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Constructing Task Visibility Intervals for Video Surveill ance

Abstract Vision systems are increasingly being deployed to
perform complex surveillance tasks. While improved algo-
rithms are being developed to perform these tasks, it is also
important that data suitable for these algorithms be acquired
- a non-trivial task in a dynamic and crowded scene viewed
by multiple PTZ cameras. In this paper, we describe a real-
time multi-camera system that collects images and videos of
moving objects in such scenes, subject to task constraints.
The system constructs “task visibility intervals” that contain
information about what can be sensed in future time inter-
vals. Constructing these intervals requires prediction offu-
ture object motion and consideration of several factors such
as object occlusion and camera control parameters. Such in-
tervals can also be combined to form multi-task intervals,
during which a single camera can collect videos suitable
for multiple tasks simultaneously. Experimental results are
provided to illustrate the system capabilities in constructing
such task visibility intervals, followed by scheduling them
using a greedy algorithm.

Keywords Surveillance· Sensor Planning· Sensor Fusion·
Active Camera

1 Introduction

We describe a sensor planning system for controlling, in
real time, a collection of surveillance cameras to acquire
video sequences of moving objects (people, vehicles), sub-
ject to visibility, resolution and positional constraints. Our
approach, in general, involves tracking the objects in the sur-
veillance site using one or more wide field of view cameras,
for a short period of time, and then predicting their motions
over a “small” future time interval. During this interval, we
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must predict time-varying visibility of the objects, schedule
the tasks at hand, re-position cameras and acquire videos to
support the scheduled tasks. The demand for such video ac-
quisition is motivated by the following surveillance scenario.

We are given a collection of calibrated surveillance cam-
eras. They must be controlled to acquire surveillance video
over a large surveillance site, which can most simply be
modeled as a large patch of ground plane, possibly anno-
tated with the locations of specific regions of interest (e.g.,
regions near the entrances to buildings, receptacles such as
trash cans, or regions defined dynamically as vehicles enter
and stop in the site).

Each camera has a field of regard, which is the subset of
the surveillance site that it can image by controlling its view-
ing angles (Pan, Tilt and Zoom - PTZ - settings). A field of
view of a camera is the image obtained at specific PTZ set-
tings and is generally much smaller than its field of regard.

As people and vehicles move into and through the sur-
veillance site, the cameras are to be controlled to acquire
sets of videos that satisfy temporal and positional constraints
that define generic surveillance tasks. Examples of typical
surveillance tasks are:

1. Collectk seconds ofunobstructed video from as close
to a side angle as possible for any person who enters the
surveillance site. The video must be collected at some
minimal resolution. This task might be defined to sup-
port gait recognition, or the acquisition of an appearance
model that could be used to subsequently identify the
person when seen by a different camera.

2. Collect unobstructed video of any person while that per-
son is withink meters of region A. This might be used
to determine if a person deposits an object into or takes
an object out of region A.

One could imagine other surveillance tasks that would
be defined to support face recognition, loading and unload-
ing of vehicles, etc. Additionally, there are tasks relatedto
system state maintenance - for example, tasks to image a
person or vehicle to obtain current position data to update
a track predictor such as a Kalman filter ([9]); or tasks to
intermittently monitor regions in which people and vehicles
can enter the surveillance site. We would like to efficiently
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schedule as many of these surveillance tasks as possible,
possibly subject to additional constraints on priority of the
tasks.

The problem of sensor planning and scheduling has been
studied extensively. [18] presented a survey covering sens-
ing strategies for object feature detection, model-based ob-
ject recognition, localization and scene reconstruction.One
of the earliest works is [5] which introduced a locus-based
approach to decide on the placement of viewpoints, sub-
jected to static resolution, focus, field of view and visibility
constraints. They also described an extension of the sensing
strategy to laser-scanner range sensor. [17] introduced the
idea of local separating planes which are used to define vis-
ibility volumes, in which occlusion-free viewpoints can be
placed. Then, to satisfy the field of view constraint, they in-
troduced the idea of the field of view cone, which is similar
to the locus-based approach given in [5]. These papers did
not consider object motion. [1,2,19] discusses a dynamic
sensor planning system, called the MVP system. They were
concerned with objects moving in the scene, generating a
swept volume in temporal space [2]. Then, using a tempo-
ral interval search, they divide temporal intervals into halves
while searching for a viewpoint that is not occluded in time
by these sweep volumes. This is then integrated with other
constraints such as focus and field of view in [19]. The cul-
mination is found in [1], where the algorithms are applied
to an active robot work cell. [14] determines optimal sensor
placements offline, by considering information that provides
probabilistic priors of object motion - observations made
about the motion of objects in the surveillance site are prob-
abilistically used as inputs to placing sensors offline. This
ensures (probabilistically) that cameras are placed in posi-
tions that will have unobstructed views of moving objects.
Finally, studies on sensing strategies for the purpose of 3D
reconstruction can be found in [10–12].

