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Constructing Task Visibility Intervals for Video Surveill ance

Abstract Vision systems are increasingly being deployed tmust predict time-varying visibility of the objects, sciusl
perform complex surveillance tasks. While improved algdhe tasks at hand, re-position cameras and acquire videos to
rithms are being developed to perform these tasks, it is amgpport the scheduled tasks. The demand for such video ac-
important that data suitable for these algorithms be aeduirquisition is motivated by the following surveillance scena

- a non-trivial task in a dynamic and crowded scene viewed We are given a collection of calibrated surveillance cam-
by multiple PTZ cameras. In this paper, we describe a reakas. They must be controlled to acquire surveillance video
time multi-camera system that collects images and videosavier a large surveillance site, which can most simply be
moving objects in such scenes, subject to task constraimedeled as a large patch of ground plane, possibly anno-
The system constructs “task visibility intervals” that tamin tated with the locations of specific regions of interest.(e.g
information about what can be sensed in future time inteegions near the entrances to buildings, receptacles such a
vals. Constructing these intervals requires predictiofuef trash cans, or regions defined dynamically as vehicles enter
ture object motion and consideration of several factoré suand stop in the site).

as object occlusion and camera control parameters. Such in-Each camera has a field of regard, which is the subset of
tervals can also be combined to form multi-task intervalthe surveillance site that it can image by controlling iesw
during which a single camera can collect videos suitaliley angles (Pan, Tilt and Zoom - PTZ - settings). A field of
for multiple tasks simultaneously. Experimental results aview of a camera is the image obtained at specific PTZ set-
provided to illustrate the system capabilities in congingc tings and is generally much smaller than its field of regard.
such task visibility intervals, followed by scheduling the As people and vehicles move into and through the sur-
using a greedy algorithm. veillance site, the cameras are to be controlled to acquire
sets of videos that satisfy temporal and positional coimgta
that define generic surveillance tasks. Examples of typical
surveillance tasks are:

Keywords Surveillance Sensor PlanningSensor Fusion
Active Camera

1. Collectk seconds olinobstructed video from as close
1 Introduction to a side angle as possible for any person who enters the
surveillance site. The video must be collected at some
We describe a sensor planning system for controlling, in Minimal resolution. This task might be defined to sup-
real time, a collection of surveillance cameras to acquire POt gaitrecognition, or the acquisition of an appearance
video sequences of moving objects (people, vehicles), sub- Model that could be used to subsequently identify the

ject to visibility, resolution and positional constrain®ur person when seen by a different camera.
approach, in general, involves tracking the objects in tite s 2. Collect unobstructed video of any person while that per-

veillance site using one or more wide field of view cameras, SON iS withink meters of region A. This might be used
for a short period of time, and then predicting their motions {0 determine if a person deposits an object into or takes
over a “small” future time interval. During this intervalgy ~ @n object out of region A.
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schedule as many of these surveillance tasks as possiate] feasible camera settings during video collection. Bpec
possibly subject to additional constraints on priority loé t ically, our scheduling approach is based on the efficient con
tasks. struction of what we call Task Visibility Intervals (TVI'spA

The problem of sensor planning and scheduling has beEMil is a 4-tuple:
studied extensively. [18] presented a survey covering-sens
ing strategies for object feature detection, model-based .
ject recognition, localization and scene reconstruct@mne te, (T, 0), [r,d], Validy,g,f(t)). @)

of the earliest works is [5] which introduced a locus-basggee . represents a camerd;, o) is a (task, object) pairF
approach to decide on the placement of viewpoints, SY81he index or specification of a task to be accomplished and
jected to static resolution, focus, field of view and vistgil  is the index of the object to which the task is to be applied,
constraints. They also described an extension of the SN[, ] is a time interval within which (some temporal seg-
strategy to Iaser-sca_mner range sensor. [17] mtrodu_aed Hﬁ'ent of) the task can be accomplished using cameras
idea of local separating planes which are used to define Wiga earliest release time of the task whilés the deadline
ibility volumes, in which occlusion-free viewpoints can b%y which the task has to be completed. Then, for any time
placed. Then, to satisfy the field of view constraint, they ifhstancer ¢ [, d], Validy. (t) is the set of pan settings

troduced the idea of the field of view cone, which is simil '), tilt settings ) and focal lengthsj() that camera: can
to the locus-based approach given in [5]. These papersag bloy to capture objectat timet.

not consider object motion. [1,2,19] discusses a dynamiC \yg focus our attention on tasks that are satisfied by video
sensor planning system, called the MVP system. They Wey€yments in which an object is seen unobstructed for some
concerned with objects moving in the scene, generating & -specific minimal period of time, and is viewed at some

swept volume in temporal space [2]. Then, using a temp@sk-specific minimal resolution during that time periodeT
ral interval search, they divide temporal intervals inttvba {55k specifications, themselves, are 3-tuples:

while searching for a viewpoint that is not occluded in time

by these sweep volumes. This is then integrated with other

constraints such as focus and field of view in [19]. The culp, o, 3) 2)
mination is found in [1], where the algorithms are applied

to an active robot work cell. [14] determines optimal sensi¢here

placements offline, by considering information that presid 1. ), is the required duration of the taskcluding worst-
probabilistic priors of object motion - observations made cage |atenciesinvolved in re-positioning cameras,

about the motion of objects in the surveillance site are prob , s a predicate relating the direction the object is mov-
abilistically used as inputs to placing sensors offline.sThi  jnq relative to the optical axis of the camera used to ac-

ensures (probabilistically) that cameras are placed i pos  complish the task (for example to specify a view that sat-
tions that will have unobstructed views of moving objects. jsfies the requirements for a side view or a front view),

