, using Type.getTypeTree() (which requires the scope), and Type.getType(), the source and
destination types of the cast expression are obtained.
• If the destination type (or the source type) are not ArrayType or PointerType, then this method

returns false.
• Similarly, if the source type is a pointer to void, this method returns false. In other words,

we ignore any type casts that casts a (void *) to any other type. Note that we do not ignore
type casts that cast any other type to a (void *), as otherwise with the help of type casting to
and from (void *), incompatible casts can be performed.
• Otherwise, this method returns true if and only if the source and destination types are not

exactly same.

17 LAMBDA-BASED GRAPH COLLECTORS

On generic graphs, IMOP provides a number of traversals that can perform speci�ed operations on
the visited nodes, and collect some speci�c nodes, while ensuring termination along cyclic paths.
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 39

These collectors, from class CollectorVisitor, are used at various places, to specify di�erent kinds
of graph traversals, collecting nodes with speci�c features.

In order to let callers of these methods specify the notion of neighbours of a given node (of generic
type T) from a generic graph, this class provides a functional interface NeighbourSetGe�er<T>
(and NeighbourListGe�er<T>) which provides a method getImmediateNeighbours(T):Set<T> (and
getImmediateNeighbours(T):List<T>) that can be used to obtain a set (or list) of nodes to which
an outgoing edge is assumed to exist from the given node, for the purpose of traversals in this
invocation of a collector.
Following are some key methods that are provided by the class CollectorVisitor to work on any
generic graph :

collectNodeListInGenericGraph() This method takes the following four parameters : (i)
startPoints:List<T>, (ii) endPointst:List<T>, (iii) terminatonCheck:Predicate<T>, and (iv)
nextLayerFinder:NeighbourListGe�er<T>. This method starts the traversal from im-
mediate successors of the given nodes in startPoints, found by invoking next-
LayerFinder.getImmediateNeighbours() on a node, and collects all nodes from the traversed
paths that terminate on nodes where the Predicate terminationCheck succeeds. Such nodes
where the paths end are stored in the argument endPoints, whereas the collected nodes (that do
not contain the elements of startPoints unless those elements are encountered during traversals
starting from their successors) are returned back from the method.
This method works as follows :
• It maintains two lists – (i) collectedNodeList, which is used to collect the nodes that have been

traversed so far, starting with the neighbours of the nodes from startPoints, and (ii) workList,
which is used to collect the nodes that need to be traversed. The list collectedNodeList is
initialized to an empty list, whereas the list workList is initialized to contain all the elements
from startPoints.
• Until the workList gets empty, its �rst element is removed and processed as follows. For each

neighbour of the element, obtained by invoking nextLayerFinder.getImmediateNeighbours()
on it, this method invokes terminationCheck() and performs the following actions : if
terminationCheck() returns true, then the neighbour is added to the endPoints, otherwise,
the neighbour is added to the lists collectedNodeList as well as workList, unless it is already
present in collectedNodeList.

Note 17.0.1
Note that the nodes from startPoints are not added to collectedNodeList unless they are

encountered as neighbours of any traversed nodes, and, of course, the terminationCheck()
fails on them.

Manuscript submitted to ACM

40 Aman Nougrahiya and V. Krishna Nandivada

Once the workList gets empty, the nodes collected in collectedNodeList are returned back.

Note 17.0.2

(i) Since the lambda terminationCheck will essentially be invoked on all nodes in the returned
list, as well as on those in endPoints, its de�nition may also contain some extra processing
that needs to be carried out on any of these nodes.

Of course, after the processing, it must return a boolean specifying whether the visited
node is an end node (by returning true), or whether the traversal should proceed to the
neighbours of the node (by returning false).

(ii) Since the lambda nextLayerFinder will essentially be invoked on all nodes in the returned
list, as well as on those in the startPoints, its de�nition may also contain some extra
processing that needs to be carried out on any of these nodes.

Of course, after the processing, it must return a set of neighbours for the given node.

collectNodeSetInGenericGraph() This method is exactly similar to the method collectN-
odeListInGenericGraph(), except that its arguments and returns are Sets instead of Lists.
Hence, note that the order in which nodes are added to the workList (termed as workSet in this
method) need not be the order in which they get processed.

The following methods are speci�c to the inter-procedural super control-�ow graphs of the
program/snippets, which are combinations of the control-�ow graphs and call graphs.

collectNodesIntraTaskForward() This method is used to collect the set of nodes that
are reachable in the super control-�ow graph from the given set of nodes, until a
speci�ed termination condition is met on each path, while ensuring termination on
cyclic paths. It traverses the graph on only valid paths (as obtained when the method
CFGInfo::getInterProceduralLeafSuccessors(CallStack):NodeWithStack is invoked).

This method takes only three parameters – all that a regular collectNodeSetInGenericGraph()
takes, except for the nextLayerFinder parameter. It works as follows :
• First of all, this method creates sets of NodeWithStacks from the given sets of Nodes for

startPoints, endPoints, while using empty call-stacks for each NodeWithStack object. It
also creates a Predicate<NodeWithStack> from Predicate<Node>.
Then, it invokes the method collectNodeSetInGenericGraph<NodeWithStack>, while pass-
ing the newly created sets/predicate, and a lambda for the nextLayerFinder, which invokes
CFGInfo::getInterProceduralLeafSuccessors(CallStack):NodeWithStack on the node of any
given NodeWithStack.
• Once the invocation succeeds, this method populates its endPoints parameter, of type

Set<Node> using the nodes of the corresponding argument set (of NodeWithStack type)
that was passed to the method getInterProceduralLeafSuccessors(CallStack). Similarly, it

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 41

also creates the set to be returned using the nodes from the set that was returned from that
method.

collectNodesIntraTaskBackward() This method is used to collect the sets of nodes that are
reachable upon backward traversal on the super control-�ow graph from the given set of nodes,
until a speci�ed termination check succeeds on any node, while ensuring termination on cyclic
paths.

It is exactly similar to the method collectNodesIntraTaskForward(), except that
it uses the method CFGInfo::getInterProceduralLeafPredecessors(CallStack) instead of
CFGInfo::getInterProceduralLeafSuccessors(CallStack).

collectNodesIntraTaskForwardContextSensitive() This method serves the same purpose as
collectNodesIntraTaskForward(), except that its arguments use the type NodeWithStack instead
of Node, (as the element type for Set and Predicate).

Since the arguments are already based on type NodeWithStack, this method directly invokes
collectNodeSetInGenericGraph(), passing its three arguments, along with a lambda that in-
vokes CFGInfo::getInterProceduralLeafSuccessors(CallStack):NodeWithStack on any given
NodeWithStack.

collectNodesIntraTaskForwardOfSameParLevel() This method is used to con�ne the traver-
sal within the current ParallelConstruct, without jumping to any nested ParallelConstruct, or
to the construct that encloses the current ParallelConstruct.

It is similar to collectNodesIntraTaskForwardContextSensitive(), except
that (i) it takes a single NodeWithStack as its �rst argument, (ii) it uses
CFGInfo::getParallelConstructFreeInterProceduralLeafSuccessors(CallStack):NodeWithStack
instead of CFGInfo::getInterProceduralLeafSuccessors(CallStack):NodeWithStack. The former
lambda di�ers from the latter as follows :
(i) The successors of the BeginNode of a ParallelConstruct are assumed to be same as the

successors of the ParallelConstruct itself. This is done in order to ensure that only the
BeginNode of the nested ParallelConstructs are added to the collected set, and the other
contents of the nested construct are ignored.

(ii) The EndNode of a ParallelConstruct is assumed to have no successors. Therefore, the
traversals do not consider any nodes that are outside the current ParallelConstruct 5.
Note that, as a result, this method restricts the traversal within the same level of the parallel

construct as the one in which the �rst argument exists (except when it is the BeginNode of
that parallel construct.

5Note that as OpenMP does not allow any jumps outside a ParallelConstruct, we will not have any other exit points for
the construct.

Manuscript submitted to ACM

42 Aman Nougrahiya and V. Krishna Nandivada

Note 17.0.3
When the �rst argument to collectNodesIntraTaskForwardOfSameParLevel() is a BeginNode
of a ParallelConstruct, then the traversal jumps outside the ParallelConstruct, skipping its
contents altogether. Hence, in order to traverse within a ParallelConstruct, one should never
give its BeginNode as the �rst argument to this method.

collectNodesIntraTaskForwardBarrierFreePath() . This method takes only two arguments :
(i) a startPoint, from where the traversal has to start, and (ii) a set of endPoints, where the
traversal would terminate (this set would be �lled by the method). The traversal terminates
on a path when a BarrierDirective, or EndNode of a ParallelConstruct are encountered. This
method is used to obtain a set of nodes that are reachable on barrier-free path traversals from
the given nodes. It works as follows :
• This method invokes collectNodeSetInGenericGraph() with following arguments :

(i) a singleton set, comprising of the �rst argument, startPoint,
(ii) the second argument of this method, endPoints,

(iii) a lambda that returns, for any node, true only when the node is a BarrierDirective, or
EndNode of a ParallelConstruct,

(iv) a lambda that returns, for any node, the return of
CFGInfo::getParallelConstructFreeInterProceduralLeafSuccessors(CallStack):NodeWithStack
when invoked on the given node.

• Once the internally invoked method terminates, the set of NodeWithStacks that have to
be returned is created as follows : This set comprises of each element which is returned
by the internally invoked method. Furthermore, corresponding to each BeginNode of a
ParallelConstruct that is encountered, we also add all the leaf CFG contents of that Paral-
lelConstruct (collected using CFGInfo::getIntraTaskCFGLeafContents()) to the set to be
returned. Note that all such ParallelConstructs are nested parallel constructs. Finally, this
set is returned back to the caller.

Note that other symmetric versions of some of these methods exist, such as collectN-
odesIntraTaskBackwardContextSensitive(), and collectNodesIntraTaskBackwardBarri-
erFreePath(), which haven’t yet been used anywhere; hence, we do not lay out their workings
here.

18 INITIALIZATION OF DUMMY FLUSHES

In OpenMP, implicit �ushes exist at the entry to, and/or exit from, various constructs or directives.
Furthermore, users can specify �ushes explicitly. In order to ease the task of handling �ushes in
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 43

various analyses/transformations, we make the implicit �ushes explicit, by representing all types
of �ushes uniformly with DummyFlushDirective.

Note 18.0.1
Note that in the source code, all DummyFlushDirectives appear as comments.

Refer to the preliminary technical report of IMOP for a detailed list of places where a Dum-
myFlushDirective is inserted.

While normalizing a newly parsed program or snippet, we invoke CompoundState-
mentCFGInfo::initializeDummyFlushes() on all nested CompoundStatement. This method
takes each element of the given compound-statement, and passes it as an argument to Com-
poundStatementCFGInfo::insertNewDFDsWithoutNode(), which is used to insert the missing
dummy-�ushes around the given element, as follows : For the given node, we check whether a Dum-
myFlushDirective of appropriate DummyFlushType is present as the predecessor and/or successor
of the node, as per the placement rules of DummyFlushDirective, given in the preliminary technical
report on IMOP. These checks are performed using InsertDummyFlushDirective.hasPredDFD()
and InsertDummyFlushDirective.hasSuccDFD(). If the required DummyFlushDirective is missing,
we create one, of appropriate DummyFlushType, and insert it above/below the given node using
CompoundStatementCFGInfo::commonNodeAdditionModule(), at appropriate index.

19 MHP ANALYSIS, AND INTER-TASK DATA-FLOW GRAPH

19.1 Data structures

First of all, let’s look into the list of data structures that together represent the MHP information :

• Phase::parConstruct refers to the parallel-construct in which the receiver phase may
get executed. For a given parallel-construct, the corresponding �eld ParallelConstruct-
Info::allPhaseList contains the list of all the phases that may get executed within that parallel-
construct.
• Other relevant �elds of a phase are as follows : (i) nodeSet:HashSet<Node>, the set of nodes

which may get executed in this phase, (ii) beginPoints:HashSet<BeginPhasePoint>, the set
of starting points for this phase, (iii) endPoints:HashSet<EndPhasePoint>, the set of ending
points for this phase, (iv) succPhase:Phase, the phase which will be executed after this phase,
(v) predPhases:ArrayList<Phase>, the list of phases that may get executed immediately
before the execution of this phase, and (vi) phaseId:int, a unique identi�er for this phase.
• Corresponding to a CFG leaf node, following two elements in its associated NodePhaseInfo

object denote the MHP information : (i) phaseSet:HashSet<Phase>, the set of phases in
Manuscript submitted to ACM

44 Aman Nougrahiya and V. Krishna Nandivada

which this node may get executed as per the current state of the program, and (ii) inputPhas-
eSet:HashSet<Phase>, the set of phases in which this node may have executed, in the input
program (before any transformations).
• A PhasePoint is a 2-tuple, of a Node and a CallStack (which comprises of a Stack of CallState-

ments).
• Each phase starts at a starting point, referred as BeginPhasePoint (a subtype of Phase-

Point). A BeginPhasePoint comprises of the following relevant �elds : (i) reachableNode-
Set:HashSet<Node>, the set of CFG leaf nodes that are reachable on barrier-free paths from
this point, (ii) nextBarrierSet:HashSet<EndPhasePoint>, the set of ending points corre-
sponding to traversals starting at this point, and (iii) phaseSet:HashSet<Phase>, the set of
phases which may start at this point.
• We also maintain the set of all the starting points in a set BeginPhase-

Point.allBeginPhasePoints:HashSet<BeginPhasePoint>.
• At times, a starting point can be marked as invalid (by setting the �eld setsInvalid), if its

relevant data structures (described above) might not contain correct values.
• In order to maintain the set of all those starting points that might not

contain valid information, we use a static set, termed as BeginPhase-
Point.staleBeginPhasePoints:HashSet<BeginPhasePoint>. Note that as a result of
program transformation, this set might contain certain elements which are not connected to
the main AST.

Closely related to notion of MHP information, is that of inter-task communication edges, which
are formed between the dummy-�ush directives that may share a phase. An inter-task commu-
nication edge is represented by the class InterTaskEdge, which comprises of the following two
�elds: (i) sourceNode:DummyFlushDirective, which represents the source node, and (ii) destina-
tionNode:DummyFlushDirective, which represents the destination node. Given a dummy-�ush,
following �elds in its info object represent inter-task edges :

• DummyFlushDirective::incomingInterTaskEdges:HashSet<InterTaskEdge>, which
represents the edges via which communication can happen from some other dummy-�ush to
this dummy-�ush.
• DummyFlushDirective::outgoingInterTaskEdges:HashSet<InterTaskEdge>, which rep-

resents the edges via which communication can happen to some other dummy-�ush from this
dummy-�ush.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 45

Note that the method DummyFlushDirectiveInfo::getInterTaskDummyPredecessors():
HashSet<DummyFlushDirective> reads from the �eld incomingInter-
TaskEdges:HashSet<InterTaskEdge>, and returns a set of all those dummy-
�ushes from which at least one shared variable may get communicated to this
dummy-�ush, via an inter-task edge. Similarly, the method DummyFlushDirective-
Info::getInterTaskDummySuccessors():HashSet<DummyFlushDirective> reads from the
�eld outgoingInterTaskEdges:HashSet<InterTaskEdge>, and returns a set of all those dummy-
�ushes to which at least one shared variable may get communicated from this dummy-�ush,
via an inter-task edge. UPDATE: “Also, note that if the �ag Program.preciseDFDEdges is
not set, then the set of successors and predecessors of a DummyFlushDirective would
contain all other DummyFlushDirective nodes of any common phases, regardless of
whether a shared variable may get communicated from source DummyFlushDirective
to destination DummyFlushDirective.”

19.2 Initialization of MHP information

Entry point for the initialization of MHP analysis is a call to Misc.performMHPAnalysis(Node),
made while processing parallelism-related analyses in the normalization step of the front-end (using
FrontEnd.processParallelism()) when parsing the complete program. While parsing a snippet, we
directly invoke MHPAnalyzer::initMHP() on all the internal ParallelConstructs. This is followed
by calls to NodePhaseInfo::rememberCurrentPhases() on all CFG leaf nodes lexically contained
within the parsed snippet. This method is used to remember the current phases in which a given
node may get executed; this information is saved in the �eld NodePhaseInfo::inputPhaseSet.

In Misc.performMHPAnalysis(), we call MHPAnalyzer::initMHP() for each ParallelConstruct
in the passed node (root node in this case); the list of ParallelConstruct, nested or otherwise, is
obtained using a visitor InfiParallelConstructGe�er. As the second and last step, this method
traverses through all the CFG leaf nodes lexically contained within each FunctionDefinition, and
invokes NodePhaseInfo::rememberCurrentPhases().

Each MHPAnalyzer::initMHP() call corresponds to a certain ParallelConstruct node. Some key
points to observe concerning this method :

• Before populating the parallel construct with new phases, this method removes the existing
phases as follows : For each CFG leaf node reachable from within the parallel construct, and
each existing phase of the parallel construct, this method calls NodePhaseInfo::removePhase()
to remove the phase from the node. After this, the �eld ParallelConstructInfo::allPhaseList is
set to an empty list.

Manuscript submitted to ACM

46 Aman Nougrahiya and V. Krishna Nandivada

The method NodePhaseInfo::removePhase() removes the provided phase from NodePhase-
Info::phaseSet; if the set Phase::nodeSet of the given phase contains the receiver node, then the
node is removed from that set, via a call to Phase::removeNode().

During removal of the given phase from the node, we also perform the following ad-
ditional step, if the node is a DummyFlushDirective : We remove all those incoming and
outgoing inter-task edges for the given node which connect the node to some other node
(DummyFlushDirective), such that the other node shared only one phase with the given node –
the phase that has been removed.
• Using the method MHPAnalyzer::shouldProceedWithMHP(), the method MHPAna-

lyzer::initMHP() decides whether it should create a new Phase and invoke MHPAna-
lyzer::processNextPhase() on it or not. In the constructor of Phase, the newly created
phase gets automatically added to ParallelConstructInfo::allPhaseList. Once MHP-
Analyzer::processNextPhase() returns, this whole process is repeated until MHPAna-
lyzer::shouldProceedWithMHP() returns false.

The method MHPAnalyzer::shouldProceedWithMHP() works as follows :

• If this method is called when there are no phases in allPhaseList, it returns true, i.e., we proceed
with the marking of nodes with phases, if the parallel construct does not contain any phase.
• Otherwise, this method �rst obtains a sub-list of EndPoint from the endPoints of the last phase

in allPhaseList, removing all those EndPoints that correspond to the EndNode of the parallel-
construct being processed. If the entries in the obtained list are a subset of the beginPoints of
some pre-existing phase, then we connect the last phase to that phase, and return false. Note
that the creation of further phases will not lead to any discovery of new MHP relations.

Here are some key points to note when MHPAnalyzer::processNextPhase() is called with a
given phase :

• Note that before this method is called on a phase, the phase is added at the end of allPhaseList.
Hence, this method assumes that the provided phase is the phase to be executed after the
second-last phase in allPhaseList. If allPhaseList does not contain more than one element (i.e.,
this phase is the only element in that list), then the phase is the �rst phase to be executed in
the associated parallel construct. Otherwise, using Phase.connectPhases() this phase is set as
the successor of the last phase, and last phase is set as one of the predecessors of this phase.
• In this method, a list of BeginPhasePoint, named beginPoints is used to store those phase

points which correspond to the end-points of the previous phase, if any. Whereas, another list,
startPoints, of elements of type NodeWithStack, is used to store those elements starting which
phase marking has to be done for the given phase.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 47

• If this phase is the only phase in allPhaseList, then a BeginPhasePoint is obtained using
the factory method BeginPhasePoint.getBeginPhasePoint() (explained later in this section),
while passing BeginNode of the parallel-construct, an empty call-stack, and this phase, as the
arguments. The list startPoints is same as beginPoints, in this case.
• When there exists a last phase for the given phase, we take each EndPhasePoint of the last

phase to obtain the corresponding BeginPhasePoint. If the EndPhasePoint corresponds to
the EndNode of the parallel construct, then we ignore it. Otherwise, we use BeginPhase-
Point.getBeginPhasePoint() to obtain the desired BeginPhasePoint, by passing the following
three arguments : the node of the end phase-point, call-stack of the end phase-point, and this
phase.

Note that startPoints in this case di�ers from beginPoints (i.e., when this phase is not the
�rst phase within the parallel construct). It contains context-sensitive inter-procedural leaf
successors of each end phase-point.
• Now, the obtained beginPoints is used to populate the �eld beginPoints of this phase.
• Next, we invoke the visitor ParallelPhaseMarker on all elements in startPoints (context-

sensitively), which works as follows:
– In this visitor, each visit method takes a CallStack as an argument, denoting the call-stack

with which the node is being visited.
– This visitor maintains a map visitedMap:Map<Node, Set<CallStack» which is used to map a

node to all those call-stacks with which the node has been visited so far; this data structure
is used to ensure termination of the marking process.

– For all types of CFG nodes, except for ParallelConstruct, BarrierDirective, PreCallNode,
and EndNode, the following process is carried out (via a call to initProcess) in the visits :
If the visited node is a non-leaf CFG node, the visitor is called on the BeginNode of that
non-leaf node; in case of a leaf CFG node, if marking of phase via addPhase() is successful,
this visitor is called on all context-sensitive inter-procedural leaf successors of the leaf node,
one-by-one. The method addPhase() takes two arguments – node to be marked with the
given phase, and the call-stack with which the node has been visited. If the given node has
already been visited with the given call-stack earlier, this method returns false. Otherwise,
it adds the given call-stack to the set of call-stacks corresponding to the given node, in the
map visitedMap, adds this node to the current phase (and phase to the current node) using
the method Phase::addNode(), and returns true. (Note that inter-task edges are created as
well, via the call to Phase::addNode(); for details, refer to Section 19.3.)

– If the visited node is a BarrierDirective, the current phase is added to the node via ad-
dPhase(). Furthermore, the node, and current call-stack, is added as an EndPhasePoint to

Manuscript submitted to ACM

48 Aman Nougrahiya and V. Krishna Nandivada

the current phase, using Phase::addEndPointNoUpdate(). The traversal does not proceed to
the successors of this node.

– If a ParallelConstruct is encountered during the traversal, then it would refer to a nested
parallel construct. In that case, the current phase is added to all the intra-task leaf nodes
that are reachable within the visited parallel construct. Then, the visitor is called on all the
context-sensitive inter-procedural leaf successors of the parallel construct.

– When the visited node is a PreCallNode, we �rst check whether the corresponding Function-
Definition(s) exists. If not, then we process this node as any other node, as mentioned above.
Otherwise, we mark this node with the current phase, using addPhase(), and then call this
visitor on the target FunctionDefinition, with the modi�ed call-stack, obtained by pushing
the call-statement corresponding to this PreCallNode on top of the current call-stack.

