
IMOP: IIT Madras OpenMP
A Self-Stabilizing Compiler Framework for OpenMP C

AMAN NOUGRAHIYA, IIT Madras

V. KRISHNA NANDIVADA, IIT Madras

Part C: A �ick Start Guide

IIT Madras OpenMP (IMOP) is an open-source compiler framework designed for
writing program analysis, profiling, instrumentation, and source-to-source optimization
tools for OpenMP C programs. IMOP is implemented in Java and aims to provide an
easy-to-use and e�icient framework for implementing research prototypes of various
compilation tools.

This quick-start guide aims to concretely and succinctly illustrate how to meet some
of the most common requirements of any compilation pass using IMOP. It dives only
as deep into any topic as might be required by a majority of the end-users (that is,
compiler-pass writers). The in-depth details of any topic should be present in the
first two parts (Part A: Technical Report, or Part B: Code Review Document) of this
three-part documentation.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this
notice and the full citation on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2023 Copyright held by the owner/author(s). Manuscript under preparation.

Manuscript under preparation.



IMOP: A Quick Start Guide

HOWTO: Prepare an input program for compilation with IMOP
IMOP’s parser conforms to the grammar of OpenMP 4.0 and ANSI C. It takes only a

preprocessed C �le as input. For example, all the header �les in the input program must
have been expanded and all macros preprocessed, before the program can be passed as
input to IMOP.

Nearly all major compilers provide appropriate switches to obtain preprocessed �les.
Given an OpenMP C �le foo.c, its preprocessed version can be obtained using GCC as
follows:

$ gcc -P -E foo.c -o foo.i

The above command will create the preprocessed version of foo.c in �le foo.i1.

HOWTO: Invoke the parser
Following is a simple demonstration of how IMOP’s parser can be invoked for parsing

a given input program �le:
public AnyClass {

public static void main(String []args) {
Program.parseNormalizeInput(args);

}
}

When using IMOP from command-line, the input �le (say foo.i) can be given as a
command-line argument using the switch -f, for example, as follows:

$ java AnyClass -f foo.i

When using IMOP from within Eclipse, the full path (absolute or relative) of the
input program �le can be speci�ed by storing it as string to the static member
Program.filePath, in method Program.defaultCommandLineArguments. See this
method for various such examples.

The method parseNormalizeInput performs two steps: (i) parses the given input
program to generate the AST, and (ii) performs some normalizations on the program2.
This method sets the static member Program.root (accessible using Program.getRoot)
to refer to the root node (of type TranslationUnit) of the generated AST.

1Refer to Appendix A for some common issues that may occur during this step (and notes on how to handle them).
2See Section 2.2 from IMOP’s Technical Report, for details on various normalizations performed.

1



Aman Nougrahiya and V. Krishna Nandivada

HOWTO: Understand the AST representation of the program
The full grammar of IMOP’s parser is available at [imop-

home]/grammar/modified.html. All non-terminals are represented by a class
of their own; all terminals are denoted by the class NodeToken. Some other special
nodes, such as NodeListOptional, NodeOptional, NodeChoice, and so on, are used
by the parser to support EBNF-form of the grammar. Additionally, as part of its simpli-
�cation, IMOP also creates some other type of internal nodes, such as CallStatement,
PreCallNode, PostCallNode, SimplePrimaryExpression, DummyFlushDirective,
and so on. The exhaustive list of all such special nodes can be found at the package
imop.ast.node.internal. All these internal nodes are explained either later in this
guide or in the tech-report if they do not appear here. All nodes, internal and external,
are subclass of the class Node.

In general, out of all types of AST nodes, a high-level understanding of around 35-40
types, listed in Appendix B should su�ce for most situations, when writing a compiler
pass. It is suggested for the user to familiarize herself with the provided set.

Since IMOP’s grammar closely matches to that of ANSI C and OpenMP 4.0, the
meaning of each type of the AST node remains same across the grammar speci�cation
in the standards and its implementation in IMOP.

Note that AST is the base representation of the program under compilation. IMOP
also provides various other program representations, such as CFG, CFG components,
call graphs, phase-�ow graphs, and so on, which are far easier and intuitive to work
with as compared to an AST. All such representations are automatically kept consistent
with one another in response to any transformations performed in IMOP (under some
rules, explained later).

HOWTO: Understand Scopes in IMOP
The notion of nested scoping, such as that constructed using nested blocks of code,

where each block has its own symbol/type/typedef table, and also derives from the
parent scope, is represented using the interface Scopeable in IMOP.

Three main kinds of scopes, each of which implements the Scopeable interface are:
TranslationUnit, FunctionDefinition, and CompoundStatement. (Note that these
are the same objects that appear as part of the AST.)