Finally, studies on sensing strategies for the purpose of 3D gpg

reconstruction can be found in [10-12]. 3. Gis the minimal ground resolution needed to accomplish
In comparison, our main contribution lies in the real-time  the task.

construction of time intervals during which visibility con .

straints are satisfied on a per-camera basis. The consinuctj In general, not all tasks would be applicable to all ob-

of the time intervals are based on predicted object trajégpts - One can imagine tasks for viewing faces of peaple, Ii-

fores o ha thy can be used t schedule actve camEfgloe ales SLficles el For Smplcty e s ha
for video collection “ahead of time”. Several papers ha P )

discussed these camera scheduling algorithms, such a H\f;isf;/teépr:;g(;iaollr?/, tohnai m%u:giiohgsgdbﬁ?iﬂiﬁhizﬂfm
which evaluated scheduling policies like First Come Fir »ap ’ 3

Serve (FCFS) and Earliest Deadline First (EDF), o, [1 mpleted (i.e., that in fact we have obtained unobstructed

. : : : eo of some given object) so that it can be determined if
which evaluated a weighted round-robin scheduling sche : :
with a static FCFS policy using a Virtual World SimulatorFh task has to be rescheduled (which, of course, will not al-
ays be possible). Ideally, the measurement stage of a sulit-

For efficiency, one could also consider the parallel schedu le tracker can b d for such verification our

ing algorithm described in [15]. Our focus, however, is offP'€ rackercan be used for such verification purpose.
the algorithms for constructing these predicted time inter

vals. While our experiments demonstrate the applicatwlfity
using the constructed time intervals for greedily schedyli
the cameras, other scheduling algorithms could be used. The trol i les th h th t f
basic idea of scheduling cameras based on predicted ob H{I Ca.meFf.a Cfn_ rol system cycies throug ree stages o
trajectories was introduced previously in [13], which Waéna ysis (Fig. 1) -

mainly concerned with handling occlusions between moving). A sensing stage, in which moving objects are tracked
objects in the scene. Later, [6] described a method to deter-through the surveillance site using wide field of view
mine feasible PTZ settings based on predicted object trajec cameras. Based on image analysis and calibration infor-
tories. In contrast, our algorithm is an holistic approdudt t mation, the physical size (height and width) of each ob-
considers both predicted occlusions between moving abject ject is estimated. For computational efficiency, in 2(a)

2 System Overview
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Step 1 Step 2 Step 3 ally, there could be many cameras that could be used
| | } } Timeline to satisfy any given task.
Detection and Planning: Video Acquisition : (d) ATVIcompositing stage, which efficiently finds small
e " atonmedas e g, s zooming combinations of TVI's that can be simultaneously
object - truct occlusi i i -
oe construct ocelusion scheduled on a single camera. We call these inter
- construct (M)TVIs vals Mqlt!ple Task y|S|b|I|ty Inte(vals (MTVI's), a}nd
" Sonstruct camera determining them involves finding non-empty inter-

Fig. 1 Timeline depicting the steps involve in collecting taslesific
video sequences.

sections of camera settings over suitably long time
intervals for subsets of tasks and specific cameras.
(e) A scheduling stage using a greedy algorithm.
3. A collection stage in which the cameras are first posi-
tioned and then collect the video segments for the tasks
for which they have been scheduled.

and (b), the height and width are used to construct Citere, the sensing stage is performed using the background
cumscribing circles to the object’s orthographic projeuptraction algorithm described in [20], and the CONDEN-
tions on the projection planes (referred to below as “shagiaT|ON tracking algorithm from [7]. Background subtrac-
ows") of the world coordinate system for path predictiofion is performed at every frame to detect foreground blobs
and visibility analysis. These shadows are subsequentiyhich may be the images of multiple moving objects), with
used for constructing an ellipsoidal representation of thige assumption that objects are initially sufficiently sepa
object in 2(c) for determining task-specific feasible camated from each other to be detected individually. The set
era settings. of objects are then tracked, and the observed locations are

. A planning stage, composed of five sub-stages: used as the prior to compute the likely object positions in

(a) A prediction stage, in which the tracks are extrap§1€ Next frame. The CONDENSATION algorithm allows us
lated into the future. The predicted tracks are straigh 9enerally track individual object through short periods

lines. Additionally, a variance measure is estimatéﬁ:dus'ons'

for the track and incorporated into the shadows of the

object volume. So, the final predicted motion mode}

for each moving object consists of the individual cir3 Motion Model

cular shadow moving along a straight line; the ra-

dius of the shadow increases linearly over time with@etermining visibility intervals for any given (object, ma

constant proportional to the error in “fitting” a straightra) pair involvegredicting future time intervals during which

line to the track of the object in the sensing stage. that object is in the same line of sight as some other object,
(b) A visibility analysis stage in which we determine, fobut is further from the camera, causing it to be occluded.

each camera and moving object, the intervals of tinffdhe complements of these intervals, which we refer to as

