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Abstract. We analyze visibility from static sensors in a dynamic scenewith
moving obstacles (people). Such analysis is considered in aprobabilistic sense
in the context of multiple sensors, so that visibility from even one sensor might
be sufficient. Additionally, we analyze worst-case scenarios for high-security ar-
eas where targets are non-cooperative. Such visibility analysis provides important
performance characterization of multi-camera systems. Furthermore, maximiza-
tion of visibility in a given region of interest yields the optimum number and
placement of cameras in the scene. Our analysis has applications in surveillance
- manual or automated - and can be utilized for sensor planning in places like
museums, shopping malls, subway stations and parking lots.We present several
example scenes - simulated and real - for which interesting camera configurations
were obtained using the formal analysis developed in the paper.

1 Introduction

We present a method for sensor planning that is able to determine the required number
and placement of static cameras (sensors) in a dynamic scene. Such analysis has previ-
ously been presented for the case of static scenes where the constraints and obstacles are
static. However, in many applications, apart from these static constraints, there exists
occlusion due to dynamic objects (people) in the scene. In this paper[12], we incorpo-
rate these dynamic visibility constraints into the sensor planning task. These constraints
are analyzed in a probabilistic sense in the context of multiple sensors. Furthermore, we
develop tools for analyzing worst-case visibility scenarios that are more meaningful for
high-security areas where targets are non-cooperative.

Our analysis is useful for both manned and automated vision systems. In manned
systems where security personnel are looking at the video stream, it is essential that the
personnel have visibility of the people in the scene. In automated systems, where ad-
vanced algorithms are used to detect and track multiple people from multiple cameras,
our analysis can be used to place the cameras in an optimum configuration.

Automated Multi-camera vision systems have been developedusing a wide range of
camera arrangements. For better stereo matching, some systems[5] use closely-spaced
cameras. Others [11, 9] adopt the opposite arrangement of widely separated cameras for
maximum visibility. Others [3] use a hybrid approach. Stillothers [18, 8, 1], use multi-
ple cameras for the main purpose of increasing the field of view. In all these systems,



there is a need for analyzing the camera arrangement for optimum placement. In many
cases, our method can be utilized without any alteration. Insystems that have additional
algorithmic requirements (e.g. stereo matching), furtherconstraints -hard or soft- can
be specified so that the optimum camera configuration satisfies (hard) and is optimum
(soft) w.r.t. these additional constraints.

In addition to providing the optimum configuration, our analysis can provide agold
standardfor evaluating the performance of these systems under the chosen configu-
ration. This is because our analysis provides the theoretical limit of detectability. No
algorithm can surpass such a limit since the data is missing from the images. Thus, one
can determine as to how much of the error in a system is due to missing data, and how
much of it is due to the chosen algorithm.

Sensor planning has been researched quite extensively, especially in the robotics
community, and there are several different variations depending on the application. One
set of methods use an active camera mounted on a robot. The objective then is to move
the camera to the best location in the next view based on the information captured uptil
now. These methods are called next view planning[13,20, 15]. Another set of methods
obtain a model (either 2D or 3D) of a scene by optimum movementof the camera [10,
2]. Such model acquisition imposes certain constraints on the camera positions, and
satisfaction of these constraints guarantees optimum and stable acquisition.

Methods that are directly related to ours are those that determine the location of
static cameras so as to obtain the best views of a scene. This problem was originally
considered in the computational geometry literature as theart-gallery problem [14].
The solutions in this domain utilize simple 2D or 3D scene models and simple assump-
tions on the cameras and occlusion in order to develop theoretical results and efficient
algorithms to determine good sensor configurations (although the NP-hard nature of the
problem typically necessitates an approximate solution).Several researchers [4, 16, 19,
21] have studied and incorporated more complex constraintsbased on several factors
not limited to (1) resolution, (2) focus, (3) field of view, (4) visibility, (5) view angle,
and (6) prohibited regions. In addition to these “static” constraints, there exist additional
“visibility” constraints imposed by the presence of dynamic obstacles. Such constraints
have not been analyzed earlier and their incorporation intothe sensor planning task
constitutes the novel aspect of our work.

The paper is organized as follows. Section 2 develops the theoretical framework
for estimating the probability of visibility of an object ata given location in a scene
for a certain configuration of sensors. Section 3 introducessome deterministic tools to
analyze worst-case visibility scenarios. Section 4 describes the development of a cost
function and its minimization in order to perform sensor planning in complex environ-
ments. Section 5 concludes the paper with some simulated andreal experiments.

