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Abstract

We present a method for modeling a scene that
is observed by a moving camera, where only a por-
tion of the scene is visible at any time. This method
uses mizture models to represent pixels in a panoramic
view, and to construct a “background image” that con-
tains only static (non-moving) parts of the scene. The
method can be used to reliably detect moving objects in
a video sequence, detect patterns of activity over a wide
field of view, and remove moving objects from a video
or panoramic mosaic. The method also yields im-
proved results in detecting moving objects and in con-
structing mosaics in the presence of moving objects,
when compared with techniques that are not based on
scene modeling. We present examples illustrating the
results.

Keywords: Image Registration, Activity Monitor-
ing, Moving Object Detection.

1 Introduction

In this paper we address the problem of monitor-
ing activity over a wide area, using a moving camera.
There has been considerable recent work on construct-
ing wide area or panoramic views from multiple images
(e.g., [11], [14]), however such work generally presumes
that the scene is static (there are no moving objects
in the field of view). There has also been recent work
on activity monitoring and detection (e.g., [1], [2]),
however such work generally assumes a non-moving
camera. In contrast, we address the problem of activ-
ity monitoring and detection over a wide area, where
a moving camera is used to “sweep” over the area of
interest. Our approach is based on a combination of
the image mosaic techniques that have been used for
constructing panoramic views, and the mixture model
techniques that have been used for activity monitor-
ing. We create a model of the wide field of view that
can be used to distinguish between the static (or sta-
tionary) background and the moving objects, or fore-
ground.

Our method can be used for a number of appli-
cations, both in surveillance and monitoring and in
image synthesis. For surveillance and monitoring, the
method can be used to detect moving objects over a
wide field of view area, to detect common patterns of
activity over that field of view, and to detect activity
that does not fit the common patterns. For image syn-
thesis applications, our method can be used to create
panoramic views that contain just the non-moving ob-
jects in a scene, to create synthetic panoramic views
that place each moving object at just a single loca-
tion, and to create synthetic videos that remove all
or selected moving objects. In this paper we present
examples illustrating these applications.

Background modeling in a wide field of view is not
only useful for the above applications, it also enables
improved accuracy in distinguishing between moving
objects and the background. These improvements re-
sult from the fact that the wide field of view model
has more information, and more stable information,
than is present in individual image frames or adja-
cent frames. The same effect of increased accuracy is
observed in standard image mosaic techniques for con-
structing panoramic views of static scenes. The most
accurate image mosaic techniques are based on align-
ing each image frame with the overall mosaic rather
than simply with the previous frame (or with a few
frames nearby in time). We illustrate these improve-
ments in accuracy by contrasting results using our
wide area background modeling method with previ-
ous techniques. We show both that mosaic quality is
improved and that very small moving objects can be
detected.

2 Related Work

Many methods have been used for background
modeling. Although most of these methods deal only
with a fixed camera, they provide a good starting point
for a moving camera scene. Simple methods include
averaging the pixels at a particular location, taking



the median of all the values at a location, and cal-
culating spatially weighted values in order to reduce
the effect of outliers. Such techniques, which do not
explicitly model background versus foreground, are of
limited value in practice. Ridder et. al. [2] and oth-
ers employ a Kalman filter-based background model.
Each pixel is modeled using a Kalman filter and is up-
dated in each frame differently depending on whether
it is hypothesized to be part of the background or not.
This approach, however, is not well suited to a chang-
ing background or a multi-modal background. More-
over even when an observed pixel value is part of the
foreground, it has an effect on the background model.

Friedman and Russell [3] and Stauffer et. al. [1]
take approaches based on using mixture models to rep-
resent the background. Friedman and Russell try to
classify the pixels into three distributions, correspond-
ing to the road color, the shadows and the car colors.
This makes their work somewhat restricted to such
scenarios, although the method can probably be ap-
plied to other ones. Stauffer et. al. use a more general
scheme, which is the basis of the method used in our
work also.

There is a large literature on image mosaic tech-
niques for constructing panoramic views (e.g., [11],
[12], [14]). Most approaches to this problem assume
that there is not significant motion parallax, that is,
depth variations in the scene are not apparent from
the motion of the camera. This can be guaranteed by
rotating the camera about its optical center (an ap-
proach taken by commercial systems such as Quick-
timeVR), and also holds true for most cameras once
objects are a few tens of feet away. We follow this
assumption of no motion parallax, solving for a pla-
nar projective transformation that registers one image
with another. The most accurate techniques for con-
structing panoramic views solve for such a transfor-
mation between each image frame and the panoramic
view that has been constructed thus far. This helps
avoid cascading errors that occur if each image frame
is simply registered with the next one.