- called visibility intervals - during which that mov- occlusionintervals, are thevisibility intervals. In addition to

ing object will be contained within the camera’s fieldlepending on the trajectory of the object acquired through

of regard, and not be occluded by any other mowisual tracking, the prediction of occlusion intervals Wwbu

ing object. This analysis is done on the projectioalso depend on the object’s shape and size. The size of the

planes where we analyze the movements of the shatbject combines our estimates of its physical size alonly wit

ows of the moving objects. The trajectories of ththe time-varying uncertainty of its location, predictedrfr

shadows on the projection planes are representedttacking.

piecewise linear approximations to the trajectories of In the world coordinate system (with axesd@sY and

the tangent points of the shadows. Over their piecg-respectively), we orthographically project the center of a

wise linear segments, the trajectories of the extrengillen camera and the silhouette of each object at a given

angles of the shadows with respect to the projectéithe, as point and circle respectively, onto tkié”, Y Z and

camera center have a simple analytic representationZ planes. The sizes of the circles are determined by the

We then use asymptotically efficient algorithms tobject’s width and height, as estimated from its silhouette

find crossings of the extremal angles. This allows wd pre-determined homographies from the camera’s image

to directly determine the intervals during which amlane to theX'Y, YZ and X Z planes. On each plane, a pro-

object is occluded by some other object; the complgcted circle has two tangent points that define its extetfit wi

ments of these occlusion intervals are the visibilitiespect to the projected camera center. The motion model is

intervals. then defined as the time-varying angular extents of the pairs
(c) Ataskvisibility stage now combines task specific inef tangent points belonging to the triplet of circles représ

formation - resolution, direction and duration - withing the object. These projections serve as a simple represen

the visibility intervals to identify time-varying cam- tation of an otherwise complex 4IX(Y' Z and time) motion

era PTZ settings that would satisfy a given task dumodel. Fig. 2 shows a projected circle on fki&” plane, with

ing some portion of a visibility interval. This resultsradiusr, of an objecb with respect to to the camera center

in so-called Task Visibility Intervals (TVI's). Gener- Here,d is the angular displacement of the circle center from
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¢, and the angular displacement of the upper and lower tasthe displacement between the first and last element of the
gents can be expressed@s,., = 0 —a and¢;,.r = 0+a subset divided by the corresponding time lag. Then, we form
respectively, wherer = arcsin . Accordingly, the motion anew sets,,..q, consisting of the predicted velocitiesqf;
model of objecv, f. ,(t), parameterized by timebecomes: as:

feo®) = | {H(t,H)iarcsinr(ﬁ’H)}, () Spred = {z0, 71,00 T} @)

d(t, IT)
=XY.XZYZ . . .
H o where each;—o,... ,, iS @ 2-vector of speed and direction,

whered(t, IT) and(t, IT) are the distance and the angulaandn is the number of subsets formed fro$p;.;. Eachz;

displacement, respectively, of the circle center franand is assigned a weight;, with more recent observations being

r(t, IT) is the radius of the circle on the plahe assigned larger weights, and with all weights normalized so
that) ! ,w;, = 1. If we assume that both speed and direc-
tion are independent of each other, the probability of obser
ing a velocityv can then be estimated as:

Y axis

~_Upper tangent point

SO . , L
PT(U) = wj e 7 5
' =0 jo1V2moj
W Ower tangentpoint v . 6 . . .
Xais where; represents the speed and direction component, and

ajz is the corresponding bandwidth. The confidence interval,

[Vmin, Vmaz), that provides a desired level of confidenék,
can be found by solving for:

Trajectory
Fig. 2 Example of the object’s shadow on tB&Y” plane. Hereqw =

AT
arcsin a-

p— / " pr(o)do. ©)

Umin

[Umin, Umaz] 1S USed to compute the region in whieh;

lies in future time instances. A Minimum Enclosing Circle
W;U%EC) is constructed to enclose the predicted region into
I

4 Prediction Stage

Tracking information observed in the sensing stage (Ste

Fig. 1) is used to predict the future positions of the tripletar shadow of the object, using the linear-time algorithm
of circles (previous section) representing each objeati-Si i an in [3] pp. 86-90. It is easy and efficient to determine

lar to filter-based (e.g., Kalman filter [9], extended Kalm_aﬁ1e MEC because the predicted region in whigh lies at
filter [8], or particle filter [7]) trackers where known a pri-; naticylar time instance is delimited by the arcs of two

ori distribution is used to predict a current state given they,centric circles, with the four endpoints of the arcs com-
previous state, the distribution of the velocities giverthy ) \1ad from the minimum and maximum speed in the “min-
observed tracks (a priori) of each object is used to pretict sy, » girection, and the minimum and maximum speed in
future positions while providing an uncertainty measure. {,q «maximum” direction. as giVEN BYvin, Umas]. THIS al-

) minsy Ymax |+

addition, we particularly consider ease of computation ajiflys the MEC to be determined by just considering these
a geometrical interpretation of the positional unceriast four points. This is illustrated in Fig. 3.