2 Probabilistic Visibility Analysis

In this section, we analyze probabilistically the visibility constraints in a multi-camera
setting. Specifically, we develop tools for evaluating the probability of visibility of an
object from at least one sensor. Since this probability varies across space, this probabil-
ity is recovered for each possible object position.
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Fig. 1. (a) Scene Geometry used for stochastic reasoning. (b) The distance up to which an object
can occlude another object is proportional to its distance from the sensor.

2.1 Visibility From At least One Sensor

Assume that we have a regionR of areaA observed byn sensors [Fig. 1 (a)]. LetEi

be the event that a target objectO at locationL is visible from sensori. The proba-
bility that O is visible from at least one sensor can be expressed mathematically as the
unionP (

⋃n
i=1 Ei) of these events, and it can be expanded using the inclusion-exclusion

principle as:

P (
⋃

i

Ei) =
∑

∀i

P (Ei) −
∑

i<j

P (Ei ∩ Ej) + · · · + (−1)n+1P (
⋂

i

Ei) (1)

The motivation for this expansion is that it is easier to compute the terms on the RHS
(right hand side) compared to the one on the LHS.

In order to facilitate the introduction of the approach to befollowed in computing
P (

⋃n
i=1 Ei), we consider the specific case of objects moving on a ground plane. The

objects are also assumed to have the same horizontal profile at each height. Examples of
such objects include cylinders, cubes, cuboids, and squareprisms, and can adequately
describe the objects of interest in many applications such as people detection and track-
ing. Let the area of their projection onto the ground plane beAob. Furthermore, we
assume that the sensors are placed at some known heightsHi from this plane. Also, we
define visibility to mean that the center line of the object (corresponding to the centroid
in the horizontal profile) is visible for at least some lengthh from the top of the object
(in people tracking, this might correspond to viewing the face).

A useful quantity can be defined for the objects by considering the projection of the
object in a particular direction. We then definer as the average, over different directions,
of the maximum distance from the centroid to the projected object points. For e.g., for

cylinders,r is the radius; for square prism with side2s, r = 1
π/4

∫ π/4

0 scosθ dθ =

2
√

2s/π. The quantityr will be useful in calculating the average occluding region of
an object. Furthermore, it can easily be shown that the distancedi up to which an object
can occlude another object is proportional to its distanceDi from sensori [Fig. 1 (b)].
Mathematically,



di = (Di − di)µi = Di
µi

µi + 1
, where µi =

h

Hi
(2)

Fixed Number of Objects In order to develop the analysis, we start with the case of
a fixed numberk of objects in the scene under the assumption that they are located
randomly and uniformly in regionR. This will be extended to the more general case of
object densities in subsequent sections.

Under this assumption, we first estimateP (Ei), which refers to the probability that
none of thek objects is present in the region of occlusionRo

i for camerai. Assuming
that all object orientations are equally likely3, one may approximate the area of this
region of occlusion asAo

i ≈ di(2r). Then, the probability for a single object tonot be

present in this region of occlusion is
(

1 − Ao
i

A

)

. Since there arek objects in the scene

located independently of each other, the probability that none of them is present in the

region of occlusion is
(

1 − Ao
i

A

)k

. Thus:

P (Ei) =

(

1 − Ao
i

A

)k

(3)

In order to provide this formulation, we have neglected the fact that two objects
cannot overlap each other. In order to incorporate this condition, we observe that the
(j + 1)-th object has a possible area of onlyA− jAob available to it4. Thus, Equation
3 can be refined as

P (Ei) =

k−1
∏

j=0

(

1 − Ao
i

A − jAob

)

(4)

This analysis can be generalized to other terms in Equation 1. The probability that
the object is visible from all of the sensors in a specified set(i1, i2 . . . im) can be deter-
mined as:

P (
⋂

i∈(i1,i2,...im)

Ei) =
k−1
∏

j=0

(

1 −
Ao

(i1,i2,...im)

A − jAob

)

(5)

whereAo
(i1,...im) is the area of the combined region of occlusionRo

(i1,...im) for the
sensor set(i1, . . . im) formed by the “geometric” union of the regions of occlusionRo

ip

for the sensors in this set, i.e.Ro
(i1,...im) =

⋃m
p=1 Ro

ip
.

