
IMOP : a source-to-source compiler framework for
OpenMP C programs
PART A : Preliminary Technical Report

AMAN NOUGRAHIYA, Indian Institute of Technology Madras

V. KRISHNA NANDIVADA, Indian Institute of Technology Madras

This technical report introduces IIT Madras OpenMP framework (IMOP), a source-to-source compiler
framework, which has been built exclusively for OpenMP C programs. IMOP has been written in Java,
with an intention to provide a framework that can be used to e�ciently implement research-speci�c
prototypes for large-scale OpenMP C (or serial C) speci�c analysis and transformation tools. In this
preliminary report, we brie�y discuss various design and key features of IMOP, along with an appropriate
level of implementation detail, wherever required.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this
notice and the full citation on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2019 Copyright held by the owner/author(s). Manuscript under preparation.

Manuscript under preparation.

Aman Nougrahiya and V. Krishna Nandivada

Contents

Abstract i
Contents ii
1 Introduction 1
1.1 Intended Audience 1
2 Structure and semantics of IMOP 2
2.1 Abstract syntax tree 2
2.1.1 Statements 2
2.1.2 Synchronization Constructs 3
2.2 Simpli�ed AST 4
2.3 Symbol Tables 9
2.4 Types 10
2.4.1 Type hierarchy 10
2.4.2 Further categorization of types 12
2.4.3 Type conversions 12
2.4.4 Type and typedef tables 13
2.5 Memory abstractions 13
2.6 Control-�ow graphs 15
2.6.1 Nested CFG 15
2.6.2 Control �ow in a CallStatement 16
2.6.3 CFG traversals 17
2.6.4 CFG visualizer 19
2.7 Call graphs 19
2.7.1 Call stack 19
2.7.2 Context-sensitive traversals. 20
2.8 Snippet builders 21
2.9 Elementary transformations 22
2.10 Concurrency analysis 24
2.11 Inter-task communication 25
3 Related work 27
A Quick Start Guide 28
A.1 Front-End : Parsing, and Default Passes 28
A.2 Implementing analyses and transformations 28
A.3 Emitting the transformed code 28
B Implementation de�ned behavior 28
C Parser Grammar 29
References 37

ii

IMOP : a source-to-source compiler framework for OpenMP C programs

1 INTRODUCTION

IIT Madras OpenMP (IMOP) is a compiler infrastructure that aims to enable easy implementa-
tion of source-to-source transformation and analysis tools for large-scale OpenMP C programs.
This infrastructure helps in querying and rewriting serial and parallel programs by provid-
ing various fundamental utilities that are needed to implement a majority of analysis and
optimization techniques.

IMOP follows the object-oriented visitor design pattern, and has been written in Java. The
parser and certain fundamental visitors of the Abstract Syntax Tree (ASTs), Control Flow Graphs
(CFGs), etc., have been written using JavaCC/JTB.

This report looks into the design and key features of IMOP, along with an appropriate level
of implementation detail, wherever required. 1

1.1 Intended Audience

• Compiler researchers for OpenMP C parallel programs. IMOP provides various basic building-
blocks that one can use to implement new optimization tools for OpenMP C programs. Since
IMOP works at the source-code level, implementation of source-to-source transformations
and of source code analyses for OpenMP C programs is feasible. IMOP is speci�cally designed
for shared memory OpenMP C programs, and thereby it already contains various elementary
analyses (e.g., concurrency analysis) that are speci�c to such programs. We hope that these
reusable modules will result in signi�cant reduction in the development time of new tools.
• Compiler researchers for sequential C programs. Along with the OpenMP speci�c utilities,

IMOP also provides various standard analyses and transformations for sequential C programs.
Kindly refer to Section 3 to know what is new in IMOP as compared to the other existing
frameworks.
• OpenMP C programmers (end-users). One aim of IMOP is to provide end-users with enough

command-line switches to enable required analyses/transformations, to ease the debugging,
comprehension, and pro�ling of their OpenMP C programs. Furthermore, IMOP also aims
to ease the creation of new tools to such an extent that even the end-users can write basic
customized tools as per their requirements.

1Currently, this manuscript is under preparation. Many important sections might be missing or incomplete. Its
latest version can be obtained from http://www.cse.iitm.ac.in/~amannoug/imop

1

http://www.cse.iitm.ac.in/~amannoug/imop

Aman Nougrahiya and V. Krishna Nandivada

2 STRUCTURE AND SEMANTICS OF IMOP

2.1 Abstract syntax tree

The IMOP Grammar. A stream of valid tokens, generated from a piece of text, is considered
as a syntactically valid program for a language if it can be parsed using the grammar of that
language. The grammar recognized by IMOP can parse C programs, which may optionally
contain OpenMP constructs and directives. This grammar has been derived from a pair of
publicly available grammars originally written by Doug South (for C), and Christian Brunschens
(for OpenMP). We have added certain missing OpenMP constructs and directives, and made
various required changes in production rules of these grammars, to obtain the IMOP grammar.
The exact grammar used by the parser of IMOP, is present in Appendix C. From this grammar,
which also contains token speci�cations, we obtained our parser (and default depth-�rst visitors)
using JavaCC/JTB. Corresponding to each non-terminal, there exists an AST class (subclass of
class Node). All tokens are represented in the AST by using objects of class NodeToken.
The AST. Upon parsing an input program, or a code snippet (which may not represent a
complete program), by using overloaded static methods in FrontEnd.parse*(*), we can obtain
a reference to the root node of the generated abstract syntax tree for the program/snippet. In
this section, we do not discuss the meaning of various AST classes in detail, since almost all the
classes correspond to well-de�ned symbols in the grammars speci�ed in the ISO C99 standard
and OpenMP standard.

In this section, we brie�y discuss some key digressions that the IMOP parser takes from the
expected parsing process, while generating the AST for given program/snippet.

2.1.1 Statements. Labels as annotations. In C, labels are used to specify targets of goto-
statements, and targets of predicate of switch-statements. In IMOP, labels and their correspond-
ing target statements are parsed using the classes SimpleLabeledStatement, CaseLabeledState-
ment, and DefaultLabeledStatement (all wrapped in objects of LabeledStatement class). While
such representation is in accordance with the ANSI C grammar, it is not intuitive to work with.
If we wish to obtain the list of labels for a given statement, we need to traverse upwards in the
AST to obtain relevant objects of type LabeledStatement. Logically, information about labels
of a statement should be present within the object representing that statement, rather than as
separate AST ancestors for the object. Furthermore, if labels are represented by certain AST
ancestors of a statement, then the processes of modifying the labels of the statement, and of
adding and removing the statement in the AST, get complicated. Hence, in IMOP, we represent
labels as annotations on the target statement.

Whenever a parsed LabeledStatement is requested to be attached as a child of a Statement
object in the AST, the corresponding setter method performs the following : (i) it extracts the
target statement for the given LabeledStatement object, (ii) it saves the associated label as an
annotation on the target statement, and (iii) it attaches the target statement directly as the child
of the Statement object. The three types of labels, mentioned above, are represented using
SimpleLabel, CaseLabel, and DefaultLabel annotations (of type Label). Given a statement,
its list of labels can be accessed and modi�ed using setter and getter methods of the �eld
StatementInfo::annotatedLabels.

2

IMOP : a source-to-source compiler framework for OpenMP C programs

2.1.2 Synchronization Constructs. Flush Directive In OpenMP, a flush directive is used
to synchronize a thread’s temporary view of the memory with the shared memory. Flush
operations can be explicitly speci�ed using

#pragma omp flush

(optionally with a list of variables to be �ushed). Such explicit �ushes are represented by
FlushDirective class. Apart from these explicit �ushes, various implicit �ush operations are
present at various program points, as speci�ed in the OpenMP standard. In order to handle
all types of �ushes (explicit or implicit) uniformly, we insert special internal nodes, of class
DummyFlushDirective, at those places in the AST where an explicit or implicit �ush operation
exists as per the OpenMP standard. Each DummyFlushDirective node contains a set of memory
locations that may get �ushed at that node. This set is represented by the �eld idSet. (When
idSet points to null, we assume that it refers to the universal set – set of all shared locations.)
The �eld dummyFlushType is used to indicate the type of implicit/explicit �ush that a node
denotes.

In IMOP, we insert DummyFlushDirective nodes at following program points :

(1) As an immediate predecessor of each FlushDirective (Type : FLUSH_START). If the directive
contains a list of memory locations to be �ushed, the set of all those locations is saved as
idSet.

(2) As an immediate predecessor of each BarrierDirective (Type : BARRIER_START).
(3) As immediate predecessor and successor of each CriticalConstruct (Types : CRITICAL_START

and CRITICAL_END).
(4) As immediate predecessor and successor of each OrderedConstruct, if : (i) no OpenMP

clause is present, or (ii) threads or depends clause is present (Types : ORDERED_START and
ORDERED_END).

(5) As immediate predecessor and successor of each AtomicConstruct (Types : ATOMIC_START
and ATOMIC_END). If the atomic construct is present within a non-sequentially consistent
region, then the set of memory locations on which atomicity is guaranteed, is saved as
idSet.

(6) As immediate predecessor and successor of each call to the following OpenMP
locking routines : omp_set_lock(), omp_test_lock(), omp_set_nest_lock(), and
omp_test_nest_lock() (Types : LOCK_START and LOCK_END.)

(7) As immediate successor of each call to the following OpenMP (un)locking routines :
omp_unset_lock(), and omp_unset_nest_lock() (Type : LOCK_END.)

(8) As an immediate predecessor of each explicit task, represented as TaskConstruct (Type :
TASK_START).

(9) As an immediate successor of each implicit task (Type : TASK_END).
(10) As an immediate predecessor of each TaskwaitDirective (Type : TASKWAIT_START).
(11) As an immediate predecessor of each TaskyieldDirective (Type : TASKYIELD_START).

Note that all nodes of type DummyFlushDirective, are added/removed automatically
by the FrontEnd parser (when called with normalization enabled, using methods like
FrontEnd.parseAndNormalize(*)). We need to ensure that the DummyFlushDirective nodes

3

Aman Nougrahiya and V. Krishna Nandivada

should remain to be present across various program points, as per the list above, while trans-
forming the program. (Such invariants are preserved automatically if users use appropriate
update methods, discussed in Section 2.9, to specify all their higher-level transformations.)

2.2 Simplified AST

The IMOP front-end runs various simpli�cation and normalization passes on the AST of the
input program, with an aim to guarantee certain simplifying assumptions about the structure
of the AST for the rest of the passes. Such assumptions reduce the number of cases that various
analysis and transformation passes need to handle.

In this section, we brie�y discuss about these passes, which lead to our simpli�ed assumptions
about the transformed AST, which we term as a Simpli�ed AST. Note that each Simpli�ed AST
still represents a valid C program.

(1) Simplifying expressions. In C, an expression is said to have side-e�ects if its evaluation can
modify the value of a memory location (or a �le), or can access a volatile location. For
example, x++ is an expression with a side-e�ect – it increments the value of x by 1. The ISO
C99 standard de�nes the notion of a sequence point as follows – when a sequence point exists
between two expressions, then the evaluation and side-e�ects of the �rst expression must
take place before the evaluation of the second expression. For example, sequence points lie
between �rst and second operands of && and || operators. (An exhaustive list of sequence
points can be found at Annex C of the ISO C99 standard.)