In comparison, our main contribution lies in the real-time
construction of time intervals during which visibility con-
straints are satisfied on a per-camera basis. The construction
of the time intervals are based on predicted object trajec-
tories so that they can be used to schedule active cameras
for video collection “ahead of time”. Several papers have
discussed these camera scheduling algorithms, such as [4]
which evaluated scheduling policies like First Come First
Serve (FCFS) and Earliest Deadline First (EDF), or, [16]
which evaluated a weighted round-robin scheduling scheme
with a static FCFS policy using a Virtual World Simulator.
For efficiency, one could also consider the parallel schedul-
ing algorithm described in [15]. Our focus, however, is on
the algorithms for constructing these predicted time inter-
vals. While our experiments demonstrate the applicabilityof
using the constructed time intervals for greedily scheduling
the cameras, other scheduling algorithms could be used. The
basic idea of scheduling cameras based on predicted object
trajectories was introduced previously in [13], which was
mainly concerned with handling occlusions between moving
objects in the scene. Later, [6] described a method to deter-
mine feasible PTZ settings based on predicted object trajec-
tories. In contrast, our algorithm is an holistic approach that
considers both predicted occlusions between moving objects

and feasible camera settings during video collection. Specif-
ically, our scheduling approach is based on the efficient con-
struction of what we call Task Visibility Intervals (TVI’s). A
TVI is a 4-tuple:

(c, (T, o), [r, d], V alidψ,φ,f(t)). (1)

Here,c represents a camera,(T, o) is a (task, object) pair -T
is the index or specification of a task to be accomplished and
o is the index of the object to which the task is to be applied,
and[r, d] is a time interval within which (some temporal seg-
ment of) the task can be accomplished using camerac. r is
the earliest release time of the task whiled is the deadline
by which the task has to be completed. Then, for any time
instancet ∈ [r, d], V alidψ,φ,f(t) is the set of pan settings
(ψ), tilt settings (φ) and focal lengths (f ) that camerac can
employ to capture objecto at timet.

We focus our attention on tasks that are satisfied by video
segments in which an object is seen unobstructed for some
task-specific minimal period of time, and is viewed at some
task-specific minimal resolution during that time period. The
task specifications, themselves, are 3-tuples:

(p, α, β) (2)

where

1. p is the required duration of the task,including worst-
case latencies involved in re-positioning cameras,

2. α is a predicate relating the direction the object is mov-
ing relative to the optical axis of the camera used to ac-
complish the task (for example to specify a view that sat-
isfies the requirements for a side view or a front view),
and

3. β is the minimal ground resolution needed to accomplish
the task.

In general, not all tasks would be applicable to all ob-
jects - one can imagine tasks for viewing faces of people, li-
cense plates of vehicles, etc. For simplicity, we assume that
all tasks are to be accomplished for all objects in the surveil-
lance site. Practically, one would also need some mechanism
to verify, a posteriori, that the tasks have been successfully
completed (i.e., that in fact we have obtained unobstructed
video of some given object) so that it can be determined if
the task has to be rescheduled (which, of course, will not al-
ways be possible). Ideally, the measurement stage of a suit-
able tracker can be used for such verification purpose.

2 System Overview

Our camera control system cycles through three stages of
analysis (Fig. 1) :

1. A sensing stage, in which moving objects are tracked
through the surveillance site using wide field of view
cameras. Based on image analysis and calibration infor-
mation, the physical size (height and width) of each ob-
ject is estimated. For computational efficiency, in 2(a)
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Fig. 1 Timeline depicting the steps involve in collecting task-specific
video sequences.

and (b), the height and width are used to construct cir-
cumscribing circles to the object’s orthographic projec-
tions on the projection planes (referred to below as “shad-
ows”) of the world coordinate system for path prediction
and visibility analysis. These shadows are subsequently
used for constructing an ellipsoidal representation of the
object in 2(c) for determining task-specific feasible cam-
era settings.

2. A planning stage, composed of five sub-stages:

(a) A prediction stage, in which the tracks are extrapo-
lated into the future. The predicted tracks are straight
lines. Additionally, a variance measure is estimated
for the track and incorporated into the shadows of the
object volume. So, the final predicted motion model
for each moving object consists of the individual cir-
cular shadow moving along a straight line; the ra-
dius of the shadow increases linearly over time with a
constant proportional to the error in “fitting” a straight
line to the track of the object in the sensing stage.

(b) A visibility analysis stage in which we determine, for
each camera and moving object, the intervals of time
- called visibility intervals - during which that mov-
ing object will be contained within the camera’s field
of regard, and not be occluded by any other mov-
ing object. This analysis is done on the projection
planes where we analyze the movements of the shad-
ows of the moving objects. The trajectories of the
shadows on the projection planes are represented by
piecewise linear approximations to the trajectories of
the tangent points of the shadows. Over their piece-
wise linear segments, the trajectories of the extremal
angles of the shadows with respect to the projected
camera center have a simple analytic representation.
We then use asymptotically efficient algorithms to
find crossings of the extremal angles. This allows us
to directly determine the intervals during which an
object is occluded by some other object; the comple-
ments of these occlusion intervals are the visibility
intervals.

(c) A task visibility stage now combines task specific in-
formation - resolution, direction and duration - with
the visibility intervals to identify time-varying cam-
era PTZ settings that would satisfy a given task dur-
ing some portion of a visibility interval. This results
in so-called Task Visibility Intervals (TVI’s). Gener-

ally, there could be many cameras that could be used
to satisfy any given task.

(d) A TVI compositing stage, which efficiently finds small
combinations of TVI’s that can be simultaneously
scheduled on a single camera. We call these inter-
vals Multiple Task Visibility Intervals (MTVI’s), and
determining them involves finding non-empty inter-
sections of camera settings over suitably long time
intervals for subsets of tasks and specific cameras.

(e) A scheduling stage using a greedy algorithm.
3. A collection stage in which the cameras are first posi-

tioned and then collect the video segments for the tasks
for which they have been scheduled.

Here, the sensing stage is performed using the background
subtraction algorithm described in [20], and the CONDEN-
SATION tracking algorithm from [7]. Background subtrac-
tion is performed at every frame to detect foreground blobs
(which may be the images of multiple moving objects), with
the assumption that objects are initially sufficiently sepa-
rated from each other to be detected individually. The set
of objects are then tracked, and the observed locations are
used as the prior to compute the likely object positions in
the next frame. The CONDENSATION algorithm allows us
to generally track individual object through short periodsof
occlusions.

