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Abstract. We analyze visibility from static sensors in a dynamic sceiii
moving obstacles (people). Such analysis is consideredpimlaabilistic sense
in the context of multiple sensors, so that visibility fronea one sensor might
be sufficient. Additionally, we analyze worst-case scargafor high-security ar-
eas where targets are non-cooperative. Such visibilitlyaisgprovides important
performance characterization of multi-camera systemghBtmore, maximiza-
tion of visibility in a given region of interest yields the @pum number and
placement of cameras in the scene. Our analysis has applisat surveillance
- manual or automated - and can be utilized for sensor plgninirplaces like
museums, shopping malls, subway stations and parkingWeresent several
example scenes - simulated and real - for which interestingeea configurations
were obtained using the formal analysis developed in thempap

1 Introduction

We present a method for sensor planning that is able to detetime required number
and placement of static cameras (sensors) in a dynamic.sgeale analysis has previ-
ously been presented for the case of static scenes wherartbgaints and obstacles are
static. However, in many applications, apart from thesticstanstraints, there exists
occlusion due to dynamic objects (people) in the scene.isrpidper[12], we incorpo-
rate these dynamic visibility constraints into the sensanping task. These constraints
are analyzed in a probabilistic sense in the context of plelsensors. Furthermore, we
develop tools for analyzing worst-case visibility scenarthat are more meaningful for
high-security areas where targets are non-cooperative.

Our analysis is useful for both manned and automated visistesis. In manned
systems where security personnel are looking at the videarst, it is essential that the
personnel have visibility of the people in the scene. In mated systems, where ad-
vanced algorithms are used to detect and track multiplelpéapm multiple cameras,
our analysis can be used to place the cameras in an optimuilgwation.

Automated Multi-camera vision systems have been develogieg a wide range of
camera arrangements. For better stereo matching, soneers}S| use closely-spaced
cameras. Others [11, 9] adopt the opposite arrangementefyseparated cameras for
maximum visibility. Others [3] use a hybrid approach. Stithers [18, 8, 1], use multi-
ple cameras for the main purpose of increasing the field af.Jvie all these systems,



there is a need for analyzing the camera arrangement fanaptiplacement. In many
cases, our method can be utilized without any alteratiosystems that have additional
algorithmic requirements (e.g. stereo matching), furtmrstraints hard or soft- can
be specified so that the optimum camera configuration satigfeed) and is optimum
(soff) w.r.t. these additional constraints.

In addition to providing the optimum configuration, our areié can provide gold
standardfor evaluating the performance of these systems under thsechconfigu-
ration. This is because our analysis provides the theaidimit of detectability. No
algorithm can surpass such a limit since the data is missing the images. Thus, one
can determine as to how much of the error in a system is duedsimgi data, and how
much of it is due to the chosen algorithm.

Sensor planning has been researched quite extensiveggiaby in the robotics
community, and there are several different variations déimg on the application. One
set of methods use an active camera mounted on a robot. Téetigbjthen is to move
the camera to the best location in the next view based on theation captured uptil
now. These methods are called next view planning[13, 20 Axdther set of methods
obtain a model (either 2D or 3D) of a scene by optimum moverogtite camera [10,
2]. Such model acquisition imposes certain constraintshencemera positions, and
satisfaction of these constraints guarantees optimumtabtesacquisition.

Methods that are directly related to ours are those thatméte the location of
static cameras so as to obtain the best views of a scene. fidiitem was originally
considered in the computational geometry literature asattvgallery problem [14].
The solutions in this domain utilize simple 2D or 3D scene eisdnd simple assump-
tions on the cameras and occlusion in order to develop tlieareesults and efficient
algorithms to determine good sensor configurations (atthdlue NP-hard nature of the
problem typically necessitates an approximate soluti®ayeral researchers [4, 16, 19,
21] have studied and incorporated more complex constrheded on several factors
not limited to (1) resolution, (2) focus, (3) field of view,)(disibility, (5) view angle,
and (6) prohibited regions. In addition to these “staticiiswaints, there exist additional
“visibility” constraints imposed by the presence of dynamibstacles. Such constraints
have not been analyzed earlier and their incorporationtilosensor planning task
constitutes the novel aspect of our work.