3 It is possible to perform the analysis by integration over different object orientations. However,
for ease of understanding, we will use this approximation.

4 The prohibited area is in fact larger. For example, for cylindrical objects, another object cannot
be placed anywhere within a circle of radius2r (rather thanr) without intersecting the object.
For simplicity and ease of understanding, we redefineAob as the area “covered” by the object.
This is the area of the prohibited region and may be approximated as four times the actual area
of the object.



Uniform Object Density A fixed assumption on the number of objects in a region
is clearly inadequate. A more realistic assumption is that the objects have a certain
density of occupancy. First, we consider the case of uniformobject density in the region.
This will be extended to the more general case of non-uniformobject density in the
next section. The uniform density case can be treated as a generalization of the “k
objects” case introduced in the previous section. To this end, we increasek and the area
A proportionately such that

k = λA (6)

where a constant object densityλ is assumed. Equation 5 can then be written as

P (
⋂

i∈(i1,...im)

Ei) = lim
k→∞

k−1
∏

j=0

(

1 −
Ao

(i1,...im)

k/λ − jAob

)

(7)

We define:

a =
1

λAo
(i1,...im)

, b =
Aob

Ao
(i1,...im)

(8)

Here,a captures the effect of the presence of objects andb is acorrectionto such effect
due to the finite object size. Then, we obtain:

P (
⋂

i∈(i1,...im)

Ei) = lim
k→∞

k−1
∏

j=0

(

1 − 1

ka − jb

)

(9)

Combining terms forj andk − j, we get
(

1 − 1

ka − jb

) (

1 − 1

ka − (k − j)b

)

=
k2a2 − k2ab − 2ka + j(k − j)b2 + bk + 1

k2a2 − k2ab + j(k − j)b2

Assuminga ≫ b (i.e. the object densityλ is much smaller than1/Aob, the object
density if the area is fully packed), we can neglect terms involving b2. Then, the above
term can be written as

≈
(

1 − 1

k

(

2a − b

a2 − ab

))

There arek/2 such terms in Equation 9. Therefore,

P (
⋂

i∈(i1,...im)

Ei) ≈ lim
k→∞

(

1 − 1

k

(

2a − b

a2 − ab

))k/2

Using the identitylimx→∞(1 + 1
x )x = e, we get

P (
⋂

i∈(i1,...im)

Ei) ≈ e−
2a−b

2a(a−b) (10)



Non-uniform Object Density In general, the object density (λ) is a function of the
location. For example, the object density near a door might be higher. Moreover, the
presence of an object at a location influences the object density nearby since objects tend
to appear in groups. We can integrate both of these influenceson the object density with
the help of a conditional density functionλ(xc|xO) that might be available to us. This
density function gives the density at locationxc given that visibility is being calculated
at locationxO. Thus, this function is able to capture the effect that the presence of the
object at locationxO has on the density nearby5.

In order to develop the formulation for the case of non-uniform density, we note
that the(j +1)-th object has a region available to it that isR minus the region occupied
by thej previous objects. This object is located in this “available” region according to
the density functionλ(). The probability for this object to be present in the region of
occlusionRo

(i1,...im) can then be calculated as the ratio of the average number of people
present in the region of occlusion to the average number of people in the available
region. Thus, one can write:

P (
⋂

i∈(i1,...im)

Ei) = lim
k→∞

k−1
∏

j=0



1 −

∫

Ro
(i1,...im)

λ(xc|x0) dxc

∫

R−R
j

ob

λ(xc|x0) dxc



 (11)

whereRj
ob is the region occupied by the previousj objects. Since the previousj objects

are located randomly inR, one can simplify:
∫

R−R
j

ob

λ(xc|x0) dxc = λavg(A − jAob)

whereλavg is the average object density in the region. Using this simplification in
Equation 11 and noting thatλavgA = k, we obtain:

P (
⋂

i∈(i1,...im)

Ei) = lim
k→∞

k−1
∏

j=0



1 −

∫

Ro
(i1,...im)

λ(xc|x0) dxc

k − j · λavg · Aob



 (12)

Defining:

a =
1

∫

Ro
(i1,...im)

λ(xc|x0) dxc

, b =
Aob · λavg

∫

Ro
(i1,...im)

λ(xc|x0) dxc

, (13)

Equation 12 may again be put in the form of Equation 9. As before, this may be simpli-
fied to obtain the expression in Equation 10.