3 Motion Model

Determining visibility intervals for any given (object, cam-
era) pair involvespredicting future time intervals during which
that object is in the same line of sight as some other object,
but is further from the camera, causing it to be occluded.
The complements of these intervals, which we refer to as
occlusion intervals, are thevisibility intervals. In addition to
depending on the trajectory of the object acquired through
visual tracking, the prediction of occlusion intervals would
also depend on the object’s shape and size. The size of the
object combines our estimates of its physical size along with
the time-varying uncertainty of its location, predicted from
tracking.

In the world coordinate system (with axes asX , Y and
Z respectively), we orthographically project the center of a
given camera and the silhouette of each object at a given
time, as point and circle respectively, onto theXY , Y Z and
XZ planes. The sizes of the circles are determined by the
object’s width and height, as estimated from its silhouette
and pre-determined homographies from the camera’s image
plane to theXY , Y Z andXZ planes. On each plane, a pro-
jected circle has two tangent points that define its extent with
respect to the projected camera center. The motion model is
then defined as the time-varying angular extents of the pairs
of tangent points belonging to the triplet of circles represent-
ing the object. These projections serve as a simple represen-
tation of an otherwise complex 4D (XY Z and time) motion
model. Fig. 2 shows a projected circle on theXY plane, with
radiusr, of an objectowith respect to to the camera centerc.
Here,θ is the angular displacement of the circle center from
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c, and the angular displacement of the upper and lower tan-
gents can be expressed asξupper = θ−α andξlower = θ+α
respectively, whereα = arcsin r

d
. Accordingly, the motion

model of objecto, fc,o(t), parameterized by timet becomes:

fc,o(t) =
⋃

Π=XY,XZ,Y Z

{θ(t,Π) ± arcsin
r(t,Π)

d(t,Π)
}, (3)

whered(t,Π) andθ(t,Π) are the distance and the angular
displacement, respectively, of the circle center fromc, and
r(t,Π) is the radius of the circle on the planeΠ.

α

Center

Y axis

X axis

θ

r

d

Lower tangent point

Upper tangent point

c

Trajectory

α

Fig. 2 Example of the object’s shadow on theXY plane. Here,α =
arcsin r

d
.

4 Prediction Stage

Tracking information observed in the sensing stage (Step 1,
Fig. 1) is used to predict the future positions of the triplet
of circles (previous section) representing each object. Simi-
lar to filter-based (e.g., Kalman filter [9], extended Kalman
filter [8], or particle filter [7]) trackers where known a pri-
ori distribution is used to predict a current state given the
previous state, the distribution of the velocities given bythe
observed tracks (a priori) of each object is used to predict its
future positions while providing an uncertainty measure. In
addition, we particularly consider ease of computation and
a geometrical interpretation of the positional uncertainties
given by the a priori distribution. For these purposes, we em-
ploy a method that constructs straight-line prediction paths.
The positional uncertainty, which allows variation from the
straight-line path, is modeled by growing the radius of the
circle linearly over time as it moves along the straight line.

Let the center of a projected circle on one of the planes
be cobj . Let Shist be the successive positions ofcobj ob-
served during the tracking interval. Subsets ofShist formed
from consecutive elements are used to predict the direction
and speed ofcobj , with adjacent subsets sharing common
elements. So, for example, the first tokth element would be-
long to the first subset, the(η + 1)th to (k + η)th element
to the second and so on, whereη < k and (k − η) is the
number of common elements in consecutive subsets. To de-
termine the direction, a straight line is fit to the locationsof
cobj in each subset, while an estimate of the speed is derived

as the displacement between the first and last element of the
subset divided by the corresponding time lag. Then, we form
a new set,Spred, consisting of the predicted velocities ofcobj
as:

Spred = {x0, x1, ..., xn}, (4)

where eachxi=0,...,n is a 2-vector of speed and direction,
andn is the number of subsets formed fromShist. Eachxi
is assigned a weightwi, with more recent observations being
assigned larger weights, and with all weights normalized so
that

∑n

i=0
wi = 1. If we assume that both speed and direc-

tion are independent of each other, the probability of observ-
ing a velocityv can then be estimated as:

Pr(v) =
n

∑

i=0

wi

2
∏

j=1

1√
2πσj

e
−

1
2

(vj−xi,j)2

σ2
j , (5)

wherej represents the speed and direction component, and
σ2
j is the corresponding bandwidth. The confidence interval,

[vmin, vmax], that provides a desired level of confidence,P ,
can be found by solving for:

P =

∫ vmax

vmin

Pr(v)dv. (6)

[vmin, vmax] is used to compute the region in whichcobj
lies in future time instances. A Minimum Enclosing Circle
(MEC) is constructed to enclose the predicted region into
which the object is moving, inflated by the size of the cir-
cular shadow of the object, using the linear-time algorithm
given in [3] pp. 86-90. It is easy and efficient to determine
the MEC because the predicted region in whichcobj lies at
a particular time instance is delimited by the arcs of two
concentric circles, with the four endpoints of the arcs com-
puted from the minimum and maximum speed in the “min-
imum” direction, and the minimum and maximum speed in
the “maximum” direction, as given by[vmin, vmax]. This al-
lows the MEC to be determined by just considering these
four points. This is illustrated in Fig. 3.