The paper is organized as follows. Section 2 develops therékieal framework
for estimating the probability of visibility of an object atgiven location in a scene
for a certain configuration of sensors. Section 3 introdsosse deterministic tools to
analyze worst-case visibility scenarios. Section 4 dbssrithe development of a cost
function and its minimization in order to perform sensompieng in complex environ-
ments. Section 5 concludes the paper with some simulateceahdxperiments.

2 Probabilistic Visibility Analysis

In this section, we analyze probabilistically the visityilconstraints in a multi-camera
setting. Specifically, we develop tools for evaluating tihebability of visibility of an
object from at least one sensor. Since this probabilityagaaicross space, this probabil-
ity is recovered for each possible object position.
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Fig. 1. (a) Scene Geometry used for stochastic reasoning. (b) Btendee up to which an object
can occlude another object is proportional to its distano fthe sensor.

2.1 Visbility From At least One Sensor

Assume that we have a regiéhof areaAd observed by sensors [Fig. 1 (a)]. Lef;
be the event that a target objattat locationL is visible from sensoi. The proba-
bility that O is visible from at least one sensor can be expressed maticaihyaas the
unionP(lJ;_, &;) of these events, and it can be expanded using the inclusitinséon
principle as:
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The motivation for this expansion is that it is easier to categthe terms on the RHS
(right hand side) compared to the one on the LHS.

In order to facilitate the introduction of the approach tofbéowed in computing
P(Ui, &), we consider the specific case of objects moving on a growemtepiThe
objects are also assumed to have the same horizontal ptafdelaheight. Examples of
such objects include cylinders, cubes, cuboids, and squams, and can adequately
describe the objects of interest in many applications sagieaple detection and track-
ing. Let the area of their projection onto the ground planedhg Furthermore, we
assume that the sensors are placed at some known héigfrtsm this plane. Also, we
define visibility to mean that the center line of the objeadrfesponding to the centroid
in the horizontal profile) is visible for at least some lengtfrom the top of the object
(in people tracking, this might correspond to viewing thesfa

A useful quantity can be defined for the objects by considgtie projection of the
objectin a particular direction. We then definas the average, over different directions,
of the maximum distance from the centroid to the projectgdaipoints. For e.g., for

1 m/4

cylinders,r is the radius; for square prism with side, r = =i Jo scosf df =

2v/2s /7. The quantityr will be useful in calculating the average occluding regién o
an object. Furthermore, it can easily be shown that thertistd up to which an object
can occlude another object is proportional to its distablgérom sensot [Fig. 1 (b)].
Mathematically,
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Fixed Number of Objects In order to develop the analysis, we start with the case of
a fixed numbetk of objects in the scene under the assumption that they asteldc
randomly and uniformly in regio. This will be extended to the more general case of
object densities in subsequent sections.

Under this assumption, we first estimd®€¢; ), which refers to the probability that
none of thek objects is present in the region of occlusi®f for camera. Assuming
that all object orientations are equally likelyone may approximate the area of this
region of occlusion asl? ~ d;(2r). Then, the probability for a single object ot be

present in this region of occlusion {4 — Ajf) . Since there aré& objects in the scene
located independently of each other, the probability tloetenof them is present in the

o\ k
region of occlusion is(l - i) . Thus:

A
P(&) = (1 - %)k 3)

In order to provide this formulation, we have neglected thet that two objects
cannot overlap each other. In order to incorporate this itiomgd we observe that the
(7 + 1)-th object has a possible area of omly- j A, available to it'. Thus, Equation
3 can be refined as

re) -1 (-2 )

=0

This analysis can be generalized to other terms in Equatidiné probability that
the object is visible from all of the sensors in a specified &gt . . . i,,,) can be deter-
mined as:

k—1 Ao )
PO =TT (e ®
R . X A - ]Aob
€ (11,22, im ) 7=0
where A7, . ) is the area of the combined region of occlusigfj , , for the
sensor sefiy, . . . i,,) formed by the “geometric” union of the regions of occlusibj;
for the sensors in this set, i ®? =Upo R?.

(ilrnim)

% It is possible to perform the analysis by integration ovéiednt object orientations. However,
for ease of understanding, we will use this approximation.

4 The prohibited area is in fact larger. For example, for ajiical objects, another object cannot
be placed anywhere within a circle of rad2is(rather than-) without intersecting the object.
For simplicity and ease of understanding, we redefipgas the area “covered” by the object.
This is the area of the prohibited region and may be appraeichas four times the actual area
of the object.