In general, image mosaic techniques assume a static
scene. The presence of moving objects is problematic
in two regards. First, and most important, such ob-
jects can throw off the image registration process be-
cause they provide incorrect information about how
the images should be aligned. This results in a poor
quality panoramic image. Registration errors can be
addressed through the use of robust statistical tech-
niques, and are also somewhat ameliorated by the use
of pyramid-based registration methods ([5]). The sec-
ond issue with moving objects is in the construction

of the panoramic view. Simply taking the most recent
pixel value, or the average pixel value, in constructing
the panorama yields an overall image that contains
bits and pieces of moving objects. The explicit back-
ground modeling of our approach addresses both of
these problems.

3 General Overview of the Algorithm

Our method uses mixture models to form a model
of the background. We represent each pixel location
in the mosaic by a mixture of Gaussians. From these
mixture models, we form an image representing the
background by taking the mean of the highest weight
Gaussian for each pixel. The highest weight Gaussian
is the one that has the highest probability of occur-
rence. Without a lighting change, this will be the
one that accounted for the largest number of observed
pixel values, thus we assume that the background is
observed more often than any foreground objects at
each location. This background image can be used as
a panoramic view of the “background scene”, without
any foreground objects.

For each new image obtained from the camera, we
register it to this panoramic background image using
any known good registration technique. The current
image, having been registered with the background
image, provides the input pixel values for updatng
the mixture models at each pixel where new data
is observed. Once these mixture models have been
updated, a new background image is computed from
these updated mixture models. This process is re-
peated for each new frame obtained.

As noted in the previous section, the presence of
moving objects can lead to an erroneous registration
results. By aligning each image frame with the back-
ground image, our technique avoids this problem. As
the background image does not contain the moving
objects, there is generally no good match for the por-
tions of the image corresponding to moving objects,
and thus they have little effect on the solution for the
best registration transformation.

For the problem of detecting moving objects, a
background image can also be very useful. Most tech-
niques for detecting moving objects operate by reg-
istering successive image frames, and then subtract-
ing the registered frames to see where there are differ-
ences. This only detects regions where the images are
different, which is not necessarily the entire moving
object (e.g., when part of object overlaps in the two
frames). In contrast, when registering an image frame
to a panoramic background image, the entire moving
object can be readily detected based on the difference.



4 Background Modeling

We model the scene using a mixture model for
each of the pixel locations in the mosaic. The prob-
ability of a pixel belonging to a particular Gaussian
is proportional to the weight ascribed to that Gaus-
sian. Within a particular model, the probability is
distributed according to the Gaussian probability dis-
tribution scheme. More specifically, the probability
of a pixel having an intensity value x, given that it
belongs to a particular Gaussian j, is
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where the random variable J denotes the Gaussian
that a pixel belongs to, and p; and o; are the mean
and standard deviation of the jth Gaussian. This
scheme can easily be extended to color images by using
multi-dimensional Gaussians, but here, we will deal
only with 1-d Gaussians and gray images rather than
color ones.

The probability that a pixel has intensity value x
is then simply

K
Pr(X =z)= ijPr(X =z|J =j) (2)

where w; = Pr(J = j) is the weight of the jth model.

This scheme is useful in modeling multi-modal
backgrounds and scene changes, as well as modeling
transient moving objects. A multi-modal distribution
can result from the swaying of trees, blinking of lights,
or any other periodic change in image intensity. In a
slow scene change, such as occurs with most outdoor
changes in illumination, the weights of the different
models would gradually shift to the new background.
Often, the background change is only transient and is
due to some moving object. In such a case, the weights
would gradually revert back after the moving object
is removed.

One can determine the best mixture model given
the previous n values using what is called the Expec-
tation Maximization (EM) algorithm (see Dempster
et. al. [6]). We could run this algorithm for each time
frame by taking a window of the previous n frames,
or calculating the result for all the pixels so far. How-
ever, this algorithm is quite time-consuming and is
impractical to run for each frame. Neal and Hinton
[7] provide a scheme for incrementally updating the
solution using the new input values which has been
used successfully by Friedman and Russell [3] to get
good mixture models. The incremental scheme does

not yield the best solution, but only guarantees to con-
verge to a local minimum. However, it has the draw-
back of not being able to handle changing background
scenes properly since it does not have any scheme to
reduce the effect of previous input values. The results
when the background has more than the given number
of Gaussians are also not clear.