The MEC models the positional uncertainty and physi-
cal extent of each object. Thus, if the object moves approx-
imately along a straight line with approximately constant
speed, then the subsets inSpred will have similar velocities,
and the computed[vmin, vmax] will have a small range, giv-
ing rise to a small MEC. This is opposed to objects moving
along complex trajectories (e.g., in circles, which can occur
in scenes with curved pathways), in which case the MEC
typically increases in size more quickly as the paths given
by [vmin, vmax] increasingly deviate from each other.

The predicted motion model of an object can thus be vi-
sualized as a progression of a triplet of MEC’s in time. Two
particularly useful observations, utilized for the construction
of visibility intervals later, can be made about the series of
MEC’s. Firstly, each MEC moves along a straight line, and
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maximum direction
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maximum direction
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Fig. 3 In the next time instance, the region where the predicted po-
sitions of cobj lie is delimited by the arcs of two concentric circles
as shown, with the four delimiting corners of the region computed by
the minimum and maximum speed, and the minimum and maximum
direction, given byvmin andvmax. A MEC (drawn in red) can then
be constructed to enclose the predicted region into which the object is
moving.

secondly its radius grows linearly with time. Both properties
can be easily verified by construction.

To illustrate the performance of the motion predictor, we
consider a video sequence of people walking naturally in
a parking lot. We select an individual walking on a curved
path for tracking, and predicted his motion model on the
ground plane as a series of MEC’s, using observed tracks of
100 frames. The MEC at each frame is then compared with
the actual position of the person, obtained by tracking him
throughout the sequence. The predictions were sufficiently
accurate for the required amount of time (≥ 60 frames), even
though the observed individual was moving along a curved
path. This is shown in Fig. 4.

5 Visibility Analysis Stage

The goal of the visibility analysis stage is to construct piece-
wise analytic representation of the extremal angles of the
time-varying MEC for analysis by an efficient segment in-
tersection algorithm. Time instances at which the extremal
angles of the MEC’s of different objects coincide delimit oc-
clusion intervals, during which the objects are occluding one
another.

If the trajectories of the tangent points of the MEC’s
were straight lines over time,t ∈ [t0, t1], then the trajec-
tories,g−c,i andg+

c,i, of the lower and upper extremal angles
respectively, with respect to camerac and objecti, would be:

arctan2((t− t0)y0 +(t1 − t)y1, (t− t0)x0 +(t1 − t)x1), (7)

where(x0, y0) and(x1, y1) are the positions of the tangent
point att0 andt1 respectively, and arctan2(y, x) is the four-
quadrant inverse tangent function over the range−π to π.

Such a representation greatly simplifies the computation of
occlusion intervals - when Eqn. 7 for two objects are equated,
they form a simple quadratic function of timet, which is
easily solved for the time instances that delimit periods of
crossing between the two objects.

However, the trajectories of the tangent points are, gen-
erally, nonlinear. So, we construct piecewise linear approx-
imations to these trajectories, using Algorithm 1 and then
employ Eqn. 7 to construct the desired angular trajectories
of the pieces. In Algorithm 1, the predicted motion model
refers to the time-sampled values ofθ(t,Π), r(t,Π) and
d(t,Π) in Eqn. 3, and are easily derived due to the obser-
vations in the previous section (i.e., that the MEC’s move
along straight lines and grow linearly over time). The time-
sampled positions of the corresponding tangent points can
then be derived accordingly, so that, for example, in Fig. 2,
theX andY coordinates of the upper tangent point are given
as

√

d(t,Π)2 − r(t,Π)2 sin(θ(t,Π) − α) and
√

d(t,Π)2 − r(t,Π)2 cos(θ(t,Π) − α) respectively.
There could also be more solutions between two objects

than the endpoints of valid occlusion intervals, as shown in
Fig. 5(a). A solution,t∗i,j , between objecti andj, that is not
the endpoint of any occlusion interval, however, possesses
the following distinguishing property:

[g−c,i(t
∗

i,j ±∆t), g+

c,i(t
∗

i,j ±∆t)]
⋂

[g−c,j(t
∗

i,j ±∆t), g+

c,j(t
∗

i,j ±∆t)] 6= ∅,
(8)

where∆t is a small time step.
Special care has to be taken for degenerate cases where

the trajectories of the extremal angles are not continuous.
First, if the tangent point passes through the camera center,
the subtending angle is changed by±π. Second, it is pos-
sible for the subtending angle to wrap around between−π
andπ, which happens when the tangent point passes through
the negative portion of theX-axis on theXY plane, as illus-
trated in Fig. 5(b). Both degenerate cases can be handled by
splitting the curve of Eqn. 7 into segments.

5.1 Determining Occlusion Intervals Efficiently

Occlusion intervals could now be determined using a brute
force approach that considers all pairs of object extremal an-
gle trajectories. Such a brute force approach incursO(N2)
running time, whereN is the number of curve segments. For
largeN , we propose the following optimal segment intersec-
tion algorithm.

The set of curve segments,L, on the extremal angle-t
plane that spans the temporal interval[t0, t1], is sorted ac-
cording to the values at which they intersect the vertical line
t = t0. The resulting sorted set,Lsorted, is then recursively
divided into two sets -Q containing curve segments that do
not intersect each other andL′ containing the rest, using Al-
gorithm 2. The proof thatQ contains only segments that do
not intersect each other can be verified as follows:
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(a) Path taken by the
tracked person

(b) Predicted MEC’s using 100 frames of observed tracks.