A single Expression object in the AST of the input program may contain two (or more)
operands, separated by sequence point(s), such that one operand updates the value of a
variable, and second operand reads from that variable. For example, consider the following
expression (assume x = 1, initially) :

(x++ == 1) && (x == 2)

In this expression, a sequence-point exists between both the operands of && operator.
Hence, the read of x by the right operand must see the value written by the left operand 2.

For any data-�ow analysis, representation of data-�ow facts would be di�cult if an
expression within a leaf node in the control-�ow graph may read from a variable after
writing to it. (Leaf nodes are those nodes which do not contain any other CFG node within
them.) For example, consider constant propagation pass, where a �ow-fact of (x:1) at the
entry of the above expression would not apply to the read of x in the right operand of &&.
To avoid such unintuitive scenarios in IMOP, we rewrite expressions to remove sequence
points from within them. In Table 1, we summarize the relevant transformations 3.

(2) Simplifying declarations. Each Declaration object may have more than one declarators
with initializers in the AST of the input program. Every initializer immediately precedes
a sequence point. Hence, for reasons explained above, we split each Declaration with

2To compare, note that (x++) + x does not contain any sequence point. The value read by the right operand of the
+ operator is implementation-de�ned.
3Note that these transformations are not applied when the enclosing expression is not present in an evaluation
context. For instance, when the enclosing expression is an operand of sizeof operator, no simpli�cations are
performed.

4

IMOP : a source-to-source compiler framework for OpenMP C programs

Table 1. Summary of expression simplifications.

Simpli�cation Input Form Output Form

Removal of logical AND operator (&&) e1 && e2

Prelude :
int t;
t = e1;
if (t) {

t = e2;
}

Replacement :
t

Removal of logical OR operator (||) e1 || e2

Prelude :
int t;
t = e1;
if (!t) {

t = e2;
}

Replacement :
t

Removal of comma operator (,) e1, e2

Prelude :
e1;

Replacement :
e2

Removal of conditional operator (?:) e1 ? e2 : e3

Prelude :
int t1;
int t2;
t1 = e1;
if (t1) {

t2 = e2;
} else {

t2 = e3;
}

Replacement :
t2

multiple declarators to multiple Declaration’s with single declarator each. Below is a
sample transformation :

T x1 = e1, x2 = e2, x3, ..., xn = en; =⇒

T x1 = e1;

T x2 = e2;

T x3;

...

T xn = en;

(3) Simplifying call-sites. An expression representing a function call (using ArgumentList op-
erator) can be present deeply nested within other expressions, which possibly themselves
are function calls. Each function call represents a complex �ow of control, starting with the
evaluation of actual arguments and function designator, to execution of the called function,
and ending with an optional return of the computed value. While modelling the e�ect of
a function call statically, most of the �ow-sensitive analyses would require to maintain

5

Aman Nougrahiya and V. Krishna Nandivada

�ow information before and after each function call. It can be di�cult to maintain such
information for function calls that are deeply nested within complex expressions. To enable
easy implementation and representation of �ow-sensitive analyses, we simplify expressions
involving function calls, such that all function calls are present in one of the two forms :
• A message-send : foo(s1, s2, ..., sn);

• A function-call : x = foo(s1, s2, ..., sn);

where foo represents the evaluated function name, x represents a temporary that holds the
return value of the call, and s1, s2, ..., sn all are SimplePrimaryExpressions, which
can either be an Identifier, or a Constant. Note that both the above forms are represented
by objects of a subclass of ExpressionStatement, called CallStatement, which is an internal
node type (i.e., is not part of the base parser). A CallStatement object comprises mainly of
these three �elds, which represent the structure of the corresponding function-call :
(a) functionDesignatorNode : represents a NodeToken that represents the identi�er repre-

senting the called function.
(b) preCallNode : an object that contains a list of SimplePrimaryExpression representing

the actual arguments for the function call. Note that in case of variadic functions, the
size of this list will not be same as the size of parameters.

(c) postCallNode : an object that optionally contains a reference to the Identifier which
holds the return value of the function call, if any.

Following example demnostrates how simpli�cation of call-sites is done by the front-end of
IMOP :

i[3] = fptr[3](a * 10, bar(2, p[3])); =⇒

fp = fptr[3];

t1 = p[3];

t2 = bar(2, t1);

t3 = a * 10;

t4 = fp(t3, t2);

i[3] = t4;

Note that the order of evaluation of arguments and function designator is unde�ned as
per the standard. 4

(4) Naming anonymous data-types. While performing code transformations, we often need to
declare new temporaries of a given type. If the requested type is an anonymous structure
or union, a separate declaration can not be created, due to lack of a name (or tag) for the
speci�ed structure/union type. Similarly, if an anonymous structure/union is present as part
of a typedef de�nition, the associated typedef name can not be expanded to its de�nition, if
required. Anonymous stuctures and unions also create complications in representation of
data structures involving type information, where most of the times, a user-de�ned type is
referred to by its declared name.

To avoid such issues, the front-end of IMOP provides names for all anonymous structures
and unions. Below is an example for the same :

4In IMOP, we use the same order of evaluation of arguments and function designator, which is used by MacPorts
GCC 6.2.0, our test bed.

6

IMOP : a source-to-source compiler framework for OpenMP C programs

struct {

int a;

float b;

} v1, v2;

=⇒

struct __imopSt_s1 {

int a;

float b;

} v1, v2;

Note that if an anonymous struct/union is present as a member of an enclosing structure
or union, and if the de�nition of that anonymous struct/union does not de�ne any objects,
then all its members are considered to be members of the enclosing structure or union. For
example, in

struct s {

struct {

int a;

};

} v;

v.a = 10;

a is a member of the structure s, and can be accessed directly as v.a as shown in the
example. We do not provide names to such struct/unions since they act as syntactic sugars,
rather than as types.

(5) Encapsulating bodies. A Statement can be either a CompoundStatement (which encloses
other statements and declarations within a pair of braces) or a single statement with no
enclosing braces. The body of various syntactic constructs in C and OpenMP is generally
represented by a Statement. Often, transformations may need to insert more statements in
the body of constructs. To simplify such transformations, the front-end of IMOP ensures
that the body of each construct is enclosed in a pair of braces, if none exists already. Note
the following example transformation :

#pragma omp task

while (x < 1000)

x += y;

=⇒

#pragma omp task

{

while (x < 1000) {

x += y;

}

}

(6) Splitting combined constructs. OpenMP provides combined constructs as shortcuts to specify
one OpenMP construct within the other, with no other statement in the body of the outer
construct. Two famous combined constructs of OpenMP are ParallelForConstruct (used when
a ForConstruct is immediately nested inside a ParallelConstruct), and ParallelSectionsCon-
struct (used when a SectionsConstruct is immediately nested inside a ParallelConstruct).

While combined constructs are handy shortcuts to use for commonly occuring program-
ming patterns, they add to the number of cases that an analysis or transformation may
need to handle. Hence, we replace all combined constructs with their corresponding nested
equivalents. Below is an example replacement of a ParallelForConstruct :

7

Aman Nougrahiya and V. Krishna Nandivada

#pragma omp parallel for \\

firstprivate(y) ordered(1)

for (x = 0; x < N; x++) {

...

}

=⇒

#pragma omp parallel \\

firstprivate(x)

{

#pragma omp for ordered(1)

for (x = 0; x < N; x++) {

...

}

}

Note that when a combined construct contains clauses (e.g., a OmpFirstPrivateClause,
such as firstprivate(y)) we attach those clauses to one or both of the split constructs, as
applicable.

(7) Making barriers explicit. In OpenMP, a barrier is de�ned as that program point where each
thread in the team of threads suspends further execution, until all other threads in its team
encounter that or some other barrier. Barriers can be present either explicitly as #pragma
omp barrier (BarrierDirective), or implicitly at the end of various worksharing constructs,
like ForConstruct, SectionsConstruct, and SingleConstruct, unless an explicit nowait clause
(NowaitClause) is applied to these constructs.

Any analysis or transformation that gets a�ected by presence of barriers, would have
to handle less number of cases if all the barriers are present explicitly. Hence, in the front-
end, we make all implicit barriers as explicit, by adding nowait clause wherever required.
Following is an example transformation :

#pragma omp single

{...}
=⇒

#pragma omp single nowait

{...}

#pragma omp barrier

Note that there also exists an implicit barrier at the end of each ParallelConstruct, which
acts as a join point for each forked thread in the associated team of the construct. However,
OpenMP does not provide us with any means to make this barrier explicit. Since this barrier
will always invariably be present as the last instruction in a ParallelConstruct, no analysis
or transformation within the construct is expected to be a�ected by the implicit nature of
this barrier.

(8) Other minor simpli�cations. Following is a list of other minor changes that we perform in
the front-end after parsing of the input program :
• Making return types explicit. In C, when the signature of a FunctionDe�nition does not

explicitly specify any return type, then the return type is implicitly considered to be int.
In cases where an explicit return type is missing, we add an explicit int return type to
the signature of functions.

foo (...) {...} =⇒ int foo (...) {...}

• Handling chained assignments. Each AssignmentExpression in C is a value, which is same
as the value being assigned. Hence, it is possible to have chained assignment expressions
of the form e1 = e2 = · · · = en . Such chained assignments are syntactic sugars, and can
unnecessarily complicate various analysis and transformation passes. Hence we replace
them with multiple statements and expression with single assignment operation in each.

8

IMOP : a source-to-source compiler framework for OpenMP C programs

e1 = e2 = e3 = ... en’ = en =⇒

en’ = en;

...

e2 = e3;

e1 = e2

• Removing old-style function signature. In old-style function prototypes, the paramater
list does not contain type information for the parameters. Instead, parameter types are
indicated separately as declarations, which immediately precede the body of the function.
When a declaration does not exist for a parameter, the type of that parameter is implicitly
assumed to be int.
The old-style function signatures are not recommended by the ANSI C standard. Although
IMOP does allow usage of old-style function signatures to allow handling of legacy code,
yet the front-end implicitly replaces such de�nitions with their corresponding new style.
For example, note the following transformation :

int foo(a, b, c)

char *a;

float c;

{...}

=⇒

int foo(char *a, int b, float c) {

...

}

2.3 Symbol Tables

An identi�er in C may represent a variable (also termed as object) or a function name, among
other things 5. With each variable and function, we associate a symbol (represented by the
Symbol class), which contains various important attributes about that variable or function.
Following are some key attributes :

(1) Name. This attribute is represented by the �eld name:String. As its name suggests, it holds
the name of the variable/function represented by this symbol.

(2) Scope and visibility. A symbol can be used (i.e., is visible) only lexically within a region of
program, called as its scope. The ISO C99 standard de�nes four scopes : �le, function, block
and function prototype scope. In IMOP, scope of a symbol is represented by the value of
its attribute definingScope:Scopeable. For a �le (global) scope, the definingScope �eld
would refer to the corresponding TranslationUnit object, for a function scope, it would refer
to the corresponding FunctionDe�nition object, and for a block scope, it would refer to
the corresponding CompoundStatement object. 6 (All these three classes implement the
Scopeable interface.)