Instead of using the expectation maximization
scheme, we use a conceptually simpler scheme which
is computationally less expensive and we have found
also yields better results for our problem. We deter-
mine the mixture models by incrementally updating
the models using the intensity values of the pixels that
are registered at a particular location. First of all, we
determine which model (Gaussian) the observed pixel
value belongs to. A pixel can belong to a particu-
lar model if its distance from the mean is within a
constant (a value between 2 and 3 is suitable) times
the standard deviation. If a pixel belongs to more
than one Gaussian, we take the one having the high-
est weight. This is done so as to avoid duplication
of the gaussian models. The intensity value of the
current pixel is then used to update the models. We
can use a constant weight updating scheme and an
exponential weighting scheme. However, since the dif-
ferent schemes are useful in different scenarios, we use
both of them, switching between the two depending on
some criteria which we will define shortly. Experimen-
tally, this combined scheme works better than either
of the schemes used alone. Below we discuss these two
schemes and how to select between them.

The mean and variance of the matched distribution
are updated as follows

i = (1= p)pje—1 + px (3)

0% =(L=p)os,y+plae — pj) (20— pje)  (4)
where p is a constant which determines the rate of
change of the mean and variance.

Note that the mean and variance are updated ac-
cording to an exponential scheme where the recent
pixels get exponentially higher weight. Although a
constant weight scheme can also be used, the expo-
nentially weighted scheme would be able to capture
slowly changing scenes more easily and hence is used
here.

If there is no model that the current pixel belongs
to, a new Gaussian is added with a mean equal to that
of the pixel value and a high variance. The weight is
determined according to the model we are using. Due
to a limited amount of memory space, we also require
garbage collection when the number of models exceeds



some maximum value. At that time, we simply remove
the model with the least weight.

The weights of the distributions are also updated,
using either a constant or exponential model, as we
now describe.

4.1 Constant Weight Updating Scheme

In this updating scheme, we update the weights of
the models in a manner that awards equal weight to
all the pixels registering to a particular location in the
mosaic. To calculate the weights, we keep track of the
number of pixels matching a particular mixture model
and also the total number of pixels at that particular
location. The weight for a given model is then simply
the number of matching pixels divided by the total
number of pixels. The new mean and variance are
calculated using equations (3) and (4).

This scheme yields a result which works quite nicely
in practice as long as the background does not change.
The background image, corresponding to the means of
the highest weight Gaussian models, would consist of
those intensities that are visible for the longest amount
of time. Even if the view is obstructed for considerable
time by a transient object such as a person standing
for a long time, or a car stopping at an intersection,
the background would still not change for a long time
(presuming many observations of the background in-
tensity beforehand). Thus, it would yield the correct
result even in the case of slow moving objects on a
road, or a road obstructed by transient objects for a
long time.

This model would encounter problems, however, if
the background changes abruptly due to a large ob-
structing object or lighting changes. A large obstruct-
ing object cannot be modeled properly by any scheme,
but it can be detected by our algorithm easily by a
large mean square error and the large number of un-
matched points in the image. We handle the lighting
changes by using the exponential model when there is
a lighting change as opposed to a registration error.
4.2 Exponential Weight Updating

Scheme

In the exponential weighting scheme, we update
the model parameters by awarding exponentially less
weight to values that were observed earlier in time.
The weights of the models are updated as follows. For
each model j, the new weights are

wjr = (1= a)wji—1+a(M;) (5)

where o is a constant determining the rate of change
of the models, and M;; is 1 if the current pixel is
matched to the model j, and is equal to 0 if it is not
the matched distribution. As with the constant weight

updating scheme, the mean and variance are updated
using equations (3) and (4).

The exponential scheme has been previously used
by Stauffer et. al. [1]. However, used alone, this cre-
ates a tradeoff as far as the rate of change of the model
is concerned. A slow rate of change would be unable
to model the lighting or background changes properly
and fast enough. In a fixed camera scene, this could
mean a wrong result for quite some time, while in a
moving camera scene, it could even throw off the back-
ground registration. On the other hand, a fast rate of
change would mean that a foreground object would
start to appear as background in a very small amount
of time. Also there are problems due to the exponen-
tial nature of the updating, which are especially visi-
ble when the number of pixels at a particular location
is small or when there are slowly moving foreground
objects.

4.3 Choosing the Weight Update Scheme

In our algorithm, we use the constant weight up-
dating scheme in the normal mode. In the case that
a lighting change is detected, the weights are updated
using the exponential scheme where the number of pix-
els belonging to the models changes exponentially, i.e.

n;t = (1—a)n;j—1+a(M;)*(Totalno.ofpizels) (6)

where the definitions are similar to equation (5). Note
that this would require these variables to assume real
values as opposed to integer values.