Fig. 4 In (b), red circles represent the MEC’s predicted for the following frames, while the green circle represents the predicted location in the
current frame. Comparing these circles with the positions given by the tracker (blue bounding box), the prediction weresufficiently accurate, as
shown in (b), for the required number of frames, even though the person was walking along a curved path as shown in (a).
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Fig. 5 (a) t∗i,j is a valid intersection point between objecti andj, but not a valid endpoint of an occlusion interval. Shown as red arrows, the
interval formed byg+

c,i andg−

c,i at a small time interval∆t away fromt∗i,j intersects the interval formed byg+

c,j andg−

c,j as given in Eqn. 8. (b)
An example of handling wrap around segments on theXY plane.

Algorithm 1 SplitTangent(t0,t1,Π)
1: {Π is theXY , XZ or Y Z plane, on which the trajectory of the

tangent point is split into straight line(s)}.
2: Letpt0 be the position of the tangent point onΠ at t0, computed

from the predicted motion model.
3: Letpt1 be the position of the tangent point onΠ at t1, computed

from the predicted motion model.
4: Interpolate for the midpoint,m, of pt0 andpt1 on Π , i.e.,m =

pt1+pt0
2

.
5: Compute from the predicted motion model, the actual midpoint,

m′, onΠ of the tangent point at timet0+t1
2

.
6: if the difference betweenm andm′ is smallthen
7: Assume the trajectory of the tangent point is linear from time t0

to t1, and return this trajectory.
8: else
9: SplitTangent(t0, t0+t1

2
).

10: SplitTangent(t0+t1
2

, t1).
11: Return the trajectories found in the above two SplitTangent()

calls.
12: end if

Proposition 1 Let si=N...1 be the new set of segments added
to Q (refer to Algorithm 2) at each recursion step, sorted in
descending order by the values at which si intersects t = t0.

If si does not intersect sj , for j > i, then ∀ℓ > j, si does not
intersect sℓ. Similarly, if si does not intersect sj , for j < i,
then ∀ℓ < j, si does not intersect sℓ.

Proof For j > i, if si does not intersectsj , then it must
be true that∀t, gc,i(t) < gc,j(t) (Eqn. 7). Sincesj+1 does
not intersectsj (a segment is added toQ only if it does not
intersect the previously added segment), then∀t, gc,j(t) <
gc,j+1(t) - i.e.,∀t, gc,i(t) < gc,j+1(t). It follows easily that,
∀ℓ > j, si does not intersectsℓ. The converse can be simi-
larly proven.�

At the end of every step of the recursion, curve segments in
Q andL′ are checked for intersections with each other. An
additional set,Q′, contains the index of the intersecting seg-
ment inQ whenever a segment is added toL′. Additionally,
the algorithm requires that all curve segments have common
start and end time, which would be violated due to the split-
ting caused by degenerate cases (Fig. 5(b)), and the piece-
wise approximations to the tangent point trajectories. So,we
break time into sub-intervals bounded by the endpoints of
the curve segments, to ensure that a curve segment crosses
the entire time interval in which it is processed. The num-
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ber of sub-intervals is usually small, typically in the range
between 5 to 8.

The complexity of the algorithm isO(N logN+I), where
I is the number of intersection points - the sorting stage
takesO(N logN), populatingQ, L′ andQ′ takesO(N),
and the intersection-finding stage takesO(I). The algorithm
is output-sensitive, since its running time depends on the
number of intersections, making it particularly useful when
the number of intersections is small. The guarantee that the
intersection-finding stage in Algorithm 2 is anO(I) oper-
ation can be easily verified. The intersection-finding stage
checks for intersections of each element ofL′ with segments
beginning from the index of the corresponding intersecting
segment inQ, as given byQ′. The iterations are performed
in both ”directions”, one decrementing and the other incre-
menting from the index of the intersecting segment, stopping
when the segments do not intersect. The stopping condition
is due to Proposition 1, and thus ensures that the total num-
ber of checks conducted isO(I).

We conducted simulations comparing the performance
of the brute force segment intersection algorithm and the op-
timal segment intersection algorithm. In the simulations,we
use a scene of size 50m×50m, with one camera located in
the middle of the left border. We assume the camera’s field
of regard covers the whole scene. A fixed radius is initial-
ized for the physical extent of each object while the posi-
tional uncertainty is modeled by increasing that radius over
the prediction period so that the confidence interval remains
at 90%, using the algorithm in Sec. 4. For realistic simula-
tions, observed trajectories of real objects were used as in-
puts to the simulations. The speed of using the optimal seg-
ment intersection algorithm and the brute force algorithm is
compared in Fig. 6(a)-(c) for prediction times of 2, 5 and 10
seconds respectively. We can see that for a typical predic-
tion time of 2-5 seconds, the breakeven point is at approxi-
mately40 to 50 MEC’s. Since each object is represented by
a triplet of MEC’s (Eqn. 3), the optimal segment intersec-
tion algorithm outperforms the brute force algorithm when
there are approximately15

V
objects,V being the number of

cameras, since our visibility analysis is conducted for each
camera. We also show in Fig. 6(d) that the number of inter-
section points is much fewer thanN2, even when the pre-
diction time was as long as 30 seconds, showing that using
an output-sensitive algorithm is more favorable than a brute
force algorithm.

After determining the occlusions intervals, we construct
the visibility intervals as their set complements. Multiple oc-
clusion intervals resulting from different objects occluding
the same object during different temporal intervals are dealt
with by combining their set complements. The process is
performed on theXY , XZ andY Z planes, and the over-
lapping regions between the visibility intervals on the re-
spective planes, after discarding those with durations smaller
than the required processing time of any task, are the final
visibility intervals.