– Upon visiting an EndNode, this visitor marks the node with the current phase, using ad-
dPhase(). If the marking method returns false, then the we return from this visit. Otherwise,
except when this node is an EndNode of a ParallelConstruct which is same as the parallel
construct of the current phase, or of a FunctionDefinition, we simply call the visitor on all
the context-sensitive inter-procedural leaf successors of the node. When the visited node
is an EndNode of a ParallelConstruct of which the current phase is a part, then we add
this node and the current call-stack as an EndPoint to the set of endPoints of the current
phase. When this EndNode is that of a FunctionDefinition, we need to readjust the call-stack,
by popping the top element, before continuing with the traversal. If the top of the call-
stack is a context-insensitivity marker (represented by CallStatmenet.getPhantomCall()),
then we collect all possible call-sites of the FunctionDefinition (using FunctionDefinition-
Info::getCallersOfThis()), and call this visitor on the PostCallNode of the call-site, with
the unchanged call-stack. On the other hand, if the top of the call-stack is not a context-
insensitivity marker, we remove the top element of the call-stack, and using the unwinded
call-stack call the visitor on the PostCallNode of the popped CallStatement.

Obtaining a BeginPhasePoint : Only factory methods, with name BeginPhase-
Point.getBeingPhasePoint() exist for obtaining a BeginPhasePoint; all constructors are
private. Internally, a list of all BeginPhasePoint objects is maintained in the �eld BeginPhase-
Point.allBeginPhasePoints, which is used to ensure that corresponding to each unique pair of
node and call-stack, there will be only one BeginPhasePoint. Hence, given a node and call-stack,
this method �rst checks if the corresponding BeginPhasePoint exists. If so, then it is selected to
be returned. Otherwise, it obtains the BeginPhasePoint to be returned by calling its constructor
which also adds the newly created object to allBeginPhasePoints. Finally, before returning the
selected BeginPhasePoint, this method adds the given phase to its �eld phaseSet.
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 49

19.3 Initialization of inter-task data-flow graph

Inter-task data-�ow graph is composed up of inter-task communication edges, represented as
InterTaskEdge. In Section 19.2, when ParallelPhaseMarker::addPhase() is called on a node, it calls
Phase::addNode(). This method, in turn, invokes NodePhaseInfo::addPhase() on the node being
marked.

Given a phase, the method NodePhaseInfo::addPhase() adds that phase to the phaseSet of
the receiver node, if not already present. (Note that the actual receiver here is the phase-info
object corresponding to the node of interest.) If the node is a DummyFlushDirective, we it-
erate over all the DummyFlushDirective in the given phase, and invoke method DataFlow-
Graph.createEdgeBetween() for the given node and iterated node, which invokes DataFlow-
Graph.createInterTaskEdgeBetween(), in turn. This method creates two inter-task edges – (i)
an edge from �rst node to the second, and (ii) an edge from second node to the �rst, and adds
these edges to the �elds incomingInterTaskEdges and outgoingInterTaskEdges of both the nodes,
appropriately.

From FrontEnd.processParallelism() while parsing the complete program, and from Fron-
tEnd.parseAndNormalize() while parsing a snippet, we invoke (unnecessarily, it seems)
Misc.createDataFlowGraph(). This method invokes DataFlowGraph.populateInterTaskEdges() on
all phases of all parallel constructs, which, in turn, invokes DataFlowGraph.createEdgeBetween()
on all pairs of DummyFlushDirective nodes that may get executed in the given phase.

20 GENERIC ITERATIVE FLOW ANALYSIS

IMOP provides various kinds of generic iterative �ow analyses, along with some of their instantia-
tions that implement certain standard �ow analyses, such as points-to analysis, dominance analysis,
etc.

At the root of all the �ow analyses, lies FlowAnalysis. A FlowAnalysis can be either a DataFlow-
Analysis, or a ControlFlowAnalysis 6. When the values of �ow facts corresponding to an iterative
�ow analysis (IFA) are dependent upon the contents of the node, then we categorize such itera-
tive data �ow analyses (IDFAs) as DataFlowAnalysis. Whereas, when the �ow-facts of analyses
are dependent only upon the structure of the �ow graph, then we categorize such analyses as
ControlFlowAnalysis.

In IMOP, a ControlFlowAnalysis is always intra-thread in nature. The inter-thread edges, which
connect DummyFlushDirectives within any phase, represent the �ow of shared data from one
task to another. Hence, such edges are considered non-existent in all control-�ow analyses. There

6Note that we misuse the phrase control �ow. In IMOP, it does not refer speci�cally to call-graph construction.
Manuscript submitted to ACM

50 Aman Nougrahiya and V. Krishna Nandivada

are two subclasses of ControlFlowAnalysis – (i) the intra-procedural variant, termed as IntraPro-
ceduralControlFlowAnalysis, and (ii) the inter-procedural variant, termed as InterProcedural-
ControlFlowAnalysis. Both these subclasses model �ow-sensitive analyses. One key instantiation
of IntraProceduralControlFlowAnalysis is PredicateAnalysis, and that of InterProceduralCon-
trolFlowAnalysis is DominanceAnalysis. Both these instantiations are explained in Section 22.
A DataFlowAnalysis can be of two types :

(i) CellularDataFlowAnalysis is a superclass for those analyses in which the structure of a �ow-fact
is a map from a set of Cells to a set of some Immutable values. There are certain scope-speci�c
optimizations that are applicable only to the analyses that fall under this category.

(ii) NonCellularDataFlowAnalysis is a superclass for all other data-�ow analyses.

Both these subclasses of DataFlowAnalysis are further categorized into two subclasses each –
one for forward analyses, and another for backward. All DataFlowAnalysis are inter-thread in
nature, in order to respect the semantics of OpenMP. For precision, currently IMOP provides
only inter-procedural �ow-sensitive versions of these analyses. Various example instantiations of
di�erent kinds of DataFlowAnalysis are illustrated later in this section.

We �rst look at the structure of a generic �ow fact, (FlowFact), which corresponds to any
FlowAnalysis, as well as its important subclass CellularFlowMap, which applies to all instances
of CellularDataFlowAnalysis. This is followed by a discussion on various kinds of generic passes
mentioned above, along with their supporting data structures.

In Section 22, we discuss the steps for instantiating any generic �ow pass, along with certain im-
portant instantiations, such as points-to analysis, copy-propagation analysis, reaching-de�nitions
analysis, etc.

The type of a �ow fact is taken as a type argument, while instantiating any generic �ow analysis.
This type should (directly or indirectly) extend the class FlowFact.

20.1 Generic flow facts

All concrete subclasses of FlowFact must de�ne the following methods :

FlowFact::isEqualTo(other:FlowFact):boolean takes a �ow-fact, and should return true if and
only if that �ow-fact is semantically equivalent to the receiver �ow-fact. This method is
employed to check whether a �xed-point has been reached. Hence, termination can be ensured
only when this method has been correctly de�ned.

FlowFact::getString():String should return the String equivalent of the receiver �ow-fact. This
method is used to dump information about the �ow-facts, in the form of comments in the
output program, for each leaf node.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 51

FlowFact::merge(other:FlowFact, cellSet:CellSet) takes the given �ow-fact other, and per-
forms meet of that �ow-fact with the receiver �ow-fact. Note that this method has side-e�ects
since it changes the receiver �ow-fact, such that it starts representing the result of the meet op-
eration. The argument cellSet, when null or empty, is ignored. However, when this set contains
any elements, they are usually the shared cells which can get communicated from a predecessor
DummyFlushDirective to the processed node (which itself is a DummyFlushDirective), via
inter-task data-�ow edges. This set can therefore be used to ensure that those components
of data-�ow facts which correspond to private variables at the processed node, do not get
a�ected by the data-�ow facts corresponding to private variables at any of the node’s inter-task
predecessors.

This method returns true, if the receiver �ow-fact was changed as a result of the merge.

While the structure of a FlowFact can be of any type, there exists a specialized subclass of Flow-
Fact, named CellularFlowMap<V extends Immutable>, where the data-�ow information is repre-
sented as a map from set of Cells to set of some generic immutable type (V). Most of the important
IDFA analyses, like points-to (PointsToAnalysis), reaching de�nitions (ReachingDefinitionAnalysis),
and copy propagation (CopyPropagationAnalysis), have �ow-facts that are inherited from Cellu-
larFlowMap.
Following are some key points to note about CellularFlowMap :

• Each CellularFlowMap contains an internal map from set of Cells to set of some generic
immutable type (say V). The objects of type V should correspond to various elements of the
data-�ow lattice. This map is of type ExtensibleCellMap<V>. (Refer Section 20.4 for details on
internal workings of an ExtensibleCellMap<V>.)
• No subclasses of ExtensibleCellMap can override the methods isEqualTo(), getString(), or

merge() (which were the abstract methods de�ned by FlowFact). The implementations of these
methods is provided by ExtensibleCellMap, as follows :
CellularFlowMap::isEqualTo(other:FlowFact):boolean returns the equality of the �ow

maps present in the receiver and the other CellularFlowMaps (using Extensible-
CellMap::equals()).

CellularFlowMap::merge(other:FlowFact, cellSet:CellSet) utilizes Extensible-
CellMap::mergeWith() to update the �ow map of the receiver such that it re�ects
the result of meet of the receiver’s �ow-fact with that of the other. The merge operator
required in the mergeWith() method can be provided by subclasses of CellularFlowMap by
overriding the abstract method CellularFlowMap::meet(V, V):V. This meet() method should
model the meet operation of the data-�ow lattice.

Manuscript submitted to ACM

52 Aman Nougrahiya and V. Krishna Nandivada

CellularFlowMap:getString():String method returns the string representing
the values stored in �ow map of the receiver. This method uses Cellu-
larFlowMap::getAnalysisNameKey(), an abstract method, to tag the generated string of the
data-�ow fact with a short string that denotes the corresponding data-�ow analysis. For
example, for data-�ow facts of points-to analysis, the short string is ptsTo.

• Following are the two methods that must be implemented by any concrete subclasses of
CellularFlowMap :
CellularFlowMap::getAnalysisNameKey():String should be overridden by the concrete

subclasses of CellularFlowMap, returning a short string that can be used to identify the
data-�ow analysis which this data-�ow fact corresponds to. This string is used in Cellu-
larFlowMap::getString() method, for getting the string used for debugging purposes.

CellularFlowMap::meet(v1:V, v2:V):V is used to model the meet operation, given two ele-
ments of the data-�ow lattice corresponding to this �ow-fact. Note that both the arguments
to this method are immutable. Hence, returning (thereby reusing) any of the provided
arguments should not create any correctness issues.

20.2 Base generic flow analysis pass

In this section, we look into how various generic IFA passes work. The complete code is present
in the class hierarchy rooted under FlowAnalysis. Each �ow analysis must inherit directly or
indirectly from FlowAnalysis. Note that this analysis can be run in one of the two modes – (i)
no-update mode, which denotes the �rst run of the analysis on the program, starting at entry point
of the main() function, or (ii) update mode, which is used during automated incremental update
of the IDFA �ow-facts, under elementary transformations of the program. (We discuss the update
mode later in Section 28.)
During the no-update mode, the analysis maintains the following internal data structures :

• analysisName :AnalysisName refers to an enumerator constant that is speci�c to each kind of
analysis. For example, points-to analysis is denoted by the constant AnalysisName.POINTSTO.
• analysisDimension:AnalysisDimension speci�es the analysis dimensions, such as whether the

analysis is sensitive or insensitive along FlowDimension, FieldDimension, ContextDimension,
SVEDimension, etc.
• A list, workList, of type ReversePostOrderWorkList, which is used to maintain a list of nodes

that need to be (re)processed for reaching the �xed-point during computation of the analysis.
• For debugging and pro�ling purposes, each IDFA analysis maintains the following information :

(i) nodesProcessed:long, which keeps track of the total number of times any nodes were
processed to reach the �xed-point in any of the modes (update or no-update),

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 53

(ii) a map, tempMap, which, for each node, individually keeps track of the number of times
the node was processed by this analysis (in either of the modes); if this number crosses
a threshold (denoted by Program.thresholdIDFAProcessingCount), then the framework
throws an error and exits, (Default value for this threshold has been randomly set to 7e5.)

Finally, a static �eld analysisSet:Map<AnalysisName, FlowAnalysis<?>> of the generic IDFA
pass is used to maintain a set of all the instances of FlowAnalysis<?> that have been created so far
in the framework, mapped using the enumerator constants of type AnalysisName.
The no-update mode. In this mode, each concrete subclass of FlowAnalysis should implement
(or inherit), the following three abstract methods :

• run(FunctionDe�nition):void, which takes a FunctionDefinition and runs �ow analysis on it,
and on its other reachable methods, either intra-procedurally or inter-procedurally, depending
upon the nature of the analysis. The usual argument to this method is main().
• getTop():F should return a new object upon each invocation, representing the top element of

the lattice.
• getEntryFact():F, should return a new object upon each invocation, representing the initial

�ow-fact, which can be given as initial :
– IN �ow-fact for �rst element of main(), for forward inter-procedural analyses,
– IN �ow-fact for �rst elements of all functions, for forward intra-procedural analyses,
– OUT �ow-fact for last element of main(), for backward inter-procedural analyses, and
– OUT �ow-fact for last elements of all functions, for backward intra-procedural analyses.

The default visit methods : We utilize various visit() methods to model the transfer functions of
nodes, which specify how the states of a �ow-fact undergoes transition from the entry state for
node (IN or OUT) to the exit state (OUT or IN). About their default implementation in FlowAnalysis,
following are the points to note :

• We maintain �ow facts only at the level of leaf nodes, and not non-leaf nodes. Hence, the �nal
implementation of the visits for non-leaf nodes throws an AssertionError.
• In the visit of every leaf CFG node, the argument �ow-fact is passed to the common method

FlowAnalysis::initProcess(Node, F):F; the return of this invocation is returned back from the visit
method. The default implementation of the method initProcess() simply returns its arguments.

Note 20.2.1
Note that if neither the visit method of a speci�c node, nor initProcess() have been overridden
by an analysis, then the transfer function for that type of node is considered to be an identity
function for that analysis.

Manuscript submitted to ACM

54 Aman Nougrahiya and V. Krishna Nandivada

The edge-transfer function. While processing the successors of a predicate in forward analyses,
and predicates in backward analyses, one might need to model the e�ects of taking a branch, on a
�ow-fact. In order to facilitate such operations, FlowAnalysis provides the method edgeTransfer-
Function(F, Node, Node):F, which can be overridden as per the analyses, such that, given the meet
of IN of predecessors (in forward analyses), and the predecessor-successor pair representing an
edge, the method should return another �ow-fact which models the e�ect of the edge on the input
�ow-fact. (For backward analyses, the edge e�ects are modelled for meet of OUT of successors).
The default implementation of this method assumes that edges do not a�ect the �ow-facts.

20.3 Specialized generic flow passes

In this section, we look into implementation of some important methods in generic subclasses of
FlowAnalysis.
The driver run() method. Given a function-de�nition as argument, the method FlowAnaly-
sis<?>::run() performs �ow analysis starting with that function, until �xed-point is reached. In
case of intra-procedural analyses, all reachable function-de�nitions from the given de�nition
are processed explicitly in run(). Whereas, in case of inter-procedural analyses, only the given
function-de�nition is processed explicitly. (All the reachable methods get processed implicitly.)

For forward analyses, while processing a function de�nition, the workList of nodes to be
processed is initialized with the BeginNode of that function de�nition. In case of backward
analyses, the workList is initialized with the EndNode of the given function-de�nition.

For each element of the workList, this method invokes processWhenNotUpdated() (i.e., in no-
update mode), to apply data-�ow equations in the �ow-facts maintained at the node. The elements of
the workList are processed as per the reverse postorder in which these elements appear in the phase-
�ow graph and control-�ow graph of the program. For backward analyses, we process the nodes as
per their postorder. (Refer Section 20.5 for more details.) Note that new elements may get added to
the workList during processing of any element. The method run() terminates only once there are
no more elements to be processed in the workList. In case of InterThreadForwardCellularAnalysis,
just before termination, this method sets PointsToAnalysis.stateOfPoinstTo as CORRECT, if the
receiver object is an instance of the standard points-to analysis used by IMOP (referred by the
analysis name AnalysisName.POINTSTO).

Note 20.3.1
In the discussion that follows, we assume that the direction of �ow analysis is forward in

nature, unless otherwise stated.
For backward analyses, the discussion would remain same, except that IN and OUT will get
interchanged, as would successors and predecessors.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 55

Processing each node, in no-update mode. The method processWhenNotUpdated() processes
one node at a time, by applying the data-�ow equations. It works as follows :

• The current IN data-�ow fact at the given node is obtained via a call to NodeInfo::getInfo().
If the return value is null, then it implies that this node has not been processed by
this analysis yet. In such a case, we initialize the IN �ow-fact by (i) getEntryFact(), if
this node does not have any immediate predecessor node (e.g., the BeginNode of the
main()’s FunctionDefinition), OR (ii) getTop(), otherwise. The predecessors are obtained
via CFGInfo::getInterTaskLeafPredecessorEdges() for inter-procedural analyses; for intra-
procedural analyses, we use CFGInfo::getLeafPredecessors(). Furthermore, when the current

Note 20.3.2
In case of backward analyses, as mentioned before, we replace IN with OUT, OUT with IN,
successor with predecessor, and predecessor with successor, while reading this section.

Note 20.3.3
Note that getEntryFact() and getTop() should not return null. Also, they must always return
a new object; otherwise, the IN �ow-facts of multiple nodes might start referring to the same
object.

IN data-�ow fact is null, we ensure that all the successors of this node will get added into the
workList, so that all the nodes reachable from entry-point of the program are processed at least
once. We do so by setting a boolean �ag propagateFurther.

Note that if the current IN is not null, then we do reuse the same object to obtain the new
value (if any) for IN.
• Now, the current IN �ow fact of the node being processed is merged, one-by-one with the

non-null OUT of each of its predecessors. If a predecessor has not been processed yet, its OUT
would be null. Assuming that all OUT �ow-facts have been initialized to TOP (obtained using
getTop()), we can ignore such �ow-facts, as a merge with TOP would anyway not a�ect any
data-�ow fact.

We maintain a �ag inChanged which is set only when the internal state of the IN �ow-fact
gets updated as a result of these merge operations.

Note 20.3.4
The merge() method should not update the internal state of the data-�ow fact that it received
as its argument (which may denote OUT of a predecessor, for example).

In order to model the e�ects of taking a branch, we pass the newly generated �ow-fact to
edgeTransferFunction(), which should return back the modi�ed �ow-fact.

Manuscript submitted to ACM

56 Aman Nougrahiya and V. Krishna Nandivada

• In case of inter-thread forward cellular data-�ow analysis
(InterThreadForwardCellularAnalysis), if the node is a PostCallNode, then we perform other
scope-speci�c changes to the �ow-fact, by invoking processPostCallNodes(). (This method is
explained later.) If the internal state of IN �ow-fact has changed as a result of this invocation,
then we set the inChanged �ag.

Similarly, in case of inter-thread backward cellular data-�ow analysis
(InterThreadBackwardCellularAnalysis), if the node is a PreCallNode, then we per-
form other scope-speci�c changes to the �ow-fact, by invoking processPreCallNodes(). (This
method is explained later.)
• For any data-�ow analysis, if the node is a BarrierDirective, and if the inChanged is set to

true, then we invoke addAllSiblingBarriersToWorkList() (to all all sibling barriers to workList).
We explain the details and necessity of this step later, while discussing the visit() method for
BarrierDirective nodes.
• Finally, we set the newly obtained IN as the current IN of the node, using NodeInfo::setIN().

(This step would make a di�erence only when the newly obtained IN is a di�erent object than
the one obtained at the start of the method processWhenNotUpdated().)
• Next, we fetch the current OUT �ow-fact object of the node being processed. In order to obtain

the new state of OUT �ow-fact, we need to apply the transfer function (�ow function) of the
node on its new IN �ow-fact. The transfer function is modeled by the visit() methods (invoked
using accept() methods, as is the norm in visitor design pattern). We discuss various visit()
methods in detail later in this section.

Note 20.3.5
Note that a visit() method may return the same object which it obtained as its argument. That
is, the IN and OUT �ow-facts of a node may be represented by the same Java object. However,
a visit() must never update the internal state of its argument (which represents the current IN
�ow-fact).

In case of a intra-procedural control-�ow analysis (IntraProceduralControlFlowAnalysis),
if the node is a PreCallNode, we use the method modelCallE�ect() on it, instead of any visit
method, to model the e�ect of call to some unknown method. The default implementation of
this method simply returns its argument.

After obtaining the new OUT �ow-fact, we set it as the current OUT �ow-fact of the node.
• For any cellular �ow analysis, before setting the new OUT �ow-fact as current OUT �ow-

fact, we invoke processEndNodes() or processBeginNodes() methods if the current node is an
EndNode or a BeginNode, respectively. These methods are used to ensure that, for the case of

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 57

CellularFlowMaps, we maintain �ow-fact information for only those cells that are relevant in
the scope in which this node occurs. These methods are explained later in this section.
• Next, we need to decide whether we should add the successors of this node in the workList.

We track this decision using a �ag propagateFurther. As mentioned above, if the analysis is
processing this node for the �rst time, then we set this �ag. Furthermore, we also set this �ag if
the current IN �ow-fact is di�erent from the old IN �ow-fact 7 (i.e., if inChanged is true, we
set propagateFurther as well.)

If the �ag is set, then in case of an intra-procedural control-�ow analysis, we simply add the
leaf successors of the node to the workList; for inter-procedural control-�ow analysis, we add
the inter-procedural leaf successors.

In case of data-�ow analyses, when the node is a BarrierDirective, the OUT �ow-fact depends
not just on the IN �ow-fact of the node itself, but also on the IN �ow-facts of the sibling barrier
nodes. Hence, even when the IN �ow-fact of the node does not change, the OUT �ow-fact might
still change. Hence, if the old OUT �ow-fact is not same as the new OUT �ow-fact for a barrier
node, we set the propagateFurther �ag. Note the following observations when comparing the
OUT �ow-facts (old and new) of a node :
– If the IN and OUT �ow-facts of a node are represented by the same object, then we should

consider the new OUT to be di�erent from old OUT whenever the new IN was di�erent
from the old IN. This check was already performed during update of IN �ow-facts, using the
�ag inChanged. Hence, in this situation, we set propagateFurther if inChanged has already
been set.

– Otherwise, if IN and OUT �ow-facts are represented using di�erent objects, we per-
form equality checks between the old and new OUT �ow-fact objects using Flow-
Fact::isEqualTo(FlowFact):boolean, and set the �ag accordingly.

Note 20.3.6
Unless the IN �ow-fact and OUT �ow-fact are represented by the same object, we must ensure
that a visit() method of a BarrierDirective does not update the internal state of the old OUT
object, obtained via a call to NodeInfo::getOUT(), nor should it return back the old OUT
object.

Finally, if the �ag propagateFurther is set, then we add all the successors of this node to the
workList, and return from the method processWhenNotUpdated().

Transfer functions. Following are key points to note concerning the generic de�nitions of, and
suggested guidelines for, various visit() methods.
7Note that comparison of OUT might help in early termination of the IDFA. However, that would require extra equality
checks which can be more time-consuming.