given by the a priori distribution. For these purposes, we em o . )
ploy a method that constructs straight-line predictiopat ~ The MEC models the positional uncertainty and physi-
The positional uncertainty, which allows variation fronethcal extent of each object. Thus, if the object moves approx-
straight-line path, is modeled by growing the radius of tHgnately along a straight line with approximately constant
circle linearly over time as it moves along the straight line SPeed, then the subsetsSp,.q will have similar velocities,
Let the center of a projected circle on one of the planégd the compute,,in, vma.] Will have a small range, giv-
be coy;. Let Sy be the successive positions af,; ob- ing rise to a smaII_MEC._ This is o_ppqsed to ob_jects moving
served during the tracking interval. SubsetsSgf,; formed along complex trajectories (e.g., in circles, which canuocc
from consecutive elements are used to predict the directibnScenes with curved pathways), in which case the MEC
and speed ot,;;, with adjacent subsets sharing commotypically Increases In size more quickly as the paths given
elements. So, for example, the first¢ element would be- PY [Vmin: vmas] increasingly deviate from each other.
long to the first subset, th@ + 1) to (k + n)** element The predicted motion model of an object can thus be vi-
to the second and so on, wheje< k and (k — n) is the sualized as a progression of a triplet of MEC'’s in time. Two
number of common elements in consecutive subsets. To darticularly useful observations, utilized for the constion
termine the direction, a straight line is fit to the locatiarfis of visibility intervals later, can be made about the series o
copj IN €ach subset, while an estimate of the speed is derivd&C'’s. Firstly, each MEC moves along a straight line, and

ich the object is moving, inflated by the size of the cir-
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Such a representation greatly simplifies the computation of
occlusion intervals - when Egn. 7 for two objects are equated
they form a simple quadratic function of time which is
easily solved for the time instances that delimit periods of
crossing between the two objects.

However, the trajectories of the tangent points are, gen-

Current positioncoy; | erally, nonlinear. So, we construct piecewise linear appro
imations to these trajectories, using Algorithm 1 and then
- N~ "iminimums eed, employ Egn. 7 to construct the desired angular trajectories
R Shectar ¢ maxmum diregtion of the pieces. In Algorithm 1, the predicted motion model
{ esin i refers to the time-sampled values @&, I7), (¢, IT) and
out }mé;imum speed, d(t, II) in Eqn. 3, and are easily derived due to the obser-
. oy "maX'mum direction vations in the previous section (i.e., that the MEC’s move
iy o AR along straight lines and grow linearly over time). The time-
e Enclosing MEC sampled positions of the corresponding tangent points can

then be derived accordingly, so that, for example, in Fig. 2,

Fig. 3 In the next time instance, the region where the predicted pg- : : ;
sitions of coy; lie is delimited by the arcs of two concentric circles eX andY” coordinates of the upper tangent point are given

as shown, with the four delimiting corners of the region cated by ~as+/d(t, IT)2 — r(t, IT)2 sin(6(t, IT) — ) and

the m_inimu_m and maximum speed, and the minimum and maximuvd(t, I1)2 — r(t, I1)2 cos(8(t, IT) — o) respectively.

direction, given byv,,in andvmas. A MEC (drawn in red) can then . .

be const,rugcted toyuenclose the predicted reéion into whie)h)ﬂ')ect is There Could.also be more SOIU,t'On_S between two Oblec_ts

moving. than the endpoints of valid occlusion intervals, as shown in
Fig. 5(a). A solutiont; ;, between objectandj, that is not
the endpoint of any occlusion interval, however, possesses
the following distinguishing property:

secondly its radius grows linearly with time. Both propesti

can be easily verified by construction.

To illustrate the performance of the motion predictor, welg, ; (t7 ; = At), g1 (t7 ; £ At)]

consider a video sequence of people walking naturally i o .

a parking lot. We sel?act an indi\F/)idugl walkinggon a cur\yedrh 90,3 (855 £ At), g5 (85 ; £ At)] # 0,

path for tracking, and predicted his motion model on the (8)

ground plane as a series of MEC's, using observed tracks of ) )

100 frames. The MEC at each frame is then compared wihereAz is a small time step.

the actual position of the person, obtained by tracking him Special care has to be taken for degenerate cases where

throughout the sequence. The predictions were sufficientfig trajectories of the extremal angles are not continuous.

accurate for the required amount of tinte ¢0 frames), even First, if the tangent point passes through the camera center

though the observed individual was moving along a curvée subtending angle is changed by. Second, it is pos-
path. This is shown in Fig. 4. sible for the subtending angle to wrap around between

andr, which happens when the tangent point passes through
the negative portion of th& -axis on theX'Y plane, asillus-
trated in Fig. 5(b). Both degenerate cases can be handled by
splitting the curve of Egn. 7 into segments.

5 Visibility Analysis Stage

The goal of the visibility analysis stage is to constructpie
wise analytic representation of the extremal angles of the . . -
time-varying MEC for analysis by an efficient segment im-1 Détérmining Occlusion Intervals Efficiently
tersection algorithm. Time instances at which the extremal . i i
angles of the MEC'’s of different objects coincide delimit ocOcclusion intervals could now be determined using a brute
clusion intervals, during which the objects are occluding o force approach that considers all pairs of object extremal a
another. gle trajectories. Such a brute force approach in€ufa’?)

If the trajectories of the tangent points of the MEC'§Unning time, whereV is the number of curve segments. For
were straight lines over time, € [to, ¢;], then the trajec- argeN, we propose the following optimal segment intersec-

tories, g, ; andg:i, of the lower and upper extremal anglel_;,Jon algorithm.

¢ ' - . The set of curve segments, on the extremal angle-
respectively, with respect to camerand object, would be: plane that spans the temporal interi@l 1], is sorted ac-

cording to the values at which they intersect the vertice li
arctan2(t — to)yo + (t1 — )y, (t — to)zo + (t, — t)ay), (7) ¢ = to. The resulting sorted sek,o,cq, is then recursively

divided into two sets €) containing curve segments that do
where(zo,y0) and(z1,y;) are the positions of the tangeninot intersect each other atid containing the rest, using Al-
point atty and¢; respectively, and arctafi? x) is the four- gorithm 2. The proof thaf) contains only segments that do
guadrant inverse tangent function over the ranrgeto 7. not intersect each other can be verified as follows:
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(a) Path taken by the
tracked person

(b) Predicted MEC’s using 100 frames of observed tracks.