Algorithm 2 FindIntersections(t0, t1, Lsorted)
1: {Let Lsorted = {sN , ..., s1}}.
2: L′ = ∅.
3: Q = ∅.
4: Q′ = ∅.
5: for i = N, ..., 1 do
6: if the segmentsi doesn’t intersect the last segment ofQ then
7: Addsi to the end ofQ.
8: else
9: Addsi to the end ofL′.

10: Add the index of the intersecting segment inQ to Q′.
11: end if
12: end for
13: if L′ 6= ∅ then
14: {Intersection-finding stage}.
15: {Let L′ = {s′k, ..., s′1}, andQ′ = {indk, ..., ind1}}
16: for j = k, ..., 1 do
17: for ℓ = indj , indj − 1, ..., 1 do
18: if s′j intersectssℓ then
19: Compute the intersection and report it.
20: else
21: Break the loop{EnsuresO(I) for finding intersec-

tions}.
22: end if
23: end for
24: for ℓ = indj + 1, ..., N do
25: if s′j intersectssℓ then
26: Compute the intersection and report it.
27: else
28: Break the loop.
29: end if
30: end for
31: end for
32: FindIntersections(t0, t1, L′).
33: end if

6 Task Visibility Stage

6.1 3D Representation

The constructed visibility intervals can now be combined
with task specific information - resolution, direction and du-
ration - to identify time-varying camera PTZ settings that
would satisfy a given task during some portion of a visibil-
ity interval, giving us a set of TVI’s for each camera. For this
purpose, we consider a 3D ellipsoidal object representation
that can be written in the form of a quadric expression as:

XTQX = 0, (9)

whereQ is a symmetric4 × 4 coefficient matrix for the
quadric andX is a point onQ in homogeneous coordinates.
Q is determined from the sizes of the MEC’s on the projec-
tion planes at each time step, and the values ofQ over time,
Q(t), now makes up the predicted motion model.

6.2 Obtaining TVI’s

The predicted 3D motion model of each object can be used
to compute feasible sensor settings which camerac can em-
ploy to capture the object over time while satisfying task
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Fig. 6 (a)(b)(c) The number of moving MEC’s, at which the optimal segment intersection algorithm outperforms the brute force algorithm is
showed for prediction time of 2, 5 and 10 seconds. The breakeven point for a typical prediction time of 2 secs is approximately 40. We show in
(d) that the number of intersections between moving points is much fewer thanN2, making an output-sensitive algorithm much more favorable.

requirements. Each camera used in our system rotates about
an axis passing (approximately) through the corresponding
optical center, and is zoomable so that the focal length can
be adjusted. As a result, the projection matrixP of a camera
c can be written as:

P (R) = K[R|I], (10)

where

– R is the rotation matrix in the world coordinate system
andI is the identity matrix.P is parameterized byR as
c re-positions itself by rotating in the midst of executing
some capture, and

– K =

[

fcmx s x0

0 fcmy y0
0 0 1

]

is the camera intrinsic matrix.

Here,fc is the focal length,(mx,my) are the image scal-
ings in thex andy directions,s is the skew factor and
(x0, y0) is the principle point.

Then, the image of the object ellipsoid is a conicζ(t) =
[ζ1, ζ2, ζ3] such that:

ζ∗(t) = P (R) ∗Q∗(t) ∗ PT (R), (11)

where

– ζ∗(t) = ζ−1(t) is the dual ofζ(t) assuming full rank,
and

– Q∗(t) is the adjoint ofQ(t).

Given thatQ(t) represents an ellipsoid,ζ1, ζ2 andζ3 can be
respectively written as[a2, 0, 0]T , [0, b2, 0]T and [0, 0, a2 ∗
b2]T , wherea andb are the image width and height ofζ(t).

The minimum ofa andb then allows us to determine the
range of focal lengths (possibly none) for which the resolu-
tion requirement of the task would be satisfied. We employ
the following procedure to determine ranges of feasible cam-
era settings for each camerac and (task, object) pair(T, o):

1. Iteratet from the start to the end of the visibility interval.

2. Iterate(ψc, φc) from the minimum to maximum pan and
tilt settings of the camera.

3. Determine the projection matrix,P (R) (Eqn. 10), where
R is determined byψc andφc.

4. Let fc = f−

c , wheref−

c is the shortest focal length that
satisfies the minimum resolutionβmin required by the
task.

5. Perform a field of view test by checking whether the im-
age conic (Eqn.11) lies outside the image boundaries (ei-
ther partially or completely). If so, go to step 7.

6. Incrementfc and repeat step 5.
7. If fc 6= f−

c , letf+
c = fc sincefc now gives the maximum

possible resolution while keeping the object in the field
of view.

8. Update the TVI(c, (T, o), [r, d], V alidψ,φ,f(t)) (Eqn. 1).

Two things that are important to note are, first, that the pre-
dicted motion model is used to compute the direction the ob-
ject is moving relative to the camera pose; so the above pro-
cedure is conducted only for cameras for which the object is
moving in a direction that satisfies task requirements. For ex-
ample, if the task is to collect facial images, then the object
must be moving towards the camera. Secondly, for compu-
tational efficiency, we use reasonably large discrete stepsin
t, ψc andφc. An interpolation algorithm is then used to con-
struct each pair of lines representing the minimum and max-
imum valid pan settings,(ψ−

c , ψ
+
c ), on the pan-time plane,

the minimum and maximum valid tilt settings,(φ−c , φ
+
c ), on

the tilt-time plane, and(f−

c , f
+
c ) on the focal-time plane, as

determined by the above procedure. These projections serve
as a simple representation of an otherwise complex 4D vol-
ume in PTZ and time. Illustrations are shown in Fig. 7. In
(a) and (b), 3D surfaces inψc, φc andfc at t = 0 are shown.
Both surfaces forf−

c andf+
c are shown in each plot. (a) is

without field of view constraint (Step 5 in the above algo-
rithm) while (b) includes that constraint.