Scope for a symbol representing a global variable will be of type TranslationUnit. For
a local variable, the scope would refer to that object of CompoundStatement, in which the

5Speci�cally, tags and members of a structure or union, enumeration constants, typedef names, and label names.
6By de�nition, a function prototype scope applies to those variables which are declared in the parameter list of
a function declaration (not de�nition). For example, variables a, b, and c have function prototype scope in the
following :

int foo (int a, char * b, float c);

We do not handle function prototype scopes explicitly, since no symbols associated with them can be used in any
executable code (like statements or predicates).

9

Aman Nougrahiya and V. Krishna Nandivada

declaration for the variable appears. In case of a parameter of a function, the scope would
refer to the FunctionDefinition object which represents that function.

Note that nested functions are an extension of GCC, and are not allowed as per the ISO
C99 standard. IMOP does not accept nested functions. Hence the scope of a symbol that
represents a function is always a TranslationUnit object.

(3) Type. The type of a symbol de�nes the meaning of values stored/represented by the symbol.
Type information about a symbol is represented by the �eld type:Type. More details about
the class Type can be found in Section 2.4.

(4) Storage class. The storage class of a symbol (representing a variable) is used to indicate the
nature of memory allocated for that variable, as well as the lifetime of the allocated memory.
In IMOP, we store the storage classes (represented by the enumeration StorageClass) of a
variable as a part of its type information.

(5) De�ning node. The attribute definingNode:Node represents the AST node which de�nes
(or declares) this symbol. When a symbol represents a function, this attribute refers to the
de�ning FunctionDe�nition object, if function de�nition is present; otherwise, this attribute
refers to the associated Declaration which represents the function prototype. When a symbol
represents a parameter variable, this attribute refers to the associated ParameterDeclaration
object. For local and global variables, this attribute refers to the declaring Declaration

object.

Each Scopeable object contains an attribute, symbolTable:HashMap<String, Symbol>,
which contains a symbol table for all the symbols declared in that scope.
Nesting of scopes. In C, scopes can be nested within each other. A scope can have an object
with same name as an object of its enclosing scope. In this scenario, an identi�er in the inner
scope refers to the object in the inner scope, shadowing the object with same name from the
enclosing scope. Hence, to ensure correct binding of identi�ers to their symbols, the symbol
tables should be stored in a nested manner, and lookup should be done from inside out, starting
with the scope that immediately encloses the use of the identi�er. In IMOP, since we associate
each symbol table directly to the AST node representing its corresponding scope, a natural
nesting of the symbol tables exists, de�ned by the nesting of the corresponding scopes.

2.4 Types

Types are used to de�ne meaning of values that an object (or variable) may hold, or that a
function may return. The ISO C99 standard de�nes various primitive and user-de�ned types in
detail in Section 6.2.5. The type system of IMOP closely matches that of the ISO C99 standard.

2.4.1 Type hierarchy. Every variable, constant, and expression of the input program has a
type. All these types are represented by various subclasses of Type. Variables of these types
can be declared in various di�erent ways, as speci�ed by the TypeSpeci�er component of the
corresponding Declaration. Below, we list di�erent C types supported by IMOP, along with the
relevant type speci�ers (Section 6.7.2.2, ISO C99). (Note that all concrete classes are written in
monospaced fonts.)

10

IMOP : a source-to-source compiler framework for OpenMP C programs

• VoidType : represents an empty set of values.
Type speci�er : void.
• ArithmeticType

– IntegerType
∗ CharType7

Type speci�er : char.
∗ EnumType

Type speci�er : EnumSpeci�er.
∗ _BoolType : stores either a 0 or 1.

Type speci�er : _Bool.
∗ SignedIntegerType
· SignedCharType

Type speci�er : signed char.
· SignedShortIntType

Type speci�er : short, signed short, short int, or signed short int.
· SignedIntType Type speci�er : int, signed, or signed int.
· SignedLongIntType Type speci�er : long, signed long, long int, or signed long
int.
· SignedLongLongIntType Type speci�er : long long, signed long long, long
long int, or signed long long int.

∗ UnsignedIntegerType
· UnsignedCharType Type speci�er : unsigned char.
· UnsignedShortIntType Type speci�er : unsigned short, or unsigned short int.
· UnsignedIntType Type speci�er : unsigned, or unsigned int.
· UnsignedLongIntType Type speci�er : unsigned long, or unsigned long int.
· UnsignedLongLongIntType

– FloatingType
∗ FloatType Type speci�er : �oat
∗ DoubleType Type speci�er : double
∗ LongDoubleType Type speci�er : long double

• DerivedType
– ArrayType

Represents C arrays; attribute elementType:Type refers to the type of elements; attribute
size:ConstantExpression refers to the declared size for the array.

– FunctionType

Represents the types for C functions; return type is represented by the at-
tribute returnType:Type; type information for parameters is stored in the
attribute parameterList:ArrayList<Parameter>, where each Parameter ob-
ject contains reference to following information : (i) type of the parameter
(parameterType:Type), (ii) name of the parameter (parameterName:String),

7Note that CharType can be same as either SignedCharType or UnsignedCharType, depending upon the imple-
mentation. However, none of the three types are considered as compatible with one another.

11

Aman Nougrahiya and V. Krishna Nandivada

and (iii) reference to the ParameterDeclaration AST node corresponding to the parameter
(parameterDeclaration:ParameterDeclaration).

– PointerType

Represents C pointers; attribute pointeeType:Type is used to indicate the type of the
referenced object/function.

– StructType

Represents C structures; name of the structure is denoted by tag:String;
type information for various members of the structure is represented by
the attribute elementList:ArrayList<StructOrUnionMember>, where each
StructOrUnionMember contains following key attributes : (i) type of the mem-
ber (elementType:Type), (ii) name of the member (elementName:String), and (iii) size
of the bit-�eld, if any (bitFieldSize:int) (Value of this �eld is −1 for those members
which are not a bit-�eld.).
Type speci�er : StructOrUnionSpeci�er.

– UnionType

Represents C unions; name of the union is denoted by tag:String; type
information for various members of the union is denoted by the attribute
elementList:ArrayList<StructOrUnionMember>.
Type speci�er : StructOrUnionSpecifier.

Given a declaration for any object (variable) or function (e.g., Declaration, FunctionDe�-
nition, etc.), its associated type can be obtained by using any of the overloaded methods in
Type::getTypeTree(*).

For any given Expression node in the AST, its type can be obtained by using the method
Type::getType(Expression), which may look into the type tables (Section 2.4.4) and apply
type conversion rules (Section 2.4.3), wherever applicable.

2.4.2 Further categorization of types. Note that the ISO C99 standard also provides these
additional classi�cations for certain subclasses of Type :

• Basic types : CharType, SignedIntegerType, UnsignedIntegerType, and FloatingType. The
method Type::isBasicType() returns true when called on any object of a basic type.
• Integer types : CharType, SignedIntegerType, UnsignedIntegerType, and EnumType.
• Scalar types : ArithmeticType and PointerType. The method Type::isScalarType() re-

turns true when called on any object of a scalar type.
• Aggregate types : ArrayType and StructType. The method Type::isAggregateType() re-

turns true when called on any object of an aggregate type.
• Derived declarator types : ArrayType, FunctionType, and PointerType. The method
Type::isDerivedDeclaratorType() returns true when called on any object of these
types.

2.4.3 Type conversions. IMOP follows all the implicit type conversion rules stated by the
ISO C99 standard, including :

12

IMOP : a source-to-source compiler framework for OpenMP C programs

Table 2. Integer conversion ranks for various integer types.

Integer type Integer conversion rank
SignedLongLongIntType and UnsignedLongLongIntType 6
SignedLongIntType and UnsignedLongIntType 5
SignedIntType, UnsignedIntType, and EnumType 4
SignedShortIntType and UnsignedShortIntType 3
SignedCharType, UnsignedCharType, and CharType 2
SignedLongLongIntType and UnsignedLongLongIntType 1
_BoolType 0

• integer promotions (Section 6.3.1.1.2, ISO C99 standard), which converts all integer
types to int or unsigned int depending upon the representation size (code at
Type::getIntegerPromotedType()),
• usual arithmetic conversions (Section 6.3.1.8, ISO C99), which �nds a common real

type for the operands and result of operations on ArithmeticTypes (code at
Type.getUsualArithmeticConvertedType(Type, Type)), and
• other operator-speci�c rules (Section 6.5, ISO C99).

Note that some rules of the usual arithmetic conversions are de�ned in terms of integer conversion
ranks, which provide a rank to each integer type (Section 6.3.1.1.1, ISO C99). An integer type
with higher integer conversion rank can hold all the values that an integer type with lower
integer conversion rank can. Since no absolute ranks are provided in the ISO C99, we use the
ranks speci�ed in Table 2 for performing arithmetic conversions. Note that these absolute
values preserve all the constraints speci�ed in the standard.

2.4.4 Type and typedef tables. As discussed in Section 2.4.1, type speci�ers are used to declare
variables, and to specify type information about functions. Users may create new type speci�ers
either by creating new user-de�ned types, like sturctures, unions, or enumerations, or be creating
typedefs, which are generally used to give names to complicated type trees. De�nitions for
typedefs and types can be speci�ed in any scope, like TranslationUnit, CompoundStatement
or FunctionDe�nition. For each scope, information about user-de�ned types and typedefs,
de�ned in that scope, is stored in the attributes typeTable:HashMap<String, Type> and
typedefTable:HashMap<String, Typedef>. This information is generally used in obtaining
type for any given expression or function, as well as while creating new temporaries/functions.

2.5 Memory abstractions

Stack and heap are two main components of the data memory that are generally modelled
during semantic analysis of a program. We term each abstract element of the memory as a cell
(represented by class Cell). Note that a compile-time abstract element may refer to one or more
elements of the memory during runtime. For example, in case of �eld-insensitive analyses, a
variable of a structure type may refer to all its members, and a variable of an array type may
refer to all the elements of the array.

In IMOP, we model a total of four types of cells, represented by following four subclasses of
Cell :

13

Aman Nougrahiya and V. Krishna Nandivada

(1) Symbol A Symbol object may represent a variable or a function (Section 2.3). We assume
that each variable corresponds to a memory cell in stack (in case of local variables), and in
global memory (in case of global variables). Similarly, since it is possible to use function
designators in expressions (consider function pointers), we need to model a memory cell (in
global memory) for each symbol that represents a function. Since there exists a one-to-one
mapping between a symbol and its associated memory cell, we overload each Symbol object
to also act as an abstraction for memory cell on stack (or global memory).

Various key attributes of a Symbol object have been discussed in Section 2.3. We also
maintain a static attribute genericCell:Symbol for the Symbol class, which represents an
abstraction of all the memory cells in the stack (, global memory, and heap). This abstraction
is useful while representing the universal set of stack cells.8

(2) HeapCell As its name implies, a HeapCell object is used to model a memory cell in the
heap. In IMOP, by default, we associate a unique heap cell with each syntactic occurrence of
a call to following procedures – , malloc, calloc, and realloc. Various attributes of a
HeapCell object are :
(a) allocatorType:Allocator represents the type of method which was used to create

this heap element in the program. The possible types are represented by an enumerator
Allocator, which can take following values – MALLOC, CALLOC, REALLOC, and NONE. Note
that value NONE is used to model those heap cells for which the allocation statement is not
known, e.g., heap cells pointed to by parameters of a function, in case of intra-procedural
analyses.9

(b) allocatorNode:CallStatement refers to the AST node of type CallStatement (Sec-
tion 2.2) that represents the call-site where this cell was allotted on the heap.