Fig. 4 In (b), red circles represent the MEC's predicted for théofeing frames, while the green circle represents the pteditocation in the
current frame. Comparing these circles with the positiamsrgby the tracker (blue bounding box), the prediction wariciently accurate, as
shown in (b), for the required number of frames, even thohghperson was walking along a curved path as shown in (a).
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Fig. 5 (a) ] ; is a valid intersection point between objéandj, but not a valid endpoint of an occlusion interval. Shownexsarrows, the

interval formed byg; andg,; ata small ime intervalA¢ away from¢;,

An example of handling wrap around segments onXheé plane.

Algorithm 1 SplitTangent{y,t1,17)

; intersects the interval formed t@ij andg, ; as given in Eqn. 8. (b)

If s; does not intersect s;, for j > ¢, then V¢ > j, s; does not

1. {IT isthe XY, X Z or Y Z plane, on which the trajectory of the intersect s,. Smilarly, if s; does not intersect s;, for j < i,

tangent point is split into straight line(s)

2: Letp, be the position of the tangent point @h att,, computed
from the predicted motion model.

3: Letp;, be the position of the tangent point dh att;, computed
from the predicted motion model.

4: Interpolate for the midpointy, of p;, andp;, onIl, i.e.,m =
Pty +Ptg

5: Coranute from the predicted motion model, the actual mitpo
m’, onII of the tangent point at tim&-£*L.

6: if the difference betweem andm' is smallthen

7:  Assume the trajectory of the tangent point is linear frometto

to t1, and return this trajectory.
8: else
9:  SplitTangentf, Lok,

10:  SplitTangente£:, ¢1).

11 Return the trajectories found in the above two SplitEam@
calls.

12: end if

Proposition 1 Let s;—n...1 bethe new set of segmentsadded
to @ (refer to Algorithm 2) at each recursion step, sorted in
descending order by the values at which s; intersectst = .

then V¢ < 7, s; does not intersect s,.

Proof Forj > 4, if s; does not intersect;, then it must
be true thatvt, g.i(t) < g.,;(t) (EQn. 7). Sinces;,, does
not interseck; (a segment is added @ only if it does not
intersect the previously added segment), thiery,. ;(¢) <
Ge,j+1(t) -1.€.,¥, gc,i(t) < ge+1(2). It follows easily that,
Vvl > j, s; does not intersecl,. The converse can be simi-
larly proven.[d

At the end of every step of the recursion, curve segments in
Q and L’ are checked for intersections with each other. An
additional set()’, contains the index of the intersecting seg-
ment in@Q whenever a segment is added/to Additionally,

the algorithm requires that all curve segments have common
start and end time, which would be violated due to the split-
ting caused by degenerate cases (Fig. 5(b)), and the piece-
wise approximations to the tangent point trajectoriesw&o,
break time into sub-intervals bounded by the endpoints of
the curve segments, to ensure that a curve segment crosses
the entire time interval in which it is processed. The num-
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ber of sub-intervals is usually small, typically in the rangAlgorithm 2 FindIntersections(, ¢1, Lsorted)

between 5 to 8. 1 {Let Luorted = {SN,-r 51} ]
2: L' =0.
3 Q=0.

The complexity of the algorithm i@(N log N+1), where . O = 0.
I is the number of intersection points - the sorting stags: for ; = N, ..., 1 do
takesO(N log N), populating@, L' and Q' takesO(N), 6: if the segment; doesn't intersect the last segment@then
and the intersection-finding stage tak&d ). The algorithm  7: Add s; to the end ofQ.
is output-sensitive, since its running time depends on the e'SAedd he end ofl!
number of intersections, making it particularly useful whe . Addiﬁéoi;d?efgf e intersecting segmengito ',
the number of intersections is small. The guarantee that fhe enq if
intersection-finding stage in Algorithm 2 is &w(/) oper- 12: end for
ation can be easily verified. The intersection-finding sta%éi if L' #0then
checks for intersections of each elementbfvith segments 14 {Intersection-finding stage

beginning from the index of the corresponding intersecting: %{Let.L_/ - {821’ 9o s}, andQ’ = {indy, ..., ind1 }}
segment inY, as given byQ'. The iterations are performed ;. Orfojrzz’{;;}i, z’%d ~ 1 1do
in both "directions”, one decrementing and the other increg. if o intergect;[ then
menting from the index of the intersecting segment, stappino: éompute the intersection and report it.
when the segments do not intersect. The stopping conditzin else
is due to Proposition 1, and thus ensures that the total nu#h- Break the loop{EnsuresO(I) for finding intersec-
ber of checks conducted (7). 9o tions}.
: end if
23: end for

We conducted simulations comparing the performanég ~ for £=ind; +1,.., N do

T
of the brute force segment intersection algorithm and the if s; intersectss, then .
Compute the intersection and report it.