7 TVI Compositing Stage

The TVI’s constructed above satisfy object visibility, task-
specific resolution and field of view constraint for a single



Constructing Task Visibility Intervals for Video Surveillance 9

−1.5
−1

−0.5
0

0.5
1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5
0

50

100

150

200

250

300

Tilt
Pan

Z
oo

m

−2

−1

0

1

2

−1.5−1−0.500.511.5

0

50

100

150

200

250

300

Tilt

Pan

Z
oo

m

−1.5
−1

−0.5
0

0.5
1

1.5

0

5

10

15
0

200

400

600

800

1000

1200

PanTime

Z
oo

m

(a) (b) (c)

−1.5

−1

−0.5

0

0.5

1

1.5

051015
Time

Volumetric Visualization

P
an

−1.5
−1

−0.5
0

0.5
1

1.5

0

5

10

15
0

200

400

600

800

1000

1200

PanTime

Z
oo

m

−1.5

−1

−0.5

0

0.5

1

1.5

051015

Pan

Time

(d) (e) (f)

Fig. 7 Determining feasible sensor settings. (a) Without field of view test. (b) With field of view test. (c) Temporal behavior ofthe relations
between the object motion and sensor settings. The tilt value is kept at zero in this plot. Readers should take care not to miss that there are two
surfaces in these three plots: one for the maximum feasible focal length, and one for the minimum (somewhat flat surface beneath the maximum
focal length surface). (d) The projection of plot (c) on the pan-time plane. (e) Two tasks shown here can be satisfied with the same sensor settings
where they intersect. (f) A 2D view of (e). The start and end ofthe temporal interval can be obtained as the time instances where they intersect.

task. In other words, a collection of camera settings for every
time step in a TVI has been computed, so that at each time
step, the system can choose a zoom setting from the range of
focal length allowed at a particular pan and tilt. For a given
camera, subsets of TVI’s can possibly be combined so that
multiple tasks could be satisfied simultaneously in a single
scheduled capture. The resulting intervals are called Multi-
ple Task Visibility Intervals (MTVI’s). Formally, a set ofn
TVI’s, each represented in the form:

(c, (Ti, oi), [ri, di], V alidψi,φi,fi
(t)),

for TVI i [Eqn. 1], can be combined into a valid MTVI rep-
resented as:

(c,
⋃

i=1...n

(Ti, oi),
⋂

i=1...n

[ri, di],
⋂

i=1...n

V alidψi,φi,fi
(t)),

(12)

when:

⋂

i=1...n

[ri, di] 6= ∅,

⋂

i=1...n

[ri, di] ≥ pmax,

wherepmax is the largest processing time among the tasks
and fort ∈ ⋂

i=1...n[ri, di],

⋂

i=1...n

V alidψi,φi,fi
(t) 6= ∅. (13)

The combination of TVI’s into MTVI’s is illustrated in Fig. 7(c).
For visualization, we kept the tilt fixed. The figure illustrates
how the allowable range of focal length varies with the pan
setting over time. A corresponding 2D view is shown in (d)
in the pan-time plane. In (e) and (f), the plot for this task
is intersected with that of another task. The resulting volu-
metric intersection is delimited by a temporal interval, and a
region of common camera settings. Again, we utilize a sim-
ple representation of such volumes to find these common
camera settings. This involves projecting them onto the 2D
planes (i.e., pan-time, tilt-time and focal length-time),where
the intersections can be computed efficiently.

To combine TVI’s efficiently, the same optimal segment
intersection algorithm described in Sec. 5.1 is used to lo-
cate the intersection points on the pan-time, tilt-time and
focal length-time planes. This is effective for constructing
MTVI’s based on two tasks. Unfortunately, finding all fea-
sible MTVI’s for any number of tasks is computationally
expensive. The system, heuristically, constructs MTVI’s us-
ing the following iterative procedure, terminated after a few
iterations. The set,S2, composed of the two task MTVI’s
is first constructed using the optimal segment intersection
algorithm. Subsequent iterations then combine elements in
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(a) Sample frames used for constructing the motion model of each
object are shown here. Detected objects are tracked in a CONDEN-
SATION framework, and the observed tracks are shown in (b).The
tracks are constructed over 20 frames and are used subsequently for
building the predicted motion models.

Person 1 (black bounding box)

Door

Static camera used for
background subtraction and tracking

Camera 3

Camera 2

Camera 1

Person 4 (yellow bounding box)Person 2 (red bounding box)

Person3 (white bounding box)

(b) The observed tracks.

Fig. 8 Constructing motion models of four persons.

the set from the previous iteration, doing so only for ele-
ments containing common tasks, identifying valid combina-
tions as those that satisfy Eqn. 13. After constructing these
(M)TVI’s, the system is then ready to collect video sequences
that satisfy the tasks on hand, by scheduling a given col-
lection of active cameras based on the MTVI’s and TVI’s
(Fig. 1).