2.2 Visibility from Multiple Sensors

In many applications, it is desirable to view an object from more than one sensor. Stereo
reconstruction/depth recovery is an example where the requirement of visibility from at

5 Such formulation only captures the first-order effect of thepresence of an object. While higher
order effects due to the presence of multiple objects can be considered, they are likely to be
small.



least two sensors is to be satisfied. In order to evaluate the probability of visibility from
at least two sensors, one can evaluate:

P (
⋃

(i<j)

(Ei ∩ Ej)) (14)

This term can be expanded exactly like Equation 1 treating each term(Ei ∩ Ej) as a
single entity. All the terms on the RHS will then have only intersections in them which
are easy to compute using the formulation developed in the previous sections.

2.3 Additional Constraints

Other “static” constraints also affect the view of a particular camera. Therefore, the visi-
bility probability needs to be calculated after incorporating these additional constraints.
This is easily achieved in our scheme since the visibility constraints are analyzed at in-
dividual locations and additional constraints can also be verified at these locations. The
constraints that have been incorporated in our system include:

1. FIELD OF VIEW: Cameras have a limited field of view. At each location, it can be
verified whether that location is within the field of view of a particular camera.

2. OBSTACLES: Fixedhigh obstacles like pillars cause occlusions in certain areas.
From a given location, it needs to be determined whether any obstacle blocks the
view of a particular camera.

3. PROHIBITED AREAS: There might also exist prohibited areas where people are
not able to walk. An example of such an area is a desk. These areas have a positive
effect on the visibility in their vicinity since it is not possible for obstructing objects
to be present within such regions.

4. RESOLUTION: The resolution of an object in an image reduces as the object
moves further away from the camera. Therefore, meaningful observations are pos-
sible only up to a certain distance from the camera. It can easily be verified whether
the location is within a certain “resolution distance” fromthe camera.

5. ALGORITHMIC CONSTRAINTS: There are several algorithmicconstraints that
may exist. For example, stereo matching across two (or more)cameras imposes a
constraint on the maximum distortion of the view that can occur from one camera
to the other. This constraint can be expressed in terms of theangular separation
between the camera centers from the point of view of the object. It can be easily be
verified whether this constraint is satisfied at a particularlocation.

6. VIEWING ANGLE: An additional constraint exists for the maximum angleαmax

at which the observation of an object is meaningful. Such observation can be the
basis for performing some other tasks like object recognition.This constraint trans-
lates into a constraint on the minimum distance from the sensor that an object must
be. This minimum distance guarantees the angle of observation to be smaller than
αmax.

The analysis presented so far is probabilistic and provides“average” answers. In
high security areas, worst-case analysis might be more appropriate. Such analysis will
be presented in the next section.



3 Worst-Case Visibility Analysis

In this section, we present some simple results for location-specific limitations of a
given system in the worst-case. This analysis provides conditions that guarantee visi-
bility regardless of object configuration and enables sensor placement such that such
conditions are satisfied in a given region of interest. Sincethe analysis is quite simple,
we will only briefly describe these results. We propose:

Theorem 1. Suppose there is an objectO at locationL. If there arek point objects in
the vicinity ofO, andn sensors have visibility of locationL, thenn > k + m− 1 is the
necessary and sufficient condition to guarantee visibilityfor O from at leastm sensors.

Proof. (a) Necessary: Supposen <= k + m − 1. Placep = min(k, n) objects such
that each obstructs one sensor. The number of sensors havinga clear view of the object
are then equal ton − p which is less thanm (follows easily from the conditionn <=
k + m − 1).
(b) Sufficient: Supposen > k + m − 1. O hasn lines of sight to the sensors,k of
which are possibly obstructed by other objects. Therefore,by the extended pigeon-hole
principle, there must be at leastn − k >= m sensors viewingO.

This result holds for point objects only. It can be extended to finite objects if certain
assumptions are made. One can assume a flat world scenario where the objects and
the sensors are in 2D. Also assume that we are given a point of interest in the object
such that object visibility is defined as the visibility of this point of interest. This point
can be defined arbitrarily. Let us also define an angleα as the maximum angle that
any object can subtend at the point of interest of any other object. For example, for
identical cylinders with the center as the point of interest, α = 60◦. For identical square
prisms,α = 90◦. Under these assumptions, the above result holds if we taken to be
the number of sensors that have visibility of locationL such that the angular separation
between any two sensors, from the point of view ofL, is at leastα. Also, n must be
less than2π/α since it is not possible to placen > 2π/α sensors such that there is an
angular separation of at leastα between them.