Uniform Object Density A fixed assumption on the number of objects in a region
is clearly inadequate. A more realistic assumption is thatdbjects have a certain
density of occupancy. First, we consider the case of unifusfact density in the region.
This will be extended to the more general case of non-unifobfect density in the
next section. The uniform density case can be treated as erajemation of the &
objects” case introduced in the previous section. To thi @ increasé and the area

A proportionately such that

where a constant object densitys assumed. Equation 5 can then be written as
k—1 Ao
1 (ilrnivn)
P( m &) = lim <1 — 7> @)
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Here,a captures the effect of the presence of objectstasdcorrectionto such effect
due to the finite object size. Then, we obtain:
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Combining terms foy andk — j, we get

<1kaijb) <1m)

 k2a? — k2ab — 2ka + j(k — )b + bk + 1
N k2a2 — k2ab + j(k — j)b?

Assuminga > b (i.e. the object density\ is much smaller than /A, the object
density if the area is fully packed), we can neglect termsliring 5. Then, the above

term can be written as
~ (1 1 2a — b
- k \a2—ab

There aré:/2 such terms in Equation 9. Therefore,

, 1/ 2a—0b\\"?
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Using the identitylim, ... (1 + 1)* = e, we get

P( m &;) ~ R (20)

’L‘E(ilv---im)



Non-uniform Object Density In general, the object density)is a function of the
location. For example, the object density near a door mightigher. Moreover, the
presence of an object at a location influences the objecitgerarby since objects tend
to appear in groups. We can integrate both of these influerctee object density with
the help of a conditional density functiorix.|xo) that might be available to us. This
density function gives the density at locatirn given that visibility is being calculated
at locationxg. Thus, this function is able to capture the effect that thesence of the
object at locationo has on the density nearby

In order to develop the formulation for the case of non-umifaensity, we note
that the(j + 1)-th object has a region available to it thafisninus the region occupied
by thej previous objects. This object is located in this “availdlbégion according to
the density function\(). The probability for this object to be present in the regién o
occlusionRf; ;. canthen be calculated as the ratio of the average numbeopfee
present in the region of occlusion to the average number oplpein the available
region. Thus, one can write:

. k—1 fy?ilmw))\(xc|x0)dxc
P( (] &)= lim 1 : (11)

i€ (in,in) k—oo o fﬂ?*fRib )\(Xc|X0)dXC

whereﬂ%ﬁ;b is the region occupied by the previojiebjects. Since the previogbjects
are located randomly if®, one can simplify:

/ - AM(Xe|x0) dXe = Aqug (A — jAob)
R—RI,

where )\, is the average object density in the region. Using this dfination in
Equation 11 and noting that,,; A = k, we obtain:

P( (] &)= lim k_l 1 f%l,.”im) A(xe|x0) dxe -
i) k=3 Aavg Aot
Defining:
‘= : b= Aob - Navg
Jo A(xe|x0) dxc’ Jro A% |X0) dxe” (13)
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Equation 12 may again be put in the form of Equation 9. As leefilvis may be simpli-
fied to obtain the expression in Equation 10.

2.2 Vighbility from Multiple Sensors

In many applications, it is desirable to view an object frowrethan one sensor. Stereo
reconstruction/depth recovery is an example where thanement of visibility from at

5 Such formulation only captures the first-order effect offihesence of an object. While higher
order effects due to the presence of multiple objects carpohsidered, they are likely to be
small.



least two sensors is to be satisfied. In order to evaluatertimpility of visibility from
at least two sensors, one can evaluate:

P(J &ingy) (14)

(i<3)

This term can be expanded exactly like Equation 1 treatimty éam(&; N ;) as a
single entity. All the terms on the RHS will then have onlyeirsections in them which
are easy to compute using the formulation developed in tedquis sections.

2.3 Additional Constraints

Other “static” constraints also affect the view of a patéciwamera. Therefore, the visi-
bility probability needs to be calculated after incorpargthese additional constraints.
This is easily achieved in our scheme since the visibilitystaints are analyzed at in-
dividual locations and additional constraints can alsodyéfied at these locations. The
constraints that have been incorporated in our systemdeclu

1. FIELD OF VIEW: Cameras have a limited field of view. At eaohdtion, it can be
verified whether that location is within the field of view of arficular camera.