timal segment intersection algorithm. In the simulations, 5. else

use a scene of size 500B0m, with one camera located inpg: Break the loop.
the middle of the left border. We assume the camera’s figlé: end if

of regard covers the whole scene. A fixed radius is initia$0: end for

ized for the physical extent of each object while the post: end for : ,
. . ) . . . 2:  FindIntersectionsg, t1, L’).
tional uncertainty is modeled by increasing that radius ovg,
the prediction period so that the confidence interval remait
at 90%, using the algorithm in Sec. 4. For realistic simula-
tions, observed trajectories of real objects were used-asimn .
puts to the simulations. The speed of using the optimal s& 1@k Visibility Stage

ment intersection algorithm and the brute force algoritam i )

compared in Fig. 6(a)-(c) for prediction times of 2, 5 and 181 3D Representation

seconds respectively. We can see that for a typical predic- o ]
tion time of 2-5 seconds, the breakeven point is at approdibe constructed visibility intervals can now be combined
mately40 to 50 MEC's. Since each object is represented b\gylth task specmp mf_ormatlon - resolution, dlrectlor} andd

a triplet of MEC’s (Egn. 3), the optimal segment intersedation - to identify time-varying camera PTZ settings that
tion algorithm outperforms the brute force algorithm wheyyould satisfy a given task during some portion of a visibil-
there are approximatel2 objects,V being the number of Ity interval, giving us a set of TVI's for each camera. Fosthi
cameras, since our visibility analysis is conducted foheaBUrPOse, we consider a 3D ellipsoidal object represemtatio
camera. We also show in Fig. 6(d) that the number of intdhat can be written in the form of a quadric expression as:
section points is much fewer tha¥?, even when the pre-
diction time was as long as 30 seconds, showing that usi
an output-sensitive algorithm is more favorable than aebr

force algorithm. where @ is a symmetric4 x 4 coefficient matrix for the
quadric andX is a point on@ in homogeneous coordinates.

After determining the occlusions intervals, we construé? is determined from the sizes of the MEC's on the projec-
the visibility intervals as their set complements. Mukipic- tion planes at each time step, and the valueg ofer time,
clusion intervals resulting from different objects ocdhgl @(t), now makes up the predicted motion model.
the same object during different temporal intervals ardtdea
with by combining their set complements. The process is
performed on theXY, XZ andY Z planes, and the over-6.2 Obtaining TVI's
lapping regions between the visibility intervals on the re-
spective planes, after discarding those with durationglemaThe predicted 3D motion model of each object can be used
than the required processing time of any task, are the finalcompute feasible sensor settings which camexan em-
visibility intervals. ploy to capture the object over time while satisfying task

s end if
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Fig. 6 (a)(b)(c) The number of moving MEC's, at which the optimajsent intersection algorithm outperforms the brute folgerithm is
showed for prediction time of 2, 5 and 10 seconds. The breakpwint for a typical prediction time of 2 secs is approxiehatt0. We show in
(d) that the number of intersections between moving poiistich fewer thaV2, making an output-sensitive algorithm much more favorable
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Number of circles

requirements. Each camera used in our system rotates ab®utterate(v., ¢.) from the minimum to maximum pan and
an axis passing (approximately) through the corresponding tilt settings of the camera.

optical center, and is zoomable so that the focal length c& Determine the projection matri®(R) (Eqn. 10), where
be adjusted. As a result, the projection matrinf a camera R is determined by). ande¢..

¢ can be written as: 4. Letf. = f., wheref_ is the shortest focal length that
satisfies the minimum resolutio,,;,, required by the
task.

P(R) = K[R|I], (10) 5. Perform a field of view test by checking whether the im-

where age conic (Eqn.11) lies outside the image boundaries (ei-

ther partially or completely). If so, go to step 7.
— R is the rotation matrix in the world coordinate systen. Incrementf. and repeatstep5. _
andI is the identity matrix P is parameterized b as /- If fc # fo,letf.” = f.sincef. now gives the maximum
¢ re-positions itself by rotating in the midst of executing POossible resolution while keeping the object in the field

some capture, and of view.
fome s xo 8. Update the TVIc, (T, 0), [r,d], Validy 4, ¢(t)) (Eqn. 1).
- K= l 8 fcgzy ?/101 is the camera intrinsic matrix. Tyo things that are important to note are, first, that the pre-

] ) dicted motion model is used to compute the direction the ob-
Here, f. is the focal length(m,, m, ) are the image scal- ject is moving relative to the camera pose; so the above pro-
ings in thex andy directions,s is the skew factor and cedure is conducted only for cameras for which the object is
(20, yo) is the principle point. moving in a direction that satisfies task requirements. kor e
ample, if the task is to collect facial images, then the dbjec
must be moving towards the camera. Secondly, for compu-
tational efficiency, we use reasonably large discrete steps
t, 1. and¢.. An interpolation algorithm is then used to con-

Then, the image of the object ellipsoid is a cogi¢) =
[C1, Ca, ¢3] such that:

C*(t) = P(R) * Q*(t) x PT(R), (11) structeach pair of lines representing the minimum and max-
imum valid pan settings(y. , ), on the pan-time plane,
where the minimum and maximum valid tilt settings)_ , ¢ ), on