(c) heapId:int refers to a unique integral ID, which is used to identify heap cells.
Furthermore, similar to class Symbol, the HeapCell class also contains a static �eld
genericCell, which is used to represent all the memory cells on heap (and stack).

(3) FreeVariable During program transformations, there may exist transient states of programs
or snippets which may be incomplete, and hence semantically unde�ned. When an identi�er
in an expression does not have a corresponding declaration in the enclosing scopes, then
instead of a Symbol, the memory cell corresponding to the identi�er is represented by an
object of FreeVariable. For example, upon creation of a new expression, the variables used
within the expression do not have any corresponding declarations, unless the newly created
expression is attached within a proper scope. In such cases, for each identi�er, we maintain
a FreeVariable object.

Each FreeVariable object has a key attribute nodeToken:NodeToken10, which represents
the AST node representing the identi�er.

8Since we represent the universal set of certain elements by a speci�c element, we need to modify the associated set
operations accordingly.
9For intra-procedural analyses, we assume that all parameters of pointer types, point to the genericCell element.
10Each token in the grammar is represented by NodeToken objects. We parse each identi�er as a token in the input
grammar.

14

IMOP : a source-to-source compiler framework for OpenMP C programs

Note that for any identi�er in an expression, a FreeVariable object acts as a placeholder
for the actual Symbol object which would be known only when the expression is enclosed
in a scope with required declarations.

(4) AddressCell In certain analyses, we may need to model the address of variables. Each
address is an unknown constant at compile time. We represent the address of a variable as
its read-only attribute. This attribute is modelled by the �eld addressCell:AddressCell

of the Symbol object corresponding to the variable. Note that the variable can be considered
as a pointer to its associated addressCell.

An expression may read and/or write to multiple memory cells. Given an expression, we
can obtain the list (or set) of cells that may be read or written in the expression by calling
NodeInfo::getReads() and NodeInfo::getWrites() methods on the information object
corresponding to the AST node representing the expression.

2.6 Control-flow graphs

A control-�ow graph (CFG) is used to model the �ow of control among executable AST nodes.
The control �ow in a program is dictated by the semantics of various syntactic constructs (like
CompoundStatement, which speci�es a sequential �ow of control, WhileStatement, which
speci�es a looping �ow of control, TaskConstuct, which speci�es a possibly parallel �ow of
control, etc.) and jump statements (like GotoStatement, ReturnStatement, etc.).

2.6.1 Nested CFG. In general, various syntactics constructs are used nested within one
another to express the desired control �ow. In most of the low-level representations of a program,
these higher-level syntactic constructs get replaced by various conditional and unconditional
branches (jumps) and labels. Such representations are non-nested in nature. Hence, most of
the frameworks that work at low-level representations (e.g., three-address code form) of a
program, use non-nested �at CFG structure. However, in case of IMOP, since we work close
to the source-code level, where the control �ow is expressed with the help of nested syntactic
constructs, it is natural for us to use a nested CFG structure. Furthermore, specially in the
context of OpenMP programs, where a programmer speci�es OpenMP constructs around blocks
of code (e.g., specifying body of a ParallelConstruct, SingleConstruct, etc.), nested structure of
the CFG can help us in easily representing the facts about which group of leaf nodes specify a
parallel region, which group of leaf nodes need to be executed by a single thread, etc.

In order to ease the task of ensuring consistency between the AST and CFG abstractions of a
program during transformations, we simply treat some of the AST nodes as CFG nodes, instead
of creating new nodes for representing the CFG. Our nested CFG is comprised up of two set of
nodes – non-leaf CFG nodes, and leaf CFG nodes. Non-leaf CFG nodes are those AST nodes
which contain other (leaf or non-leaf) CFG nodes within them.

The execution of a non-leaf CFG node starts at its speci�c constituent begin:BeginNode,
executes various constituents of the node in an order dictated by the semantics of the node,
and �nally �nishes at its another speci�c constituent end:EndNode. However, there may be
multiple entry and exit points for a non-leaf node, apart from its begin node and end node,

15

Aman Nougrahiya and V. Krishna Nandivada

respectively, owing to various JumpStatements and labels. In fact, the end node may or may
not be reachable from the begin node.

Following is a list of all types of leaf CFG nodes in IMOP : Declaration11, ParameterDec-
laration, UnknownCpp, UnknownPragma, OmpForInitExpression, OmpForCondition, Omp-
ForReinitExpression, FlushDirective, DummyFlushDirective, BarrierDirective, TaskwaitDirec-
tive, TaskyieldDirective, ExpressionStatement, GotoStatement, ContinueStatement, BreakState-
ment, ReturnStatement, Expression12, IfClause, NumThreadsClause, FinalClause, BeginNode,
EndNode, PreCallNode, and PostCallNode.

Following is a list of all types of non-leaf CFG nodes in IMOP : FunctionDe�nition, Parallel-
Construct, ForConstruct, SectionsConstruct, SingleConstruct, TaskConstruct, MasterConstruct,
CriticalConstruct, AtomicConstruct, OrderedConstruct, CompoundStatement, IfStatement,
SwitchStatement, WhileStatement, DoStatement, ForStatement, and CallStatement.

The �ow of control among the components of these non-leaf nodes is speci�ed as per the
semantics of the non-leaf node. For example, the control-�ow in a WhileStatement starts with
its begin node, goes to its constituent Expression predicate, from where it either terminates
after jumping to the end node, or goes into the constituent CompoundStatement body, from
where it comes back again to the Expression predicate i� the control can reach the end node
the body. The constituents and control-�ow for other types of non-leaf CFG nodes are de�ned in
a similar way, as per the standard. However, since CallStatement (Section 2.2) is not a standard
statement in C language, we explicitly specify the control �ow within a CallStatement in
Section 2.6.2.

Note that the successors of a node are speci�ed by the attribute
succBlocks:ArrayList<Node>, and predecessors of a node are speci�ed by the at-
tribute predBlocks:ArrayList<Node>. A begin node will have no predecessors, and an end

node will have no successors. When control �ows into a non-leaf node, it is assumed to �ow
into the begin node of the non-leaf node. Similarly, when the control �ows out of an end node
of a non-leaf node, it is assumed to �ow out of the non-leaf node.

2.6.2 Control flow in a CallStatement. We introduced the notion of a CallStatement in
Section 2.2. A CallStatement represents a call-site, in simpli�ed form – each argument is
either an identi�er or a constant; the function designator is an identi�er; and the return value, if
any, is assigned to a simple scalar variable. Each CallStatement non-leaf CFG node comprises
of following four leaf CFG nodes :

(1) begin:BeginNode is the �rst node to get executed within a CallStatement.
(2) preCallNode:PreCallNode represents reads of all the arguments.
(3) postCallNode:PostCallNode, optionally, emulates the write of the return value to a scalar

temporary.
(4) end:EndNode is the last node to get executed before the control exist the CallStatement.

11In general, a Declaration is not considered as a CFG node. However, since we can have const quali�ed declarations
with initializers in the input program, for now we consider an implicit or explicit write at all the Declaration

nodes.
12All expressions that represent predicates (e.g., branch expression of an IfStatement) will be replaced by type
Predicate in the release version.

16

IMOP : a source-to-source compiler framework for OpenMP C programs

Note that the intra-procedural control-�ow for this node can be represented simply as begin
→ preCallNode→ postCallNode→ end. In case of intra-procedural analyses, the analyses
do not (or can not) look into the body of the called function. Hence, the analyses need to model
the side-e�ect of the function call in global and heap memory. We assume that these e�ects
take place in the preCallNode.

In case of inter-procedural analysis, if the body (or bodies, when the function designator
may refer to more than one functions statically of the called function is available, the control
�ows from preCallNode to the FunctionDefinition of the target function. After executing
the target function, the control returns back from the FunctionDefinition to postCallNode.
Note that since we manage call-stacks (Section 2.7), we traverse on only valid paths in IMOP,
i.e., when the control returns back from a function, it returns back to that program point from
where the function was called. (Note that if the traversal did not start from the main() function,
or if the call-stack is empty, then the traversal from end node of a function can continue to all
the possible call-sites for which that function may be a target.)

In IMOP, we support both intra- and inter-procedural (both context-sensitive, as well as
-insensitive) valid traversals of the CFG.

2.6.3 CFG traversals. Although the nested nature of the CFG may help in ensuring its close
proximity to the AST, and thereby ease various transformations, yet many analyses might want
to traverse only from one leaf to another, bypassing the wrappings of all the non-leaf nodes.
Similarly, while traversing the CFG of a parallel region, an analysis might not want to traverse
inside the nested parallel regions, if any. To handle a variety of such cases, we provide various
types of CFG traversal mechanisms. In this section, we look at some of those traversals. Note
that all control-�ow related information for a node is stored in the corresponding CFGInfo

object which is accessed by calling getInfo().getCFGInfo() method on the node. Following
traversal methods are speci�ed for a CFG node using its CFGInfo objects :

• getSuccBlocks() and getPredBlocks()

– These methods are used to obtain intra-procedural intra-task successors and predecessors
at the same nesting level of a CFG node.

– For an EndNode, getSuccBlocks() always returns an empty list.
– For a BeginNode, getPredBlocks() always returns an empty list.
– CallStatement are treated as any other leaf node, i.e., these methods provide only

intra-procedural traversals.
– DummyFlushDirective nodes too are treated as an empty node, i.e., these methods do

not provide intra-task traversals (Section 2.11).
– These methods read from the attributes succBlocks:ArrayList<Node> and
predBlocks:ArrayList<Node> of the CFGInfo object, respectively,

• getSuccessors(), and getPredecessors()

– The list returned by getSuccessors() is same as that returned by getSuccBlocks(),
except for a subtle di�erence : when getSuccessors() is called on an EndNode, the
successors of the enclosing non-leaf node are returned. These semantics are useful while
traversing the control-�ow graph in forward direction across the nesting boundaries.

17

Aman Nougrahiya and V. Krishna Nandivada

– The list returned by getPredecessors() is same as that returned by getPredBlocks(),
except for a subtle di�erence : when getPredecessors() is called on a BeginNode, the
predecessors of the enclosing non-leaf node are returned. These semantics are useful while
traversing the control-�ow graph in backward direction across the nesting boundaries.

– For an EndNode of a FunctionDefinition, an empty list is returned by
getSuccessors(). Similarly, an empty list is returned by getPredecessors()

when called on the BeginNode of a FunctionDefinition. This implies that the
traversals do not move across the function boundaries, and are intra-procedural in
nature.

– Like getSuccBlocks() and getPredBlocks(), these methods do not traverse across
inter-procedural or inter-task edges from CallStatement and DummyFlushDirective

nodes.
• getLeafSuccessors() and getLeafPredecessors()

– These methods are used to emulate the behavior of a non-nested �at CFG. None of
the non-leaf nodes are ever returned as an element by these traversal methods. These
traversal methods bypass the nesting of the CFG and help in working directly at the leaf
nodes.

– The list returned by getLeafSuccessors() and getLeafPredecessors() is same as
that returned by getSuccessors() and getPredecessors() with all the non-leaf nodes
replaced by their corresponding BeginNode and EndNode nodes, respectively.

– Note that the traversal using these methods remain intra-procedural and intra-task in
nature.