Later in this guide, we will learn how to traverse across encapsulating scopes.

2



IMOP: A Quick Start Guide

HOWTO: Print AST nodes
IMOP provides various utility methods to print AST nodes (and other strings) to �les.

Three of the frequently used ones are:
• To print the current text-equivalent of the whole program to a �le named foo-test.i:

DumpSnapshot.forceDumpRoot("test");

• To print the current state of the node, say tempNode, to a �le named foo-test.i:
DumpSnapshot.forcePrintToFile(tempNode, "foo-test.i");

• To print the given string, say “tempString", to a �le named temp-string.i:
DumpSnapshot.forcePrintToFile("tempString", "foo-test.i");

Note that the toString method of the Node superclass has already been overridden
to provide the pretty-printing string of the node. Hence, to print the current text of a
while-statement, say whileStmt, to standard output stream, we can simply write:

System.out.println(whileStmt);

HOWTO: Work with NodeInfo Objects
With each AST node, there exists a corresponding NodeInfo object, which contains

(directly or indirectly) information about the AST node along various dimensions.
Given a node tempNode, its info-object can be retrieved using:

NodeInfo nodeInfo = tempNode.getInfo();

For most of the important AST nodes, a special subclass of NodeInfo is main-
tained. For example, the info-object for a while-statement will be of exact type
WhileStatementInfo. Such specialized classes also contain various node-speci�c func-
tionalities. For instance, to unroll a while-statement, we can simply invoke the following:

whileStmt.getInfo().unrollLoop(int);

To obtain the function-de�nition for main function:
Program.getRoot().getInfo().getMainFunction()

To obtain all function-de�nitions in the program:
Program.getRoot().getInfo().getAllFunctionDefinitions()

Corresponding to each node of interest, the user should peruse both, the NodeInfo

class, as well as its specialization, if any, for the node, in order to understand the
AST-related utilities. However, note that, as mentioned earlier, AST is not the easiest
representation to work with. Other representations will be discussed later in the guide.

3



Aman Nougrahiya and V. Krishna Nandivada

HOWTO: Query Nodes Down the AST
One common requirement during program analysis and transformations is to be able

to obtain all nodes of a given AST type (such as if-statements) within a given base node
(such as a while-statement). Here, the term within is used to refer to the subtree of the
base node. IMOP provides a set of methods to achieve this functionality.

To obtain a set of all if-statements in the AST sub-tree of a given while-statement
(say, whileStmt):

Misc.getExactEnclosee(whileStmt, IfStatement.class);

To obtain a list (in post-order traversal), we instead use the method
Misc.getExactPostOrderEnclosee. Note that none of these methods in the
compiler will step into the called-functions in the subtree of the base node, as these
methods are applied on the AST and not CFG/CG.
Labels. In order to obtain statement with a given label (say l1) within any AST node,
say tempNode:

Statement stmt = tempNode.getInfo().getStatementWithLabel("l1");

HOWTO: Query Nodes Up the AST
Another common requirement in various passes is to traverse up the AST, searching

for nodes that meet certain criteria. IMOP provides higher-level query methods for
such tasks as well.

To obtain the immediately enclosing node of some type, say if-statement, for a given
base node, say tempNode:

Misc.getEnclosingNode(tempNode, IfStatement.class);

This method is inclusive in nature – in case if the base node is of the same type as
requested, then the base node is returned back.

To obtain the enclosing function-de�nition, there is a short-hand:
Misc.getEnclosingFunction(tempNode);

Similarly, to obtain the enclosing scope:
Misc.getEnclosingBlock(tempNode);

This node is exclusive in nature.
There are other similar variants provided by IMOP; they can be found in Misc class.

Also, note that these methods perform traversal in the AST, and not the CFG/CG.
Hence, they will not capture the enclosing nodes that enclose the call-sites of the
function to which a base node belongs. For such purposes, CFG traversals/queries are
recommended.

4



IMOP: A Quick Start Guide

HOWTO: Create New Code Snippets in IMOP
In IMOP, it is quite straightforward and simple to create new snippets of code through

string manipulation. Once we obtain the string of the code snippet to be created, we
simply need to invoke the parser for the desired AST type. For instance, the following
line will create a subtree rooted at node of type Statement, denoting the text “x=2+3;":

Statement newStmt = FrontEnd.parseAndNormalize("x=y+2;",

Statement.class);

HOWTO: Understand the Nested CFG in IMOP
In order to preserve the scoping information, as well as the nesting information

present in the input program, IMOP does not use the �at CFG such as the ones used by
most other compilers. Instead, it uses nested CFGs, where a CFG node may contain
nested control-�ow graph within itself. Specially in the context of OpenMP, let us
consider two possible ways in which any construct, say a parallel construct, can be
modeled in the CFG: (i) it is expressed using a single node, which contains within
itself a reference to the body of the construct (and other relevant clauses), or (ii) it is
broken down into two function calls – one denoting the begin, and another the end,
of the parallel construct – that are inserted above and below the body, respectively.
Unlike most other compilers that work with low-level IR, IMOP takes the former option
by using nested CFGs, thereby simplifying various analyses and transformations, by
removing any need to manually keep track of the nesting information.