. B ) ) the tilt-time plane, andf., f.F) on the focal-time plane, as
= ¢*(t) = ¢7'(t) is the dual of¢(t) assuming full rank, getermined by the ab(gve pr0(>:edure. These projections serve
a’ld _ . as a simple representation of an otherwise complex 4D vol-
— Q(t) is the adjoint ofQ (). ume in PTZ and time. lllustrations are shown in Fig. 7. In
; eni (a) and (b), 3D surfaces in., ¢. and f. att = 0 are shown.
ilglsggt?\?et%(é\)ﬁgﬁgaegg; ,SO?S]?!"E)?;%’]%Q ;nn(f [%?: g,ac?z tie Both surfaces forf,” and I are shown in each plot. (a) is
b?)", wherea andb are the image width and height oft). without field of view constraint (Step 5 in the above algo-
The minimum ofa andb then allows us to determine the/thm) while (b) includes that constraint.
range of focal lengths (possibly none) for which the resolu-
tion requirement of the task would be satisfied. We emplg "
the following procedure to determine ranges of feasible—caﬁ\:TVI Compositing Stage
era settings for each camerand (task, object) paifT’, o):

The TVI's constructed above satisfy object visibility, kas
1. lterater from the start to the end of the visibility interval.specific resolution and field of view constraint for a single
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zoom

Zoom
g 8 B 8 B 8

(d)
Fig. 7 Determining feasible sensor settings. (a) Without field iefwtest. (b) With field of view test. (c) Temporal behaviortbé relations
between the object motion and sensor settings. The tileviallept at zero in this plot. Readers should take care notds that there are two
surfaces in these three plots: one for the maximum feagioka fength, and one for the minimum (somewhat flat surfaceats the maximum
focal length surface). (d) The projection of plot (c) on tlagime plane. (e) Two tasks shown here can be satisfied ndgthedme sensor settings
where they intersect. (f) A 2D view of (e). The start and entheftemporal interval can be obtained as the time instanbesaxhey intersect.

task. In other words, a collection of camera settings foryevewherep,,.... is the largest processing time among the tasks
time step in a TVI has been computed, so that at each tiaued fort € (,_, [, di],

step, the system can choose a zoom setting from the range of

focal length allowed at a particular pan and tilt. For a given

camera, subsets of TVI's can possibly be combined so th Validy, ¢, (t) # 0. (13)
multiple tasks could be satisfied simultaneously in a single; _,,

scheduled capture. The resulting intervals are callediMult

ple Task Visibility Intervals (MTVI's). Formally, a set of The combination of TVI'sinto MTVI'sis illustrated in Fig.(2).
TVI's, each represented in the form: For visualization, we kept the tilt fixed. The figure illudgea

how the allowable range of focal length varies with the pan
setting over time. A corresponding 2D view is shown in (d)
N T . in the pan-time plane. In (e) and (f), the plot for this task
(¢, (T3, 00), [ri, di], Validy, g:.5:(1)); is intersected with that of another task. The resulting volu
for TVI i [Eqgn. 1], can be combined into a valid MTVI rep-metric intersection is delimited by a temporal intervall an
resented as: region of common camera settings. Again, we utilize a sim-
ple representation of such volumes to find these common
camera settings. This involves projecting them onto the 2D
planes (i.e., pan-time, tilt-time and focal length-timehere

(c, _7L1J (T3, 00), o [ri, dil, _70 Validy, . 1,(t), the intersections can be computed efficiently.
(12) To combine TVI's efficiently, the same optimal segment
intersection algorithm described in Sec. 5.1 is used to lo-
when: cate the intersection points on the pan-time, tilt-time and

focal length-time planes. This is effective for constrogti
MTVI's based on two tasks. Unfortunately, finding all fea-
ﬂ [ri,d;] # 0, sible MTVI's for any number of tasks is computationally
expensive. The system, heuristically, constructs MTV§s u
ing the following iterative procedure, terminated aftepwa f
iterations. The set$,, composed of the two task MTVI's
m [risdi] = Pmazs is first constructed using the optimal segment intersection
- algorithm. Subsequent iterations then combine elements in

1=1...n



10 Ser-Nam Lim et al.

Door

Person 2 (red bounding box Person 4 (yelloy bounding box)

Camera 1

Camera 2

Person3 (white bounding box;

Person 1 (black bounding bpx)

Static camera used for Camera 3
background subtraction and tracking

(a) Sample frames used for constructing the motion modebohe (b) The observed tracks.
object are shown here. Detected objects are tracked in a GDND

SATION framework, and the observed tracks are shown in (t&.T

tracks are constructed over 20 frames and are used subsgdoen

building the predicted motion models.

Fig. 8 Constructing motion models of four persons.

the set from the previous iteration, doing so only for elder planning and camera movement to the required process-
ments containing common tasks, identifying valid combin#ag time of the task. The latencies are, in fact, dominated by

tions as those that satisfy Eqn. 13. After constructingghethe time it takes the camera motors to stabilize after mov-

(M)TVI's, the system is then ready to collect video sequendag, so is largely independent of the angles through which

that satisfy the tasks on hand, by scheduling a given ctihe cameras are turned.

lection of active cameras based on the MTVI's and TVI's The first set of results are shown in Figs. 8 and 9, and

(Fig. 1). they illustrate the system timeline. Here, there is only one
task, which involves capturing unobstructed full-bodyeoad
segments of all the objects at some minimal resolution.g-ig.
8 Results illustrates how the system constructs motion models of the
detected objects. Tracks of the objects observed over gega