In order to distinguish between different scenarios,
we calculate three quantities: (1) the normalized cor-
relation between the background image and the cur-
rent frame warped according to the calculated projec-
tive transformation values; (2) the mean square error
between the background image and the warped cur-
rent frame; and (3) the number of points in the current
frame that do not match any of the Gaussian models
with a large enough weight. These quantities are used
to estimate whether there is a lighting change, regis-
tration error or other situation that warrants changing
how the models are updated for the given frame.

A high normalized correlation and a high number
of unmatched points is taken to indicate a lighting
change, because the normalized correlation is not af-
fected by a overall additive or multiplicative changes
but most pixels will not find a good matching model
in such a case. When this occurs, we use the exponen-
tial weight updating scheme for the models, so that
the change in lighting is quickly adapted to by the
background models.

A low normalized correlation, combined with a high
number of unmatched points and a high mean square



error is taken to indicate either a complete change of
background or a registration error. In this case, the
models are not updated; the frame is simply discarded.
A low number of unmatched points and a high mean
square error are taken to indicate a transient object
occupying part of the image. The program should
continue to run in the normal mode (constant weight
updating).

5 Image Registration and Mosaicing

As we have discussed in the introduction, our al-
gorithm provides a method for image registration and
mosaicing that is robust with respect to moving ob-
jects. In contrast, most of the methods currently used
for image registration and mosaicing can easily be
thrown off by the presence of objects which have im-
age motion that differs substantially from that of the
background. This can introduce errors in the registra-
tion, and these errors can accumulate over time. In
such cases the resulting mosaic will not be very good.
In the results section below we illustrate this difference
using an aerial video sequence.

Our method for image registration and mosaicing is
based on registering the current frame with the back-
ground image that has been derived from the mixture
models. This background image contains at each pixel,
the mean of the highest weighted Gaussian, and is an
approximation to the highest probability value at each
pixel. The current frame can be aligned to this back-
ground image using any good registation technique. In
our current implementation we use a hybrid registra-
tion method that first solves for an affine transforma-
tion based on feature correspondences, and then uses
that transformation to initialize a direct method of
solving for a projective transformation. The first step
uses the KLT feature tracker (described in [9] and [10])
to find corresponding features in the images and then
solves for an affine transformation using a robust least
squares fit. This affine transformation is used to ini-
tialize a direct method which yields a projective trans-
formation between the images. The direct method
operates in an iterative manner using the Levenberg-
Marquardt method, a well known algorithm that is
described in various papers (e.g., [5], [8]). It is also
possible to use the Levenberg-Marquardt method di-
rectly, although use of the KLT tracker speeds up the
registration.

Our algorithm provides a method for mosaicing
that is robust to the presence of moving objects. First,
as with several traditional mosaic techniques, we regis-
ter each image to the entire mosaic rather than simply
the previous frame. This limits cascading of registra-
tion errors. Second, when registering an image with
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Figure 1: (a) Two views of a parking lot using a mov-
ing surveillance camera, (b) synthesized frames with
foreground objects removed, and (¢) the moving ob-
jects detected. Note that very small objects, such a
person walking and a car entering behind trees were
correctly detected.

the background mosaic, it is unlikely that there will be
matches for moving objects. Thus the moving objects
will not throw off the registration process. In gen-
eral the background image does not contain any fore-
ground objects (although when there are just a few im-
ages corresponding to a given pixel this may happen).
Thus there is generally nothing in the background im-
age that matches the foreground objects well, and the
resulting registration is not affected by the moving ob-
jects.

This method also provides a good means of aligning
successive frames, by constructing a background mo-
saic (although portions of the mosaic can be discarded
over time if only successive frames are to be aligned).

6 Detecting Foreground Objects and
Site Classification

To detect foreground (moving) objects in the cur-
rent frame we first compute the registration of the
frame to the panoramic background mosaic. Then we
warp each pixel to the coordinate system of the mo-
saic, and search the nearby pixels for a matching Gaus-



Figure 2: (a) Frame no. 42 and 57 from an aerial
video, (b) synthesized frames with the moving objects
removed, and (c¢) the corresponding moving objects
detected.

sian model. A small neighborhood is searched so as
to allow for small alignment errors or small changes
in background that may be caused by the swaying
of trees etc. If the pixel does not match to any of
the Gaussians in this neighborhood with a sufficiently
large weight, we declare this point to be new, else
it is part of the background. We finally run a con-
nected components algorithm on this image to get rid
of noise. Sufficiently large objects can then be taken
as the foreground objects.