Manuscript submitted to ACM

58 Aman Nougrahiya and V. Krishna Nandivada

• The transfer functions are not supposed to be speci�ed at the level of a non-leaf node. Hence,
for all those visits that correspond to non-leaf nodes, an assertion is thrown in a �nal imple-
mentation of the visits in the base class FlowAnalysis.
• Except for visit() methods for a ParameterDeclaration, and a BarrierDirective, the visit() methods

can be overridden by speci�c analyses as per their needs; the default de�nition of these methods
passes the given IN �ow-fact to initProcess() to obtain the OUT �ow-fact, which is then returned.
The default implementation of initProcess() simply returns its argument.

Note 20.3.7
In the generic pass, except for ParameterDeclaration and BarrierDirective, all transfer func-
tions are identity functions.
In order to specify transfer functions for all types of nodes in a single method, one should
override the method initProcess(FlowFact):FlowFact. On the other hand, one can also spec-
ify di�erent transfer functions for di�erent types of nodes by overriding their respective
visit(Node, FlowFact):FlowFact methods.

• The visit() method for ParameterDeclaration works as follows : First of all, this method obtains
the FunctionDefinition to which the given ParameterDeclaration belongs. If FunctionDefinition
belongs to main(), then as there are no callers of main() (or so we assume) from within the
program, we simply return the obtained (IN) �ow-fact as the OUT �ow-fact.

Note 20.3.8
The method getEntryFact() should also model the e�ects of writing of user-de�ned command-
line arguments to the two parameters of main(), if present.

Otherwise, for an intra-procedural control-�ow analysis, we obtain the �ow-fact to be
returned by taking a merge of a TOP �ow-fact with the return of an invocation of assignBot-
tomToParameter(), to which we pass this parameter, as well as the argument �ow-fact. The
method assignBo�omToParameter() needs to be implemented by any of the concrete classes of
IntraProceduralControlFlowAnalysis; it should model the e�ect of writing the BOTTOM value
to the given parameter.

For all other types of analyses, if there does not exist any caller for the function-de�nition
of this parameter 8 then we simply return back the obtained (IN) �ow-fact.

Otherwise, starting with TOP state for OUT �ow-fact (that needs to be returned), this method
traverses through each argument corresponding to this ParameterDeclaration, from all call-
sites for the FunctionDefinition. For each argument, we invoke the method writeToParameter(),
passing the provided (IN) �ow-fact. This method should be overridden by speci�c analyses to

8This case may be true only when IDFA is being run on a snippet of code, unreachable from main().
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 59

model the e�ect of the write of an argument to formal parameter on the provided (IN) �ow-fact.
The return of each invocation of writeToParameter() for the argument corresponding to the
ParameterDeclaration from a call-site is cumulatively merged into the OUT �ow-fact (using
merge() method). Finally, the obtained OUT �ow-fact is returned.
• In case of control-�ow analyses, the visit of a BarrierDirective simply models the identity

function. However, in case of data-�ow analyses, the visit method is made final in the generic
passes; following are some key points concerning the visit() method for a BarrierDirective (in
no-update mode) 9 :
– For any given phase, the data-�ow values associated with any shared variables (Cells) must

be same across all the barriers that end that phase. That is, the OUT �ow-fact of barriers
ending a phase must be same for those components that correspond to shared variables.

– Hence, the OUT �ow-fact of a barrier is obtained by merging its IN �ow-fact with the shared
components of the IN �ow-fact of other barriers with which this barrier may synchronize
in any of the phases.

– Whenever the IN �ow-fact of a barrier changes, we should ensure that we add all its sibling
barriers (of every phase), to the workList. This step is not performed within the visit()
method, but in processWhenNotUpdated(), relying upon the �ag inChanged, by invoking
addAllSiblingBarriersToWorkList(). This method traverses through all phases in which the
given BarrierDirective may exist (i.e., ones which the given barrier my end), and adds all
sibling barriers of the given barrier to the workList 10.

– Each invocation of the visit() method on a BarrierDirective creates a new OUT �ow-fact,
initialized to the old OUT �ow-fact, if any (or TOP, otherwise). (Note that we should not
update the internal state of the old OUT �ow-fact, as explained in one of the notes on visit()
methods.) Then, for every phase in which the given barrier may exist, we take each sibling
barrier and merge the shared components of IN �ow-fact of the sibling barrier cumulatively
to the new OUT �ow-fact for the given barrier. Also, we merge the IN �ow-fact of the given
barrier to its new OUT (for all components). Finally, we return the newly generated OUT
�ow-fact.

As before, the notion of IN and OUT reverses when dealing with backward analyses.

Methods to ensure scope-relevancy in �ow-facts. In order to ensure that a �ow-fact does not
carry forward information corresponding to out-of-scope symbols, we utilize the following four
methods :

9Note that a di�erent variant of the visit() method (named visitChanged()) is used for a BarrierDirective when the
analysis is being run in update mode.
10Note that this method utilizes SVE-sensitivity for precision, described later in Section 24.

Manuscript submitted to ACM

60 Aman Nougrahiya and V. Krishna Nandivada

(i) processBeginNodes(node, newOUT). For inter-thread forward cellular �ow analysis, if the
provided BeginNode corresponds to a FunctionDefinition, then this method collects a set of all
those Symbols that are accessible at the entry to FunctionDefinition. This set would be the set
of all the global symbols, and the set of formal parameters. After obtaining this set, all those
entries from the CellularFlowMap<?> are removed where the key corresponds to a Symbol, its
FieldCell, or its AddressCell, such that the symbol is not present in the collected set of symbols.

This way, we ensure that the given (OUT) �ow-fact does not contain information about any
of the local variables of the caller. (The removal of irrelevant keys is not considered as a change
in the state of OUT.)

In case of inter-thread backward �ow analysis, this functionality is provided by the method
processEndNodes(node, newIN) instead, for the EndNodes.

(ii) processEndCallNodes(node, newOUT). For inter-thread forward cellular �ow analysis,
given an EndNode, and its new OUT �ow-fact, this method performs the following changes in
the �ow-fact :
a. If the given EndNode corresponds to a CompoundStatement, then for all non-static symbols

that are declared in that compound statement, we remove the entries corresponding to that
symbol, as well as its AddressCell, and FieldCell, if any, from the �ow-fact.

b. Similarly, if the given EndNode corresponds to a FunctionDefinition, we remove entries of
a symbol, along with those of its AddressCell and FielCell, if any, from the �ow-fact, if the
symbol is a formal parameter.

This ensures that the (OUT) �ow-fact does not contain information corresponding to the
local variables (i.e., formal parameters) of the function. (The removal of irrelevant keys is not
considered as a change in the state of OUT.)

Note 20.3.9
Since certain scope-relevancy methods update the OUT �ow-fact of a node, we must ensure
that the IN �ow-fact of such node should not be represented by the same object as the one
representing the OUT �ow-fact.

In case of inter-thread backward �ow analysis, this functionality is provided by the method
processBeginNodes(node, newIN) instead, for the BeginNodes.

(iii) processPostCallNodes(node, newIN). This method is applicable only to inter-thread forward
cellular �ow analysis. This method takes a PostCallNode and its new IN �ow-fact as arguments.
If the argument is of type CellularFlowMap<?>, it proceeds as follows. To the given �ow-fact,
this method adds all those entries from the OUT of the PreCallNode (corresponding to the
given PostCallNode), whose keys are not already present in the given �ow-fact. If any new

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 61

entries are added to the given (IN) �ow-fact, then the state of IN is conservatively assumed to
be changed. (The analysis would still terminate.)

(iv) processPreCallNodes(node, newIN). This method is applicable only to inter-thread back-
ward cellular �ow analysis. Its working is exactly similar to that of processPostCallNodes(),
except that it works on a PreCallNode, instead of on a PostCallNode.

20.4 Extensible CellMaps

An ExtensibleCellMap<V extends Immutable> is a kind of map from set of Cells to set of some
immutable values V. The interfaces and behaviour of this map are same as that of a CellMap<V>.
Internally, this map di�ers from a CellMap<V>’s implementation in following key ways :

• The elements in the internal map, named internalRepresentation, may not represent the
complete map. They may have extra entries that are logically not assumed to be in the map.
They may also have lesser entries than what are logically assumed to be present (which are
read from some other map of which this map is an extension).
• Every map of this type may contain link, named fallBackMap, to another map of same type. If a

key is not present in this map, then the key is searched for in the fallBackMap; the corresponding
value, if any, is considered to be the value to which that key is mapped in the fallBackMap.
• This map contains an explicit set of cells, named keysNotPresent, which is used to keep track

of keys that are assumed to be not present in the set, even if the internal map may have the
keys. In other words, if a key is present in the set keysNotPresent, then regardless of whether
that key is present in the internal map, a contains() check would always return false. Other
methods too will behave as though the key is not present in the map.

Other important internal data structures for an ExtensibleCellMap<?> are :

• A �ag containsUniversal, inherited from CellMap<?>, indicates whether the internal map (and
not necessarily the logically represented map) contains an entry for the universal cell.
• A counter freeVariableCount, inherited from CellMap<?>, is used to keep track of the number

of keys that are of type FreeVariable in the internal map.
• Each map also maintains a set (extensionMaps) of all those maps for which this map serves as

a fallBackMap.

Next, we discuss some key details to note concerning various non-trivial methods of this map :

Constructors. An empty constructor initializes the internalRepresentation with a new empty
map, and does not set any fallBackMap.

Otherwise, if a map is provided as an argument to the constructor, it sets that map as
the fallBackMap if the link length does not exceed a threshold. A link length is de�ned to

Manuscript submitted to ACM

62 Aman Nougrahiya and V. Krishna Nandivada

be the length of chain of fallBackMaps, starting with the provided map; default threshold
is set to 3 (empirically). If the threshold is exceeded, then the constructor copies all logical
entries from the provided map into the newly constructed map, by copying the following
internal structures : internalRepresentation, keysNotPresent, fallBackMap, freeVariableCount,
and containsUniversal.

Note 20.4.1
Note that if we set the threshold for link length as m, the memory consumption may get
reduced by a fraction of up tom times.
However, if the threshold m is set too high, then the cost of contains() check can increase
prohibitively, as its complexity is O(m) (as compared to O(1) for a HashMap<K, V>).

FreeVariable converter. During any method invocation, if a key under consideration is a Free-
Variable, we see if it can be converted back to a Symbol, by invoking the method Extensi-
bleCellMap::testAndConvert(Cell), or more generally, ExtensibleCellMap::testAndConvert(),
which works as follows : The method is �rst of all called on the fallBackMap, if any. Now,
in the current map, if there are no free variables, then the method returns. Otherwise, all
FreeVariable cells are collected from the set of non-generic key set (i.e., all explicit keys in
the logical map, ignoring the universal key, if any). If a Symbol can be obtained for any of
the collected FreeVariables, then we map the value for those free variable to corresponding
symbols, and remove the entries corresponding to such free variables; also, the count of free
variables is reduced accordingly.

Note that various methods take an extra argument of type ConvertMode, which can either be
ON or OFF. When the argument is ON, the method testAndConvert() is invoked at appropriate
places; otherwise, no such invocation is performed.

Iterators. The keys of an ExtensibleCellMap<?> may contain the universal cell (which, when
present in a set, makes the set behave as a Universal set). For e�ciency purposes, there are two
variations of iterators –
(i) keySetExpanded(), iterates over all the keys explicitly present in the set, followed by all

the other keys from the Universal set of keys, if the universal cell is present in the set.
This method starts with an invocation of testAndConvert() to ensure that all FreeVariables
that could be replaced by Symbols have been replaced. Then, it simply returns a new object
of type ExtensibleCellMap.KeySetExpanded which is a specialized set view of the keys of the
logical map. A KeySetExpanded is a RestricedSet, in which, only a handful of set operations
are allowed, namely, size(), isEmpty(), contains(), and containsAll(). These operations rely
on the corresponding operations on the logical map. A KeySetExpanded also provides an

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 63

implementation of the Iterable interface. Its iterator() method returns an iterator of type
KeySetExpandedIterator(), which works as follows :
• There are three states in which this iterator exists, speci�ed by STATE, which can take

the following values : UNIVERSAL, INTERNAL, and FALLBACK. Corresponding to these
three states, there are three iterators on which this iterator relies upon – universalIterator,
internalIterator, and fallBackMapIterator, respectively.
During construction of the iterator, if the internal map representation (not the complete
logical map) contains the universal cell, then the initial state of the iterator is set as
STATE.UNIVERSAL, and the universalIterator is set to be an iterator on Cell.allCells.
Otherwise, the initial state is set as STATE.INTERNAL, and the internalIterator set to be
an iterator of the key set of the internal map representation.
• Internally, the next cell to be returned by the iterator is stored in a �eld nextCell. Each

invocation of hasNext() attempts to assign the next available cell, if any, to this �eld, if
the �eld is set to null. If there exists any next cell to be iterated, this method returns
true, as expected. This method works as follows :
– If the internal state of this iterator is STATE.UNIVERSAL, it reads the next available

cell from universalIterator, if any, such that the cell is not present in keysNotPresent,
and sets nextCell to that cell before returning true. If no such cell is found, this
method returns false, indicating the end of iteration.

– When the iterator’s state is STATE.INTERNAL, it attempts to to set nextCell to the next
cell available via internalIterator, such that the cell is not present in keysNotPresent.
If a cell is found, this method returns true. Otherwise, if any fallBackMap exists, the
iterator changes its state to STATE.FALLBACK, and sets the iterator fallBackMapIt-
erator to an iterator of fallBackMap (of type KeySetExpandedIterator). Then, this
iterator invokes hasNext() on itself in the new state. If no fallBackMap exists, this
method returns false.

– If the iterator’s state is STATE.FALLBACK, it attempts to get the next available cell
from fallBackMapIterator, such that : (i) the cell is not present in the keysNotPresent
set, if any, and (ii) the cell is not present in the internalRepresentation’s key set (to
ensure that same cell is not iterated over more than once). If no such cell is found,
this method returns false. Otherwise, it sets nextCell to the found cell, and returns
true.

• Each invocation of next() internally invokes hasNext() to ensure that the �eld nextCell
is properly set. It returns the value of nextCell, (throws a NoSuchElementException if
the value is null,) and �nally sets the �eld to null.

Manuscript submitted to ACM

64 Aman Nougrahiya and V. Krishna Nandivada

(ii) nonGenericKeySet(), iterates over only those keys which are explicitly present in the set,
ignoring the universal cell, if any.
First of all, this method invokestestAndConvert() to ensure that all FreeVariables that can
be replaced by Symbol have been replaced. Then, this method returns a new object of
type ExtensibleCellMap.NonGenericKeySet(), which provides a specialized view of the
keys present in the logical map. Not unlike a KeySetExpanded, this set is an extension of
RestrictedSet, with only the following permitted operations : size(), isEmpty(), contains(),
and containsAll(). These operations rely on the corresponding methods of the logical map.
Furthermore, a NonGenericKeySet also implements the Iterable<Cell> interface, where the
iterator() function returns a new iterator of type NonGenericKeySetIterator() upon each
invocation. This iterator works as follows :
• This iterator may exist in one of the two states – (i) STATE.INTERNAL or (ii)

STATE.FALLBACK. Corresponding to these two states, the iterators on which this iterator
relies upon are internalIterator and fallBackMapIterator, respectively.
During construction, the default state of the iterator is set to be STATE.INTERNAL, and
the iterator internalIterator is initialized to an iterator of the key set of the internal map
(internalRepresentation).
• The next item to be returned by the iterator is maintained in a �eld named nextCell.

Each invocation of hasNext() attempts to set this �eld, if it is null, as follows :
– When the state of the iterator is STATE.INTERNAL, this method searches for the

next cell from internalIterator, such that : (i) the cell is not the universal cell, and
(ii) the cell is not present in the set keysNotPresent, if any. If any such cell is found,
then the method sets nextCell to that cell and returns true. Otherwise, if the inter-
nal map contains a universal cell, or if the fallBackMap is null, then the method
returns false. (Note that if any key is already present in the internal map, then the
fallBackMap would not be looked into.) Otherwise, the state of the iterator changes
to STATE.FALLBACK, and the iterator fallBackMapIterator is initialized to a new
iterator of the fallBackMap (of type NonGenericKeySetIterator), after which the
iterator invokes this method again, in its new state.

– When the iterator’s state is STATE.FALLBACK, the nextCell is set to the next cell
obtained from fallBackMapIterator such that : (i) the cell is not a generic cell, (ii) the
cell is not present in the set keysNotPresent, if any, and (iii) the cell is not present as
a key in the internal map. If found, this method returns true; else false.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 65

• An invocation of next() invokes hasNext() to ensure that the �eld nextCell has been
populated correctly. Then, it simply returns the value of nextCell, if the value is not
null, and sets the �eld to null. Otherwise, it throws a NoSuchElementException.

Query methods. Now, we note certain observations concerning query methods of an Extensible-
CellMap.
• isUniversal() and hasFreeVariables(). These methods look only into the internalRepre-

sentation (also referred as internal map), to check whether there exists a universal cell or
any FreeVariable, in the keys, respectively.
• hasDeletedSymbols(). If there are no deleted cells in Cell.delectedCells, or if there does

not exist any cell in Cell.deletedCells which is also obtained from nonGenericKeySet(), then
this method returns false; else true.
• readsKeyFromTheFallBackMap(). Given a key, this method returns true only if the

fallBackMap, if any, would be referred for searching for the corresponding value of the key
(regardless of whether the key is present in the fallBackMap or not). If no fallBackMap
exists, this method returns false.
• size(). If the logical map contains the universal cell as a key, then the size of the map is

returned as the size of Cell.allCells, minus the size of the set keysNotPresent.
If the fallBackMap and keysNotPresent sets are null/empty, then the size of the internal
map is returned. If the fallBackMap is empty by keysNotPresent is not, then the size of
the map is the number of elements that are present in the internal map but not in the set
keysNotPresent.
If the fallBackMap exists, we simply iterate over all the elements in the set returned by
keySetExpanded(), increase a counter by one for each element, and return the counter.
• isEmpty(). If the internal map is empty, and there is no fallBackMap, then this method

returns true. If the fallBackMap exists, and if internal map and keysNotPresent, if any, are
empty, then the method recursively checks if the fallBackMap is empty, and returns the
result. Otherwise, this method invokes size() on the map and returns true if the size is zero;
else false.
• containsKey(). First of all, this method invokes testAndConvert() on the map to replace

FreeVariables with Symbols, wherever possible. Then, if the queried key is a FreeVariable,
this method attempts to convert it into a Symbol, using testAndConvert().
If the key is present in the set keysNotPresent, if any, then this method returns false.
Otherwise, if this key is a universal cell, then this method returns true i� the logical map
contains the universal cell. Otherwise, if the internal map contains the given key, or if it
contains the universal cell, then the method returns true. Otherwise, if the fallBackMap

Manuscript submitted to ACM

66 Aman Nougrahiya and V. Krishna Nandivada

does not exist, then the method returns false; if it exists, then the query is performed
recursively on the fallBackMap, and the result is returned.
• containsValue(). This method iterates over the set returned by keySetExpanded(), and

returns true only if there exists any key whose corresponding value matches the queried
value.
• get(). This method invokes testAndConvert() on the map to replace FreeVariables with

Symbols, wherever possible. Then, if the given key is a FreeVariable, this method invokes
testAndConvert() for the key to check if a corresponding Symbol can be obtained.
If the key is a universal cell, and the set keysNotPresent is not empty, then null is returned
back. Otherwise, if the key is a universal cell, and the internal map contains the universal
cell, then the corresponding value is returned only when there does not exist any other key
in the internal map; if there are any other entries, then null is returned.
If the key is not the universal cell, and the set keysNotPresent contains the key, then null

is returned. Otherwise, if the key is not the universal cell, and the internal map contains
either a value for the given key, or if not, then the value for the universal cell, then that
value is returned.
Otherwise, if the fallBackMap does not exist, then null is returned; else the query is made
recursively on the fallBackMap.
• clone(). A clone of this map is obtained by simply calling the copy constructor, passing this

map as an argument. Note that the internal map is not copied in the copy constructor (unless
the link length exceeds certain threshold); the receiver map will be set as the fallBackMap
of the returned map. The API ensures that no changes made on the returned map will be
re�ected in the receiver map.
• hashCode(). For simplicity, we assume the size of the logical map to be its hash code. A

more precise, albeit complicated, solution of obtaining the hash code as some function of
the hash code of all the keys in the logical map proved to be quite ine�cient.

Note 20.4.2
The hashCode() must rely only on aspects of the logical map represented by an Extensi-

bleCellMap, and not on any of its individual components. Two maps with di�erent sets of
keysNotPresent and internalRepresentation may still be logically same (and hence, their hash
codes must be same).

• equals(). If the given object is not of same class as the receiver map, then this method
returns false. If the receiver and the given maps do not contain keysNotPresent, have
equal internal maps, and point to the same fallBackMap, then, as a special case, this method
returns true.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 67

This method iterates over the elements of the set returned by keySetExpanded(), i.e., on the
logical key set of the receiver map, and returns false if (i) no entry exists for any key of
the receiver map in the given map, or (ii) the values mapped to any key are di�erent in the
receiver map and the given map.
Otherwise, if the number of entries in the logical view of the receiver map and the given
map are not same, then this method returns false; else true.

Update methods. Following are some key points to note concerning internal workings of those
methods that may update the logical map. Note that care must be taken in ensuring that changes
made to an ExtensibleCellMap do not get re�ected in any of the other maps of which this map
is a fallBackMap.
• put(). If the given key is a FreeVariable, this method attempts to convert it into a Symbol,

using testAndConvert().
First of all, the old value is fetched from the map, and compared with the new value. If the
values are equal, this method returns the old value.
Depending upon whether the key for which an entry has to be added/updates is a universal
cell, two cases arise :
– Case 1. Key is not the universal cell.

First of all, we remove the key from keysNotPresent, by invoking the method re-
moveKeyFromKeysNotPresent(). Note that this step should not a�ect those maps which
extend this map. The method removeKeyFromKeysNotPresent works as follows : If the
given key is not present in the set keysNotPresent, this method simply returns. Oth-
erwise, this method iterates over all maps from extensionMaps of the receiver map,
and adds this key to the keysNotPresent of a map, if the extension map would refer its
fallBackMap for the key (tested using readsKeyFromTheFallBackMap). Finally, the key
is removed from the keysNotPresent of the receiver map.
Next, we need to shift the old mapping of the key, if any, to the extension maps. The
old entry is put into an extension map of the receiver map, if the extension map would
refer to its fallBackMap for the key (tested using readsKeyFromTheFallBackMap). After
shifting the old entries to the extension maps, the new key-value pair is added to the
internal map of the receiver map. If the key is FreeVariable, then we increment the
counter freeVariableCount by one.

– Case 2. Key is the universal cell.
In this case, �rst of all we need to remove all the keys from keysNotPresent. We do
so by invoking removeKeyFromKeysNotPresent(), which will shift these keys to the
keysNotPresent of the extension maps, if required.