• getInterProceduralLeafSuccessors() and getInterProceduralLeafPredecessors()

– These methods are used to obtain context-insensitive inter-procedural intra-task leaf
successors and predecessors of a CFG node.

– Given the EndNode of a FunctionDefinition, the returned list of the method
getInterProceduralLeafSuccessors() contains the PostCallNode of all those call-
sites (CallStatement) whose target can be that function.

– Given the BeginNode of a FunctionDefinition, the returned list of the method
getInterProceduralLeafPredecessors() contains the PreCallNode of all those call-
sites (CallStatement) whose target can be that function.

– For the PreCallNode of any CallStatement, the returned list of the method
getInterProceduralLeafSuccessors() contains the BeginNode of all those
FunctionDefinition which can be a possible target of that CallStatement.

– For the PostCallNode of any CallStatement, the returned list of the method
getInterProceduralLeafPredecessors() contains the EndNode of all those
FunctionDefinition which can be a possible target of that CallStatement.

– In all other cases, the return of getInterProceduralLeafSuccessors() and
getInterProceduralLeafPredecessors() will be same as the return of
getLeafSuccessors() and getLeafPredecessors(), respectively.

– Note that these methods do not traverse across the inter-task edges of
DummyFlushDirective nodes.

18

IMOP : a source-to-source compiler framework for OpenMP C programs

Apart from the traversal methods described above, we also have a couple of collector methods
– getLexicalIntraProceduralContents() getLexicalIntraProceduralLeafContents()

that are used to obtain the set of all the intra-procedural CFG and leaf CFG nodes, contained
lexically within the receiver object, respectively.

2.6.4 CFG visualizer. For debugging or visualization purposes, the intra-procedural nested
control-�ow graph for any given function or snippet can be visualized using the method
Misc.generateDotGraph(Node, String). This method dumps the nested control-�ow graph
of given Node in DOT format, in a �le with the speci�ed name. This generated �le can be viewed
graphically by any dot graph visualizers.

2.7 Call graphs

A call graph represents the �ow of control among various functions of a program. In IMOP, we
emulate the edges of a call graph as follows :

• In order to obtain the set of call-sites within a FunctionDefinition (or any snippet), we
use the method getCallStatements():ArrayList<CallStatement> on the corresponding
information object of the AST/CFG node.
• To obtain the set of FunctionDefinition nodes which can be a possible target of a
CallStatement, we use the method getCalleeDefinitions() on the information object
of the CallStatement (of type CallStatementInfo).
• And �nally, for backward traversals on the call graph, given a FunctionDefinition, we

can obtain the set of all CallStatement nodes whose target can be the given function, by
using the method getCallersOfThis() on the information object of the function (of type
FunctionDefinitionInfo).

Note that unless we maintain a call stack, it would be di�cult to know which call-statement had
called a given function, since we would not know the calling context. Hence, in next section,
we discuss the notion of call stacks.

2.7.1 Call stack. A CallStack object represents the notion of context-sensitive/-insensitive
call stack. It is a stack of CallStatement nodes. While performing any context-sensitive static
analysis, the call-stack is used to remember the calling context.
Emulating a context-insensitive call-stack. In recursive programs, sometimes we might need to

use context-insensitive call-stack, to limit the bound on the size of the call stack statically. To rep-
resent a context-insensitive stack, we use a special object: CallStatement.getPhantomCall().
In such a scenario, the stack will comprise of only this object and nothing else. No attempts
to push or pop will have any a�ect on the stack. Peek (and pop) operations would return a
reference to the phantom call statement. If attempts are made to pop from an empty call-stack,
we instead push a phantom call statement, and return it.
Handling recursion. While modelling the call stack in case of recursive programs, we need to

put a bound on the size of the stack to ensure termination of various traversals and analyses. In
case of a context-sensitive stack, if attempts are made to push a call statement that is already

19

Aman Nougrahiya and V. Krishna Nandivada

present in the stack, we make the stack context-insensitive by clearing the stack and pushing
the phantom call statement on stack.13

2.7.2 Context-sensitive traversals. To complement the list of context-insensitive
traversal methods on the CFG, present in Section 2.6, we discuss below a pair
of traversal methods that are used for context-sensitive inter-procedural traver-
sals, using CallStacks – getInterProceduralLeafSuccessors(CallStack CS) and
getInterProceduralLeafPredecessors(CallStack CS). Note that these methods return a
list of pairs of Node and CallStack.

• These methods are used to obtain context-sensitive inter-procedural intra-task leaf successors
and predecessors of a CFG node, along with the relevant calling contexts.
• Given the EndNode of a FunctionDefinition, and a context-insensitive call stack

(with phantom call statement at its top), say CS, the list returned by the method
getInterProceduralLeafSuccessors(CS) would contain the PostCallNode of all those
CallStatement nodes whose target can be that function. The state of the stack for each
returned PostCallNode would remain unchanged.

In case of context-sensitive stack, the returned list would contain only one element –
PostCallNode of the popped CallStatement from the stack, with a modi�ed state of the
stack – one with the top element popped from CS.
• Given the BeginNode of a FunctionDefinition, and a context-insensitive call stack

(with phantom call statement at its top), say CS, the list returned by the method
getInterProceduralLeafPredecessors(CS) would contain the PreCallNode of all those
CallStatement nodes whose target can be that function. The state of the stack for each
returned PreCallNode would remain unchanged.

In case of context-sensitive stack, the returned list would contain only one element –
PreCallNode of the popped CallStatement from the stack, with a modi�ed state of the
stack – one with the top element popped from CS.
• When getInterProceduralLeafSuccessors(CS) is called on the PreCallNode of a
CallStatement, with a context-insensitive stack CS (i.e., CS contains a phantom call
statement as its top element), the returned list contains the BeginNode of all the
FunctionDefinition nodes which can be target of that call statement. The state of the
stack remains unchanged in the returned list.

In case of context-sensitive stacks, the returned list would contain one element each
for BeginNode of all the possible target FunctionDefinition nodes with a modi�ed state
of the stack – one with the CallStatement pushed on top of CS. Note that as per the
current semantics, if CS already contains this CallStatement, then the stack would be made
context-insensitive by emptying it and pushing a phantom call statement.
• When getInterProceduralLeafPredecessors(CS) is called on the PostCallNode of

a CallStatement, with a context-insensitive stack CS (i.e., CS contains a phantom
call statement as its top element), the returned list contains the EndNode of all the

13This policy can be changed as per the requirements, by making appropriate changes in the class CallStack.

20

IMOP : a source-to-source compiler framework for OpenMP C programs

FunctionDefinition nodes which can be target of that call statement. The state of the
stack remains unchanged in the returned list.

In case of context-sensitive stacks, the returned list would contain one element each
for EndNode of all the possible target FunctionDefinition nodes with a modi�ed state
of the stack – one with the CallStatement pushed on top of CS. Note that as per the
current semantics, if CS already contains this CallStatement, then the stack would be made
context-insensitive by emptying it and pushing a phantom call statement.
• In all other circumstances, the returned lists for methods
getInterProceduralLeafSuccessors(CS) and getInterProceduralLeafPredecessors(CS)
would be same as the ones returned by getInterProceduralLeafSuccessors() and
getInterProceduralLeafPredecessors(), respectively, with the stack for each element
of the returned lists as CS.
• Note that these methods do not traverse the inter-task edges of DummyFlushDirective

nodes.

2.8 Snippet builders

In order to create a new AST node, we have following two options in IMOP :

(1) Use the constructors provided with various classes that represent the AST nodes. There
exists one class each for all the non-terminals of the grammar (Appendix C) at the pack-
age imop.ast.node.external. Each terminal (token) is represented by objects of class
NodeToken.

Note that this way of construction of the AST puts the onus of creating a correct parse tree
for the input program or snippet on the programmer. We do not recommend this approach
since it is complex, time-consuming, and error-prone. For the example snippet below,

if (x > 0) {

x = x + 1;

}

the code (approximated for simplicity) that we need to write to parse it as an IfStatement

is :
Identifier variablePredicate = new Identifier("x");

Constant constPredicate = new Constant("1");

RelationalLTExpression relationalExpression = new RelationalLTExpression(variablePredicate,

constant);

Expression predicate = new Expression(relationalExpression);

...

// Generate "lhs" and "rhs" as expressions.

...

AssignmentStatement assignStmt = new AssignmentStatement(lhs, rhs);

...

// Generate "body" as a block from "assignStmt".

...

IfStatement newStmt = new IfStatement(predicate, body);

21

Aman Nougrahiya and V. Krishna Nandivada

(2) IMOP provides various methods in class FrontEnd, which take the input program or snippet
in some form of stream, (including a String!), and invoke the in-built parser internally to
create the complete AST tree rooted at a node of speci�ed form.14 These methods either
throw a ParseException if the speci�ed stream (or String), can not be parsed as the
speci�ed AST node type, or return a reference to the root node of the fully constructed AST.
For example, in order to parse the snippet IfStatement above, we need to write a single
line of code, as follows :

IfStatement newStmt = FrontEnd.parseAlone("if(x>0){x=x+1;}", IfStatement.class);

At the end of this statement, node newStmtwould refer to the root node of type IfStatement,
of the newly created AST. Note that the input String for parsing methods need not be
compile-time constants, and can be generated on-the-�y at runtime. (Nothing special here.
It’s Java.)

2.9 Elementary transformations

In this section, we look into the list of elementary transformations that : (i) are used to update
various components of non-leaf CFG nodes, (ii) help us in modifying labels associated with
various statements, or (iii) update the symbol table entries for scopes. Almost all higher-level
transformations can be expressed in terms of these elementary transformations. (Note that an
exhaustive list of all the higher-level transformations provided by IMOP, will be present in a
future draft of this report.)

Below, we discuss the list of elementary transformations currently provided by IMOP, corre-
sponding to various non-leaf CFG nodes. (Note that for each setter (or modi�er) method below,
there exists a corresponding getter method as well, which we do not show to save space.)
• FunctionDe�nition

– setParameterDeclarationList(ArrayList<ParameterDeclaration>)

– clearParameterDeclarationList()

– removeParameterDeclaration(ParameterDeclaration)

– addParameterDeclaration(ParameterDeclaration)

– setBody(Statement)

• ParallelConstruct
– setIfClause(IfClause)

– removeIfClause()

– setNumThreadsClause(NumThreadsClause)

– removeNumThreadsClause()

– setBody(Statement)

• ForConstruct
– setInitExpression(OmpForInitExpression)

– setForConditionExpression(OmpForCondition)

– setReinitExpression(OmpForReinitExpression)

14Many compiler frameworks can invoke the internal parser only when the input stream represents the whole
program (of form TranslationUnit, in our case). Unlike them, the parsers created by JavaCC/JTB can invoke the
internal parsers even for an input stream that may represent only a snippet of the program (e.g., for an IfStatement).

