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Abstract. We present an efficient multi stage approach to detection of
deformable objects in real, cluttered images given a single or few hand
drawn examples as models. The method handles deformations of the ob-
ject by first breaking the given model into segments at high curvature
points. We allow bending at these points as it has been studied that
deformation typically happens at high curvature points. The broken seg-
ments are then scaled, rotated, deformed and searched independently in
the gradient image. Point maps are generated for each segment that rep-
resent the locations of the matches for that segment. We then group k

points from the point maps of k adjacent segments using a cost function
that takes into account local scale variations as well as inter-segment
orientations. These matched groups yield plausible locations for the ob-
jects. In the fine matching stage, the entire object contour in the localized
regions is built from the k-segment groups and given a comprehensive
score in a method that uses dynamic programming. An evaluation of our
algorithm on a standard dataset yielded results that are better than pub-
lished work on the same dataset. At the same time, we also evaluate our
algorithm on additional images with considerable object deformations to
verify the robustness of our method.

1 Introduction

Object detection using edge information is an important problem in Computer
Vision that has received considerable attention from many researchers. The pop-
ularity of such methods is due to the fact that edges encode the object shape
and are fairly invariant to color and illumination changes.

In this paper, we present a computationally efficient and robust multi-step
approach for localizing objects in real, cluttered scenes given a single or few
object sketches. Simple hand drawn models input by the user are first obtained
for different object classes. The model is broken into segments at points of high
curvatures. In the coarse search stage, these segments are passed through a series
of deformations such as rotation, scale and bend and searched over the gradient
image. Point maps are obtained for each segment which represent the possible lo-
cations of the matches for that segment. We then connect k points from the point
maps of k adjacent segments (forming a k-segment group) using a cost function
that takes into account local scale variations as well as inter-segment orienta-
tions. Each matched k-segment group is used to vote for local object centroids.
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Since a correct object is likely to be identified by several k-groups, maxima in
centroid densities (centroid boosting) are used to obtain bounding boxes that
represent likely locations of objects in the image. The contour through each
matched k-segment group is built from the gradient image using bending energy
and edge strength formulations. In the fine stage of matching, the contours of
the whole object are matched in a sequence using dynamic programming and a
score is given for the matches in order to differentiate between correct detections
and false ones.

We work on the gradient image which is rich in edge information and hence,
as opposed to many other methods proposed in the literature, our approach
does not encounter the problems associated with the use of edge detectors such
as Canny [1] or the berkeley edge detector [2] that try to reduce the clutter in
images by using spatial gradient information but unfortunately also miss out on
many important edges. Dynamic programming on this gradient image allows us
to be efficient while searching for the object segments.

1.1 Related Work

Several approaches which use edge information for object detection have been
proposed in the past. Early methods include the Hausdorff distance [3] and the
Chamfer distance [4] measures between an edge-based object model and the edge
image. Such methods do not allow for much change in the shape of the model,
but may be used for matching different parts separately for deformable objects.

Ferrari et al. [5] have shown that objects can be detected accurately in images
using simple model sketches. They build a contour segment network and find
paths that resemble the model chains. The method relies on the berkeley edge
detector [2] which is able to remove a lot of clutter from the edge map and
detects mostly object boundaries. This method of using contour segments has
been further used in [6] to group contour segments into groups of k straight
segments (called kAS) which are then matched in the berkeley edge image to
detect objects.

In further work [7], Ferrari et. al. learn the shape model automatically from
a set of training images and use a combination of Hough-style voting with a
non-rigid point matching algorithm (thin-plate splines) in order to localize the
model in cluttered images. The thin-plate spline model allows for a global affine
transformation of the shape while allowing some local deviations from the affine
model for each straight contour segment (PAS).

Opelt et. al. [8] use similar ideas of combining boundary segments but learn
discriminative combinations of boundary fragments (weak detectors) to form
a strong Boundary-Fragment-Model (BFM) detector. Their segments encode
information about position relative to the centroid and they use a hough-style
voting technique to find the centroids of the objects. [9] also use probabilistic
extension of the Generalized Hough Transform to determine the object’s centroid
during recognition. Shotton et. al. [10, 11] learn discriminative contour fragments
but look at these segments in isolation rather than in groups. Their fragments,
however, are much larger than those of others. Similarly, Wu and Nevatia [12]
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use edgelet features in order to build a classifier for detection and segmentation
of specific objects.

Wu et. al. [13] use Gabor wavelet elements at different locations and orien-
tations as deformable templates to learn an active basis from a set of images.
Each of these elements is allowed a small amount of variation in their location
and orientation while matching.

While the above mentioned methods are effective for many kinds of shape de-
formations, all of these methods measure deviation of each segment with respect
to the object centroid or a global shape and can thus handle only relatively small
local deformations of the shape from an overall shape. In contrast, we develop
an approach where we use cost functions that take into account the deforma-
tions/orientations of adjacent segments. Thus, we can handle larger deformations
of the object while still maintaining the overall sense of the object shape.