Manuscript submitted to ACM

68 Aman Nougrahiya and V. Krishna Nandivada

Then, we shift all the mappings from internal map of this map to the extension maps, if
applicable. A mapping from the internal map of the receiver map is added to the internal
map of an extension map, if the extension map would refer to the fallBackMap for the
key corresponding to the mapping (tested using readsKeyFromTheFallBackMap).
While adding a mapping to the extension map, if the key is the universal cell, then we
set the �ag containsUniversal in the extension map. Finally, for each extension map, the
fallBackMap of the receiver, if any, is set as the fallBackMap of the extension map.
The internal map of the receiver map is then cleared, and the requested key-value pair is
added to it. The containsUniversal �ag is set, and freeVariableCount is reset to zero.

• remove(). If the key to be removed is a FreeVariable, this method attempts to convert it
into a Symbol, if possible, using testAndConvert().
If the map does not contain the given key, this method returns null. Otherwise, the value
corresponding to the key is captured, and is used later as the return value of this method.
If the key is not the universal cell, this method simply adds the key to the set keysNotPresent
of the receiver map using addKeysToKeysNotPresent(), which works as follows :
– If the key is not present in the logical map, this method returns. Otherwise, the value

corresponding to the key is captured.
– The mapping for the key and its associated value is added to the internal map of an

extension map of the receiver map, if the extension map would refer its fallBackMap for
the key (tested using readsKeyFromTheFallBackMap). Finally, the key is added to the
keysNotPresent set of the receiver map.

Otherwise, if the key is the universal cell, following steps are taken :
– If the set keysNotPresent is not empty, we empty it after shifting all such keys to the

extension maps, if required, using removeKeyFromKeysNotPresent(). These keys are
also removed from the internal map of the receiver, if present.

– If an extension map does not contain the universal cell, we take each non-universal
cell from the receiver map, and add its corresponding entry in the internal map of the
extension map if it refers to its fallBackMap for the cell (tested using readsKeyFromThe-
FallBackMap).
Finally, the mapping for universal cell from the receiver map is moved to the internal
map of each extension map, setting their containsUniversal �ag.

– Then, all the data structures corresponding to the receiver map are reset to their default
values.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 69

• clear(). In order to clear a set, we simply iterate over all the elements of the logical view of
the receiver map (obtained using keySetExpanded()), and remove them from the receiver
map.
• mergeWith(). This method takes the following three arguments :

(i) thatMap, a map which has to be merged into the receiver map.
(ii) mergeMethod, a method that is used to obtain the merged value from the values for any

given key in the two maps.
(iii) selectedCells, a set of cells for which the merge operation has to be performed; when

null, we interpret this set to represent the universal set of cells.
Given these arguments, this method takes each element that is present in the selectedCells
and in the key set of thatMap, and merges it into the receiver map. If the receiver map is
changed as a result of this merge operation, then this method returns true.
If thatMap is null, this method simply returns false. Otherwise, for each key which is
present in the selectedCell (assuming that a null set contains all the keys), this method
performs the following steps :
– For each non-universal key of thatMap (obtained using nonGenericKeySet()), this method

applies the mergeMethod on the value corresponding to that key in the thatMap and
value from the receiver map, if any. If the value is di�erent than what was present in the
receiver map, this method replaces the old value with new, and sets the changed �ag
(which was initialized to false).
Then, if there is no universal cell in the thatMap, this method returns the value of the
changed �ag. Otherwise, this method makes the following changes :
∗ For every non-universal key in the receiver map, which is not present in the non-

generic key set of the thatMap, the value for that key in the receiver map is replaced
with the value obtained after applying mergeMethod on that value and the value
corresponding to the universal cell in thatMap. If the new and old values are di�erent,
the �ag changed is set.
∗ For every key in the selectedCells (or in the universal set of cells, if the selectedCells

is null), which is neither present in the non-generic key set of the receiver map nor
in that of the thatMap, an entry is added to the receiver map, with value obtained
using mergeMethod when applied on the value corresponding to the universal cell
in the thatMap, and the one in the receiver map, if any. If the receiver map does
not contain the universal cell, then instead of invoking the mergeMethod, the value
corresponding to the universal cell in the thatMap is used as it is for the new entries.

Manuscript submitted to ACM

70 Aman Nougrahiya and V. Krishna Nandivada

20.5 Postorder and reverse postorder collectors

For e�cient termination of the forward IDFA passes, reverse postorder from the control-�ow
graph is the recommended order in which the nodes should be processed. IMOP provides a class
ReversePostOrderWorkList, which is used to obtain a list in which the nodes are maintained in
the order that respects the reverse postorder sequence of the nodes from the control-�ow graph.
There are certain other optimizations performed within this list to ensure e�cient processing of
the IDFA pass.

A ReversePostOrderWorkList also maintains the notion of phase ordering, where the nodes of
a phase are never prioritized for processing unless the barriers that start that phase have been
processed. Similarly, the ending set of barriers are never prioritized over the nodes of the phase to
be processed. In order to implement such ordering, a ReversePostOrderWorkList comprises of two
internal lists : (i) nonBarrierList, and (ii) barrierList. The list can exist in one of the two states, namely,
Stage.NONBARRIER, and Stage.BARRIER. The initial state of any list is Stage.NONBARRIER.
Following are some key observations concerning this class :

• add(). Given a node to be added in the list, �rst step is to check whether the node is a barrier
(or EndNode of a parallel construct), or something else. Accordingly, one of the two lists is
selected to add the node in. If the selected list is empty, the node is simply added, and the
method returns. Otherwise, if the selected list already contains the node, the method returns.
Otherwise, the sequence id (index) of the node in the reverse postorder is fetched by invoking
NodeInfo::getReversePostOrder() on the node. (The method getReversePostOrder() is explained
later in this section.) If the index could not be found, the node is added at the last of the list,
and the method returns. If the index was found, this method uses insertUsingBinarySearch() to
insert the node at its appropriate location within the selected list.
• insertUsingBinarySearch(). This method performs insertion of the given node, by searching

for its appropriate place using binary search on the reverse postorder id of the node. For the
purpose of this discussion, let us assume that the reverse postorder sequence id of a node is
referred to by the term weight of the node.

Given a sub-list with its start and end index, in which the given node with given weight has
to be inserted, this method searches for the proper index for the node and inserts it there, such
that the complete list remains sorted with respect to the weights of the nodes. This method
works as follows :
– If the start index of the list is similar to, or greater than the end index, then we look into the

weight of the node at the start index. If the weights are same and the nodes are same, then
this method returns. However, if the nodes are di�erent, despite having same weight, we
add the given node at the start index, and then return. If the weight of the node at the start

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 71

Note 20.5.1
Currently, maybe due to a bug, or due to the way things should be, there are various
nodes which might be sharing the same reverse postorder id, after program transforma-
tions are performed. For now, we ignore this observation. However, this points to some
missing update of these id’s during the elementary transformations. UPDATE: “For now,
we have implemented a workaround for this issue by setting the weights of all the
nodes that are present in the reverse postorder sequence to −1, before calling Pro-
gram.stabilizeReversePostOrderOfLeaves – a method that should have anyway re-
set the weights of every node that is reachable from main(). ”

index is smaller than that of the given node, then we insert the given node immediately
after the node at the start index.

– Some nodes may not have a valid weight due to lack of required update during elementary
transformation. (Their weight would be −1.) Such nodes are present at the end of the list.
Hence, if the weight of the last node is −1, we invoke this function recursively on the sub-list
that does not contain that node.

– If there are no nodes with invalid weight at the end of the list, we look into the weight of
the node at the center of the list. If the weight of the center node is same as that of the given
node, and if the nodes are same, then this method returns; however, if the weights are same
but the nodes are not, then the node is added immediately before the center node, and the
method returns.
If the weight of the given node is smaller than the weight of the center node, then this method
is invoked recursively on the sub-list that starts at the start index and ends immediately
before the center node. Otherwise, the method is invoked recursively on sub-list that starts
immediately after the center node, and ends at the end index.

• removeAnyElement(). This method is used to remove and return an element from the appro-
priate list. If the state of the list is NONBARRIER, we select the nonBarrierList as the list from
which the element should be taken. However, if the nonBarrierList is empty, we change the
state to BARRIER, and select the list barrierList. Similarly, if the state of the list is BARRIER, we
select the barrierList as the list from which the element should be returned. However, if the
barrierList is empty, the state is changed to NONBARRIER, and select the list nonBarrierList.

If the selected list is empty, we return null from the method. Otherwise, we remove the �rst
element from the selected list (index zero), and return it.

Getting the reverse postorder.
The method NodeInfo::getReversePostOrder() is used to obtain the value of the �eld Node-
Info::reversePostOrderId for the receiver leaf CFG node, indicating its position in the reverse

Manuscript submitted to ACM

72 Aman Nougrahiya and V. Krishna Nandivada

postorder traversal of the program’s super control-�ow graph (i.e., a CFG obtained after connect-
ing all the CFGs of various procedures with the help of call and return edges from the call graph)
This ordering is used by IDFA analyses to decide the order in which nodes present in the work list
are processed. A reverse postorder would respect the following properties :

• Assuming that each cycle in the super CFG is considered as a single node, none of the nodes in
the resulting DAG is processed until all its parents have been processed.
• Similarly, within a cycle, assuming that the back-edge does not exist, none of the nodes is

processed until all its parents have been processed.

These properties ensure that the �xed-point for an IDFA is reached early, without having to
reprocess a node more number of times than required.

Before returning the value of the aforementioned �eld, this method �rst invokes Pro-
gram.stabilizeReversePostOrderOfLeaves() to ensure that such �elds have been populated for all
reachable leaf CFG nodes.
The method Program.stabilizeReversePostOrderOfLeaves() works as follows

• The main aim of this method is to obtain a reverse postorder sequence of leaf nodes that
are reachable from the entry point of main(), and save it in the global list of nodes, named
Program.reversePostOrderOfLeaves. This method also saves the sequence id of each node in
the �eld NodeInfo::reversePostOrderId for that node.
• There exists a global �ag Program.postOrderValid, which is set to true at successful completion

of this method. This �ag is initially false, and it also gets reset again during automated update
of the program, under any elementary transformation. If this �ag is found to be set, then this
method simply returns.
• If the �ag Program.postOrderValid is not set, this method begins the processing by traversing

over all the pre-existing nodes in Program.reversePostOrderOfLeaves, and resetting their �eld
NodeInfo::reversePostOrderId to −1.
• If no main() exists then this method returns.
• In order to obtain the reverse postorder list of nodes, this method invokes Traversa-

lOrderObtainer.obtainReversePostOrder() on the BeginNode of main(), and a lambda
which returns a list of inter-task successor leaf nodes for any given node (using
CFGInfo::getInterTaskLeafSuccessorList()). The returned list from obtainReversePostOrder() is
saved in Program.reversePostOrderOfLeaves.
• Then, this method iterates over all nodes in the list Program.reversePostOrderOfLeaves and

sets the �eld NodeInfo::reversePostOrderId of each node with its index in that list.
• Finally, this method sets the �ag Program.postOrderValid to true, and returns.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 73

The method TraversalOrderObtainer.obtainReversePostOrder() is used to obtain the re-
verse postorder of all the reachable nodes from the given node (of any generic type), and the given
lambda which gives the neighbors (in any generic graph) of each node. It achieves so by �rst
obtaining the postorder sequence, and then by returning the reverse of it. The postorder sequence
is obtained by an invocation to TraversalOrderObtainer.obtainPostOrder(). This method, in turn,
invokes a recursive method TraversalOrderObtainer.performPostOrder(), which works as follows :

• This recursive method takes a generic node, a lambda that provides a list of neighbors of the
node in the generic graph, a set to keep track of the nodes that are under traversal (graySet), a
set to keep track of nodes that have already been traversed (blackSet), and a list which this
method would populate with the traversed nodes (printList), in postorder.
• If the given node is present in the graySet, then this method returns, lest it would enter a cycle.

Otherwise, it adds the node into the graySet, indicating that the node is being traversed.
• For each neighbor of the node, obtained by applying the given lambda, this method recursively

calls itself on the node, unless the node is already present in the blackSet.
• Upon returning back from the invocation on all neighbors of the node, this method shifts the

node from the graySet to the blackSet
• Finally, it adds the node at the end of the printList. This way, this method ensures that a node

is added to the list only after all its neighbors have been added, thereby attaining the postorder.

21 GENERAL GUIDELINES TO IMPLEMENT AN IDFA

In this section, we detail out various steps that are required while instantiating any of the generic
�ow passes to create a concrete �ow analysis. We also reiterate various points from Section 20 to
be kept in mind while instantiating the generic pass.

In order to create a new �ow analysis, �rst of all, we need to decide which generic pass should
we extend. If the �ow fact of the analysis will not depend on the contents of the nodes, then
we need a control-�ow analysis. All such analyses will by default be intra-thread in nature. If
we need an intra-procedural analysis, we should extend IntraProceduralControlAnalysis<F>; for
inter-procedural analyses, we should extend InterProceduralControlAnalysis<F>.

If the �ow fact of the analysis can depend on the contents of the nodes, then we require a
data-�ow analysis. These analyses are inter-thread in nature, by default. If the �ow fact can be
modelled as a map from a set of Cells to a set of Immutable values, then we need to use a cellular
analysis. For forward cellular analysis, we should extend InterThreadForwardCellularAnalysis; for
backward, InterThreadBackwardCellularAnalysis. On the other hand, if the structure of �ow fact
does not fall in this category, then we can extend InterThreadForwardNonCellularAnalysis for
forward analyses, and InterThreadBackwardNonCellularAnalysis for backward analyses.

Manuscript submitted to ACM

74 Aman Nougrahiya and V. Krishna Nandivada

Note 21.0.1
Following are some important points to keep in mind while instantiating the any generic

�ow pass :
• The methods getTop() and getEntryFact() should never return null, and they should

always return a new object.
• The method getEntryFact() should also model the e�ects of the parameters of main() if

any, on the returned �ow fact/map.
• None of the visit() methods, initProcess() method, merge() method, or writeToParameter()

method, should change the internal state of their arguments. They are allowed to return
any/either of their arguments, wherever applicable, except for the nodes listed in next
point.
• If the �ow maps are of type CellularFlowMap<?>, then the IN �ow map must never be

returned as OUT �ow map by the transfer functions of the following nodes :
– BeginNode of a FunctionDefinition.
– EndNode of a FunctionDefinition, or of a CompoundStatement.
– PostCallNode of any CallStatement.

Note that currently all the data-�ow analyses are �ow-sensitive, path-insensitive, and �eld-
sensitive in nature. Versions with other values for these analysis dimensions can be added later on
demand.

21.1 Cellular data-flow analyses.

Following are the steps to create an instance of the inter-thread �ow-sensitive inter-procedural
context-insensitive generic IDFA pass, where the IN and OUT �ow maps at any given node are in
the form of a map from set of Cells to set of some immutable values :

Step 1. First of all, we need to create a unique constant in the enumerator AnalysisName, corre-
sponding to our new analysis. For example, the points-to analysis has a unique constant
AnalysisName.POINTSTO.

Step 2. Next, we create the main class for our analysis by extending the generic pass In-
terThread*CellularAnalysis<F>, where F is another speci�c class extended from Cellu-
larFlowMap<V extends Immutable> denoting the type of the �ow maps of this analysis, with V
being the type of the co-domain of the �ow maps of this analysis. We usually make F a static
inner class of the analysis class.

Step 3. For each �ow map that extends CellularFlowMap<V>, following are the three methods that
need to be implemented :
(i) Constructors. Two constructors are needed to be provided. One that takes an Extensible-

CellMap<V>, and another that takes a CellularFlowMap<V>. Both these constructors can
simply pass the arguments to their superclass.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 75

(ii) getAnalysisNameKey() : String. This method is used to return a unique string for this
analysis which may be helpful in identifying it in any debugging data. For example, the
string for points-to analysis is “ptsTo".

(iii) meet(V, V) : V. This method models the meet operation of the lattice corresponding to this
analysis. It takes two arguments of type V, and returns back an object which represents
the meet of both the arguments as per the lattice. Note that V is an immutable type. Hence,
this method cannot (should not) change the internal states of its arguments. However, it is
allowed to return one of its arguments, if needed.

Note that V must implement Immutable. This interface does not contain any members to
be de�ned. It only serves as a reminder to the user that the internal state of V must be im-
mutable (as same object may be reused by di�erent �ow maps to ensure e�ciency). Some
examples for V are : ImmutableCellSet, ImmutableDefinitionSet, etc. The related �ow maps
for these example V’s are PointsToFlowMap, and ReachingDefinitionFlowMap, which ex-
tend CellularFlowMap<ImmutableCellSet>, and CellularFlowMap<ImmutableDefinitionSet>,
respectively.

Step 4. Following are the four methods that must be overridden by each analysis that extends In-
terThread*CellularAnalysis<F> :
(i) Constructor. Each analysis needs to have a constructor that passes two arguments to the

constructor of its superclass InterThread*Analysis<> – (i) the constant corresponding to
that analysis in AnalysisName, and (ii) an object of type AnalysisDimension, which is used
to specify various analysis dimensions for this analysis. For now, the only constructor of
AnalysisDimension that we use is one which speci�es whether the graph traversal used
in the analysis is SVE-sensitive or not (by passing either SVEDimension.SVE_SENSITIVE
or SVEDimension.SVE_INSENSITIVE). Refer to Section 24 on more details on SVE (single-
valued expressions).

(ii) getTop() : F. This method should be overridden to return back a new object denoting the
TOP element of the lattice corresponding to this analysis, upon each invocation.

(iii) getEntryFact() : F. This method should provide a new object upon each invocation, denoting
the entry IN �ow map for the BeginNode of main(). It needs to consider all the other globals
present in the program, and also, both the parameters of main(), if present.

(iv) writeToParameter(ParameterDeclaration, SimplePrimaryExpression, F) : F. This
method should provide the transfer function that models the e�ect of assignment of an
argument (the SimplePrimaryExpression) to the parameter (ParameterDeclaration), on the
given IN �ow map (the third argument), and return the resulting OUT �ow map. Note that

Manuscript submitted to ACM

76 Aman Nougrahiya and V. Krishna Nandivada

this method must not change the internal state of its third argument. However, it is allowed
to return it as it is (when the transfer function is an identity function, for an instance).

Some examples of concrete IDFA analyses are PointsToAnalysis, ReachingDefinitionAnalysis,
etc.

Step 5. The setup so far should give us a working IDFA pass, which assumes that all the transfer
functions corresponding to each kind of CFG leaf nodes are identity functions. In order to
specify the actual transfer functions, which provide the OUT �ow map given an IN �ow map
at a given node, there are two alternatives :
(i) The initProcess(Node, F) : F method, can be used to provide a generic de�nition of the

transfer function for each type of leaf CFG node. Given a node and the IN �ow map, this
method should return back the corresponding OUT �ow map. It must not change the internal
state of its argument. However, it can return the argument as it is, if needed, except for the
following nodes : BeginNode of a FunctionDefinition; EndNode of a FunctionDefinition
or CompoundStatemnet; and any of the PostCallNodes. If the type of the �ow map is not
CellularFlowMap<?>, then the argument can be returned, regardless of the type of the node.
This option is well suited for those cases where the code needed to be written for imple-
menting the transfer function does not di�er much across the type of leaf CFG nodes. For
an example, refer to the class ReachingDefinitionAnalysis.

(ii) Alternatively, one can use the visit(Node, F) : F methods, which take a speci�c type of leaf
CFG node, and an IN �ow map, and return the OUT �ow map corresponding to that type of
node. For each type of leaf CFG node, a di�erent visit() method needs to be overridden. The
transfer function for any type for which no visit() method has been overridden is assumed
to be an identity function. As before, these methods must not change the internal state
of their �ow map argument. However, they can return the argument as it is, if required,
except when they are visits of the following nodes, and the �ow maps are of type Cellu-
larFlowMap<?> : BeginNode of a FunctionDefinition; EndNode of a FunctionDefinition or
CompoundStatement; or any PostCallNode.
This approach is well-suited in those cases where di�erent codes need to be provided for
implementing the transfer functions for di�erent kinds of leaf nodes. For example, refer to
the class PoinstToAnalysis.

One must be careful if attempting to use both the options in any analysis. It is not recommended,
and might not re�ect a good design of the analysis.

Note that if one needs to implement any edge-transfer functions (useful for modelling e�ects
of taking speci�c branches, on �ow facts), then one should also override the edgeTransferFunc-
tion().

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 77

In order to ensure that the newly created analysis can automatically run upon �rst invocation
of NodeInfo::getIN(AnalysisName) or NodeInfo::getOUT(AnalysisName), on any given node, we
need to ensure the following :

(i) Add a unique boolean �ag corresponding to the new analysis as a static member of NodeInfo,
initialized to false.

(ii) In method NodeInfo::checkFirstRun(), which is automatically invoked at the beginning of
getIN() and getOUT, add code corresponding to the new analysis (similar to the pre-existing
codes for other analyses), which runs the analysis on main() only if the corresponding �ag is
not set, and then sets the �ag.

21.2 Non-cellular data-flow analyses.

Note that if the type of �ow fact for a data-�ow analysis is not a map from set of cells to set
of some immutable values, then one needs to directly extend from the FlowFact class to ob-
tain the �ow map type speci�c to the given analysis, which should extend from any of the
InterThread*NonCellularAnalysis classes.

Any such subclass of FlowFact needs to override the following methods :

• The isEqualTo(F):boolean method, which takes a �ow fact and compares it to the receiver
�ow fact. This method is used to ensure termination.
• The merge(F, CellSet):boolean method, which takes a �ow fact, and updates the receiver

�ow fact such that it starts re�ecting the merge of its initial state and the given argument. The
merge operation between the �ow facts might generally rely upon applying the meet operation
on various elements of the �ow facts (depending upon whatever be the internal structure of
the �ow fact). This method must not change the internal state of its argument.
• The getString():String method should return the string representation of the �ow fact, which

is used for debugging purposes.

Furthermore, a subclass of FlowFact would also have to explicitly declare all data members that
can logically represent the �ow fact; a constructor that populates these data members should also
be provided. For an example of such a �ow fact, refer to the class HeapValidityAnalysis, which
uses ValidityFlowFact that does not extend from CellularFlowMap<?>.

21.3 Control-flow analyses.

Apart from getTop(), getEntryFact(), and one or more of the visit(), initProcess(), and edgeTrans-
ferFunction() methods, as explained above for data-�ow analyses, in case of instantiations of
intra-procedural control-�ow analyses, we need to implement the following method :

Manuscript submitted to ACM

78 Aman Nougrahiya and V. Krishna Nandivada

• assignBottomToParameter(ParameterDeclaration, F):F which models the e�ect of writ-
ing the BOTTOM value (of lattice) to the parameter, on the given �ow fact, and return the
resulting �ow-fact. Note that for the case of intra-procedural analyses, the method writeToPa-
rameter() is not applicable.

For inter-procedural control-�ow analyses, the nature of methods that need to be overridden
remains same as in the case of data-�ow analyses.