22

IMOP : a source-to-source compiler framework for OpenMP C programs

– setBody(Statement)

• SectionsConstruct
– setSectionsList(ArrayList<Statement>)

– removeSection()

– addSection(Statement)

– clearSectionsList()

• SingleConstruct
– setBody(Statement)

• TaskConstruct
– setBody(Statement)

– setIfClause(IfClause)

– removeIfClause()

– setFinalClause(FinalClause)

– removeFinalClause()

• MasterConstruct
– setBody(Statement)

• CriticalConstruct
– setBody(Statement)

• AtomicConstruct
– setExpressionStatement(ExpressionStateemnt)

• OrderedConstruct
– setBody(Statement)

• CompoundStatement
– setElementList(ArrayList<Statement>)

– clearElementList()

– removeElement(Statement)

– addElement(Statement)

• IfStatement
– setPredicate(Expression)

– setThenBody(Statement)

– setElseBody(Statement)

– removeElseBody(Statement)

• SwitchStatement
– setPredicate(Expression)

– setBody(Statement)

• WhileStatement
– setPredicate(Statement)

– setBody(Statement)

• DoStatement
– setPredicate(Expression)

– setBody(Statement)

• ForStatement
– setInitExpression()

– removeInitExpression()

– setTerminationExpression()

23

Aman Nougrahiya and V. Krishna Nandivada

– removeTerminationExpression()

– setStepExpression()

– removeStepExpression()

– setBody()

Note that we disallow any updates to the �elds of a CallStatement, since any update to
an existing CallStatement node may a�ect the program drastically, and can be di�cult to
handle. If any updates are needed in the CallStatement node, we instead create a new node
with modi�ed values. IMOP provides following methods to handle labels associated with a
statement – removeLabelAnnotation() and addLabelAnnotation().

To add and remove declarations from a Scopeable object, following two methods can be
used – addDeclaration() and removeDeclaration().

Using the methods above, various higher-level transformations can be easily speci�ed. For
example, to perform loop unrolling on a WhileStatement, say referred by a whileStmt, the
code that use internally is as follows :

String newBodyString = "{";

newBodyString += whileStmt.getBody() + "if (!" + whileStmt.getPredicate()

+ ") break;" + whileStmt.getBody();

newBodyString += "}";

Statement newBody = FrontEnd.parseAlone(newBodyString, Statement.class);

whileStmt.setBody(newBody);

2.10 Concurrency analysis

When an SPMD process is launched, various threads start executing a copy of the SPMD code
(code written in an OpenMP parallel region) in parallel. Each thread runs in parallel without
any interruption until it encounters a barrier, where it waits for other threads to encounter
this or some other barrier. (Barriers in OpenMP are textually unaligned and unnamed). All the
statements that get executed by di�erent threads since the beginning of the program till the
threads hit a set of barriers, constitute a runtime phase. Similarly, next runtime phase will start
from this set of barriers and end at the next reachable set of barriers. We term such sets of
barriers that synchronize with each other as synchronization-set, for context-insensitive analysis.
(It is important to note that for context-sensitive analyses, the de�nition of synchronization-set
takes the calling contexts as well into account.) We abstract various runtime phases sharing the
same synchronization-set by a single abstract-phase, or a phase in general. Since the number
of syntactic barriers in a program is �nite, the number of synchronization-sets is also �nite,
and thus the number of phases in a program is �nite (for context-insensitive de�nition of
synchronization-sets).

Given a pair of program statements,MayHappen in Parallel (MHP) analysis tells whether these
statements may get executed in parallel by di�erent threads in any of the possible executions
of the program. Such an analysis inspects the various constraints imposed on the execution
orderings of di�erent statements by the help of various synchronization primitives and other
means of communication among threads.

24

IMOP : a source-to-source compiler framework for OpenMP C programs

In the base technique that we employ for performing MHP analysis, we annotate each
statement with a set of phase numbers (called as phase-set). A phase number uniquely identi�es
an abstraction of some runtime phases, where a runtime phase is the set of statements that are
executed concurrently by di�erent threads. Note that in the presence of loops and/or procedures,
a single statement may become a part of more than one phase.

Context-sensitive MHP analysis is undecidable in nature [16]. To tackle this problem, we
propose a k-depth context-sensitive version of MHP, where the static analysis maintains the
call-stack of only a maximum size k . For all the calls that exceed the call-stack length of k , the
analysis approximates the calls in a context-insensitive manner.

Given an MHP query for a pair of statements, the MHP analyzer returns yes if the phase-sets
of these statements have a non-empty intersection.

In IMOP, we use class Phase to model the notion of an abstract phase. To know
whether two given statements may run in parallel with each other, we use the method
Misc.mayHappenInParallel(Node, Node). (More details about phase information, MHP anal-
ysis, data races, atomicity, and lock-set analysis will be added later in this section.)

2.11 Inter-task communication

Data-�ow facts in a serial program generally propagate along the edges of the program’s
control-�ow graph (CFG). In case of parallel programs, however, data-�ow facts at a statement
may get a�ected even by those statements which do not precede this statement in the program’s
serial CFG. Seemingly unrelated statements that might be getting executed in parallel by other
threads can a�ect the data-�ow facts, in the context of shared memory. To ensure the correctness
of various static analyses performed on a shared memory parallel program, it is necessary to
employ concurrency analysis to ensure that all the statements that may a�ect the data-�ow
facts are taken into account while modelling �ow of data.

According to the OpenMP API, communication among a pair of tasks, say (τ1 and τ2), may
happen only when these four steps happen in order:

(1) τ1 writes to a shared location, say s .
(2) τ1 �ushes s , implicitly or explicitly.
(3) τ2 �ushes s , implicitly or explicitly.
(4) τ2 reads from s .

We represent this communication with the help of edges among DummyFlushDirective

nodes. Note that these edges need to be created only between those DummyFlushDirective

nodes which share at least one common phase. With each node of type DummyFlushDirective,
we maintain the following two key attributes :

• readCells:HashSet<Cell> refers to the list of all those shared memory cells that may get
read from after this dummy-�ush node, on dummy-�ush free paths.
• writeCells:HashSet<Cell> refers to the list of all those shared memory cells that might

have been written to before this dummy-�ush node, on dummy-�ush free paths.

Now, given two DummyFlushDirective nodes, say d1 and d2, that may share a phase, we
generate a directed inter-task edge from d1 and d2, if the intersection of d1.writeCells with

25

Aman Nougrahiya and V. Krishna Nandivada

d2.readCells is non-empty. The intersection itself is annotated on the edge, and represents the
shared locations through which communication may happen between two threads executing
the tasks corresponding to d1 and d2.

26

IMOP : a source-to-source compiler framework for OpenMP C programs

3 RELATED WORK

Apart from IMOP, there are various other existing frameworks like GCC [17], LLVM [7],
Cetus [6] and ROSE [15] that provide tools to implement compiler analyses and transformations.
Following are some of the fundamental di�erences (and similarities) between IMOP and other
frameworks :

• LLVM and GCC do not work at the source code level. If a certain analysis/transformation is
de�ned (or should be de�ned) at the source code level, IMOP, ROSE and Cetus are better
candidates to pick from.
• GCC, ROSE, and LLVM are written in C/C++. IMOP and Cetus are written in Java, which

makes them portable and easier to use.
Debugging and programmability are some of the various known advantages of Java over
C/C++. Although programs written in C/C++ can be more e�cient than Java (which is not
the case always), yet the latter serves our purpose well. Our priority is to enable easier and
faster development of the compiler optimization tools.
• Cetus is written in Java. However, there are various fundamental design di�erences between

IMOP and Cetus. As compared to Cetus, IMOP has better
– handling of OpenMP constructs and directives,
– approach to the creation of AST nodes,
– representation of the CFG nodes,
– design for AST/CFG traversals,
– implementation of the iterative data-�ow analyses (both serial and parallel),
– paradigm for implementing iterative transformations of the input programs, etc.

• ROSE is written in C/C++; IMOP is written in Java. ROSE supports OpenMP 3.0 speci�cation;
IMOP supports OpenMP 4.0. In IMOP, CFG nodes are more closely coupled with their AST
counterparts. This coupling eases the AST transformations which are generally based on
the output of the CFG analyses. (As an example, unlike ROSE, IMOP never needs comma
operators to add new instructions to the CFG nodes.) With the help of JTB, IMOP encodes
the AST traversals in a more modular way than ROSE.
• Along with the utilities provided by the other frameworks, IMOP also provides elementary

analyses and transformations that are speci�c to OpenMP C programs.

27

Aman Nougrahiya and V. Krishna Nandivada

A QUICK START GUIDE

A.1 Front-End : Parsing, and Default Passes

A.2 Implementing analyses and transformations

A.3 Emi�ing the transformed code

B IMPLEMENTATION DEFINED BEHAVIOR

28

IMOP : a source-to-source compiler framework for OpenMP C programs

C PARSER GRAMMAR

EBNF for C with OpenMP

TranslationUnit ::= (ElementsOfTranslation)+
ElementsOfTranslation ::= ExternalDeclaration

| UnknownCpp
| UnknownPragma

ExternalDeclaration ::= Declaration
| FunctionDe�nition
| DeclareReductionDirective
| ThreadPrivateDirective

FunctionDe�nition ::= (DeclarationSpeci�ers)? Declarator (DeclarationList)? Com-
poundStatement

Declaration ::= DeclarationSpeci�ers (InitDeclaratorList)? ";"
DeclarationList ::= (Declaration)+

DeclarationSpeci�ers ::= (ADeclarationSpeci�er)+
ADeclarationSpeci�er ::= StorageClassSpeci�er

| TypeSpeci�er
| TypeQuali�er

StorageClassSpeci�er ::= <AUTO> | <REGISTER> | <STATIC> | <EXTERN> | <TYPEDEF>
TypeSpeci�er ::= <VOID> | <CHAR> | <SHORT> | <INT> | <LONG> | <FLOAT> |

<DOUBLE> | <SIGNED> | <UNSIGNED> | StructOrUnionSpec-
i�er | EnumSpeci�er | TypedefName

TypeQuali�er ::= <RESTRICT> | <CONST> | <VOLATILE> | <INLINE> |
<CCONST> | <CINLINED> | <CINLINED2> | <CSIGNED> |
<CSIGNED2>

StructOrUnionSpeci�er ::= (StructOrUnionSpeci�erWithList | StructOrUnionSpeci�er-
WithId)

StructOrUnionSpeci�erWithList ::= StructOrUnion (<IDENTIFIER>)? "{" StructDeclarationList "}"
StructOrUnionSpeci�erWithId ::= StructOrUnion <IDENTIFIER>

StructOrUnion ::= <STRUCT> | <UNION>
StructDeclarationList ::= (StructDeclaration)+

InitDeclaratorList ::= InitDeclarator ("," InitDeclarator)*
InitDeclarator ::= Declarator ("=" Initializer)?

StructDeclaration ::= Speci�erQuali�erList StructDeclaratorList ";"
Speci�erQuali�erList ::= (ASpeci�erQuali�er)+

ASpeci�erQuali�er ::= TypeSpeci�er
| TypeQuali�er

StructDeclaratorList ::= StructDeclarator ("," StructDeclarator)*
StructDeclarator ::= StructDeclaratorWithDeclarator

| StructDeclaratorWithBitField
StructDeclaratorWithDeclarator ::= Declarator (":" ConstantExpression)?