There are two kinds of CFG nodes – (i) those that may contain a nested CFG within
them (i.e., a non-leaf CFG node), and (ii) those that cannot (i.e., a leaf node). In Ap-
pendix C, we list all the current set of leaf and non-leaf CFG nodes in IMOP. The user
should familiarize herself with both these sets, as most compiler passes in IMOP express
their desired analyses and transformations in terms of these nodes.

5



Aman Nougrahiya and V. Krishna Nandivada

HOWTO: Obtain CFG Information Objects
The CFG information object for a node contains all its CFG-related information, such as

the list of successors and predecessors. Notice that CFGInfo is the superclass of all CFG
information objects for various kinds of CFG nodes (such as WhileStatementCFGInfo
for a WhileStatement). For any node, say tempNode, its CFG information object can
be obtained as follows:

CFGInfo info = tempNode.getInfo().getCFGInfo();

Note that IMOP automatically creates the CFG during parsing and normalization of
the input program. Further, the CFG is kept consistent automatically with all changes
to the program.

HOWTO: Understand CFG Components
A non-leaf CFG node can be composed up of a number of other non-leaf or leaf CFG

nodes. We term all such immediately nested CFG nodes as the CFG Components of the
non-leaf node. For instance, two key CFG components of a while-statement are: (i) its
predicate (an Expression), and (ii) its body (a Statement).

Given a non-leaf node, its CFG components can be obtained through following forms
of invocations:

tempNode.getInfo().getCFGInfo().get*();

tempNode.getInfo().getCFGInfo().has*();

For example, if tempNode is a while-statement, then the predicate of that statement
can be obtained as follows:

tempNode.getInfo().getCFGInfo().getPredicate();

Note that the has* forms are available only for those components that are optional
(such as various expressions of a for-statement, else-body of an if-statement, and so
on).

As mentioned earlier, CFG (and CFG Components) are the key entities on which
various analyses and optimizations are expressed. The user should open and check
the public methods provided by various subclasses of CFGInfo, given in the package
imop.lib.cfg.info.

6



IMOP: A Quick Start Guide

HOWTO: Use Elementary Transformations for Modifying CFG Components
In the CFG-information object of a non-leaf node, IMOP provides various required

setters using which the CFG components of the non-leaf node can be modi�ed. These
setters are termed as elementary transformations in IMOP. They are of the following
forms:

tempNode.getInfo().getCFGInfo().set*();

tempNode.getInfo().getCFGInfo().remove*();

tempNode.getInfo().getCFGInfo().add*();

For example, if tempNode is a parallel construct, then its body can be replaced with a
new body, say newBody, as follows:

tempNode.getInfo().getCFGInfo().setBody(newBody);

Note that the last two forms (removers and adders) are applicable only for optional
CFG components, as discussed above.

One key advantage of using elementary transformations in IMOP (either directly, or
through higher-level CFG transformations discussed next) is that all program abstrac-
tions (such as points-to graphs, call graphs, etc.) are automatically kept consistent with
the resulting modi�cations to the program. This property is termed as self-stabilization.

HOWTO: Use Higher-Level CFG Transformations
In various optimizations, it is quite common to encounter a situation where we

need to express a CFG transformation that depends only upon the contents of a node
(such as, say, a set of shared accesses happening in the node), and not upon what the
node is present in the program as (such as whether the node is a predicate of some
while-statement, or is just some expression-statement itself).

For instance, consider an arbitrary set of CFG nodes that may write to some speci�c
shared location. Let us say we wish to instrument the program in such a manner that
a print statement is executed immediately before the execution of any node from the
set. Achieving this task using elementary transformations can be quite tricky and
tedious – given any node from the set, we do not even know the type of its enclosing
non-leaf node; we will have to enumerate all nesting possibilities, and handle each case
separately.

To handle such issues, IMOP provides �ve higher-level CFG transformations corre-
sponding to the following cases:

7



Aman Nougrahiya and V. Krishna Nandivada

• Ensuring that a CFG node (say newNode) is executed immediately before a given
arbitrary CFG node (say baseNode), on all execution paths at runtime.

InsertImmediatePredecessor.insert(baseNode, newNode);

• Ensuring that a CFG node (say newNode) is executed immediately after a given
arbitrary CFG node (say baseNode), on all execution paths at runtime.