22 INSTANTIATIONS OF GENERIC FLOW PASSES

In this section, we discuss the details of some concrete IFA passes that are already present in IMOP.

22.1 Points-to analysis

IMOP provides an inter-thread �ow-sensitive inter-procedural context-insensitive sve-sensitive
points-to analysis, via the class PointsToAnalysis. The corresponding enum constant for this
analysis in AnalysisName is POINTSTO; this constant is used to access the IN and OUT �ow maps
corresponding to this analysis, for any given node.

The �ow maps related to this analysis are of type PointsToFlowMap, which is a subclass of Cellu-
larFlowMap<ImmutableCellSet> (Section 20.1). An ImmutableCellSet is a special CellSet, which
does not allow any update operations on itself after its construction. We use such immutable sets
to ensure that (i) we can reuse the sets in multiple �ow maps, (ii) we can use CellularFlowMap<?>
as the type for �ow maps of this analysis, as the values of CellularFlowMap<?> must be immutable.

At any given node, each entry in the internal map of a �ow map at that node maps a cell to a set
of cells that it may point to, at that node. Some key points to note concerning PointsToFlowMap :

• There are two constructors – one takes a cell map (ExtensibleCellMap<ImmutableCellSet>,
from here on, synonymous to ExtensibleCellMap, within this section) as an argument, and
uses the same object as the internal map within the newly constructed �ow map, whereas, the
another constructor takes a �ow map (CellularFlowMap<ImmutableCellSet>, from here on,
synonymous to CellularFlowMap within this section)as an argument and sets the internal map
to a new ExtensibleCellMap< object, obtained from the internal map of the given argument.
• The debug string corresponding to this �ow map is “ptsTo".
• The meet() operation, which takes two ImmutableCellSet sets and returns another set which

is the meet of the given sets, works as follows :
If both the given sets are null, then null is returned. Otherwise, if one of the sets is null,

then the another set is returned. If both the given sets are equal, then any of the sets is returned.
Otherwise, the union of both the sets (a new object) is returned.

Now, we look into the details of the PoinstToAnalysis :
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 79

• The TOP �ow map. The getTop() method simply returns a new PoinstToFlowMap upon each
invocation, which contains an empty ExtensibleCellMap.

Note 22.1.1
For any given cell, we assume that an empty points-to set can also be denoted by a null
value.

• The entry �ow map. The entry �ow map for an analysis is obtained by an invocation to the
method getEntryFact(). In this method, we look into each global Declaration present in the
TranslationUnit, such that : (i) the Declaration is not that of a typedef, (ii) it does not declare
more than one entity, and (iii) the declared entity is of type PointerType.

Corresponding to the symbol declared in each such Declaration, we add an entry from that
symbol to an ImmutableCellSet, in the entry �ow map (which is initialized to the TOP �ow
map). The set is obtained as follows :
– If there is no initializer in the declaration, ImmutableCellSet contains only the NULL cell

(obtained via Cell.getNullCell()).
– Otherwise, we obtain the locations (cells) represented by the initializer, using the method

CellAccessGe�er.getLocationsOf() (Section 10). If the locations contain the universal cell,
we populate the ImmutableCellSet only with the universal cell. Otherwise, corresponding
to each location, we add (i) the element pointed to by the AddressCell, if the location is an
AddressCell, (ii) the location itself, if it is a FieldCell, or (iii) the values obtained from the
entry map itself, corresponding to each location.
Furthermore, to the entry �ow map, we also add an entry corresponding to the

pointer parameter of main(), if any, with the value obtained via an invocation of Heap-
Cell.getUnknownParamPointee().
• The transfer functions. The transfer functions for the following leaf CFG nodes is an iden-

tity function : UnknownCpp, UnknownPragma, OmpForCondition, OmpForReinitExpression,
FlushDirective, DummyFlushDirective, TaskwaitDirective, TaskyieldDirective, GotoStatement,
ContinueStatement, BreakStatement, BeginNode, EndNode, and PreCallNode.
UPDATE: “In case if a BeginNode belongs to a FunctionDefinition, or an EndNode
belongs to a FunctionDefinition or to a CompoundStatement, then we return a copy
of the IN �ow map for such nodes, to ensure that the scope-relevance code does not
break. ”

Note that the transfer function corresponding to the BarrierDirective is provided by the
generic pass, and cannot be overridden. Next, we explain the transfer functions for other kinds
of CFG leaf nodes :
– The transfer function of a Declaration works as follows :

Manuscript submitted to ACM

80 Aman Nougrahiya and V. Krishna Nandivada

∗ If the declaration is not that of a PointerType, then the transfer function is an identity
function.
∗ If there is no initializer in the declaration, then we assume that the points-to set on

the right-hand side of the assignment in the declaration contains only one element, the
NULL cell. Otherwise, if the locations represented by the initializer contains the universal
cell, then we assume that the points-to set of the RHS contains only the universal cell.
Otherwise, the points-to set of the RHS will contain the points-to cells of all the locations
represented by the initializer (obtained using Cell.getPointsTo(Node):ImmutableCellSet).
∗ If the points-to set of the RHS is not empty, then we invoke the method Optimized-

PointsToUpdateGe�er.generateUpdateMap() with appropriate LHS and RHS sets; the
workings of this method are explained below :
· This method is used to obtain the map of new points-to �ow-facts given a logical

assignment.
· This method takes three arguments : (i) a node for which this method has been invoked,

(ii) a set of cell, lhsSet, denoting the LHS of the assignment being modelled, and (iii) a
set of cell, rhsPtsToSet, denoting the points-to set of the RHS of the assignment being
modelled.
· If any of the sets are empty or null, this method returns an empty update map.
· In order to indicate whether the new may points-to information would kill the existing

information, we maintain a �ag strongUpdate, which is initially set to true.
We reset the �ag to false, if any of the following conditions are true :
(i) if there are more than one elements in the lhsSet,

(ii) otherwise, if the element in the lhsSet is the universal cell,
(iii) if the element is a HeapCell,
(iv) otherwise, if the element is an aggregate type (ArrayType or StructType), or a

UnionType.
· If the �ag strongUpdate is set, we simply add a mapping from the sole element in

lhsSet to the complete rhsPtsToSet, in the update map, and return the map.
· Otherwise, when the �ag is false and the lhsSet is a universal set, then we add a

mapping from the universal cell to the universal set in the update map, and return it.
· Otherwise, if the �ag is false and the lhsSet is not a universal set, we add an entry

from each element of the lhsSet to the union of the old points-to set of that element
and the rhsPtsToSet (if the union is not equal to the old points-to set of the element).

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 81

The arguments passed to this method from the visit of a Declaration are : the declaration
node; a set containing only the declared symbol; and a set containing union of points-to
of all the locations represented by the initializer (as described in the previous point).
∗ If the result of the invocation of generateUpdateMap() is not empty, we change the OUT

�ow map (which is initialized with a copy of the given IN �ow map) by invoking the
mergeWith method on the �ow map with following arguments : (i) the update map; (ii) a
lambda that speci�es a meet method that returns the value from the update map, if any,
otherwise the value from the receiver map; and (iii) a null set, representing the universal
set of cells.
Finally, the updated OUT �ow map is returned by the transfer function.

– For the case of an OmpForInitExpression, of the form id = expression, the transfer
function is speci�ed in a manner similar to how it is speci�ed for a Declaration, replacing
the declared symbol with id, and the initializer with the expression.
To obtain the transfer function of the following type of leaf nodes, we invoke the method
PointsToAnalysis.updateOptimizedPointsTo(), with the speci�ed argument, to obtain the
OUT �ow map, given the IN �ow map :
∗ ExpressionStatement, with its expression as the argument.
∗ ReturnStatement, with the returned expression as the argument.
∗ Expression, with itself as the argument.
∗ IfClause, NumThreadsClause, and FinalClause, with their respective expression as the

argument.
The method updateOptimizedPointsTo() works as follows :
∗ This method takes an IN �ow map, and an expression node, and returns the OUT �ow map

which would be obtained as a result of the symbolic execution of the given expression.
∗ First of all, the visitor OptimizedPointsToUpdateGe�er is invoked on the expression, to

obtain the updated points-to �ow map. If the update map is empty, this method simply
returns the IN �ow map as the OUT �ow map. Otherwise, the OUT �ow map is changed
by invoking the method mergeWith, in a manner similar to how it is done in the transfer
function of a Declaration.
∗ The visitor OptimizedPointsToUpdateGe�er works as follows :
· This visitor contains an update map, named updateMap, which is initially empty; at

the end of the call to this visitor, this update map is the map which is useful for the
caller.
· When visiting a NonConditionalExpression (which represents an assignment state-

ment), this visitor �rst obtains the set of locations representing the LHS and RHS

Manuscript submitted to ACM

82 Aman Nougrahiya and V. Krishna Nandivada

of the assignment. If either of the sets are empty, the visit does not perform any
actions. If there exists any location in LHS which is not a PointerType, then no action
is performed. If the RHS set is a universal set of cells, then the points-to set of the
RHS set contains only one value – the universal cell. Otherwise, it contains the union
of points-to of all the elements of the RHS.
Now, given the set of locations on the LHS of the assignment, and the union of the
points-to set of the locations on the RHS of the assignment, we update the �eld
updateMap in a manner similar to how we do it for the OUT �ow map in the transfer
function of a Declaration.
· Note that the expressions within the sizeof operator are not evaluated. Hence, this

visitor does not traverse within the UnarySizeofExpression and SizeofUnaryExpres-
sion nodes.

– The transfer function that models the write of an argument to the parameter of a called
function is modelled using the methodwriteToParameter(), which is overridden as follows :
If the argument is a Constant, this method returns the IN �ow map as the OUT �ow map.
Otherwise, the processing is similar to how it is done for a Declaration, with the declared
symbol replaces by the symbol denoting the parameter, and the initializer replaced by the
argument.

– Finally, for a PostCallNode, the transfer function is de�ned as follows : If the associated
function does not return any value, UPDATE: “a copy of the” IN �ow map would be
returned as the OUT �ow map. Otherwise, the transfer function behaves similar to how it
does for a Declaration, where the declared symbol is replaced with the capturing identi�er,
and where instead of taking the points-to set of the locations represented by the initializer of
the Declaration, we take union of points-to set of the locations represented by each possible
return value, of each possibly called function.

22.2 Reaching-definitions analysis

IMOP provides an inter-thread �ow-sensitive inter-procedural context-insensitive sve-sensitive
reaching de�nitions analysis, via a class ReachingDe�nitionAnalysis. The unique constant in
AnalysisName corresponding to this analysis is REACHING_DEFINITION.

The �ow maps of a reaching de�nition analysis are of type ReachingDefinitionFlowMap, which
extends CellularFlowMap<ImmutableDefinitionSet>. An ImmutableDe�nitionSet is an Ab-
stractSet where all the update methods are prohibited. As in the case of PointsToAnalysis, we use
immutable sets here so that we can use CellularFlowMap<> as type of �ow maps for this analysis,
and also so that we can reuse the sets.
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 83

At any program point (node), each entry in the internal map of the �ow map at that point maps
a cell to a set of Definitions that may have de�ned the cell, and that may reach that point. Some
key points to note concerning ReachingDefinitionFlowMap :

• There are two constructors : (i) one of the constructors takes an Extensible-
CellMap<ImmutableDefinitionSet> (from here on, referred by ExtensibleCellMap within this
section), and sets that map as the internal map within the newly constructed �ow map, and
(ii) the another constructor takes another �ow map, and sets the internal map of the newly
constructed map as a copy of that of the given argument.
• The debug string corresponding to this analysis is “rd".
• The meet() operation takes two ImmutableDefinitionSets, and returns an ImmutableDefini-

tionSet as follows : If both the given sets are null, then a new empty ImmutableDefinitionSet
is returned. Otherwise, if one of the sets is null, then the another set is returned. If both the
given sets are equal, then any of the sets is returned. Otherwise, the union of both the sets (a
new object) is returned.

Below, we discuss certain key points to note concerning ReachingDefinitionAnalysis :

• The TOP �ow map. The getTop() method simply returns a new ReachingDefinitionFlowMap
on each invocation. This �ow map contains an empty map from cells to sets of de�nitions.
• The entry �ow map. The getEntryFact() is used to obtain the �ow map which will be the IN

�ow map for the �rst node in the control-�ow graph of the main().
For each variable symbol declared in the global scope, an entry from symbol to a set

(ImmutableDefinitionSet) containing just its Definition (which is comprised up of the de�ning
node and the symbol being de�ned), is added to a newly created ExtensibleCellMap. Sim-
ilarly, to this map, we also add entries for both the parameters of main(). Finally, a new
ReachingDefinitionFlowMap is created using this map, and returned as the entry �ow map.
• The transfer functions. This analysis relies on the following two methods to specify the

transfer functions for various kinds of leaf CFG nodes :
– initProcess(). Invoked for a node and IN �ow map at the node, this method is used to obtain

the corresponding OUT �ow map.
UPDATE: “If the node is a BeginNode of a FunctionDefinition, or an EndNode of a
FunctionDefinition, or of aCompoundStatement, then thismethod simply returns
a copy of the IN �ow map, to ensure that the scope-relevance code does not break.
”
Using AllDefinitionGe�er, this method collects the set of de�nitions that exist within the
given node. Note that each possible write within the node corresponds to a de�nition. If
there are no de�nitions in the node, the IN �ow map is returned as the OUT �ow map;

Manuscript submitted to ACM

84 Aman Nougrahiya and V. Krishna Nandivada

UPDATE: “however, if the node is a PostCallNode, then a copy of the IN �ow map
is returned.”
Otherwise, the set of cells that may have been rede�ned in the node, referred as redefined-
Cells, is obtained from the collected de�nitions.
A new OUT �ow map is created using the IN �ow map. Depending upon the nature of the
set redefinedCells, there are three cases, under which we modify the internal map of the
OUT �ow map as follows :
∗ Case 1. The set redefinedCells is universal. For each key in the non-generic key set of the

internal map, we add a new de�nition (the only de�nition from this node) to the set of
de�nitions corresponding to that key, by creating a new ImmutableDefinitionSet object.
If universal cell exists as a key in the internal map, we perform the same operation for
its set as as well.
∗ Case 2. The set redefinedCells is not universal, and is not singleton. In this scenario, we

traverse over the cells that are present in the redefinedCells. For each such cell that may
have been (re)de�ned in this node, we �rst fetch the set of de�nitions corresponding to
it from the internal map. If no de�nition exists, we assume the initial set to be empty.
To this set, we add the de�nition corresponding to that cell. Then, we create a new
ImmutableDefinitionSet from this set, and put it as the value for that cell in the internal
map.
∗ Case 3. The set redefinedCells is not universal, but singleton. In this case, we create a

singleton set of de�nitions, containing only the sole de�nition that exists within this
node. In the internal map, we add an entry from the sole cell that is present in the set
redefinedCells, to a new ImmutableDefinitionSet object that contains the newly created
singleton set of de�nitions.

UPDATE: “Note that now we do not recreate and store set values for a mapping if
the existing set, if any, is equal to the new set to be stored.”

– writeToParameter(). This method is used to model the e�ects of the assignment of an
argument to its parameter, on the �ow map. Given an IN �ow map (of type ReachingDefini-
tionFlowMap), a new map (of type ExtensibleCellMap) is created using the internal map of
the IN �ow map. To this newly created map, this method adds an entry from the parameter
to a set that contains the de�nition corresponding to the write of the argument to the
parameter. Finally, this map is used to obtain the new OUT �ow map, which is then returned
by this method.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 85

22.3 Copy-propagation analysis

The class CopyPropagationAnalysis provides an inter-thread �ow-sensitive context-insensitive
sve-sensitive copy propagation analysis. The identi�er AnalysisName for this analysis is COPY-
PROPAGATION.

The structure of �ow maps for this analysis is de�ned by the type CopyPropagationFlowMap,
which extends CellularFlowMap<Cell> (Secion 20.1). At any given node, each entry in the �ow
map of the form x → y denotes the fact that the only reaching de�nition(s) of x at the node is/are
some copy statement(s) of the form x = y;, and that the variable y has not been rede�ned in any
of the paths between any of those de�nition(s) and the given node. The implicit copy relation
modelled by such maps is clearly transitive, and commutative in nature. Following are some key
methods in a CopyPropagationFlowMap :

• There are two constructors. One of the constructors takes an ExtensibleCellMap<Cell> as an
argument and uses it as the internal map of the newly constructed �ow map; the another
constructor takes another �ow map as an argument, and uses an extension of the internal map
of that �ow map as the internal map of this newly constructed �ow map.
• The unique debug string corresponding to this analysis is “copy".
• Given two cells, the meet() operation returns a cell as follows : If both the cells are null, then
null is returned. If either of the cells is null, then the other cell is returned. Otherwise, the
universal cell is returned.

Next, we note some key observations concerning CopyPropagationAnalysis :

• The TOP �ow map. The getTop() method returns a new CopyPropagationFlowMap upon
each invocation. This �ow map contains an empty ExtensibleCellMap<Cell>.
• The entry �ow map. The entry �ow map is obtained by an invocation to the method getEn-

tryFact(), which returns a new CopyPropagationFlowMap object, with its internal map (of type
ExtensibleCellMap<Cell>) populated as explained next.

Corresponding to each global Declaration that satis�es the following constraints, an entry
is made into the internal map.
– The declaration is not that of a typedef.
– The declaration does not declare more than one symbol.
– The declaration contains an explicit initialization of the declared symbol.
– There is exactly one Assignment in the declaration, as obtained from AssignmentGet-

ter.getInterProceduralAssignments() (refer to Section 23), and that assignment satis�es the
following properties :

Manuscript submitted to ACM

86 Aman Nougrahiya and V. Krishna Nandivada

∗ The LHS of the assignment, obtained via Assignment::getLHSLocations(), corresponds
to only one cell, which is a Symbol.
∗ The RHS of the assignment, obtained via Assignment::getRHSLocations(), corresponds

to only one cell, which is a Symbol.
For each such de�nition, a mapping from its LHS location to the RHS location is added to the
internal map, which is used to create the new CopyPropagationFlowMap to be returned from
this method.
• The transfer functions. Given an IN �ow map and a node, transfer functions are used to

obtain the OUT �ow map, by modelling the e�ects of the node on the IN �ow map. For copy
propagation analysis, the transfer functions are speci�ed using following two methods :
– initProcess().

Given a node and its IN �ow map, this method looks into all assignments within the node,
and returns an OUT �ow map accordingly.
UPDATE: “If the node is a BeginNode of a FunctionDefinition, or an EndNode of a
FunctionDefinition, or of aCompoundStatement, then thismethod simply returns
a copy of the IN �ow map, to ensure that the scope-relevance code does not break.
”
If there are no writes in the node, then the IN �ow map is returned as the OUT �ow map;
UPDATE: “however, if the node is a PostCallNode, then a copy of the IN �ow map
is returned.”
Otherwise, we create a new OUT �ow map, with its internal map set as an extension to the
internal map of the IN �ow map.
We obtain the list of Assignments in the node, using AssignmentGet-
ter.getInterProceduralAssignments(). The node is marked as a copy instruction if
there is only one Assignment corresponding to the node, and that Assignment is itself a
copy instruction, as checked using Assignment::isCopyInstruction() (Section 23).
If this node is not a copy instruction, and if it may be writing to the universal cell, then
we empty the internal map of the OUT �ow map, and return the map. Otherwise, if this
node does not write to the universal map, then for each cell that is written in the node, if
there exists any mapping which maps any other cell to the written cell, then we change
that mapping to map the other cell to the universal cell. We also add a mapping from the
written cell to the universal cell, and then return the OUT �ow map.
If this node is a copy node, then we proceed as follows. Consider that an assignment assigns
a cell rhs to the cell lhs. First of all, we iterate over all the keys of the internal map of the
OUT �ow map, and see if there is any entry that maps rhs to the lhs. If so, we set a �ag

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 87

foundMirror (initially false). For every other entry, if the value is same as the lhs cell, then
we replace the mapping of that key to map to the universal cell. After iterating over all the
entries, if we �nd that the �ag foundMirror was never set, then we add/update an entry
such that the lhsCell maps to the rhsCell. Finally, we return the OUT �ow map.

– writeToParameter().
For a given IN �ow map at a ParameterDeclaration, this method updates the �ow map to
model the e�ect of writing the speci�ed argument to the parameter. If the argument is a
constant, or if the cell corresponding to the argument is not a Symbol, then the IN �ow
map is returned as the OUT �ow map. Similarly, if a mapping already exists in the internal
map from the parameter to the argument, this method returns the IN �ow map. Otherwise,
a new OUT �ow map is constructed with its internal map as an extension of the internal
map of the IN �ow map. To this newly created �ow map, we add an entry which maps the
parameter to the argument. Finally, we return this map.

22.4 Dominance analysis

IMOP provides sve-sensitive dominance analysis for the intra-thread super control-�ow graph
(i.e., one where the call statements are connected to the called de�nitions, and where edges exist
between �ushes to indicate �ow of shared data) using the class DominanceAnalysis. A node A
dominates a node B, if there does not exist any path from the entry node to B that does not pass
through A.

Unlike most of the other instantiations of the generic IDFA pass, this analysis does not have a
�ow fact which derives from CellularFlowMap<?>. Instead the �ow facts of this analysis are of
type DominatorFlowFact which extends directly from the FlowFact class. Important members of
the class DominatorFlowFact are as follows :

• Each �ow fact contains a set of nodes, named dominators. At any given node, say A, if the �ow
fact contains a node, say B, then it would imply that B dominates A.
• The constructor of a �ow fact takes a set of dominators, and sets the same object as its internal

dominators set.
• Two �ow facts are considered equal only of their internal sets are equal.
• The merge() method takes a �ow fact, and merges it into the receiver �ow fact, returning
true if the receiver �ow fact was changed as a result of the operation. The merge operation is
de�ned as follows : Note that an empty internal set represents the universal set of nodes. With
that interpretation, the merge operation on a receiver �ow fact makes its internal set contain
only those elements which are also present in the internal set of argument �ow fact (i.e., we
take the intersection of the two sets).

Manuscript submitted to ACM

88 Aman Nougrahiya and V. Krishna Nandivada

Various important methods of the class DomninanceAnalysis are explained below :

• The TOP �ow fact. The method getTop() is used to obtain the TOP �ow fact, which returns
a new object containing null internal set of dominators (interpreted as the universal set of
nodes) upon each invocation.
• The entry �ow fact. The entry �ow fact is obtained by invoking getEntryFact(), which always

returns a new object containing a singleton internal set of dominators with the BeginNode of
the main() as its only element.
• The transfer functions. The transfer functions, which are used to model the e�ect of a node

on the IN �ow fact to generate the OUT �ow fact, are represented using the following two
methods :
– initProcess(). The IN �ow fact is returned as the OUT �ow fact, if the internal set of the

IN �ow fact is (i) null (i.e., the universal set), or (ii) already contains the visited node.
Otherwise, a new OUT �ow fact is created and returned. Its internal set (new object) is
obtained by taking the union of the internal set of the IN �ow fact, and the singleton set
containing the visited node.