Note that slowly moving objects will not be de-
tected as foreground objects since the weights of the
Gaussians that such pixel values belong to will not
be high enough to be counted as background. Thus
slowly moving objects, which are often problematic
in exponential forgetting algorithms, are not an issue
here. The approach is able to quite accurately distin-
guish between moving objects and the background.

Based on the foreground objects that are detected
in each frame, we can also perform site classification
depicting the activity taking place at a particular lo-
cation. This can be useful for surveillance applications
of sites such as roads and parking lots, in which it is
desirable to tell where in the image there is activity, or

Figure 3: The background mosaic from an aerial video
of 150 frames using our algorithm

when that activity occurred. One such model can be
obtained by simply keeping track of the amount of ac-
tivity at each pixel in the panoramic mosaic of a scene.
In the next section we show a gray image in which the
individual pixels store the number of times that that
a pixel of the mosaic registered a foreground object.
Thus, areas in which more moving objects have been
deteted will show up as brighter, and areas in which
no moving objects were deteted will show up as black.

7 Results

In this section we present some of the results of our
algorithm. The algorithm was found to work quite
well over a range of scenarios including aerial video
and ground-based surveillance of a region using a pan-
ning camera, for scenes containing multiple moving
objects and a mix of roads, parking areas and walk-
ways. Lighting changes were generally correctly de-
tected and the algorithm was able to recover reason-
ably from these changes, yielding accurate models of
the background within a few frames after the lighting
change.

Figures 1 and 2 each show two frames from two
video sequences (note these frames are not adjacent in



Figure 4: Figure where each individual pixel stores the
number of times a foreground object was detected at
that pixel. Note how the road is clearly distinguished
from other areas due to objects moving on the road.

time). The first row shows the original frames, the sec-
ond row shows the synthesized frames in which all the
foreground objects have been removed, and the third
row shows the corresponding moving objects that were
detected. The moving objects have clean boundaries
and the entire motion area is detected, in contrast
with methods based on the differene between regis-
tered frames, which detect just the part of the image
that is different between frames. Note that in Figure 1
two very small objects are successfully detected. In
the first column, the small object to the left of the car
corresponds to a person walking on the sidewalk. In
the second column, the small object on the very right
is a car entering behind the trees. The synthesized
frames are also quite clean, not containing evidence of
the moving objects or parts of them.

Figure 3 shows the background mosaic obtained for
the sequence from Figure 2. Note that at the upper
left there is some evidence of the bus in this back-
ground mosaic, because that area was not observed
for many frames without the bus present. Otherwise,
however, there is no evidence of the moving objects in
the mosaic. Figure 4 shows the corresponding “activ-
ity image” indicating the number of times that each
pixel registered a moving object. The road is clearly

Figure 5: The background mosaic obtained when we
register each frame with the mosaic where the mosaic
is formed by taking the last pixel registered at that
location.

visible in this image as a region of high activity (with
the shadows cast by trees also visible by the fact that
they break up a “stream” of activity).

In Figure 5 we present the background image ob-
tained by registering the current frame with a more
traditional image mosaic rather than the background
image. This mosaic is formed by taking the intensity
value of the last registered pixel at a given location,
rather than using the mixture models to form a back-
ground image. This is a common technique, but as is
visible from this mosaic from the first 75 frames of the
sequence, the registration is not very robust. After
100 or so frames, the registraion is totally off. This
example illustrates the utility of the background im-
age for accurate image registration in the presence of
moving objects.

Finally, in Figure 6, we present a background mo-
saic of a region using 1000 frames. The mosaic is
quite clear, indicating accurate and stable alignment
over 1000 frames in the presence of many moving ob-
jects in the form of moving people on the pathways.
There is no evidence of these moving objects in the
mosaic, which illustrates the usefulness of the algo-
rithm in constructing panoramic views that contain
just the non-moving objects in the scene.



Figure 6: The background mosaic from a sequence
of 1000 frames captured from a surveillance camera
moving in both vertical and horizontal directions

8 Summary and Conclusions

In this paper, we have presented an algorithm for
wide area surveillance and monitoring. The method
uses a mixture of Gaussian model to represent pixels in
the scene. From these mixture models, a model of the
background is construted using the mean of the high-
est weight Gaussian at each pixel. The background
model provides a means of registering video frames
that is robust in the presence of moving objects in the
scene. The models can also be used to detect mov-
ing objects in a moving camera scene, and to create
panoramic views and video sequences that do not con-
tain any moving objects.
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