8 Results

For experimentation purposes, we developed a prototype real-
time system consisting of four PTZ cameras, synchronized
by a four-channel Matrox card. Experiments were performed
by keeping one of the cameras static, and using it for back-
ground subtraction and tracking. The system recovers an ap-
proximate 3D size estimate of each detected object from
homography-based camera calibration, and uses them to con-
struct the (M)TVI’s, which are then assigned to cameras us-
ing the greedy scheduling algorithm. Such a greedy algo-
rithm assigns the (M)TVI that provides the maximum cov-
erage of the tasks to an available camera at each iteration,
and terminates when no additional (M)TVI’s with uncov-
ered tasks can be found, or when all available cameras have
been assigned. The latencies of step 2 and 3 in Fig. 1 have to
be dealt with properly. Specifically, time is “wasted” as the
system plans (step 2) and the cameras assigned for capture
are re-positioned in real-time (step 3) based on the PTZ set-
tings associated with the corresponding (M)TVI’s. The sys-
tem deals with these latencies by adding the time required

for planning and camera movement to the required process-
ing time of the task. The latencies are, in fact, dominated by
the time it takes the camera motors to stabilize after mov-
ing, so is largely independent of the angles through which
the cameras are turned.

The first set of results are shown in Figs. 8 and 9, and
they illustrate the system timeline. Here, there is only one
task, which involves capturing unobstructed full-body video
segments of all the objects at some minimal resolution. Fig.8
illustrates how the system constructs motion models of the
detected objects. Tracks of the objects observed over 20 frames
(of which four frames are shown in Fig. 8(a)) are shown
in a plan view in Fig. 8(b). These tracks are used to con-
struct the predicted motion models, which are then utilized
in constructing the (M)TVI’s. These (M)TVI’s are assigned
to the three active cameras for capture based on the greedy
scheduling algorithm. In the example shown in Fig. 9, (a),
(b), (c) and (d) show sample frames of the captured videos.
Referring to Fig. 8(b), person 3 was captured with cam-
era 1 in Fig. 9(a), person 2 was captured with camera 2
in Fig. 9(b), and person 1 was captured with camera 3 in
Fig. 9(c). The remaining person 4 was captured with cam-
era 3, but at a different time period after camera 3 was freed
up. Additionally, although the system was set to capture 60
frames of unobstructed video of each object, the processing
time was specified as 80 frames so that a time period of 20
frames each is provided for camera re-positioning.

Fig. 10 then demonstrates the use of (M)TVI’s for col-
lecting facial images. Two PTZ cameras are controlled by
a static detection camera to capture video sequences of two
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moving persons so that their faces are visible. The predicted
motion models are used to determine when people are unob-
structed and moving towards a camera.

Fig. 11 and Fig. 12 illustrate the effect of changing res-
olution requirement on the construction of MTVI’s. Four
remote-controllable 12x14 inches robots moved through the
scene. Fig. 11 has a lower resolution requirement than Fig. 12.
The robots were controlled to move in approximately the
same trajectories in both figures. While only two active cam-
eras are needed to capture the four robots in Fig. 11, three
were needed in Fig. 12 as we increase the resolution require-
ment.

Finally, Fig. 13 illustrates the effectiveness of the tracker
to track through occlusions, allowing the prediction to be
sufficiently accurate for acquiring unobstructed and well-
magnified video segments of the people.

Fig. 9 Based on the predicted motion models constructed from the
observed tracks given in Fig. 8, we show here sample frames ofthe
captured video clips (sequentially from left to right) in each row. There
are three active cameras available.

9 Conclusions

We have described a multi-camera system that constructs
(M)TVI’s as the basis for deciding suitable time periods to
capture moving objects in the scene. These (M)TVI’s are
constructed for every camera and can be further used for
more complex multi-camera planning and scheduling pur-
poses. By constructing these (M)TVI’s, the system can en-
sure (probabilistically, based on the predicted motion model)
that targeted objects in acquired videos are unobstructed,in

Fig. 10 Row 1: The motion models of two people in the scene were
used to determine when they are front-facing to the assignedcamera
(two active cameras are used here), for face capture. This isillustrated
in rows 2 and 3, where each person is front-facing to only one of the
movable cameras, which was then assigned to the task accordingly.
Here, the right image shows the scheduler annotating the bounding
boxes with the ID of the assigned camera. The TVI of person 0 inthis
example is delimited by the predicted crossing with person 1. Row 2:
Frames showing camera 0 capturing person 1’s face. Row 3: Frames
showing camera 2 capturing person 0’s face.

Fig. 11 Row 1: The robots are tracked (left and middle image) and
assigned cameras by the scheduler (annotated in the right image). Row
2: Camera 0 captures robot 3 based on its TVI. Row 3: Due to the lower
resolution than Fig. 12, a three task MTVI is sufficient for capturing
robot 0, 1 and 2 simultaneously.
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Fig. 12 The resolution requirement was increased relative to Fig. 11,
and three cameras are now needed. Row 1: Tracking and scheduling.
Row 2: Camera 0 captures robot 3. Row 3: Camera 1 captures robot
0. With the higher resolution requirement, robot 0 now needsto be
captured alone, instead of simultaneously with robot 1 and 2. Row 4:
Camera 2 captures robot 1 and 2 with a two task MTVI.

Fig. 13 Row 1: The three persons first appeared sufficiently separated
to be detected individually (left image, row 1). Given only two active
cameras, person 0 and 2 was scheduled first. Because the system was
able to track through occlusions, shown in row 1, so that the image of
person 0 was prevented from merging with those of person 1 and2 as
they were captured, the predicted motion model of person 0 was accu-
rate enough for camera 2 to capture unobstructed and well-magnified
frames of person 0 after it finished capturing person 2, shownin row 4.
Row 2: Capturing person 1 with camera 0. Row 3: Capturing person 2
with camera 2. Row 4: Capturing person 0 with camera 2 after person
2.

the field of view, and meet task-specific resolution require-
ments. We have demonstrated the capabilities of the sys-
tem, which should be useful in surveillance, where extensive
camera planning and scheduling is necessary.
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