; ; hich four frames are shown in Fig. 8(a)) are shown
For experimentation purposes, we developed a prototype (oL W oo e
time system consisting of four PTZ cameras, synchroniz&}j@ Plan view in Fig. 8(b). These tracks are used to con-

by a four-channel Matrox card. Experiments were perform&d Uct the predicted motion models, which are then utilized

by keeping one of the cameras static, and using it for badR-constructing the (M)TVI's. These (M)TVI's are assigned
ground subtraction and tracking. The system recovers an gpthe three active cameras for capture based on the greedy
proximate 3D size estimate of each detected object frazheduling algorithm. In the example shown in Fig. 9, (a),
homography-based camera calibration, and uses them to ¢Bh.(€) @nd (d) show sample frames of the captured videos.
struct the (M)TVI's, which are then assigned to cameras UZ€'€MNg o0 Fig. 8(b), person 3 was captured with cam-
ing the greedy scheduling algorithm. Such a greedy algg@ 1 in Fig. 9(a), person 2 was captured with camera 2
rithm assigns the (M)TVI that provides the maximum cov!! Fig. 9(b), and person 1 was captured with camera 3 in

erage of the tasks to an available camera at each iteratioy: 9(C)- The remaining person 4 was captured with cam-
and terminates when no additional (M)TVI's with uncovE'@ 3, but at a different time period after camera 3 was freed

ered tasks can be found, or when all available cameras hie Additionally, although the system was set to capture 60
been assigned. The latencies of step 2 and 3 in Fig. 1 hav& §n€s Of unobstructed video of each object, the processing
be dealt with properly. Specifically, time is “wasted” as thiMe was specified as 80 frames so that a time period of 20
system plans (step 2) and the cameras assigned for capli@d'€S €ach is provided for camera re-positioning.

are re-positioned in real-time (step 3) based on the PTZ set- Fig. 10 then demonstrates the use of (M)TVI's for col-
tings associated with the corresponding (M)TVI's. The sy$ecting facial images. Two PTZ cameras are controlled by
tem deals with these latencies by adding the time requiradtatic detection camera to capture video sequences of two
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moving persons so that their faces are visible. The predlic}
motion models are used to determine when people are un|
structed and moving towards a camera.

Fig. 11 and Fig. 12 illustrate the effect of changing re{
olution requirement on the construction of MTVI's. Fou : z
remote-controllable 12x14 inches robots moved through tEe s .
scene. Fig. 11 has a lower resolution requirement than Big_ - \ ~— = e =
The robots were controlled to move in approximately tH= 77 “’"%* T Ty
same trajectories in both figures. While only two active car, | : ; T [N N
eras are needed to capture the four robots in Fig. 11, th
were needed in Fig. 12 as we increase the resolution requ
ment.

Finally, Fig. 13 illustrates the effectiveness of the trerck
to track through occlusions, allowing the prediction to bf
sufficiently accurate for acquiring unobstructed and wel
magnified video segments of the people.

Fig. 10 Row 1: The motion models of two people in the scene were
used to determine when they are front-facing to the assigaetera
(two active cameras are used here), for face capture. Thissgated

in rows 2 and 3, where each person is front-facing to only driée®
movable cameras, which was then assigned to the task acghbydi
Here, the right image shows the scheduler annotating thediog
boxes with the ID of the assigned camera. The TVI of personthig
example is delimited by the predicted crossing with persoRdw 2:
Frames showing camera O capturing person 1's face. Row &dJa
showing camera 2 capturing person 0's face.

Fig. 9 Based on the predicted motion models constructed from t
observed tracks given in Fig. 8, we show here sample framéiseof
captured video clips (sequentially from left to right) ircbaow. There
are three active cameras available.

Camera 1 Camera 1 Camera 1

Fig. 11 Row 1: The robots are tracked (left and middle image) and

assigned cameras by the scheduler (annotated in the rigge)lnRow

2: Camera 0 captures robot 3 based on its TVI. Row 3: Due totherl

9 Conclusions resolution than Fig. 12, a three task MTVI is sufficient fopttaing
robot 0, 1 and 2 simultaneously.

We have described a multi-camera system that constructs
(M)TVI's as the basis for deciding suitable time periods to
capture moving objects in the scene. These (M)TVI's are
constructed for every camera and can be further used for
more complex multi-camera planning and scheduling pur-
poses. By constructing these (M)TVI's, the system can en-
sure (probabilistically, based on the predicted motionetod
that targeted objects in acquired videos are unobstruicted,
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the field of view, and meet task-specific resolution require-

ments. We have demonstrated the capabilities of the sys-

tem, which should be useful in surveillance, where extensiv

camera planning and scheduling is necessary.

Fig. 12 The resolution requirement was increased relative to Hig. 1 8.

and three cameras are now needed. Row 1: Tracking and sifgedul
Row 2: Camera 0 captures robot 3. Row 3: Camera 1 captures ro
0. With the higher resolution requirement, robot O now needbe
captured alone, instead of simultaneously with robot 1 arfi@dv 4:
Camera 2 captures robot 1 and 2 with a two task MTVI.

Fig. 13 Row 1: The three persons first appeared sufficiently semhra

to be detected individually (left image, row 1). Given onlyotactive
cameras, person 0 and 2 was scheduled first. Because thesyate
able to track through occlusions, shown in row 1, so thatitiegie of
person 0 was prevented from merging with those of person 2awl
they were captured, the predicted motion model of personsDagau-
rate enough for camera 2 to capture unobstructed and wejhified
frames of person 0 after it finished capturing person 2, stiowow 4.
Row 2: Capturing person 1 with camera 0. Row 3: Capturingqregs
with camera 2. Row 4: Capturing person 0 with camera 2 aftesgoe
2.
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