29

Aman Nougrahiya and V. Krishna Nandivada

StructDeclaratorWithBitField ::= ":" ConstantExpression
EnumSpeci�er ::= EnumSpeci�erWithList

| EnumSpeci�erWithId
EnumSpeci�erWithList ::= <ENUM> (<IDENTIFIER>)? "{" EnumeratorList "}"

EnumSpeci�erWithId ::= <ENUM> <IDENTIFIER>
EnumeratorList ::= Enumerator ("," Enumerator)*

Enumerator ::= <IDENTIFIER> ("=" ConstantExpression)?
Declarator ::= (Pointer)? DirectDeclarator

DirectDeclarator ::= Identi�erOrDeclarator DeclaratorOpList
DeclaratorOpList ::= (ADeclaratorOp)*

ADeclaratorOp ::= DimensionSize
| ParameterTypeListClosed
| OldParameterListClosed

DimensionSize ::= "[" (ConstantExpression)? "]"
ParameterTypeListClosed ::= "(" (ParameterTypeList)? ")"

OldParameterListClosed ::= "(" (OldParameterList)? ")"
Identi�erOrDeclarator ::= <IDENTIFIER>

| "(" Declarator ")"
Pointer ::= ("*" | "ˆ") (TypeQuali�erList)? (Pointer)?

TypeQuali�erList ::= (TypeQuali�er)+
ParameterTypeList ::= ParameterList ("," "...")?

ParameterList ::= ParameterDeclaration ("," ParameterDeclaration)*
ParameterDeclaration ::= DeclarationSpeci�ers ParameterAbstraction
ParameterAbstraction ::= Declarator

| AbstractOptionalDeclarator
AbstractOptionalDeclarator ::= (AbstractDeclarator)?

OldParameterList ::= <IDENTIFIER> ("," <IDENTIFIER>)*
Initializer ::= AssignmentExpression

| ArrayInitializer
ArrayInitializer ::= "{" InitializerList (",")? "}"

InitializerList ::= Initializer ("," Initializer)*
TypeName ::= Speci�erQuali�erList (AbstractDeclarator)?

AbstractDeclarator ::= AbstractDeclaratorWithPointer
| DirectAbstractDeclarator

AbstractDeclaratorWithPointer ::= Pointer (DirectAbstractDeclarator)?
DirectAbstractDeclarator ::= AbstractDimensionOrParameter DimensionOrParameterList

AbstractDimensionOrParameter ::= AbstractDeclaratorClosed
| DimensionSize
| ParameterTypeListClosed

AbstractDeclaratorClosed ::= "(" AbstractDeclarator ")"
DimensionOrParameterList ::= (ADimensionOrParameter)*

30

IMOP : a source-to-source compiler framework for OpenMP C programs

ADimensionOrParameter ::= DimensionSize
| ParameterTypeListClosed

TypedefName ::= <IDENTIFIER>
Statement ::= LabeledStatement

| ExpressionStatement
| CallStatement
| CompoundStatement
| SelectionStatement
| IterationStatement
| JumpStatement
| UnknownPragma
| OmpConstruct
| OmpDirective
| UnknownCpp

UnknownCpp ::= "#" <UNKNOWN_CPP>
OmpEol ::= <OMP_CR>

| <OMP_NL>
OmpConstruct ::= ParallelConstruct

| ForConstruct
| SectionsConstruct
| SingleConstruct
| ParallelForConstruct
| ParallelSectionsConstruct
| TaskConstruct
| MasterConstruct
| CriticalConstruct
| AtomicConstruct
| OrderedConstruct

OmpDirective ::= BarrierDirective
| TaskwaitDirective
| TaskyieldDirective
| FlushDirective

ParallelConstruct ::= OmpPragma ParallelDirective Statement
OmpPragma ::= "#" <PRAGMA> <OMP>

UnknownPragma ::= "#" <PRAGMA> <UNKNOWN_CPP>
ParallelDirective ::= <PARALLEL> UniqueParallelOrDataClauseList OmpEol

UniqueParallelOrDataClauseList ::= (AUniqueParallelOrDataClause)*
AUniqueParallelOrDataClause ::= UniqueParallelClause

| DataClause
UniqueParallelClause ::= IfClause

| NumThreadsClause

31

Aman Nougrahiya and V. Krishna Nandivada

IfClause ::= <IF> "(" Expression ")"
NumThreadsClause ::= <NUM_THREADS> "(" Expression ")"

DataClause ::= OmpPrivateClause
| OmpFirstPrivateClause
| OmpLastPrivateClause
| OmpSharedClause
| OmpCopyinClause
| OmpD�tSharedClause
| OmpD�tNoneClause
| OmpReductionClause

OmpPrivateClause ::= <PRIVATE> "(" VariableList ")"
OmpFirstPrivateClause ::= <FIRSTPRIVATE> "(" VariableList ")"
OmpLastPrivateClause ::= <LASTPRIVATE> "(" VariableList ")"

OmpSharedClause ::= <SHARED> "(" VariableList ")"
OmpCopyinClause ::= <COPYIN> "(" VariableList ")"

OmpD�tSharedClause ::= <DFLT> "(" <SHARED> ")"
OmpD�tNoneClause ::= <DFLT> "(" <NONE> ")"

OmpReductionClause ::= <REDUCTION> "(" ReductionOp ":" VariableList ")"
ForConstruct ::= OmpPragma ForDirective OmpForHeader Statement
ForDirective ::= <FOR> UniqueForOrDataOrNowaitClauseList OmpEol

UniqueForOrDataOrNowaitClauseList ::= (AUniqueForOrDataOrNowaitClause)*
AUniqueForOrDataOrNowaitClause ::= UniqueForClause

| DataClause
| NowaitClause

NowaitClause ::= <NOWAIT>
UniqueForClause ::= <ORDERED>

| UniqueForClauseSchedule
| UniqueForCollapse

UniqueForCollapse ::= <COLLAPSE> "(" Expression ")"
UniqueForClauseSchedule ::= <SCHEDULE> "(" ScheduleKind ("," Expression)? ")"

ScheduleKind ::= <STATIC> | <DYNAMIC> | <GUIDED> | <RUNTIME>
OmpForHeader ::= <FOR> "(" OmpForInitExpression ";" OmpForCondition ";" Omp-

ForReinitExpression ")"
OmpForInitExpression ::= <IDENTIFIER> "=" Expression

OmpForCondition ::= OmpForLTCondition
| OmpForLECondition
| OmpForGTCondition
| OmpForGECondition

OmpForLTCondition ::= <IDENTIFIER> "<" Expression
OmpForLECondition ::= <IDENTIFIER> "<=" Expression
OmpForGTCondition ::= <IDENTIFIER> ">" Expression

32

IMOP : a source-to-source compiler framework for OpenMP C programs

OmpForGECondition ::= <IDENTIFIER> ">=" Expression
OmpForReinitExpression ::= PostIncrementId

| PostDecrementId
| PreIncrementId
| PreDecrementId
| ShortAssignPlus
| ShortAssignMinus
| OmpForAdditive
| OmpForSubtractive
| OmpForMultiplicative

PostIncrementId ::= <IDENTIFIER> "++"
PostDecrementId ::= <IDENTIFIER> "--"

PreIncrementId ::= "++" <IDENTIFIER>
PreDecrementId ::= "--" <IDENTIFIER>
ShortAssignPlus ::= <IDENTIFIER> "+=" Expression

ShortAssignMinus ::= <IDENTIFIER> "-=" Expression
OmpForAdditive ::= <IDENTIFIER> "=" <IDENTIFIER> "+" AdditiveExpression

OmpForSubtractive ::= <IDENTIFIER> "=" <IDENTIFIER> "-" AdditiveExpression
OmpForMultiplicative ::= <IDENTIFIER> "=" MultiplicativeExpression "+" <IDENTI-

FIER>
SectionsConstruct ::= OmpPragma <SECTIONS> NowaitDataClauseList OmpEol Sec-

tionsScope
NowaitDataClauseList ::= (ANowaitDataClause)*

ANowaitDataClause ::= NowaitClause
| DataClause

SectionsScope ::= "{" (Statement)? (ASection)* "}"
ASection ::= OmpPragma <SECTION> OmpEol Statement

SingleConstruct ::= OmpPragma <SINGLE> SingleClauseList OmpEol Statement
SingleClauseList ::= (ASingleClause)*

ASingleClause ::= NowaitClause
| DataClause
| OmpCopyPrivateClause

OmpCopyPrivateClause ::= <COPYPRIVATE> "(" VariableList ")"
TaskConstruct ::= OmpPragma <TASK> (TaskClause)* OmpEol Statement

TaskClause ::= DataClause
| UniqueTaskClause

UniqueTaskClause ::= IfClause
| FinalClause
| UntiedClause
| MergeableClause

FinalClause ::= <FINAL> "(" Expression ")"

33

Aman Nougrahiya and V. Krishna Nandivada

UntiedClause ::= <UNTIED>
MergeableClause ::= <MERGEABLE>

ParallelForConstruct ::= OmpPragma <PARALLEL> <FOR> UniqueParallelOrUnique-
ForOrDataClauseList OmpEol OmpForHeader Statement

UniqueParallelOrUniqueForOrDataClauseList ::= (AUniqueParallelOrUniqueForOrDataClause)*
AUniqueParallelOrUniqueForOrDataClause ::= UniqueParallelClause

| UniqueForClause
| DataClause

ParallelSectionsConstruct ::= OmpPragma <PARALLEL> <SECTIONS> UniqueParallelOr-
DataClauseList OmpEol SectionsScope

MasterConstruct ::= OmpPragma <MASTER> OmpEol Statement
CriticalConstruct ::= OmpPragma <CRITICAL> (RegionPhrase)? OmpEol State-

ment
RegionPhrase ::= "(" <IDENTIFIER> ")"

AtomicConstruct ::= OmpPragma <ATOMIC> (AtomicClause)? OmpEol Statement
AtomicClause ::= <READ> | <WRITE> | <UPDATE> | <CAPTURE>
FlushDirective ::= OmpPragma <FLUSH> (FlushVars)? OmpEol

FlushVars ::= "(" VariableList ")"
OrderedConstruct ::= OmpPragma <ORDERED> OmpEol Statement

BarrierDirective ::= OmpPragma <BARRIER> OmpEol
TaskwaitDirective ::= OmpPragma <TASKWAIT> OmpEol
TaskyieldDirective ::= OmpPragma <TASKYIELD> OmpEol

ThreadPrivateDirective ::= OmpPragma <THREADPRIVATE> "(" VariableList ")" OmpEol
DeclareReductionDirective ::= OmpPragma <DECLARE> <REDUCTION> "(" ReductionOp

":" ReductionTypeList ":" Expression ")" (InitializerClause)?
OmpEol

ReductionTypeList ::= (TypeSpeci�er)*
InitializerClause ::= AssignInitializerClause

| ArgumentInitializerClause
AssignInitializerClause ::= <INITIALIZER> "(" <IDENTIFIER> "=" Initializer ")"

ArgumentInitializerClause ::= <INITIALIZER> "(" <IDENTIFIER> "(" ExpressionList ")" ")"
ReductionOp ::= <IDENTIFIER> | "+" | "*" | "-" | "&" | "ˆ" | "|" | "||" | "&&"

VariableList ::= <IDENTIFIER> ("," <IDENTIFIER>)*
LabeledStatement ::= SimpleLabeledStatement

| CaseLabeledStatement
| DefaultLabeledStatement

SimpleLabeledStatement ::= <IDENTIFIER> ":" Statement
CaseLabeledStatement ::= <CASE> ConstantExpression ":" Statement

DefaultLabeledStatement ::= <DFLT> ":" Statement
ExpressionStatement ::= (Expression)? ";"
CompoundStatement ::= "{" (CompoundStatementElement)* "}"

34

IMOP : a source-to-source compiler framework for OpenMP C programs

CompoundStatementElement ::= Declaration
| Statement

SelectionStatement ::= IfStatement
| SwitchStatement

IfStatement ::= <IF> "(" Expression ")" Statement (<ELSE> Statement)?
SwitchStatement ::= <SWITCH> "(" Expression ")" Statement

IterationStatement ::= WhileStatement
| DoStatement
| ForStatement

WhileStatement ::= <WHILE> "(" Expression ")" Statement
DoStatement ::= <DO> Statement <WHILE> "(" Expression ")" ";"
ForStatement ::= <FOR> "(" (Expression)? ";" (Expression)? ";" (Expression)?