2. OBSTACLES: Fixecigh obstacles like pillars cause occlusions in certain areas.

From a given location, it needs to be determined whether astacle blocks the
view of a particular camera.

3. PROHIBITED AREAS: There might also exist prohibited ar@éere people are
not able to walk. An example of such an area is a desk. Theas bewe a positive
effect on the visibility in their vicinity since it is not peible for obstructing objects
to be present within such regions.

4. RESOLUTION: The resolution of an object in an image reduas the object
moves further away from the camera. Therefore, meanindfsgvations are pos-
sible only up to a certain distance from the camera. It caitydasverified whether
the location is within a certain “resolution distance” frélh@ camera.

5. ALGORITHMIC CONSTRAINTS: There are several algorithneienstraints that
may exist. For example, stereo matching across two (or noam@geras imposes a
constraint on the maximum distortion of the view that canundom one camera
to the other. This constraint can be expressed in terms o&nigelar separation
between the camera centers from the point of view of the bHdjszan be easily be
verified whether this constraint is satisfied at a particldeation.

6. VIEWING ANGLE: An additional constraint exists for the mimum anglec, .
at which the observation of an object is meaningful. Suclenlaion can be the
basis for performing some other tasks like object recogmifihis constraint trans-
lates into a constraint on the minimum distance from the@ethait an object must
be. This minimum distance guarantees the angle of obsenvttibe smaller than

Umaz-

The analysis presented so far is probabilistic and providesrage” answers. In
high security areas, worst-case analysis might be moreogppte. Such analysis will
be presented in the next section.



3 Worst-Case Visibility Analysis

In this section, we present some simple results for locatjpecific limitations of a
given system in the worst-case. This analysis providesitiond that guarantee visi-
bility regardless of object configuration and enables sepExement such that such
conditions are satisfied in a given region of interest. Stheeanalysis is quite simple,
we will only briefly describe these results. We propose:

Theorem 1. Suppose there is an obje@tat locationL. If there arek pointobjects in
the vicinity of@, andn sensors have visibility of locatiob, thenn > k£ +m — 1 is the
necessary and sufficient condition to guarantee visibitity© from at leastn sensors.

Proof. (a) NecessarySuppose: <= k + m — 1. Placep = min(k,n) objects such
that each obstructs one sensor. The number of sensors leawiegr view of the object
are then equal te — p which is less thamn (follows easily from the condition <=
k+m—1).

(b) Sufficient: Supposer > k +m — 1. O hasn lines of sight to the sensors, of
which are possibly obstructed by other objects. Thereforéhe extended pigeon-hole
principle, there must be at least- k£ >= m sensors viewing.

This result holds for point objects only. It can be extendefinite objects if certain
assumptions are made. One can assume a flat world scenanie thieeobjects and
the sensors are in 2D. Also assume that we are given a pointeyest in the object
such that object visibility is defined as the visibility ofstpoint of interest. This point
can be defined arbitrarily. Let us also define an angkes the maximum angle that
any object can subtend at the point of interest of any oth@cbbFor example, for
identical cylinders with the center as the point of interast 60°. For identical square
prisms,a = 90°. Under these assumptions, the above result holds if wertakebe
the number of sensors that have visibility of locatibsuch that the angular separation
between any two sensors, from the point of viewlgfis at leastv. Also, n must be
less thar2w/« since it is not possible to plage> 27/« sensors such that there is an
angular separation of at leastbetween them.

For a given camera configuration, one can determine the nuailiameras that
each location of interest has visibility to. This will yielle maximum number of people
that can be present in the vicinity of the person and stilrgngee visibility for him.

4 Sensor Planning

The visibility analysis presented in section 2 yields a fiorcps(x), that refers to the
probability that an object located at locatiriis visible from at least one of the sensors
that have the parameter vectorSuch parameter vector may include, for instance, the
location, viewing direction and zoom of each camera. Givechsa function, one can
define a suitableostfunction in order to evaluate a given set of sensor paraeter
Such sensor parameters may be further constrained dueenfatitors. For instance,
there typically exists a physical limitation on the pogiiing of the cameras (walls,
ceilings etc.). The sensor planning problem can then be dtat®d as a problem of
constrained optimization of the cost function. Such optation will yield the optimum
sensor parameters according to the specified cost function.
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Fig. 2. The Cost Function for the scene in Fig. [4 (a)] where, forsiliation purposes, only the
x-coordinate and direction of the second camera have be&dva