For a given camera configuration, one can determine the number of cameras that
each location of interest has visibility to. This will yieldthe maximum number of people
that can be present in the vicinity of the person and still guarantee visibility for him.

4 Sensor Planning

The visibility analysis presented in section 2 yields a function ps(x), that refers to the
probability that an object located at locationx is visible from at least one of the sensors
that have the parameter vectors. Such parameter vector may include, for instance, the
location, viewing direction and zoom of each camera. Given such a function, one can
define a suitablecost function in order to evaluate a given set of sensor parameters.
Such sensor parameters may be further constrained due to other factors. For instance,
there typically exists a physical limitation on the positioning of the cameras (walls,
ceilings etc.). The sensor planning problem can then be formulated as a problem of
constrained optimization of the cost function. Such optimization will yield the optimum
sensor parameters according to the specified cost function.
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Fig. 2. The Cost Function for the scene in Fig. [4 (a)] where, for illustration purposes, only the
x-coordinate and direction of the second camera have been varied.

4.1 The Cost Function

Several cost functions may be considered. Based on deterministic visibility analysis,
one can consider a simple cost function that sums, over the region of interestRi, the
numberN(x) of cameras that a locationx has visibility to:

C(s) = −
∑

x∈Ri

N(x) (15)

Using probabilistic analysis, one may define a cost functionthat minimizes the maxi-
mum occlusion probability in the region:

C(s) = max
x∈Ri

(1 − ps(x))

Another cost function, and perhaps the most reasonable one in many situations, is to
define the cost as the negative of the average number of visible people in a given region
of interest:

C(s) = −
∫

Ri

λ(x)ps(x) dx (16)

This cost function has been utilized for obtaining the results in this paper.
It is also possible to integrate other constraints into the cost function. For instance,

some of the constraints in section 2.3 may be specified assoft constraints rather than
hard constraints (for e.g. resolution, viewing angle and algorithmic constraints). Ac-
cording to the application, any arbitrary function of the constraints may be considered:

C(s) = f(c1, . . . cJ , λ(), Ri)

wherecj , j = 1 . . . J are the different constraints to be satisfied.



4.2 Minimization of the Cost Function

The cost function defined by Equation 16 (as also other suitable ones) is non-linear and
it can be shown that it is not differentiable. Furthermore, in most non-trivial cases, it
has multiple local minima and possibly multiple global minima. Fig. 2 illustrates the
cost function for the scene shown in Fig. 4 (a). where, for illustration purposes, only
two of the nine parameters have been varied. Even in this two dimensional space, there
are two global minima and several local minima. Furthermore, the gradient is zero in
some regions.

Due to these characteristics of the cost function, it is not possible to minimize it
using simple gradient-based methods that can only find the local minimum of a well-
behaved “convex” function. Global minimization methods that can deal with complex
cost functions are necessary [17]. Simulated Annealing andGenetic Algorithms are two
classes of algorithms that may be considered. The nature of the cost function suggests
that either of these two algorithms should provide an acceptable solution[6]. For our ex-
periments, we implemented a simulated annealing scheme using a highly sophisticated
simulated re-annealing softwareASAdeveloped by L. Ingber [7].

Using this algorithm, we were able to obtain extremely good sensor configurations
in a reasonable amount of time (5min - a couple of hours on a Pentium IV 2.2GHz PC,
depending on the desired accuracy of the result, the number of dimensions of the search
space and complexity of the scene). For low dimensional spaces (< 4), where it was
feasible to verify the results using full search, it was found that the algorithm quickly
converged to a global minimum. For moderate dimensions of the search space (< 8),
the algorithm was again able to obtain the optimum solution,but only after some time.
Although the optimality of the solution could not be verifiedby full search, we assumed
such solution to be optimum since running the algorithm several times from different
starting points and different annealing parameters did notalter the final solution. For
very high dimensional spaces (> 8), although the algorithm provided “good” solutions
very quickly, it took several hours to converge to the best one. Some of the “optimal”
solutions thus obtained will be illustrated in the next section.

5 Simulations and Experiments

We have proposed a stochastic algorithm for recovering the optimal sensor configura-
tion with respect to certain visibility requirements. In order to validate the proposed
method, we provide results of the algorithm for various scenes, synthetic and real.