– writeToParameter(). If the internal set of the IN �ow fact is null, or already contains the
parameter, then the IN �ow fact is returned as the OUT �ow fact. Otherwise, a new OUT
�ow fact, which has its internal set obtained by adding the visited parameter to a copy of
the internal set of the IN �ow fact, is created and returned.

22.5 Control predicate analysis

In class PredicateAnalysis, we implement an intra-thread intra-procedural control �ow analysis
(derived from IntraProceduralControlFlowAnalysis) The unique constant corresponding to this
analysis is AnalysisName.PREDICATE_ANALYSIS.

The �ow facts of this analysis are of type PredicateFlowFact, which is composed up of an
ImmutableSet of ReversePaths; a ReversePath consists of a BeginPhasePoint, and an ImmutableList
of BranchEdges; �nally, a BranchEdge is made up of a predicate expression, and an integer which
is used to identify a speci�c branch of the predicate. As its name suggests, a ReversePath denotes
a path that starts at the last seen branch while traversing backwards from the given node, and
ends at either a BeginPhasePoint, or at the entry point of the enclosing function. Note that a
ReversePath may possibly be a non-continuous subsequence of the actual path that it denotes.
One of the key methods in ReversePath is getNewList(BranchEdge):List<BranchEdge>, which
returns a new sub-list object of the list edgesOnPath of the receiver object, such that none of the
elements from starting index up til (and including) the �rst occurrence (if any) of the predicate
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 89

of the given BranchEdge in the list is present in the sub-list, and that the given BranchEdge is
prepended to the sub-list.

At any program point (node), its PredicateFlowFact provides a set of all those non-cyclic paths
to the node which start at some BeginPhasePoint, or entry point of the enclosing function, and do
not contain any other BeginPhasePoint in them. Each edge of the path belongs to type BranchEdge,
indicating which branch was taken from a given predicate, in order to reach the node.

Note 22.5.1
While a ReversePath is allowed to not contain some of the branches that need to be taken
in order to reach a given node via the path represented by that ReversePath, the �ow fact
PredicateFlowFact at the node must contain at least one ReversePath corresponding to each
incoming edge to the node.
Hence, given a set of constraints, if none of the paths present in PredicateFlowFact at a given
node is feasible, then the node cannot get executed under those constraints.

Note that no update methods are allowed on any ImmutableSet or ImmutableList; we use them
in the construction of PredicateFlowFact so that we can enable reuse of various components of a
�ow fact.
Some key points concerning PredicateFlowFact are :

• There are two constructors. One of the constructors takes another PredicateFlowFact as its
argument and sets the internal controlPredicatePaths:ImmutableSet<ReversePath> of the newly
constructed object to be same as the controlPredicatePaths of the argument. Note that two �ow
fact objects can share the same ImmutableSet object as an ImmutableSet object is, as its name
suggests, immutable. Another constructor takes directly takes an ImmutableSet<ReversePath>
as its argument, and store it in the �eld controlPredicatePaths of the newly constructed object.
• The overridding of method FlowFact::isEqualTo(FlowFact):boolean returns true if and only

if the �eld controlPredicatePath for the receiver object is equal to that of the argument.
• The getString() method, which is used to print debug information, uses the key “predFlowFact”,

and prints the string of all elements of the controlPredicatePath within curly braces.
• One of the most important methods in the implementation of PredicateFlowFact is
merge(FlowFact, CellSet):boolean, which takes an argument �ow fact, and changes the
receiver �ow fact such that the receiver �ow fact re�ects the merge of its old state with that of
the given argument. If the state of receiver �ow fact changes as a result of this operation, then
this method returns true; else false. This method works as follows :
– First of all, this method constructs a union of the sets represented by controlPredicatePath

of the receiver and the argument �ow facts. On the resulting set of ReversePaths, this
method invokes PredicateFlowFact.simplifyPaths(Set<ReversePath>):Set<ReversePath>,

Manuscript submitted to ACM

90 Aman Nougrahiya and V. Krishna Nandivada

and checks if the set returned by that invocation is equal to the set of ReversePath of the
receiver (i.e., whether the set is equal to one represented by controlPredicatePath of the
receiver). If the sets are equal, then this method returns false. Otherwise, it sets the �eld
controlPredicatePath of the receiver to the set returned by simplifyPaths(), and returns
true.

– The method simplifyPaths() internally invokes two recursive methods, Predicate-
FlowFact.fusePredicateBranches(Set<ReversePath>):Set<ReversePath>, and PredicateFlow-
Fact.obtainPrefixPaths(Set<ReversePath>):Set<ReversePath>.
Given a set of ReversePaths, the method fusePredicateBranches() returns another set which
is obtained by performing following simpli�cation on the argument set : For any given path,
if all the branches of the predicate of the �rst element (i.e., a branch) of the path are present
as the �rst elements of any of the paths in the set, then the �rst elements of all those paths
are removed where the �rst element corresponds to that predicate. Note that this process is
applied recursively, until a �xed-point is reached.
The method obtainPrefixPaths() takes a set of ReversePaths, and returns another set which
is obtained by performing following simpli�cation on the argument set : From the argument
set, only those ReversePaths are taken to create the return set for which there does not exist
any su�x path in the argument set.

Next, we look into the key methods of PredicateAnalysis :

• The TOP �ow fact. The TOP �ow fact is obtained by invoking getTop() method, which returns
a new object upon each invocation, composed up of an empty set of ReversePaths.
• The entry �ow fact. Since PredicateAnalysis is an intra-procedural analysis, the entry �ow

fact is required to process the entry point of not just the main() function, but also for that of
every reachable function. To obtain the entry �ow fact, we override the method getEntryFact()
which returns a new object upon each invocation, denoting a singleton set of ReversePaths,
containing an empty ReversePath that starts at null (i.e., the BeginPhasePoint is set to null).
• The transfer functions. The transfer functions of a �ow analysis are used to model the e�ect

of the execution of a given node on the given �ow fact, and return the resulting �ow fact.
As before, such functions should never change the internal states of the argument �ow fact;
however, they are allowed to return their argument �ow fact as it is. Various transfer functions
corresponding to this analysis are described next.

The method edgeTransferFunction(PredicateFlowFact, Node, Node):PredicateFlowFact is
used to model the e�ect of taking an edge between the two nodes, on the given �ow-fact. It
works as follows :

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 91

– If the predecessor node is a predicate expression, then �rst of all, we obtain the BranchEdge
corresponding to this predicate and the given successor node. For any given path in
the argument �ow fact, if the path already contains this BranchEdge, then we sim-
ply add that path to the set corresponding to the �ow fact to be returned, in order
to ensure that we only maintain a set of non-cyclic paths. If a path does not con-
tain this BranchEdge, then we prepend the BranchEdge to that path, by invoking Re-
versePath::getNewList(BranchEdge):Set<ReversePath> on the path (explained earlier in this
section), to ensure that no cycles exist in the resulting path.

– Otherwise, the argument �ow fact is returned as it is.
In order to specify the transfer function of ParameterDeclarations, we implement the method

assignBo�omToParameter() as an identity function.
The visits of a BarrierDirective, and of BeginNode of any ParallelConstruct, return a new

�ow fact, which is composed up of a singleton set of ReversePath that contains a ReversePath
which contains only the BeginPhasePoint corresponding to the visited node.

Finally, in the visit of an EndNode of any ParallelConstruct, we simply return a copy of the
IN �ow fact of the corresponding BeginNode. If the BeginNode has not yet been processed,
then we simply add the EndNode to the workList, and return a �ow fact with empty set.

23 GETTING ASSIGNMENTS IN A NODE

An Assignment comprises of two Nodes – lhs and rhs, and represents assignment of the rhs
to the lhs. To obtain the set of cells that may be represented by the lhs or the rhs, the methods
getLHSLocations() and getRHSLocations() are used. In getLHSLocations(), if the node lhs is a
Declarator or a NodeToken, then the corresponding Symbol is found and added to the singleton
set to be returned; if lhs a UnaryExpression, then the set of locations represented by lhs is
obtained using ExpressionInfo::getLocationsOf() and returned. Similarly, the sets are obtained
from getRHSLocations(), which looks into the node rhs, which could either be an Expression or a
NodeToken.

The method Assignment::isCopyInstruction() is used to check whether the assignment is
a copy instruction. It returns true if assignment is a copy instruction. An assignment is not
considered to be a copy instruction if :

• there is any typecast in the rhs,
• the number of cells that can be represented by lhs or the rhs is not exactly one each,
• either of the cells represented by lhs and rhs are not Symbols,
• either of those cells are summary nodes (i.e., when the cell is a HeapCell or FieldCell, or if the

type of the cell is ArrayType, StructType or UnionType), or
Manuscript submitted to ACM

92 Aman Nougrahiya and V. Krishna Nandivada

• the rhs cell is an ArrayType, such that the rhs expression contains a BracketExpression or an
AdditiveOptionalExpression.

Otherwise, the method returns true.
Given a node, in order to obtain all the Assignments that may get executed within the node,

we use the class AssignmentGe�er, which provides two key methods : (i) AssignmentGet-
ter.getLexicalAssignments(), which captures only those assignments which are present lexically
within the given node, and (ii) AssignmentGetter.getInterProceduralAssignments(), which
captures all the assignments that are present anywhere within the given node, or in the functions
called from within the node. Both these methods take all the lead nodes present within the given
node (lexically, or inter-procedurally), and call the visitor AssignmentExtractor, to get a list of
Assignments. Following are the key visits in this visitor :

• InitDeclarator. If any initializer exists in an InitDeclarator, its visit creates an Assignment
with the initializer as the rhs, and the declarator as the lhs.
• OmpForInitExpression. In this visit, an assignment is created to model id = expression.
• NonConditionalExpression. If the operator is =, then an assignment is created for the LHS

and RHS of the expression.
• PreCallNode. This visit is called only via getInterProceduralAssignments(). For each possibly

called de�nition of the corresponding CallStatement, one assignment is created for each pair
of parameter and argument.
• PostCallNode. This visit is called only via getInterProceduralAssignments(). If the node has

an identi�er to receive the returned value, then an assignment to the identi�er is created for
expression of each ReturnStatement of the each possibly called de�nition of the corresponding
CallStatement.

Note that expressions within UnarySizeofExpression and SizeofUnaryExpression do not get exe-
cuted. Hence, the visitor does not visit within such nodes.

Note 23.0.1
Currently, the extractor does not model following kinds of assignments : (i) those which take
a short-hand operator (e.g., +=, -=, etc.), (ii) those which use pre/post increment/decrement
operators (++, and --), and (iii) any assignments that occur within OmpForReinitExpression.
Hence, the list of assignments returned by the methods of class AssignmentGe�er is not
exhaustive.

24 SINGLE-VALUED EXPRESSIONS, AND CO-EXISTENCE CHECKS

An expression is termed as a single-valued expression, if in any given runtime phase, each thread
would observer same value of the expression.
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 93

With the help of SVE information for the predicates, one can make the phase information more
precise. However, the number of SVE-sensitive phases can be exponential in terms of number of
predicates in the program, in the worst case. Hence, we instead provide methods that can emulate
the SVE-sensitivity for phases, on demand.

Two nodes are said to co-exist in an (abstract/static) phase if there may exist a runtime phase of
the given phase such that both the nodes may get executed in that runtime phase.

In this section, we look into some relevant methods that are de�ned in the classes SVEChecker,
and CoExistenceChecker.

SVEChecker.isSingleValuedPredicate(Expression):boolean. Given a predicate (such as pred-
icate of an if-else statement), this method checks if the predicate is single-valued in all its
possible runtime phases. An expression is termed as single-valued in a runtime phase if all
threads would evaluate that expression to the same value in that phase. (Note that this value
may, and frequently does, change across phases.)

If the expression is not a predicate (checked using Misc.isAPredicate()), then this method
returns false, conservatively assuming that the expression is not single-valued. Otherwise,
this method calls its recursive variant SVEChecker.isSingleValuedPredicate(), by passing it the
expression, along with two empty sets. The value returned by this invoked method, is returned
back.

The method SVEChecker.isSingleValuedPredicate() takes three arguments – (i) a predicate
expression, exp, to be tested, (ii) a set of expressions, expSet, upon which the SVE check is
ongoing, and (iii) a set of NodePair, nodePairs, which contains the pair of Nodes which are
being checked for co-existence (explained later in this section).

If the expression exp is null, or if the static �ag disable is set to true, then, conservatively,
this method returns false.

Otherwise, if the expression exp is already under testing in the recursion chain, then this
method returns true.

For e�ciency purposes, we maintain two sets of nodes, singleValuedExpressions and multi-
ValuedExpressions, which are used to cache the results of invocation of this method. These sets
are static �elds of SVEChecker. If an expression is present in singleValuedExpressions, then it
implies that the expression has already been checked and found to be single-valued; whereas, if
an expression is present in the set multiValuedExpressions, then it implies that the expression
has already been found to be multi-valued (conservatively).

Hence, if exp exists in singleValuedExpressions, this method returns true, whereas it returns
false, if exp is present in multiValuedExpressions.

Manuscript submitted to ACM

94 Aman Nougrahiya and V. Krishna Nandivada

Otherwise, the expression exp is added to the set expSet, to indicate that its testing for
single-valuedness has begun.

If exp does not contain any reads of cells, then its value must be same across all its executions.
Hence, we add it to singleValuedExpressions, remove it from expSet to mark the completion of
its testing, add it return true from this method.

If exp may read and write to the same location, then conservatively we assume it to be
multi-valued. We add the exp to multiValuedExpressions, remove it from expSet, and return
false.
Next, we process each cell that may have been read within exp as follows :
• If the cell is an AddressCell which belongs to a private variable, then all threads would read

di�erent values for the cell. Hence, we add exp to multiValuedExpressions, remove it from
expSet, and return false. If the AddressCell belongs to a shared variable, we ignore the cell,
as all threads would observe the same address for a shared variable.
• Otherwise, if the cell is a FieldCell or a HeapCell, then conservatively we assume that

di�erent threads may access di�erent parts of the cell. Hence, we add exp to multiValuedEx-
pressions, remove it from expSet, and return false.
• Similarly, if the cell is a FreeVariable, we conservatively assume that di�erent threads may

read di�erent values from the cell. Hence, we add exp to multiValuedExpressions, remove it
from expSet, and return false.
• Otherwise, if the cell is a Symbol, we proceed as follows : If the symbol is a FunctionType,

then its value (the function that it denotes) would be constant for all the threads. In such a
case, we ignore this read.
Otherwise, if the cell is an ArrayType, then its value (which is same as the address of its �rst
element) would be same for all threads, if the array is shared at the program point where
exp exists; otherwise, it will be di�erent for all the threads. Hence, if the array is a shared
variable, we ignore this read. Otherwise, we add exp to multiValuedExpressions, remove it
from expSet, and return false.
Otherwise, if the symbol is a shared variable at exp, and if it has been written anywhere
in the phase (checked using CoExistenceChecker.isWri�enInPhase(), which is explained
later in this section), then di�erent threads may observe di�erent values, depending upon
whether they encounter exp before or after any of the write(s) of the symbol. Hence, in
this case, we add exp to multiValuedExpressions, remove it from expSet, and return false.
Otherwise, we ignore this read of the shared variable.
If the symbol is a private variable, then we invoke the method
SVEChecker.ensureSameValue() (explained later in this section) for the symbol,

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 95

and exp, passing the expSet and nodePairs arguments, to check whether all threads would
indeed read same value for the thread. If this invocation returns false, then we add exp to
multiValuedExpressions, remove it from expSet, and return false. Otherwise, we ignore
the read.

In this manner, after processing each cell that may have been read within exp, if we have not
yet returned, then we consider exp to be single-valued. We add it to singleValuedExpressions,
remove it from expSet, and return true.

SVEChecker.ensureSameValue(Symbol,Node,Set<Expression>, Set<NodePair>):boolean.
This method takes a private variable sym at a given expression, exp, along with two sets
– (i) a set of expressions, expSet, which contains all those expressions which are undergoing
the single-valuedness test, and (ii) a set of NodePairs, nodePairs, which contains all those pairs
of nodes for which the co-existence check is ongoing. Given these arguments, this method tests
if in each runtime phase, all threads would observe the same value for the private variable (i.e.,
whether all private copies of the variable would contain the same value, for a given runtime
phase). (Note that the value may di�er across the runtime phases.)

The set of reaching de�nitions for sym at exp (or rather, at the CFG leaf node that contains
exp), will be null or empty, if the reaching-de�nition analysis is under-way and had not
completed yet. In such cases, we conservatively return false, declaring the variable may take
di�erent values for di�erent threads.

If the set of reaching de�nitions is singleton, then for all the threads, same de�nition must
have been executed for writing the last value to the variable. Hence, we check whether the
expression that denotes the value written by the de�ning node is singe-valued or not, by
invoking the method SVEChecker.writesSingleValue() (described later in this section); if it is,
we return true, else false.

If the set of reaching de�nitions is not null, empty, or singleton, then we process each
de�nition as follows :
• If the de�nition does not write a single-valued expression to the variable, then we return
false.
• Since we have multiple reaching de�nitions for the given variable, all threads would read

the same value only if there does not exist any de�nition which can be executed by only
some of the threads and not all, in any given runtime phase.
Hence, we invoke the method CoExistenceChecker.existsForAll() on the de�ning node,
which would return true only if all control-predicates of the de�ning node are single-
valued expressions. If this invocation returns false, then we return false; otherwise, we
ignore this reaching de�nition and test the next one.

Manuscript submitted to ACM

96 Aman Nougrahiya and V. Krishna Nandivada

Finally, after having checked all the reaching de�nitions, if we have not yet returned, we
return true, declaring that the private variable at exp would have same value for all the threads,
for any given phase. (Again, note that this value may di�er across phases.)

SVEChecker.writesSingleValue(Node, Set<Expression>, Set<NodePair>):boolean. This
method takes a node, and two sets – (i) a set of expressions that are under single-valuedness
checks, and (ii) a set of NodePairs that are under co-existence checks. It checks whether the
given nodes writes a single-valued expression to some variable.

If the node is a Declaration that contains no Initializer, then the value written would be
same for all threads if this declaration is that of a shared variable; if the declaration is that of a
private variable, then all threads may see di�erent (garbage) value for the declared variable.
Conservatively (and as per the call-sites of this method within this class), we simply assume
that the declaration belongs to a private variable, and hence, return false. If the declaration
contains an Initializer, then true is returned only if the initializer itself is a single-valued
expression (checked by invoking SVEChecker.isSingleValuedPredicate(), while passing forward
both the sets that are used in breaking out of recursive calls).

If the node is a ParameterDeclaration (parameters are always local), OmpForInitExpression,
OmpForCondition, or OmpForReinitExpression, then this method returns false.

If the node is an ExpressionStatement, we consider it to write a single-valued expression to
a variable if the Expression of this expression statement is single-valued in itself (checked by
invoking SVEChecker.isSingleValuedPredicate(), and the argument sets).

If the node is a PostCallNode, then we return false from the method if no target for
the corresponding CallStatement exists, or if the method name is known to return di�erent
values for same input (e.g., omp_get_thread_num()). List of all such methods is supposed
to be populated in the static set of strings, SVEChecker.variableFunctions. Otherwise, if the
list of arguments is empty, then we know that the returned value would be same for all the
threads (except for the functions in variableFunctions). Hence, in that case, we return true.
Otherwise, we return false only if there exists at least one argument which is not a single-
valued expression; else, we return true.

If the nodes is a PreNode, then it implies that there were no known targets for the corre-
sponding CallStatement, and conservatively we had assumed that PreCallNode has written to
all the cells that are reachable from the arguments and globals. Hence, we return false from
this method, assuming that di�erent values may have been written by di�erent threads.

Otherwise, if the node is an Expression, then we conservatively assume that the value written
to a variable within the Expression is single-valued only if the Expression itself is single-valued.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 97

CoExistenceChecker.canCoExistInAnyPhase(Node, Node):boolean Given a pair of nodes,
say n1 and n2, this method checks whether there exists any common phase of n1 and n2 in
which both the nodes may get executed (in any order, or concurrently).

If the �ag Program.sveSensitive is set to SVEDimension.SVE_INSENSITIVE, then this method
returns true conservatively. Otherwise, if a NodePair corresponding to n1 and n2 is present
in the set CoExistenceChecker.knownCoExistingNodes, then this method returns true; if the
pair is present in the set CoExistenceChecker.knownNonCoExistingNodes, then it returns
false.

Otherwise, for each common phase, sayph of the nodes, we perform the check of co-existence
by invoking CoExistenceChecker.canCoExistInPhase() on ph and both the nodes. If the result
of any of these invocations is true, then we save the pair to knownCoExistingNodes and return
true. Otherwise, we return false after adding the pair to knownNonCoExistingNodes.

CoExistenceChecker.canCoExistInPhase(Node, Node, Phase):boolean Given a pair of
nodes, and a phase, this method invokes its recursive counterpart for these arguments by
passing empty sets of NodePair and set of Expressions. This method is also utilized to calculate
the amount of time spent in SVE-related tasks.

CoExistenceChecker.canCoExistInPhase(Node, Node, Phase, Set<NodePair>,
Set<Expression>):boolean This method takes two nodes, say n1 and n2, and a phase
ph, to check if the nodes can co-exist in ph. It also maintains two sets to handle recursive
queries of co-existence and SVEness – (i) nodePairs:Set<NodePair> is a set of unordered pairs
of nodes, on which the co-existence queries are underway, and (ii) expSet:Set<Expression>, is a
set of expressions which are undergoing SVE checks.

If the �ag Program.sveSensitive is set to SVEDimension.SVE_INSENSITIVE, then this method
conservatively returns true. Otherwise, we perform a sanity check which ensures that both n1

and n2 must be present in the phase ph.

Note 24.0.1
Currently, as a temporary �x for some unknown bug(s), we conservatively return true from

this method, if either of n1 and n2 does not belong the phase ph.

First of all, we check if the NodePhasePair corresponding to n1, n2, and ph is already present
in knownCoExistingNodesInPhase; if so, this method returns true. Otherwise, if the Node-
PhasePair is present in knownNonCoExistingNodesInPhase, or if the NodePair corresponding
to n1 and n2 is present in knownNonCoExistingNodes, then this method returns false.

If the NodePair corresponding to n1 and n2 is already present in the argument set nodePairs,
then we return true, to ignore recursive constraints. (Note that we should not cache the result

Manuscript submitted to ACM

98 Aman Nougrahiya and V. Krishna Nandivada

during this return.) Otherwise, we add the NodePair to the argument set, indicating that now
we are starting the processing of co-existence check on n1 and n2.

In order to perform the co-existence check, we �rst obtain the PredicateFlowFacts corre-
sponding to both the nodes. For each node, its PredicateFlowFact contains a set of ReversePaths,
such that for each barrier-free path from any entry point of any phase to the node, there must
exist at least one ReversePath in the set which contains at least one of the branches from that
path. Since the co-existence query is asked in the context of phase ph, we consider only those

Note 24.0.2
Currently, due to some unknown bug, we need to handle the scenario where one or both

of the nodes have not been processed by PredicateAnalysis. We do so by conservatively
returning true from this method.