4.1 TheCost Function

Several cost functions may be considered. Based on detistimivisibility analysis,
one can consider a simple cost function that sums, over tfienref interestR;, the
numberN (x) of cameras that a locatianhas visibility to:

Cls)=— > N (15)

xER;

Using probabilistic analysis, one may define a cost fundii@t minimizes the maxi-
mum occlusion probability in the region:

C(s) = 1-
(s) = max(1 — ps(x))
Another cost function, and perhaps the most reasonableromany situations, is to

define the cost as the negative of the average number ofe/iséalple in a given region
of interest:

Cls) = - [ AxIpalx) dx (16)
R
This cost function has been utilized for obtaining the ressinl this paper.

It is also possible to integrate other constraints into th& éunction. For instance,
some of the constraints in section 2.3 may be specifiesbfigonstraints rather than

hard constraints (for e.g. resolution, viewing angle and altponic constraints). Ac-
cording to the application, any arbitrary function of thestraints may be considered:

C(s) = fler, ... cr, M), Ri)

wherec;, 7 = 1...J are the different constraints to be satisfied.



4.2 Minimization of the Cost Function

The cost function defined by Equation 16 (as also other duitales) is non-linear and
it can be shown that it is not differentiable. Furthermorerriost non-trivial cases, it
has multiple local minima and possibly multiple global mii. Fig. 2 illustrates the
cost function for the scene shown in Fig. 4 (a). where, fasifation purposes, only
two of the nine parameters have been varied. Even in this imermsional space, there
are two global minima and several local minima. Furthermtire gradient is zero in
some regions.

Due to these characteristics of the cost function, it is rastsfble to minimize it
using simple gradient-based methods that can only find e lninimum of a well-
behaved “convex” function. Global minimization methodattban deal with complex
cost functions are necessary [17]. Simulated Annealingzaretic Algorithms are two
classes of algorithms that may be considered. The natuteafdst function suggests
that either of these two algorithms should provide an a@at#gisolution[6]. For our ex-
periments, we implemented a simulated annealing schemg adiighly sophisticated
simulated re-annealing softwaf&SAdeveloped by L. Ingber [7].

Using this algorithm, we were able to obtain extremely gosaksr configurations
in a reasonable amount of time (5min - a couple of hours on &WenV 2.2GHz PC,
depending on the desired accuracy of the result, the nunfild@nensions of the search
space and complexity of the scene). For low dimensionalesp&c 4), where it was
feasible to verify the results using full search, it was fduhat the algorithm quickly
converged to a global minimum. For moderate dimensionsef&#darch space(8),
the algorithm was again able to obtain the optimum solutiom only after some time.
Although the optimality of the solution could not be verifiegfull search, we assumed
such solution to be optimum since running the algorithm svemes from different
starting points and different annealing parameters didaitet the final solution. For
very high dimensional spaces @), although the algorithm provided “good” solutions
very quickly, it took several hours to converge to the best. @ome of the “optimal”
solutions thus obtained will be illustrated in the next gett

5 Simulationsand Experiments

We have proposed a stochastic algorithm for recovering fiienal sensor configura-
tion with respect to certain visibility requirements. Irder to validate the proposed
method, we provide results of the algorithm for various ssgsynthetic and real.

5.1 Synthetic Experiments

In all the synthetic examples we consider next, we take angetlar room of size
10mX20m. The sensors were restricted to be mounted H = 2.5wedhe ground and
have a field of view of 90. We use a uniform object density= 1m 2, object height
= 150cm, object radius r=15cm, minimum visibility heightd8em and maximum vis-
ibility angle cv,,q. = 45°. The illustrations shown are visibility maps scaled sudt th
[0,1] maps onto [0,255], thus creating a gray scale imagghBsr regions represent
higher visibility. Note how the visibility decreases as weva away from a camera due
to an increase in the distance of occlusitn
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Fig. 3. lllustration of the effect of scene geometry on sensor prerg. Optimum configuration
when (a): obstacle size is small. (b): obstacle size is lbp.dbstacle size is such that both
configurations are equally good.