Felzenszwalb and Schwartz [14] use shape trees that use a hierarchical struc-
ture such that every segment is divided at different levels in a tree structure.
Noise is added to each node in the shape tree and this yields the set of possible
deformations of an object. An efficient algorithm based on dynamic program-
ming was used. While this is an interesting approach, it is not clear whether
such shape trees capture all possible deformations of an object.

Basri et. al. [15] proposed interesting analytical functions which can be used
to match deformable shapes but the results were shown only on segmented ob-
jects. We borrow many of the ideas for shape deformation from this paper, while
applying them in a more general and difficult setting.

In the rest of the paper, sections 2 and 3 describe the course and fine stages
of our object recognition algorithm while section 4 summarizes the results.

2 Coarse Match

2.1 Basic Segment Match

The first step in our approach involves breaking simple hand drawn models
into segments. A single model is usually sufficient for most objects (eg. bottle,
applelogo etc.) but if the object appears drastically different from some view
points, a model can be obtained for each of those view points (eg. side and rear
views of a car). The model is broken at points of high curvatures (sharp turns
or bends) into segments of low curvature. The breaking of the model into low
curvature segments is done to allow more bending deformations at the points
of high curvature (similar to [15]). Figure 1 shows the segment breakup for a
model.

We permit bending deformation at the points of high curvature by allowing
the two low curvature segments on either side of the high curvature point to
rotate with respect to each other. Each segment is allowed rotation in steps in
the range [−δ, δ] (we use a δ of 30 degrees) to account for bending deforma-
tion at the high curvature points. Segments are also scaled to sizes in a range:
α, 2α, 3α, ...., pα where p is the size of the image and α is a fraction. Model
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segments which have small curvature typically deform the least. We allow for
small bending deformations of these model segments by scaling them along the
direction perpendicular to their curvature (Figure 1(a)).

Line-like segments are easier to match but give numerous matches whereas
slightly curved segments impart some degree of discriminability in the match-
ing stage. Each rotated, scaled and deformed model segment is independently
matched in the gradient image by finding paths that satisfy a normalized edge
score (N).

N =
∑

i,j∈C

G(i, j)/σC (1)

where C represents the path, G is the gradient magnitude image and σC is the
variance of the gradient values in the bounding box of the path. The maxima of
N for each model segment for all its allowed scales, rotations and deformations
are obtained. These can be computed quite efficiently using a sliding window
mechanism that is implemented using dynamic programming.

These maxima (we take the top 15%) are represented by the mid points of
the particular matched paths. Thus, the basic match step gives a point map
for every segment that indicates the strong presence of that segment at those
locations. The margins for bending deformations (Figure 1(a)) and scaling of
the model segments allow us to capture most of the candidate match locations.
Object segments in the image which could still not be correctly matched at this
stage due to their larger deformation are efficiently detected in our final detection
stage.

2.2 k-Segment Grouping

In the basic segment match step, point maps indicating matched segment loca-
tions are generated for every model segment. The point maps encode the mid-
points of these segment matches. We search for k-segment groups in the point
maps to localize the objects accurately. k matched points corresponding to k ad-
jacent segments are searched jointly and costs are enforced on these k-segment
groups to obtain those that might belong to the object. The k-segment groups
are obtained for all possible k-adjacent segment combinations of the model.

At high values of k, we get a higher order shape perspective but the method
becomes vulnerable to occlusions while at lower k values, we get a large num-
ber of matches which increases the computational cost. Hence, we choose an
intermediate value of k = 3.

All the model segments are numbered such that adjacent segments get con-
secutive numbering. Adjacent segments have local scale and orientation informa-
tion and hence can be used efficiently in the search process. The model segment
midpoints are chosen to form the model k-segment groups.

A particular k-segment group obtained from the image point maps (the kth

point is extracted from the point map of the kth segment) is required to satisfy
local scale and orientation constraints. The k points are first linked pairwise (1-2,
2-3,......,(k−1)-k ) using line segments. This produces a graph (G) with k nodes,
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(a) (b) (c)

Fig. 1. Illustration of model segments extraction: (a) Bending deformation through
anisotropic stretching (b) The Applelogo model from the ETHZ dataset [5] (c) The
various segment end points are indicated as green dots

k − 1 adjoining line segments and k − 2 node angles. A corresponding graph is
also obtained for the model. Figure 2 (a) illustrates this procedure for a model
with k = 3.