5.1 Synthetic Experiments
In all the synthetic examples we consider next, we take a rectangular room of size
10mX20m. The sensors were restricted to be mounted H = 2.5m above the ground and
have a field of view of 90◦. We use a uniform object densityλ = 1m−2, object height
= 150cm, object radius r=15cm, minimum visibility height h=50cm and maximum vis-
ibility angle αmax = 45◦. The illustrations shown are visibility maps scaled such that
[0,1] maps onto [0,255], thus creating a gray scale image. Brighter regions represent
higher visibility. Note how the visibility decreases as we move away from a camera due
to an increase in the distance of occlusiondi.



(a) (b) (c)

Fig. 3. Illustration of the effect of scene geometry on sensor placement. Optimum configuration
when (a): obstacle size is small. (b): obstacle size is big. (c): obstacle size is such that both
configurations are equally good.

Fig. 3 illustrates the effect that an obstacle can have on camera placement. Using
a maximum of two cameras having a field of view of90◦, the first configuration [a]
was found to be optimum when the obstacle size was small(<60cm). Configuration
[b] was optimum when the object size was big (>60cm). For the object size shown in
configuration [c] (∼60cm), both configurations were equally good. Note that, in both
configurations, all locations are visible from at least one camera. Therefore, current
methods based solely on analysis of static obstacles would not be able to distinguish
between the two.

Fig. 4 illustrates how the camera specifications can significantly alter the optimum
sensor configuration. Notice that the scene has both obstacles and prohibited areas. With
three available cameras, configuration [a] was found to be optimum when the cameras
have only 90◦ field of view but are able to “see” up to 25m. With the same resolution,
configuration [b] is optimum if the cameras have a 360◦ field of view (Omni-Camera).
If the resolution is lower so that cameras can “see” only up to10m, configuration [c] is
optimum.

Fig. 5 illustrates the effect of different optimization criteria. With the other assump-
tions the same as above, configuration [a] was found to be optimum when the worst case
analysis was utilized [Eq. 15]. On the other hand, a uniform object density assumption
[Eq. 16] yielded configuration [b] as the optimum one. When anassumption of variable
object densities was utilized such that the density is highest near the door and decreases
linearly with the distance from it [d], configuration [c] wasfound to be the best. Note
that a higher object density near the door leads to a repositioning of the cameras such
that they can better capture this region.



(a) (b) (c)

Fig. 4. Illustration of the effect of different camera specifications. With a uniform density assump-
tion, the optimum configuration when the cameras have (a): field of view of 90◦ and resolution
up to 25m, (b):360◦ field of view (Omni-Camera), and resolution up to 25m, (c):360

◦ field of
view, but resolution only up to 10m.

(a) (b) (c) (d)

Fig. 5. Illustration of the effect of different optimization criteria. Optimum configuration for: (a):
worst-case analysis [Eq. 15], (b): uniform density case [Eq. 16], (c): variable density case [Eq.
16] for the object density shown in (d).
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Fig. 6. (a) Plan view of a room used for a real experiment. (b) and (c) are the views from the
optimum camera locations when there is no panel (obstacle).Note that, of the three people in the
scene, one person is occluded in each view. However, all of them are visible from at least one
of the views. Image (d) shows the view from the second camera in the presence of the panel.
Now, one person is not visible in any view. To improve visibility, the second camera is moved to
(180, 600). The view from this new location is shown in (e), where all people are visible again.

5.2 Analysis of a Real Scene

We now present analysis of sensor placement for a real office room. The structure of
the room is illustrated in Fig. 6 (a). We used the following parameters - uniform density
λ = 0.25m−2, object height = 170cm,r = 23cm, h = 40cm, andαmax = 60◦.
The cameras available to us had a field of view of 45◦ and needed to be mounted on
the ceiling which is 2.5m high. In order to view people’s faceas they enter the room,
we further restricted the cameras to be placed on the wall facing the door. We first
consider the case when there is no panel (separator). If onlyone camera is available,
the best placement was found to be at location (600,600) at anangle of135◦ (measured
clockwise from the positive x-axis). If two cameras are available, the best configuration
consists of one camera at (0,600) at an angle of67.5◦ and the other camera at (600, 600)
at an angle of132◦. Figures 6 (b) and (c) show the views from the cameras.

Next, we place a thin panel at location (300, 300) - (600, 300). The optimum con-
figuration of two cameras consists of a camera at (0,600) at anangle of67.5◦ (same as
before) and the other camera at (180, 600) at an angle of88◦. Figures 6 (d) & (e) show
the views from the original and new location of the second camera.