Fig. 3 illustrates the effect that an obstacle can have orecamlacement. Using
a maximum of two cameras having a field of view3F, the first configuration [a]
was found to be optimum when the obstacle size was sgBli¢m). Configuration
[b] was optimum when the object size was big60cm). For the object size shown in
configuration [c] £60cm), both configurations were equally good. Note that,atihb
configurations, all locations are visible from at least oaenera. Therefore, current
methods based solely on analysis of static obstacles wailda able to distinguish
between the two.

Fig. 4 illustrates how the camera specifications can sigmiflg alter the optimum
sensor configuration. Notice that the scene has both obstaetl prohibited areas. With
three available cameras, configuration [a] was found to tienojn when the cameras
have only 90 field of view but are able to “see” up to 25m. With the same na$onh,
configuration [b] is optimum if the cameras have a 366ld of view (Omni-Camera).
If the resolution is lower so that cameras can “see” only upm, configuration [c] is
optimum.

Fig. 5 illustrates the effect of different optimizationteriia. With the other assump-
tions the same as above, configuration [a] was found to benaptiwhen the worst case
analysis was utilized [Eq. 15]. On the other hand, a unifolject density assumption
[Eq. 16] yielded configuration [b] as the optimum one. Whemssumption of variable
object densities was utilized such that the density is tsghear the door and decreases
linearly with the distance from it [d], configuration [c] w&sund to be the best. Note
that a higher object density near the door leads to a repositj of the cameras such
that they can better capture this region.
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Fig. 4. lllustration of the effect of different camera specificasoWith a uniform density assump-
tion, the optimum configuration when the cameras have (ddt dieview of 9¢° and resolution
up to 25m, (b):360° field of view (Omni-Camera), and resolution up to 25m, @§0° field of
view, but resolution only up to 10m.
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Fig. 5. lllustration of the effect of different optimization criia. Optimum configuration for: (a):

worst-case analysis [Eq. 15], (b): uniform density case [Hj, (c): variable density case [Eq.
16] for the object density shown in (d).
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Fig.6. (a) Plan view of a room used for a real experiment. (b) and re)tlae views from the
optimum camera locations when there is no panel (obstadtsg that, of the three people in the
scene, one person is occluded in each view. However, allevhtare visible from at least one
of the views. Image (d) shows the view from the second camethd presence of the panel.
Now, one person is not visible in any view. To improve vistljjlthe second camera is moved to
(180, 600). The view from this new location is shown in (e) gnéhall people are visible again.

5.2 Analysisof a Real Scene

We now present analysis of sensor placement for a real officenr The structure of
the room is illustrated in Fig. 6 (a). We used the followinggraeters - uniform density
A = 0.25m~2, object height = 170cmy; = 23cm, h = 40cm, anda,,.. = 60°.
The cameras available to us had a field of view of4#nd needed to be mounted on
the ceiling which is 2.5m high. In order to view people’s faxethey enter the room,
we further restricted the cameras to be placed on the walidahe door. We first
consider the case when there is no panel (separator). Ifmrdycamera is available,
the best placement was found to be at location (600,600) ahgle of135° (measured
clockwise from the positive x-axis). If two cameras are klde, the best configuration
consists of one camera at (0,600) at an angt&rdf® and the other camera at (600, 600)
at an angle o1 32°. Figures 6 (b) and (c) show the views from the cameras.

Next, we place a thin panel at location (300, 300) - (600, 308§ optimum con-
figuration of two cameras consists of a camera at (0,600) ahgle of67.5° (same as
before) and the other camera at (180, 600) at an angig°ofrigures 6 (d) & (e) show
the views from the original and new location of the seconderam

6 Conclusion

We have presented two methods for evaluation of visibilixeg a certain configuration
of sensors in a scene. The first one evaluates the visibiidgbilistically assuming a
density function for the occluding objects. The second metbvaluates worst-case
scenarios and is able to provide conditions that would quegavisibility regardless



of object configuration. Apart from obtaining important fsemance characterization
of multi-sensor systems, such analysis was further usedeosor planning by opti-

mization of an appropriate cost function. The algorithm vested on several synthetic
and real scenes, and in many cases, the configurations ethtaire quite interesting

and non-intuitive. The method has applications in surarde and can be utilized for
sensor planning in places like museums, shopping mallsyaystations and parking
lots. Future work includes specification of more complext ¢osctions, investigation

of more efficient methods for optimization of the cost funntand better estimation of
visibility probability by considering the effect of interion between objects.
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