ReversePath elements from a PredicateFlowFact whose BeginPhasePoint :
(i) is null,

(ii) is one of the entry points of ph, OR
(iii) contains ph in its set of phases (this case would occur when the node corresponding to the

BeginPhasePoint is present in some nested parallel construct of the parallel construct of
ph).
After selecting the sets of relevant ReversePaths for both the nodes, we invoke the method Co-

ExistenceChecker.haveAnyValidPathPairs() on both the sets to check if any valid path pair may
exist between these set (as explained later in this section). If so, then we add the NodePhasePair
of the arguments in knownCoExistingNodesInPhase, the NodePair in knownCoExistingNodes,
and return true; otherwise, we add the NodePhasePair to knownNonCoExistingNodesInPhase
and return false. Note that before returning from either of these paths, we also remove the
NodePair from the argument set nodePairs.

CoExistenceChecker.haveAnyValidPathPairs(Set<ReversePath>, Set<ReversePath>,
Phase, Set<NodePair>, Set<Expression>):boolean. Given two sets of paths, say path1Set
and path2Set, this method checks if there exists any pair (p1, p2) ∈ path1Set × path2Set, such
that (p1, p2) contains no contradicting valuations of any of the SVE predicates.
We test each pair of ReversePaths, (p1)for validity as follows :
• If the BeginPhasePoints of both the ReversePaths exist, then we check if they can

co-exist in the phase ph (or its predecessor, as the case may be), by invoking CoExis-
tenceChecker.canBarriersCoExistInPhase() (explained later in this section). If the Begin-
PhasePoints cannot co-exist, we ignore this pair of paths.
• Otherwise, if there exists any pair of unequal branches, say (b1, b2) ∈ p1 × p2, such that both

the branches belong to the same predicate, and the predicate is a single-valued expression
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 99

(checked using SVEChecker.isSingleValuedPredicate()), then it implies that the paths are
inconsistent. In such a case, we ignore this pair of paths.
• Otherwise, we consider this pair of paths to be valid, and return true from this method.

Finally, if no valid pair of paths is found, this method returns false.
CoExistenceChecker.canBarriersCoExistInPhase(BeginPhasePoint, BeginPhasePoint,

Phase, Set<NodePair>, Set<Expression>):boolean. This method is used to check if the
given BeginPhasePoints may co-exist in the context of the phase ph (or its predecessor, as the
case may be). If either of the BeginPhasePoints is null, we return true from this method.

Otherwise, there are three possible scenarios :
Case 1: Both the BeginPhasePoints are entry points of the phase. In this case, we check

if the nodes corresponding to the BeginPhasePoints can co-exist in any of the predecessor
phases of ph, by invoking CoExistenceChecker.canCoExistInPhase() on both the nodes and
a predecessor phase. If so, we return true from this method; else false.

Case 2: Only one of the BeginPhasePoints is an entry point of the phase. In this case,
the BeginPhasePoint which is not an entry point of ph, must be present in some nested
parallel construct within ph. We test for its co-existence with any of the successors of the
other BeginPhasePoint in ph, using CoExistenceChecker.canCoExistInPhase(). If so, we
return true from this method; else false.

Case 3: Neither of the BeginPhasePoints are entry points of the phase. In this case, the
nodes corresponding to both the BeginPhasePoints should be present within ph; if not, we
conservatively return true. Otherwise, we return the result of co-existence check of both
the nodes in ph.

CoExistenceChecker.existsForAll(Node, Set<Expression>, Set<NodePair>):boolean.
Given a node, this method is used to check whether it is guaranteed that the node will either
be encountered (executed) by all the threads or none of them, in any given runtime phase. For
this to be the case, all the control predicates of the node must be single-valued expressions.

This method inspects each phase in which the leaf CFG node, which contains (or is) the
given node (termed as node in the rest of this section), as follows :
• If there exists any entry point of the phase (i.e., a BeginPhasePoint), from which the node

is not reachable, but whose successor 11 may co-exist with the node in the phase, then it
implies that a thread may as well take any of the paths that start at that successor, and never
encounter the given node, whereas other threads might. Hence, we return false in this
case.

11We take successor of a BeginPhasePoint, as the BeginPhasePoint itself would not be a part of the phase under
consideration.

Manuscript submitted to ACM

100 Aman Nougrahiya and V. Krishna Nandivada

• Next, we collect a set of all those predicates in the phase that lie on any path between starting
of the phase and the node, except for those predicates whose non-leaf parents are static
control parts (SCOPs) 12and which do not contain the node within them. To obtain such a
set of predicates, we invoke CollectorVisitor.collectNodeSetInGenericGraph() (Section 17),
with the following arguments :
(i) the given node (converted to a NodeStack, with an empty CallStack),

(ii) an empty set (as we ignore the endPoinst that is populated by this method),
(iii) a lambda for termination check, which, given a node, returns true if the node is a

BarrierDirective, or is a BeginNode of a ParallelConstruct.
(iv) a lambda for getting neighbours, which, given a node, returns a set of predecessors of the

node by invoking CFGInfo::getParallelConstructFreeInterProceduralLeafPredecessors(),
and, additionally, performs the following operation: if the collected predecessor is a pred-
icate (Misc.isAPredicate() returns true), and if the predecessor’s parent non-leaf node is
either not SCOPped or the non-leaf node contains the node (NodeInfo::isSCOPPed(Node)
returns false), then we add the predecessor to a special set predicatesToBeChecked.

• Once this invocation completes, we test all the predicates stored in the set predicatesTo-
BeChecked as follows :
– If the predicate is an OmpForCondition, we return false, as not all threads may evaluate

the condition to same value in any given phase.
– If the predicate contains only one successor (i.e., it is a compile-time constant), then we

ignore the predicate.
– If the predicate is a not a single-valued predicate, then we return false, as some threads

may take that branch of the predicate from which the node is reachable, whereas other
threads may take the other branch, in this phase.

After processing every phase in which the node may exist, if we have not returned yet, we
return true, indicating that the given node is guaranteed to be executed by either all the
threads, or none of them, in any given phase.
UPDATE: “ Wed Aug 21 13:55:39 IST 2019. Now, we also maintain a cache for results
of existsForAll(). ”

CoExistenceChecker.isWrittenInPhase(Node,Symbol,Set<Expression>,
Set<NodePair>):boolean. Given a symbol, this method checks whether it has been
written anywhere in any of the phases in which the given node may get executed.

12We term a non-leaf node as SCOP (or control-con�ned), if the control can enter the non-leaf node only from a single
entry point, and leave it only from a single exit-point.
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 101

In this method, we iterate over all nodes in all the phases of the given node (rather, of the
CFG leaf node in which the given node exists), and check if the symbol may have been written
in any of the iterated nodes. If so, we invoke CoExistenceChecker.canCoExistInPhase() on the
iterated node, the given node, and the phase being iterated, to check if the nodes may co-exist
in the given phase. If the nodes pass the co-existence check, then we return true from this
method. Otherwise, if no such node exists, then we return false.

25 FIXED-POINT STABILIZATION OF CFG

In Section 7, we have seen that construction of some CFG edges depends on whether the end of
any CFG node is reachable or not (checked using CFGInfo::isEndReachable()). When control can
�ow to the immediately succeeding element of a given node, without help of any labels, then the
end of the node is considered to be reachable. To recap,

(i) end of JumpStatement is never considered reachable,
(ii) end of every other leaf node is considered to be reachable, and

(iii) end of a non-leaf node is considered to be reachable if and only if its EndNode has at least one
predecessor.

In other words, for a non-leaf node, its end-reachability depends on whether there are any
incoming edges to the EndNode of that non-leaf node. Hence, addition or removal of a CFG edge
may trigger addition or removal of other CFG edges due to changes in the end-reachability of one
or more non-leaf nodes 13.

Following is a list of CFG edges that should exist only when their source nodes are end-reachable.

• The edge from body of any FunctionDefinition, ParallelConstruct SectionConstruct, Single-
Construct, TaskConstruct, MasterConstruct, CriticalConstruct, AtomicConstruct, Ordered-
Construct, or SwitchStatement, to its EndNode.
• The edge between the body of ForConstruct to its step-change expression, OmpForReinitEx-

pression.
• The edge between any two consecutive elements of a CompoundStatmenet; and the edge from

the last element of a CompoundStatement to the EndNode of the CompoundStatement.

Note 25.0.1
Unlike other edges listed here, an end-unreachable element, say e1, of a CompoundStatement
may still have an edge to the succeeding element, say e2, if e1 is a GotoStatement whose
target is a label that is annotated on e2.

13Note that this section logically belongs to the Section 28; however, we discuss it here before discussing the elementary
transformations as it is utilized to add and remove CFG edges, which is one of the main tasks of the elementary
transformations.

Manuscript submitted to ACM

102 Aman Nougrahiya and V. Krishna Nandivada

• Edges from the then-body and else-body (if any) of an IfStatement to the EndNode of that
IfStatement.
• Edges between body of a WhileStatement or a DoStatement to their respective predicate

Expressions.
• The edge between body of a ForStatement to either the step expression, termination expression,

or to itself (whichever exists, checked in that order).

In the class EndReachabilityAdjuster, there are following methods that help ensure that when
an EndNode becomes reachable or unreachable, then the rules mentioned above are automatically
triggered :

• EndReachabilityAdjuster.updateEndReachabilityAddition(Node) takes a non-leaf node
that has recently been made end-reachable, and applies the aforementioned rules by cre-
ating new CFG edges from the non-leaf node to its successor, as per the rules, with
the help of the visitor EndReachabilityAdder, which derives from CFGLinkVisitor. In
this visitor, for each edge that needs to be added, the corresponding visit invokes
CFGInfo::connectAndAdjustEndReachability() on the source and destination nodes (explained
later in this section).
• EndReachabilityAdjuster.updateEndReachabilityRemoval(Node) takes a non-leaf node

that has recently been made end-unreachable, and applies the aforementioned rules by
removing CFG edges from the non-leaf node to its successor, as per the rules, with the
help of the visitor EndReachabilityRemover, which derives from CFGLinkVisitor. In
this visitor, for each edge that needs to be removed, the corresponding visit invokes
CFGInfo::disconnectAndAdjustEndReachability() on the source and destination nodes (ex-
plained later in this section).

During elementary transformations, when a CFG edge needs to be added or
removed, we use the methods CFGInfo::connectAndAdjustEndReachability() and
CFGInfo::disconnectAndAdjustEndReachability(), respectively. In these methods, we ap-
ply the following rules inductively, until a �xed-point is reached :

• If the sole incoming edge of a node is removed, then the node is marked as unreachable, and
all its outgoing edges are removed as well.

This may lead to removal of all incoming edges of an EndNode, which may trigger removal
of further edges, as mentioned above.
• If an incoming edge is added to a node that was previously unreachable, then the node becomes

reachable, and as per the rules of CFG creation (Section 7), outgoing edges are created from
that node.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 103

This may lead to addition of an incoming edge to a previously unreachable EndNode, which
may trigger addition of further edges, as mentioned earlier.

Note 25.0.2
In our approach for updating the CFG as a result of changes in end-reachability of a node,

we are imprecise in marking an EndNode as unreachable when the corresponding dead-code
connected to that EndNode contains a cycle.

Note 25.0.3
While updating multiple CFG edges for a set of nodes, it is recommended to �rst add all the
desired edges, and then remove the edges that need to be removed. This would reduce the
chances of having spurious toggle of end-reachability of various nodes.

We discuss both these methods in detail next.

25.1 Addition of a CFG edge

Method CFGInfo::connectAndAdjustEndReachability(Node, Node):void is used to add a
CFG edge between the provided source and destination CFG nodes. If addition of this CFG edge
may update the end-reachability of any node, then this method also performs other required
changes in the CFG using EndReachabilityAdjust.updateEndReachabilityAddition().

If the given source or destination is null, the method connectAndAdjustEndReachability() simply
returns. Otherwise, it changes their reference to the respective CFG nodes of the arguments. Then,
invoking the method CFGGenerator.verifyEdgePrecision() (Section 7), it checks if construction of a
CFG edge between the given nodes can be ignored due to the source being a static constant predicate.
If so, then this method returns. Otherwise, it adds the source node to the list of predecessors of
the destination, and the destination node to the list of successors of the source. Upon addition
of this CFG edge, if the destination now has exactly one predecessor, then it implies that it
was previously unreachable, but now it is reachable. In such a case, this node should then be
connected, as a source, to the appropriate destination, as per CFG generation rules. We achieve
so by invoking EndReachabilityAdjuster.updateEndReachabilityAddition() if the destination is
an EndNode; otherwise we use NextNodeJoiner.joinNextNode(), which internally invokes
NextNodeJoinVisitor, a subclass of CFGLinkVisitor. Note that the rules followed in various visits
of NextNodeJoinVisitor are same as the ones followed during CFG generation (Section 7).

25.2 Removal of a CFG edge

Method CFGInfo::disconnectAndAdjustEndReachability(Node, Node):void is used to re-
move a CFG edge from between the provided source and destination CFG nodes. If removal of

Manuscript submitted to ACM

104 Aman Nougrahiya and V. Krishna Nandivada

this CFG edge may update the end-reachability of any node, then this method also performs other
required changes in the CFG using EndReachabilityAdjust.updateEndReachabilityAddition().

If the given source or destination is null, then the method disconnectAndAdjustEndReacha-
bility() returns; otherwise, it make them refer to their respective CFG nodes instead. Then, this
method removes the source node from the list of predecessors of the destination, and the des-
tination node from the list of successors of the source. Upon removal of this CFG edge, if the
destination now has no predecessors, then it implies that it was previously reachable, but now
it is unreachable. In such a case, this node should then be disconnected, as a source, from the
appropriate destinations, as per CFG generation rules. We achieve so by invoking EndReachabil-
ityAdjuster.updateEndReachabilityRemoval() if the destination is an EndNode; otherwise we use
NextNodeDisjoiner.disjoinNextNode(), which internally invokes NextNodeDisjoinVisitor, a
subclass of CFGLinkVisitor. Note that the rules followed in various visits of NextNodeDisjoinVisi-
tor are same as the ones followed during CFG generation (Section 7).

26 ELEMENTARY TRANSFORMATIONS

Any transformation that adds/modi�es/removes any of the CFG components of any non-leaf
CFG node, or adds/removes labels on statements, is termed as an elementary transformation in
IMOP. The set of elementary transformations available in IMOP is quite exhaustive – any valid
transformation within a function (i.e., the executable part of a program), can be expressed as a
series of elementary transformations 14.

Note 26.0.1
Note that for any given non-leaf CFG node, its BeginNode and EndNode components cannot

(and should not) be updated.
Similarly, all leaf CFG nodes of IMOP are considered immutable via elementary transforma-
tions. In other words, there does not exist any elementary transformation which can update
the AST contents of a leaf CFG node. While one can access and alter the AST components
of a leaf CFG node via other means, it is not recommended, as no guarantees of automated
update of program abstractions are provided in such cases.
When we need to modify the contents of a leaf node, we should instead create a new modi�ed
leaf node and replace the existing node with the new one. For example, while attempting to
rename a variable in an ExpressionStatement, we should create a new ExpressionStatement
with the updated variable name, and use it to replace the old ExpressionStatement a.
aTo replace an old node with a new node, one can use the method NodeReplacer.replaceNodes(Node, Node).

14While IMOP also provides methods to add/modify/remove global declarations/de�nitions (of variables, types, typedefs,
and functions), such methods are not yet termed as elementary transformation as in their current state they need not
provide guarantees of automated update of all program abstractions (but only few) upon their invocation.
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 105

One key guarantee provided by each elementary transformation is that the state of each program
abstraction would automatically be made consistent with the modi�cations performed by the
elementary transformation on the program. Such update may happen eagerly, i.e., before the
elementary transformation is considered complete, or lazily, i.e., before the �rst use of any a�ected
data structure, as explained in detail in Section 28.

As most of the elementary transformations, by de�nition, alter the CFG components of a non-leaf
node, they are present in the subclasses of CFGInfo. The other elementary transformations, which
manipulate labels of a Statement (leaf or non-leaf node), are present in the class StatementInfo.

In this section, we categorize and discuss various elementary transformations in terms of the
non-leaf nodes on which they are speci�ed.

For each transformation, we specify the steps taken to modify the AST, and CFG edges, along
with label annotations of the a�ected nodes, wherever required. Note that any update to CFG edges
also stabilizes the end-reachability of a�ected nodes implicitly. Automated update/invalidation of
other program abstractions (such as, IDFA �ow facts, MHP information, etc.), under any of the
elementary transformations, are explained in detail later in Section 28.

Note 26.0.2
In this document, when we discuss any method of a NodeInfo or a CFGInfo object corre-

sponding to an AST node, we refer to the AST node by the phrase owner node.

Common methods for updating CFG. Before starting with inspection of each
non-leaf node separately, we look into some basic methods that help us in up-
dating the CFG. In Section 25, we have already noticed how addition and re-

Note 26.0.3
For any elementary transformation that may remove a node from the program, the updates to
CFG must be performed before the updates to the AST, whereas the order of updates should
be reversed while adding a node to the program.

moval of CFG edges using CFGInfo::connectAndAdjustEndReachability() and
CFGInfo::disconnectAndAdjustEndReachability() can internally ensure the stabilization
of reachability and end-reachability of any a�ected nodes. During any elementary transformation
on a non-leaf node, we use these methods in the corresponding subclasses of CFGInfo, to add
and remove CFG edges that are de�ned as per the semantics of the non-leaf node. For handling
the update of CFG edges involving JumpStatements and Labels we use the following common
methods from class IncompleteSemantics :

• IncompleteSemantics::adjustSemanticsForOwnerRemoval():void. This method is used
while removing a node from the program. For each JumpStatement which is lexically present

Manuscript submitted to ACM

106 Aman Nougrahiya and V. Krishna Nandivada

within, or is, the node to be removed, if target of the JumpStatement (obtained via calls to
getTarget() of respective subclasses of CFGInfo) is not present in the node to be removed, then
we invoke CFGInfo::disconnectAndAdjustEndReachability() on the JumpStatement and its
target.

If a Statement that is lexically present within, or is, the node to be removed contains any
SimpleLabels, then we inspect all its predecessor GotoStatements that correspond to any
SimpleLabel on the Statement. If any such GotoStatement is not present within the node to be
removed, we remove the CFG edge connecting that GotoStatement to the Statement.

If there exists any Statement lexically within the node (or which is the node itself), such that
it contains a CaseLabel whose corresponding SwitchStatement is not present within the node
to be removed, then we remove the CFG edge connecting the predicate of that SwitchStatement
to the Statement.

Similarly, if any Statement lexically within the node (or which is the node itself), contains
a DefaultLabel whose SwitchStatement does not reside within the node to be removed, we
perform the following two actions :
– Using connectAndAdjustEndReachability(), we add a CFG edge between the predicate and

EndNode of the SwitchStatement.
– Using disconnectAndAdjustEndReachability(), we remove the CFG edge between the predi-

cate of the SwitchStatement and the Statement.
• IncompleteSemantics::adjustSemanticsForOwnerAddition():void. This method is used

to handle the CFG edges corresponding to JumpStatements and Labels, while adding a node to
the program.

For each JumpStatement which is lexically present within, or is, the added node, if target of
the JumpStatement (obtained via calls to getTarget() of respective subclasses of CFGInfo) is
not present in the added node, then we invoke CFGInfo::connectAndAdjustEndReachability()
on the JumpStatement and its target.

If a Statement that is lexically present within, or is, the added node, contains any SimpleLabel,
we obtain its outer-most non-leaf CFG node, and search for all possible GotoStatements that
may have this Statement as their target. If any such GotoStatement is present outside the
added node, we connect it to the Statement using a CFG edge.

If there exists any Statement lexically within the node (or which is the node itself), such
that it contains a CaseLabel whose corresponding SwitchStatement is not present within the
added node, then we add a CFG edge connecting the predicate of that SwitchStatement to the
Statement.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 107

Similarly, if any Statement lexically within the node (or which is the node itself), contains a
DefaultLabel whose SwitchStatement does not reside within the added node, we perform the
following two actions :
– Using connectAndAdjustEndReachability(), we add a CFG edge between the predicate of

the SwitchStatement and the Statement.
– Using disconnectAndAdjustEndReachability(), we remove the CFG edge between the predi-

cate and EndNode of the SwitchStatement.
• IncompleteSemantics::adjustSemanticsForOwnerSwitchPredicateRemoval():void.

This method is used to update portions of the CFG when the predicate of a SwitchStatement is
removed. It is invoked on the body of the a�ected SwitchStatement.

First of all, it obtains a set of those statements which contain a CaseLabel and/or a Default-
Label corresponding to the a�ected SwitchStatement, using SwitchRelevantStatementsGe�er.
Then, for each such collected statement, it removes the CFG edge which connects the predicate
of this SwitchStatement with the collected statement, using disconnectAndAdjustEndReacha-
bility().
• IncompleteSemantics::adjustSemanticsForOwnerSwitchPredicateAddition():void.

This method too is invoked on the body of a SwitchStatement to which a new predicate has
been added. It takes care of the CFG edges that connect predicate to relevant cases and default
labeled statement.

Firstly, it collects the set of all those statements that contain a CaseLabel and/or DefaultLabel
relevant to the a�ected SwitchStatement. To all those statements, this method creates a CFG
edge from the predicate of the SwitchStatement, using connectAndAdjustEndReachability().
• IncompleteSemantics:: adjustContinueSemanticsForOwnerForLoopExpressionRe-
moval():void. This method is used to alter those CFG edges in a loop which may connect
various internal ContinueStatements to loop’s predicate (or step expression) that has to be
removed. It is invoked on the body of the loop being a�ected.

This method begins with collecting the set of all those ContinueStatements which correspond
to the same loop as the one being a�ected. Then, it removes the CFG edges between all such
ContinueStatements and their sole successors.
• IncompleteSemantics:: adjustContinueSemanticsForOwnerForLoopExpressionAddi-
tion():void. This method is used to alter those CFG edges in a loop which may connect
various internal ContinueStatements to loop’s predicate (or step expression) that has been
recently added. It is invoked on the body of the loop being a�ected.

Manuscript submitted to ACM

108 Aman Nougrahiya and V. Krishna Nandivada

This method begins with collecting the set of all those ContinueStatements which correspond
to the same loop as the one being a�ected. Then, it adds a CFG edge between all such Contin-
ueStatements with their targets (as obtained with ContinueStatementCFGInfo::getTarget()).

Now, we discuss how various elementary transformations alter other CFG edges that are created
as per the semantics of non-leaf nodes.

26.1 Labels of a statement

In this section, we discuss various methods that are used to alter the labels of a statement, and
look at how we update the AST, and CFG edges under each such transformation. Note that no
OpenMP statements are allowed to have labels, as they start with pragma’s, which cannot have
labels annotated on them 15. All these methods are present as member methods of the class
StatementInfo. They are discussed next in detail :

• addLabelAnnotation(int, Label):void. This method takes a Label object, and adds it at the
speci�ed index (starting with zero) in the list of label annotations (annotatedLabels) of the
owner statement.