")" Statement
JumpStatement ::= GotoStatement

| ContinueStatement
| BreakStatement
| ReturnStatement

GotoStatement ::= <GOTO> <IDENTIFIER> ";"
ContinueStatement ::= <CONTINUE> ";"

BreakStatement ::= <BREAK> ";"
ReturnStatement ::= <RETURN> (Expression)? ";"

Expression ::= AssignmentExpression ("," AssignmentExpression)*
AssignmentExpression ::= NonConditionalExpression

| ConditionalExpression
NonConditionalExpression ::= UnaryExpression AssignmentOperator AssignmentExpression

AssignmentOperator ::= "=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "&=" | "ˆ=" |
"|="

ConditionalExpression ::= LogicalORExpression ("?" Expression ":" ConditionalExpres-
sion)?

ConstantExpression ::= ConditionalExpression
LogicalORExpression ::= LogicalANDExpression ("||" LogicalORExpression)?

LogicalANDExpression ::= InclusiveORExpression ("&&" LogicalANDExpression)?
InclusiveORExpression ::= ExclusiveORExpression ("|" InclusiveORExpression)?
ExclusiveORExpression ::= ANDExpression ("ˆ" ExclusiveORExpression)?

ANDExpression ::= EqualityExpression ("&" ANDExpression)?
EqualityExpression ::= RelationalExpression (EqualOptionalExpression)?

EqualOptionalExpression ::= EqualExpression
| NonEqualExpression

EqualExpression ::= "==" EqualityExpression
NonEqualExpression ::= "!=" EqualityExpression
RelationalExpression ::= ShiftExpression (RelationalOptionalExpression)?

35

Aman Nougrahiya and V. Krishna Nandivada

RelationalOptionalExpression ::= RelationalLTExpression
| RelationalGTExpression
| RelationalLEExpression
| RelationalGEExpression

RelationalLTExpression ::= "<" RelationalExpression
RelationalGTExpression ::= ">" RelationalExpression
RelationalLEExpression ::= "<=" RelationalExpression
RelationalGEExpression ::= ">=" RelationalExpression

ShiftExpression ::= AdditiveExpression (ShiftOptionalExpression)?
ShiftOptionalExpression ::= ShiftLeftExpression

| ShiftRightExpression
ShiftLeftExpression ::= ">>" ShiftExpression

ShiftRightExpression ::= "<<" ShiftExpression
AdditiveExpression ::= MultiplicativeExpression (AdditiveOptionalExpression)?

AdditiveOptionalExpression ::= AdditivePlusExpression
| AdditiveMinusExpression

AdditivePlusExpression ::= "+" AdditiveExpression
AdditiveMinusExpression ::= "-" AdditiveExpression
MultiplicativeExpression ::= CastExpression (MultiplicativeOptionalExpression)?

MultiplicativeOptionalExpression ::= MultiplicativeMultiExpression
| MultiplicativeDivExpression
| MultiplicativeModExpression

MultiplicativeMultiExpression ::= "*" MultiplicativeExpression
MultiplicativeDivExpression ::= "/" MultiplicativeExpression

MultiplicativeModExpression ::= "%" MultiplicativeExpression
CastExpression ::= CastExpressionTyped

| UnaryExpression
CastExpressionTyped ::= "(" TypeName ")" CastExpression

UnaryExpression ::= UnaryExpressionPreIncrement
| UnaryExpressionPreDecrement
| UnarySizeofExpression
| UnaryCastExpression
| Post�xExpression

UnaryExpressionPreIncrement ::= "++" UnaryExpression
UnaryExpressionPreDecrement ::= "--" UnaryExpression

UnaryCastExpression ::= UnaryOperator CastExpression
UnarySizeofExpression ::= SizeofTypeName

| SizeofUnaryExpression
SizeofUnaryExpression ::= <SIZEOF> UnaryExpression

SizeofTypeName ::= <SIZEOF> "(" TypeName ")"
UnaryOperator ::= "&" | "*" | "+" | "-" | "˜" | "!"

36

IMOP : a source-to-source compiler framework for OpenMP C programs

Post�xExpression ::= PrimaryExpression Post�xOperationsList
Post�xOperationsList ::= (APostixOperation)*

APostixOperation ::= BracketExpression
| ArgumentList
| DotId
| ArrowId
| PlusPlus
| MinusMinus

PlusPlus ::= "++"
MinusMinus ::= "--"

BracketExpression ::= "[" Expression "]"
ArgumentList ::= "(" (ExpressionList)? ")"

DotId ::= "." <IDENTIFIER>
ArrowId ::= "->" <IDENTIFIER>

PrimaryExpression ::= <IDENTIFIER>
| Constant
| ExpressionClosed

ExpressionClosed ::= "(" Expression ")"
ExpressionList ::= AssignmentExpression ("," AssignmentExpression)*

Constant ::= <INTEGER_LITERAL> | <FLOATING_POINT_LITERAL> |
<CHARACTER_LITERAL> | (<STRING_LITERAL>)+

BeginNode
EndNode

DummyFlushDirective
SimplePrimaryExpression

CallStatement
PreCallNode

PostCallNode

REFERENCES

[1] OpenMP Application Programming Interface. Standard, OpenMP Architecture Review Board, November 2015.
[2] Aslot, V., Domeika, M., Eigenmann, R., Gaertner, G., Jones, W. B., and Parady, B. SPEComp: A new bench-

mark suite for measuring parallel computer performance. In OpenMP Shared Memory Parallel Programming.
Springer, 2001, pp. 1–10.

[3] Bienia, C., Kumar, S., Singh, J. P., and Li, K. The PARSEC benchmark suite: characterization and architectural
implications. In Proceedings of the 17th international conference on Parallel architectures and compilation
techniques (2008), ACM, pp. 72–81.

[4] Bronevetsky, G., and De Supinski, B. R. Formal speci�cation of the OpenMP memory model. In Proceedings of
the 2005 and 2006 international conference on OpenMP shared memory parallel programming (Berlin, Heidelberg,
2008), IWOMP’05/IWOMP’06, Springer-Verlag, pp. 324–346.

[5] Duran, A., Teruel, X., Ferrer, R., Martorell, X., and Ayguade, E. Barcelona openmp tasks suite: A set of
benchmarks targeting the exploitation of task parallelism in openmp. In Proceedings of the 2009 International
Conference on Parallel Processing (Washington, DC, USA, 2009), ICPP ’09, IEEE Computer Society, pp. 124–131.

[6] ik Lee, S., Johnson, T. A., and Eigenmann, R. Cetus - an extensible compiler infrastructure for source-to-
source transformation. In Languages and Compilers for Parallel Computing, 16th Intl. Workshop, College Station,
TX, USA, Revised Papers, volume 2958 of LNCS (2003), pp. 539–553.

[7] Lattner, C., and Adve, V. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.

37

Aman Nougrahiya and V. Krishna Nandivada

In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-directed and
Runtime Optimization (Washington, DC, USA, 2004), CGO ’04, IEEE Computer Society, pp. 75–.

[8] Ma, H., Zhao, R., Gao, X., and Zhang, Y. Barrier Optimization for OpenMP Program. In Proceedings of
the 2009 10th ACIS International Conference on Software Engineering, Arti�cial Intelligences, Networking and
Parallel/Distributed Computing (Washington, DC, USA, 2009), SNPD ’09, IEEE Computer Society, pp. 495–500.

[9] Mellor-Crummey, J. M., and Scott, M. L. Algorithms for scalable synchronization on shared-memory
multiprocessors. ACM Trans. Comput. Syst. 9, 1 (Feb. 1991), 21–65.

[10] Nandivada, V. K., Shirako, J., Zhao, J., and Sarkar, V. A Transformation Framework for Optimizing
Task-Parallel Programs. ACM Trans. Program. Lang. Syst. 35, 1 (Apr. 2013), 3:1–3:48.

[11] Netzer, R. H. B., and Miller, B. P. What are race conditions?: Some issues and formalizations. ACM Lett.
Program. Lang. Syst. 1, 1 (Mar. 1992), 74–88.

[12] Nicolau, A. Percolation Scheduling: A Parallel Compilation Technique. Tech. rep., Ithaca, NY, USA, 1985.
[13] Nicolau, A., Li, G., and Kejariwal, A. Techniques for e�cient placement of synchronization primitives.

SIGPLAN Not. 44, 4 (Feb. 2009), 199–208.
[14] Nicolau, A., Li, G., Veidenbaum, A. V., and Kejariwal, A. Synchronization optimizations for e�cient

execution on multi-cores. In Proceedings of the 23rd international conference on Supercomputing (New York, NY,
USA, 2009), ICS ’09, ACM, pp. 169–180.

[15] �inlan, D., Liao, C., Panas, T., Matzke, R., Schordan, M., Vuduc, R., and Yi, Q. ROSE User Manual: A
Tool for Building Source-to-Source Translators. Tech. rep., Lawrence Livermore National Laboratory, 2013.

[16] Ramalingam, G. Context-sensitive synchronization-sensitive analysis is undecidable. ACM Trans. Program.
Lang. Syst. 22, 2 (Mar. 2000), 416–430.

[17] Stallman, R. M., and DeveloperCommunity, G. Using The Gnu Compiler Collection: A Gnu Manual For Gcc
Version 4.3.3. CreateSpace, Paramount, CA, 2009.

[18] Van der Wijngaart, R. F., and Wong, P. NAS parallel benchmarks version 2.4. Tech. rep., NAS technical
report, NAS-02-007, 2002.

[19] Viswakaran Sreelatha, J. K., and Balachandran, S. Compiler Enhanced Scheduling for OpenMP for
Heterogeneous Multiprocessors. In 2nd Workshop on Energy E�ciency with Heterogeneous Computing (Prague,
Czech Republic, January 2016), EEHCO ’16, ACM.

[20] Walsh, P. Performance of Barrier Synchronisation Algorithms on Modern Shared Memory Architectures.
Master’s thesis, The University of Edinburgh, Sept. 2004.

38

	Abstract
	Contents
	1 Introduction
	1.1 Intended Audience

	2 Structure and semantics of IMOP
	2.1 Abstract syntax tree
	2.2 Simplified AST
	2.3 Symbol Tables
	2.4 Types
	2.5 Memory abstractions
	2.6 Control-flow graphs
	2.7 Call graphs
	2.8 Snippet builders
	2.9 Elementary transformations
	2.10 Concurrency analysis
	2.11 Inter-task communication

	3 Related work
	A Quick Start Guide
	A.1 Front-End: Parsing, and Default Passes
	A.2 Implementing analyses and transformations
	A.3 Emitting the transformed code

	B Implementation defined behavior
	C Parser Grammar
	References