6 Conclusion

We have presented two methods for evaluation of visibility given a certain configuration
of sensors in a scene. The first one evaluates the visibility probabilistically assuming a
density function for the occluding objects. The second method evaluates worst-case
scenarios and is able to provide conditions that would guarantee visibility regardless



of object configuration. Apart from obtaining important performance characterization
of multi-sensor systems, such analysis was further used forsensor planning by opti-
mization of an appropriate cost function. The algorithm wastested on several synthetic
and real scenes, and in many cases, the configurations obtained were quite interesting
and non-intuitive. The method has applications in surveillance and can be utilized for
sensor planning in places like museums, shopping malls, subway stations and parking
lots. Future work includes specification of more complex cost functions, investigation
of more efficient methods for optimization of the cost function and better estimation of
visibility probability by considering the effect of interaction between objects.

Acknowledgments

We would like to thank Nikos Paragios for help in improving the presentation of the
paper, and Visvanathan Ramesh for helpful discussions on the topic.

References

[1] Q. Cai and J.K. Aggarwal. Tracking human motion in structured environments using a
distributed-camera system.PAMI, 21(11):1241–1247, November 1999.

[2] A. Cameron and H.F. Durrant-Whyte. A bayesian approach to optimal sensor placement.
IJRR, 9(5):70–88, 1990.

[3] R.T. Collins, A.J. Lipton, H. Fujiyoshi, and T. Kanade. Algorithms for cooperative multi-
sensor surveillance.Proceedings of the IEEE, 89(10):1456–1477, October 2001.

[4] C. K. Cowan and P.D. Kovesi. Automatic sensor placement from vision tast requirements.
PAMI, 10(3):407–416, May 1988.

[5] T.J. Darrell, D. Demirdjian, N. Checka, and P.F. Felzenszwalb. Plan-view trajectory estima-
tion with dense stereo background models. InICCV, pages II: 628–635, Vancouver, Canada,
July 2001.

[6] R.O. Duda, P.E. Hart, and D.G. Stork.Pattern Classification. John Wiley and Sons, 2001.
[7] L. Ingber. Very fast simulated re-annealing.Mathematical Computer Modeling, 12:967–973,

1989.
[8] V. Kettnaker and R. Zabih. Counting people from multiplecameras. InICMCS, pages

II:253–259, 1999.
[9] S. Khan, O. Javed, Z. Rasheed, and M. Shah. Human trackingin multiple cameras. InICCV,

pages I: 331–336, Vancouver, Canada, July 2001.
[10] K.N. Kutulakos and C.R. Dyer. Recovering shape by purposive viewpoint adjustment.

IJCV, 12(2-3):113–136, April 1994.
[11] A. Mittal and L.S. Davis. M2tracker: A multi-view approach to segmenting and tracking

people in a cluttered scene.IJCV, 51(3):189–203, February 2003.
[12] A. Mittal and L.S. Davis. Visibility analysis and sensor planning in dynamic environments.

US Patent pending, 2003.
[13] J. Miura and K. Ikeuchi. Task-oriented generation of visual sensing strategies. InICCV,

pages 1106–1113, Boston, MA, 1995.
[14] Joseph O’Rourke.Art Gallery Theorems and Algorithms. Oxford University Press, August

1987.
[15] R. Pito. A solution to the next best view problem for automated surface acquisition.PAMI,

21(10):1016–1030, October 1999.



[16] M. K. Reed and P. K. Allen. Constraint-based sensor planning for scene modeling.PAMI,
22(12):1460–1467, December 2000.

[17] Yi Shang. Global Search Methods for Solving Nonlinear Optimization Problems. PhD
thesis, University of Illinois at Urbana-Champaign, 1997.

[18] C. Stauffer and W.E.L. Grimson. Learning patterns of activity using real-time tracking.
PAMI, 22(8):747–757, August 2000.

[19] K. Tarabanis, R.Y. Tsai, and A. Kaul. Computing occlusion-free viewpoints. PAMI,
18(3):279–292, March 1996.

[20] Y. Ye and J.K. Tsotsos. Sensor planning for 3d object search. CVIU, 73(2):145–168,
February 1999.

[21] S.K. Yi, R.M. Haralick, and L.G. Shapiro. Optimal sensor and light-source positioning for
machine vision.CVIU, 61(1):122–137, January 1995.