InsertImmediateSuccessor.insert(baseNode, newNode);

• Ensuring that a CFG node (say newNode) is executed in between two consecutive
CFG nodes (say basePred and baseSucc).

InsertOnTheEdge.insert(basePred, baseSucc, newNode);

• Ensuring that a CFG node (say baseNode) is removed from the CFG.
NodeRemover.remove(baseNode);

• Ensuring that a CFG node (say newNode) is replaced with another node (say
baseNode) from the CFG.

NodeReplacer.remove(baseNode, newNode);

NOTE: The current version of this quick-start guide does not contain information about
various fundamental concepts, such as symbols, types, etc., as well as all advanced con-
cepts such as dummy-�ush directives, inter-task edges, concurrency analysis, Z3-IMOP
integration, and so on. We plan to summarize these and other important concepts in the
next version of this guide.

8



IMOP: A Quick Start Guide

A COMMON ISSUES ENCOUNTEREDWHILE PREPARING A
PREPROCESSED FILE FOR IMOP

Following are some key points to note when attempting to generate the preprocessed
�le for IMOP:

• The content of header �les may di�er across multiple versions and implementations
of GCC. Hence, to ensure that the optimized �le generated by IMOP can run with
GCC on some machine, do ensure that the aforementioned step of generating the
preprocessed �le to be given to IMOP is also performed on the same machine.

• GCC provides various extensions to the C language. For example, ANSI C and ISO C
do not allow declaration of an induction variable as follows:

for (int i = 0; i < x; i++) {}

Instead, the variable i should have been declared before the for statement. However,
GCC allows the above given format. IMOP handles only ANSI/ISO C grammar, and
does not support such extensions allowed by GCC.

• Similarly, GCC also uses various built-in function declarations and built-in types in
its header �les. Since the declarations of these functions and types are not present
explicitly in the expanded preprocessed �le, IMOP may face issues during parsing,
type checking, and so on. IMOP explicitly recognizes some of these built-in types,
in order to resolve the related parsing errors.
How to �x such issues for a new type, say _newtype128, being used in the header

�les present in my system? The compiler writer should search for all those methods
within FrontEnd.java where new entries are being added to CParser.types. At
all such functions, following line should be added:

CParser.types.put("_newtype128", Boolean.TRUE);

This should resolve the related parsing error.
• As a result of the such issues, it may so happen that some preprocessed �le is not

getting parsed successfully by IMOP, despite user intervention. In such cases, using
the line-number at which the parsing fails, the user can perform one-time manual
task of either �xing or deleting the o�ending declaration (if it is not being used). If
it is being used, please contact the developers of IMOP for a �x.

9



Aman Nougrahiya and V. Krishna Nandivada

B COMMONLY USED AST NODES

Following is a set of some of the most-commonly-used types of AST nodes:
TranslationUnit, FunctionDefinition, Declaration, ParameterDeclaration, Initializer,
Statement, Expression, ExpressionStatement, CompoundStatement, SelectionStatement,
IfStatement, SwitchStatement, IterationStatement, WhileStatement, DoStatement,
ForStatement, CallStatement, PreCallNode, PostCallNode, SimplePrimaryExpression,
GotoStatement, ContinueStatement, BreakStatement, ReturnStatement, OmpConstruct,
ParallelConstruct, ForConstruct, SectionsConstruct, SingleConstruct, TaskConstruct,
MasterConstruct, CriticalConstruct, OrderedConstruct, AtomicConstruct, OmpDirective,
BarrierDirective, TaskwaitDirective, TaskyieldDirective, DummyFlushDirective, and
FlushDirective.

C CFG LEAF AND NON-LEAF NODES

Following is the list of all 23 leaf CFG nodes, currently present in IMOP:
Declaration, ParameterDeclaration, UnknownCpp, UnknownPragma, OmpForInitExpression,
OmpForCondition, OmpForReinitExpression, FlushDirective, DummyFlushDirective,
BarrierDirective, TaskwaitDirective, TaskyieldDirective, ExpressionStatement,
GotoStatement, ContinueStatement, BreakStatement, ReturnStatement, Expression, IfClause,
NumThreadsClause, FinalClause, BeginNode, and EndNode.

Following are the 16 non-leaf CFG nodes, currently present in IMOP:
FunctionDefinition, ParallelConstruct, ForConstruct, SectionsConstruct, SingleConstruct,
TaskConstruct, MasterConstruct, CriticalConstruct, AtomicConstruct, OrderedConstruct,
CompoundStatement, IfStatement, SwitchStatement, WhileStatement, DoStatement, and
ForStatement.

10


	Abstract
	A Common issues encountered while preparing a preprocessed file for IMOP
	B Commonly used AST Nodes
	C CFG Leaf and Non-Leaf Nodes