Note 26.1.1
Note that all elementary transformation methods of label annotations �rst ensure that the
owner node is not any OpenMP construct/directive, as labels cannot be applied to #pragma
directives. Then, if the user has invoked a transformation on any non-CFG statement node
(say, by mistake) then that method recursively invokes itself on the corresponding CFG
statement instead, and returns the result of that invocation, if any.

If the label annotations of the CFG statement already contains the Label at the speci�ed
index, we return back from this method. Otherwise, we �rst need to remove the Label from its
previous statement, if any, before adding it to the owner CFG statement. We do so by invoking
StatementInfo::removeLabelAnnotation() on the current labeledCFGNode, if any, of the given
Label.

Note 26.1.2
Although statements of di�erent FunctionDefinition may use label with same string, these
labels cannot be same SimpleLabel object, as they contain a �eld labeledCFGNode which
can only point to one statement on which the label has been annotated. Similarly, we cannot
reuse the same CaseLabel or DefaultLabel objects across di�erent SwitchStatements.

15Currently, we do not check whether any attempts are made by the users of IMOP to add labels to an OpenMP
statement. While this is possible as per the grammar, it is not valid as per semantics of the C language. This is a minor
TODO for later.
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 109

Depending upon the type of label being added, we also remove some
other con�icting labels from other statements in the context, using State-
mentInfo::removeSimilarLabelsFromRelevantContext() as described next.
– In case of a SimpleLabel, we remove all those other labels that have same name as that of

the SimpleLabel and are annotated on any CFG node (except the owner node) within the
outer-most non-leaf CFG node that encloses the owner node.

– For CaseLabel and DefaultLabel, we �rst need to obtain the enclosing SwitchStatement, if
any, of the owner node; if none exists, then we obtain the outer-most non-leaf CFG node
that encloses the owner node. Then, we collect all the relevant statements, as de�ned below :
∗ If an enclosing SwitchStatement of the owner node is found, we collect all those state-

ments within that SwitchStatement which contain any CaseLabel or DefaultLabel that
may be a target of the predicate of that SwitchStatement.
∗ Otherwise, we collect all those statements within the outer-most non-leaf CFG encloser

of the owner node which contain annotations of CaseLabel and/or DefaultLabel that do
not have any corresponding (i.e., enclosing) SwitchStatement.

Note that the owner node is not considered as a relevant statement.
Now, if the added label is a CaseLabel, we remove all those CaseLabel’s from the relevant
statements which have the same case-expression string as that of the added CaseLabel; if
the added label is a DefaultLabel, we remove all DefaultLabel annotations from the relevant
statements.
Then, this method adds the given label to the annotatedLabels of the statement, at the

speci�ed index. It also updates the �eld labeledCFGNode of the Label to make it refer to the
owner node.

Finally, this method invokes StatementInfo::updateUponLabelAddition() to perform
automated update of various program abstractions, which is required as a result of
addition of this Label. Among update of various other abstractions (as discussed
in Section 28), this method also performs updates in the CFG-edges by invok-
ing StatementInfo::adjustSemanticsForLabelAnnotation(Label, LabelUpdateMode):
Set<Node>, which works as follows :
– This method takes a Label that has been added to the owner node, and performs required

update of the CFG edges, while returning a set of those nodes which have been added as
predecessors of the owner statement as a result of addition of this Label.

– If the added label is a SimpleLabel, this method searches for all those GotoStatements
within the outer-most non-leaf CFG node enclosing the owner node, such that the
name of label of the GotoStatement matches the name of the added SimpleLabel. From

Manuscript submitted to ACM

110 Aman Nougrahiya and V. Krishna Nandivada

all these collected nodes, this method adds a CFG edge to the owner node, using
CFGInfo::connectAndAdjustEndReachability(). Finally, the set of collected GotoStatements
is returned by this method.

– If the added label is a CaseLabel, then this method searches for the enclosing SwitchState-
ment of the owner node; if no such SwitchStatement is found, this method returns an empty
set. Otherwise, this method adds a CFG edge between the predicate of the SwitchStatement
and the owner node, using CFGInfo::connectAndAdjustEndReachability() 16.

– When the added label is a DefaultLabel, this method searches for an enclosing SwitchState-
ment for the owner node; if none is found, it returns an empty set. Otherwise, the following
two edits are performed on the CFG :
(i) a CFG edge is added using CFGInfo::connectAndAdjustEndReachability() between the

predicate of the SwitchStatement and the owner node, and
(ii) the CFG edge between predicate of the SwitchStatement and its EndNode is removed,

using CFGInfo::disconnectAndAdjustEndReachability().
• removeLabelAnnotation(Label):boolean. This method removes the speci�ed label from

the label annotations of the owner node. If the label was present in the label annotations, this
method returns true, else false.

Before removing the label from annotatedLabels of the owner node, this method in-
vokes StatementInfo::updateUponLabelRemoval() to trigger automated update of various
program abstractions. Apart from update of other program abstractions, updateUponLabelRe-
moval() also invokes StatementInfo::adjustSemanticsForLabelRemoval(Label, LabelRe-
movalMode): Set<Node>, which updates the CFG edges as follows :
– This method takes a label that has to be removed from the owner node, and performs update

to the CFG edges, while returning a set of those nodes that will be removed as predecessors
of the owner node as a result of removal of this label.

– If the label to be removed is a SimpleLabel, we collect all its predecessor GotoStatements,
and invoke CFGInfo::disconnectAndAdjustEndReachability() to remove the edges from
GotoStatements to the owner node. Finally, the set of collected GotoStatements is returned
back by this method.

– When the label to be removed is a CaseLabel or a DefaultLabel, we �rst obtain the enclosing
SwitchStatement; if none is found, we return an empty set. Otherwise, we proceed as
follows.

16Note that if the predicate is a static-time constant, which does not evaluate to the case of the added CaseLabel, then
no edge should be created between the predicate and the owner node. However, this check is performed internally
within connectAndAdjustEndReachability(), hence we can invoke it without performing this check explicitly.
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 111

If the added label is a DefaultLabel, then we add a CFG edge between the predicate and the
EndNode of the obtained SwitchStatement.
Next, we need to check whether there will be any other labels on the owner node that would
make it a target of the predicate of the SwitchStatement. If so, then we should not remove
the CFG edge; otherwise, we remove the edge between the predicate and the owner node
using CFGInfo::disconnectAndAdjustEndReachability(). Finally, we return a set containing
the predicate, if any edge was removed.

Note 26.1.3
Note that no information about a new CFG edge being created between the predicate and

the end-node of the SwitchStatement is conveyed back to the callee. Check if this may create
any issues in the automated update of various abstractions.

Once the update method returns, we remove the label from annotatedLabels, and set the
�eld labeledCFGNode of the Label to null.

Note that there also exists an overloaded version of this method which takes a String
argument. That method searches for a SimpleLabel whose name matches the given String, and
then removes it using this method.
• clearLabelAnnotations():void. This method is used to clear the label annotations of the

owner statement.
For each label annotation of the owner node, we invoke State-

mentInfo::adjustSemanticsForLabelRemoval(), to perform automated update of CFG
edges as explained above. Then, we set the labeledCFGNode �eld of that label to null and the
label from annotatedLabels, before processing the next label annotation.

26.2 Function definition

In case of a FunctionDefinition, we do not currently support the following elementary transforma-
tions of its signature 17 :

• Setting a new parameter-declaration list.
• Clearing away the existing parameter-declaration list.
• Removing a speci�c parameter-declaration from the list.
• Adding a speci�c parameter-declaration at a speci�c position in the list.

The only implemented elementary transformation of a FunctionDefinition, present in Function-
DefinitionCFGInfo is
17All the missing transformations of a FunctionDefinition have been added as TODOs in IMOP. Until then, an ine�cient
way to achieve these transformations is to build a new function altogether, and replace the existing function with the
intended modi�ed one.

Manuscript submitted to ACM

112 Aman Nougrahiya and V. Krishna Nandivada

• setBody(CompoundStatement):void. This method changes the current body of the owner
FunctionDefinition with the provided CompoundStatement.

If the provided body is same as the current body, this method returns. Otherwise, we �rst
set the owner node as the parent �eld of the given CompoundStatement. (We need to check
whether any automated update requires this.)

Then, using FunctionDefinitionCFGInfo::updateCFGForBodyRemoval(), we remove the
CFG edges that connect the old body to the owner node. In updateCFGForBodyRemoval(), we
invoke we remove all possible edges to and from the body being removed, as per the semantics
of CFG generation (Section 7) for FunctionDefinition.

After returning back from method updateCFGForBodyRemoval(), we set the AST �elds
of the owner node to connect it to the provided body in the AST. Finally, we add
CFG edges to connect the owner node to the provided body, using FunctionDefinition-
CFGInfo::updateCFGForBodyInsertion(). In updateCFGForBodyInsertion(), we create all the
CFG edges to and from the added body as per the CFG generation rules of FunctionDefinition.

26.3 Omp parallel construct

Following are the methods that enable elementary transformations of a ParallelConstruct.

• setBody(Statement):List<UpdateSideE�ects>.
• setIfClause(IfClause):void.
• removeIfClause():boolean.
• setNumThreadsClause(NumThreadsClause):void.
• removeNumThreadsClause():boolean.

Note that other applicable clauses of a ParallelConstruct do not contain any executable units
(expressions) within them. Hence, they are not considered as CFG components of the ParallelCon-
struct. In order to update the clauses of a ParallelConstruct, one can directly use the overloaded
methods ParallelConstruct::addOmpClause(); these methods do not (need to) trigger automated
update of any program abstractions.

26.4 Omp for construct

Following elementary changes can be performed to the CFG components of a ForConstruct (which
denotes an omp for).

• setBody(Statement):List<UpdateSideE�ects>.
• setInitExpression(OmpForInitExpression):void.
• setForConditionExpression(OmpForCondition):void.
• setReinitExpression(OmpReinitExpression):void.

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 113

26.5 Omp sections construct

In a SectionsConstruct, following elementary transformations can be applied to update its CFG
components.

• addSection(Statement):List<UpdateSideE�ects>.
• removeSection(Statement):boolean.
• clearSectionList():void.
• setSectionList(List<Statement>):void.

As SectionConstruct (note, this is Section, not Sections), is not a CFG node, if we wish to change
the body of a section, we can as well create a new SectionConstruct, and replace the existing one
with the new one 18.

26.6 Omp single construct

The only CFG component of a SingleConstruct that can be changed is its body, via the elementary
transformation setBody(Statement):List<UpdateSideE�ects>.

26.7 Omp task construct

The CFG components of a TaskConstruct can be modi�ed with the help of following elementary
transformations.

• setBody(Statement):List<UpdateSideE�ects>.
• setIfClause(IfClause):void.
• removeIfClause():boolean.
• setFinalClause(FinalClause):void.
• removeFinalClause():boolean.

26.8 Omp master construct

The only elementary transformation applicable to a MasterConstruct is setBody(Statement):
List<UpdateSideE�ects>.

26.9 Omp critical construct

In case of a CriticalConstruct, the only CFG component of it that can be updated is its body, for
which one can use setBody(Statement)::List<UpdateSideE�ects>.

Note that modi�cations to the region name of a CriticalConstruct are not considered as elemen-
tary transformations.

18This is similar to how we update leaf CFG nodes; note that SectionConstruct is not a leaf CFG node, though.
Manuscript submitted to ACM

114 Aman Nougrahiya and V. Krishna Nandivada

26.10 Omp atomic construct

In order to update the body of an AtomicConstruct, one can use the method set-
Body(Statement):List<UpdateSideE�ects>.

No other elementary transformations exist for an AtomicConstruct.

26.11 Omp ordered construct

The body of an OrderedConstruct can be modi�ed using the elementary transformation set-
Body(Statement)::List<UpdateSideE�ects>.

26.12 Compound statement

Elementary transformations of a CompoundStatement are usually the most frequently used el-
ementary transformations. A CompoundStatement is a block that is composed up of a list of
Declarations and/or Statements. Following are the elementary transformations for a Compound-
Statement.

• addDeclaration(Declaration):List<UpdateSideE�ects>.
• addStatement(Statement):List<UpdateSideE�ects>.
• addElement(Node):List<UpdateSideE�ects>.
• removeDeclaration(Declaration):List<UpdateSideE�ects>.
• removeStatement(Statement):List<UpdateSideE�ects>.
• removeElement(Node):List<UpdateSideE�ects>.
• clearElementList():void.
• setElementList(List<Node>):void.

26.13 If statement

In case of an IfStatement, following elementary transformations exist.

• setPredicate(Expression):void.
• setThenBody(Statement):List<UpdateSideE�ects>.
• setElseBody(Statement):List<UpdateSideE�ects>.
• removeElseBody():void.

26.14 Switch statement

In case of a SwitchStatement, note that its various cases do not create any syntactic blocks. They
are simply labels to which the control can jump from the predicate, depending upon the value
of the predicate at runtime. Hence, the only CFG components of a SwitchStatement that can be
modi�ed using elementary transformations are its predicate and its body.
Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 115

• setBody(Statement):List<UpdateSideE�ects>.
• setPredicate(Expression):void.

26.15 While statement

Following are the elementary transformations of a WhileStatement.

• setBody(Statement):List<UpdateSideE�ects>.
• setPredicate(Expression):void.

26.16 Do-while statement

In case of a DoStatement, IMOP provides the following elementary transformations :

• setBody(Statement):List<UpdateSideE�ects>.
• setPredicate(Expression):void.

26.17 For statement

Following is an exhaustive list of all the elementary transformations that are applicable on a
ForStatement (which represents a serial for loop in C).

• setBody(Statement):List<UpdateSideE�ects>.
• setInitExpression(Expression):void.
• removeInitExpression():void.
• setTerminationExpression(Expression):void.
• removeTerminationExpression():void.
• setStepExpression(Expression):void.
• removeStepExpression():void.

26.18 Call statement

For simplicity, we do not allow modi�cations to the PreCallNode or PostCallNode of a CallState-
ment. In other words, a CallStatement is an immutable object under the context of elementary
transformations. (While not recommended, one can still access and alter the AST components of a
CallStatement.) In order to make any changes to a CallStatement, one should instead construct a
new modi�ed CallStatement, and use it to replace the current CallStatement.

27 MISCELLANEOUS METHODS/VISITORS

• Misc.getCFGNodeFor(Node) is used to obtain either the immediately enclosed, or the immedi-
ately enclosing CFG node for a given non-CFG node; if the provided node is a CFG node, then
the node itself is returned by this method.

Manuscript submitted to ACM

116 Aman Nougrahiya and V. Krishna Nandivada

• Misc.getDeclarator(Declaration, String) is used to obtain the Declarator corresponding to the
provided identi�er in the given declaration.
• Misc.getIdNameList(Declaration) is used to obtain a list of identi�er names declared in the

given declaration.
• CFGInfo.getLexicalCFGLeafContents(Node) returns a set of all CFG leaf nodes that that are

lexically contained within the given node.
• CFGInfo.getIntraTaskCFGLeafContents(Node) is used to collect the set of CFG leaf nodes that

may be present anywhere within the given node, including the function bodies that are called
from within the node. Note that the traversals are done only on valid paths.
• NodeInfo::isConnectedToProgram() is used to check whether the associated node is connected

to the main AST.
• Misc.getInheritedEnclosee(Node, Class<T>) returns a set of those nodes that are present in the

AST sub-tree of the provided node, and are of type T (or its subtype).
• Type.hasIncompatibleTypeCastOfPointers(Node) is used to check if the given node contains

any incompatible typecasting of pointers.
• Misc.getSimplePrimaryExpression(Expression) returns true, if the provided node is a simple

primary expression; otherwise, it returns false.
• RootInfo::getAllFunctionDefinitions() provides a list of all the function de�nitions that are

present in the associated translation unit.
• Misc.getInternalFirstCFGNode() is used to obtain the �rst CFG node that’s encountered in the

DFS traversal on the AST of the base node (i.e., the argument). However, if the base node is a
CFG node, the node itself is returned.
• Misc.getClauseList(Node)
• Misc.getCaseDefaultLabelStatementList()
• Misc.isAPredicate()
• DeclarationInfo::getInitializer().
• NodeInfo::getOuterMostNonLeafEncloser()
• Misc.getEnclosingNode(node:Node, className:Class<Node>) returns a node, if any, that is of

type className, and encloses (with no other encloser in between of the same type) the given
node.
• Misc.getEnclosingBlock(Node):Scopeable returns the enclosing CompoundStatement, Func-

tionDefinition, or TranslationUnit, for the given node (exclusively).
• DeclarationInfo::hasInitializer(),
• RootInfo::removeDeclarationE�ects(). (See if this can fully support automated update.)
• Conversion.getUsualArithmeticConvertedType(Expression, Expression).

Manuscript submitted to ACM

IMOP : a source-to-source compiler framework for OpenMP C programs 117

• Type::getIntegerPromotedType().
• Type.getTypeFromArithmeticKeys().
• Type.getTypeTree().
• Misc.getSymbolEntry().
• CFGInfo::getAllComponents().
• SectionsConstructCFGInfo::getSectionList() is used to obtain a list of CFG nodes that represent

the body of all the sections in the given node.
• StatementInfo::getLabelAnnotations().
• Misc.getInheritedPostOrderEnclosee() is used to obtain a post-order traversal list of nodes that

are of speci�ed type and are present within the given node. This method relies on the visitor
PostOrderInheritedCollector.
• NodeInfo::getAllCellsAtNode(), and its overridden de�nitions at RootInfo, FunctionDefinition-

Info, and CompoundStatementInfo.
• CompoundStatementCFGInfo::getElementList().
• CellCollection::applyAllExpanded() is used to apply the passed lambda on cells of the receiver

collection.
• NodeInfo::getAllSymbolNamesAtNodeExclusively(), NodeInfo::getAllCellsAtNodeExclusively(),

NodeInfo::getAllCellsAtNode(), and NodeInfo::getAllSymbolNamesAtNode().
• RootInfo::getAllFunctionDefinitions(), RootInfo::getFunctionWithName(), and Root-

Info::getMainFunction().
• NodeInfo::getReachableCallStatementsInclusive(), and Node-

Info::getLexicallyEnclosedCallStatements(), as described in Section 15.
• NodeInfo::getReachableCallGraphNodes().
• FunctionDefinitionInfo::getCallersOfThis(), FunctionDefinitionInfo::getCalledDefinitions(),

and FunctionDefinitionInfo::getCalledSymbol().
• NodeInfo::getEnclosedScopesInclusive() is used to obtain a set of all those scopes that are

present lexically within the given node (including the node itself).
• Type::getAllTypes().
• StructType::getDeclaringNode(), UnionType::getDeclaringNode(), and Enum-

Type::getDeclaringNode().
• Misc.getTypedefEntry().
• CFGInfo::getInterProceduralLeafSuccessors(), and CFGInfo::getInterProceduralLeafPredecessors().
• CFGInfo::getInterTaskLeafSuccessorEdges(*), and CFGInfo::getInterTaskLeafPredecessorEdges(*).
• CFGInfo::getIntraTaskCFGLeafContents().
• CFGInfo::getInterTaskLeafSuccessorList.

Manuscript submitted to ACM

118 Aman Nougrahiya and V. Krishna Nandivada

• Misc.isCFGNode(), Misc.isCFGLeafNode(), and Misc.isCFGNonLeafNode().
• AnalysisDimension.
• Misc.getBu�eredWriter(String):Bu�eredWriter, takes a �lename, creates it, if it does not already

exist, and returns a Bu�eredWriter to it, which can be used to write to the �le.
• NodeInfo::getSharingA�ribute().
• NodeInfo::isSCOPPed().
• CFGLinkVisitor, and its subclasses.
• CFGLinkFinder.getCFGLinkFor().

Manuscript submitted to ACM

	Abstract
	Contents
	1 Initialization
	2 Parsing
	3 Old-style function-declaration removal
	4 Expression simplification
	5 Label annotations
	6 Getting AST strings
	6.1 Commentors
	6.2 String getters.

	7 CFG creation
	7.1 Creating complete edges
	7.2 Creating incomplete edges
	7.3 Identifying CFG Links

	8 Getting type of an expression
	9 Symbols
	9.1 Initialization of Symbol-, Typedef-, and Type-tables

	10 Cell accesses in a node
	11 Side effects
	12 Enforcing all bodies to be compound statements
	13 Implicit barrier removal
	14 Extra scoping removal
	15 Unused declarations removal
	15.1 Removing unused functions
	15.2 Removing unused variables
	15.3 Removing unused types
	15.4 Removing unused typedefs

	16 Incompatible type-cast on pointers
	17 Lambda-based graph collectors
	18 Initialization of dummy flushes
	19 MHP analysis, and inter-task data-flow graph
	19.1 Data structures
	19.2 Initialization of MHP information
	19.3 Initialization of inter-task data-flow graph

	20 Generic iterative flow analysis
	20.1 Generic flow facts
	20.2 Base generic flow analysis pass
	20.3 Specialized generic flow passes
	20.4 Extensible CellMaps
	20.5 Postorder and reverse postorder collectors

	21 General guidelines to implement an IDFA
	21.1 Cellular data-flow analyses.
	21.2 Non-cellular data-flow analyses.
	21.3 Control-flow analyses.

	22 Instantiations of generic flow passes
	22.1 Points-to analysis
	22.2 Reaching-definitions analysis
	22.3 Copy-propagation analysis
	22.4 Dominance analysis
	22.5 Control predicate analysis

	23 Getting assignments in a node
	24 Single-valued expressions, and Co-existence checks
	25 Fixed-point stabilization of CFG
	25.1 Addition of a CFG edge
	25.2 Removal of a CFG edge

	26 Elementary transformations
	26.1 Labels of a statement
	26.2 Function definition
	26.3 Omp parallel construct
	26.4 Omp for construct
	26.5 Omp sections construct
	26.6 Omp single construct
	26.7 Omp task construct
	26.8 Omp master construct
	26.9 Omp critical construct
	26.10 Omp atomic construct
	26.11 Omp ordered construct
	26.12 Compound statement
	26.13 If statement
	26.14 Switch statement
	26.15 While statement
	26.16 Do-while statement
	26.17 For statement
	26.18 Call statement

	27 Higher-level CFG transformations
	28 Automated Updates
	28.1 IDFA
	28.2 MHP analysis
	28.3 Labels
	28.4 Data-flow graphs
	28.5 Access lists
	28.6 SVE information
	28.7 Other memoized data

	29 Expansion of parallel constructs
	30 Selective function-inlining
	31 Driver module
	31.1 Copy propagation and replacement

	32 Loop-instruction rescheduling
	33 Z3 integration, and field-sensitivity
	34 Fence percolation
	35 Builder
	36 Basic transformations
	37 Node-information objects
	38 CFG-information objects
	39 Miscellaneous methods/visitors