Cost function: The scales of the line segments (obtained by joining adjacent
pair of points) in the graph G with respect to the corresponding line segments
in the model graph are obtained. The scale ratio σm,t of a particular linking line
segment is the ratio of the lengths of the line segment in the model (m) and
the image (t): σm,t = dt

dm
. The scale cannot change drastically from one line

segment to the next adjoining line segment (i.e. local scale variations should be
small). But far away segments can have dissimilar scale variations. The node
angles (represented by α) also indicate the inter-segment structural information.
A cost function for the k-segment groups involving both local scale changes and
node angle changes is formulated as follows:

C(s, a) = wsCs(m, t, k) + waCa(m, t, k) (2)

where s represents scale and a the node angle. We empirically determined ws =
0.4 and wa = 0.6). Furthermore, we compute the cost of scale changes as

Cs(m, t, k) =
1

k − 2

k−2∑

i=1

(max(
σi

m,t

σi+1
m,t

,
σi+1

m,t

σi
m,t

) − 1) (3)

where σi
m,t =

di,i+1,t

di,i+1,m
is the scale ratio of the ith segment. Cost of orientation

changes is taken as:

Ca(m, t, k) =
1

k − 2

k−2∑

i=1

(1 − e−c(
∆αi

m,t
π

)2) (4)
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where ∆αi
m,t = αi

m − αi
t is the change in the ith node angle and this angle

difference is normalized by π. c is a factor that controls the amount of bending
allowed by penalizing the change in the node angle. The scale and angle scores are
averaged over the group. We use a threshold C <= 0.25 in our implementation
for considering the k-segment cluster as matched.

Centroid Boost: Each point of a matched k-segment group contributes to a
local object centroid (Figure 2(d)). The centroid is obtained from a matched
group point (p) as follows: The vector joining the corresponding model group
point to the model center is scaled by the local scale calculated at p and is used to
determine the centroid. Each point of a matched group contributes a candidate
centroid.

Matched k-segment groups of the object in the image would provide a high
centroid density about the object centroid. The centroids which are not con-
tributed by object groups are usually scattered. This leads to centroid density
boosting at correct object locations which is used to localize objects. A centroid
density map (ρ) is generated for the image. Points of maxima in this map are
obtained by a summation over a circular window W:

F =
∑

i,j∈W

ρ(x − i, y − j) (5)

where (x, y) is a point on the centroid density map and the summation over the
circular window W allows for uncertainty about the exact centroid. The points
in the map which maximize F are taken as possible object locations. Once the
centroids are identified, bounding boxes are computed for each of them. For
computing the scale of a bounding box with respect to the model bounding box,
the average (µ) and standard deviation (σ) of the scales of the k-segment clusters
which contribute to centroids in the window W (about the strong centroid) are
considered. The scale of the box is taken as µ + 2σ. The matched k-segment
groups lying inside the bounding boxes are considered for the fine matching
stage.

In our coarse stage, we also match single stepped segment groups (eg. 1, 3, 5)
along with the adjacent segment groups as single stepped segments impart a
higher order shape perspective. This is also useful for certain classes of objects
where some adjacent segments are more deformable (eg. variations in the shape
of a bottle) than single stepped segments.

The principle of centroid density boosting can efficiently localize multiple
object instances in an image. The coarse segment group match accounts for lo-
cal bending deformations in the object but does not take care of rotations of
the object. To account for object rotation, we rotate our model and perform
the coarse match. Rotated objects will provide maximal centroid density at the
corresponding model rotation. The coarse matching stage effectively reduces the
search space for the object contour detection to a few bounding boxes thus mak-
ing our method computationally efficient. The effect of clutter is also drastically
reduced in the final object contour search.
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3 Fine Matching and Contour Completion

The coarse matching stage localizes objects with bounding boxes. The object
contours are obtained in these localized regions by searching for contours in the
gradient image that connect the points of the matched k-segment groups.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Illustration of the steps of our object recognition algorithm. (a) Applelogo
model with one 3-segment group (linking line segments and node angle α) shown (b)
A test image from the database (c) The gradient magnitude image (d) Example of
Centroid boosting (e) Matched k-segment groups in red with the centroids in blue (f)
Object localization with bounding box.

Contour Search in Oriented Boxes: The object contour is built starting
with adjacent pairs of points in the matched k-segment groups (i.e. 1-2, 2-
3,....,(k − 1)-k) and completing the contour between them. An oriented box is
placed between every point pair (Figure 3). The orientation of the box is given
by the orientation of the line segment in the model that joins the two points. The
width of the box depends on the local scale (obtained from the coarse match)
and the amount of bending of the contour that can be tolerated.

The contour of a k-segment group is built progressively from point 1 to point
k using oriented boxes which greatly simplifies the computational complexity
of obtaining matched contours. Paths are taken between the two points in each
oriented box based on continuity of gradient magnitudes and directions. A cost is
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formulated to obtain the best matching path that takes into account the bending
energy and edge strength of the path.

The cost function for a contour path is as follows:

q = wbCb + wgCg (6)

where Cb and Cg are the costs for the bending energy and edge strength re-
spectively (we empirically determined wb = 0.7 and wg = 0.3). The bending
energy cost depends on the angles between consecutive tangents along the path.
A vector (φc) of these angles is obtained for the contour path in the image. A
similar vector (φm) of the angles between consecutive tangents along the corre-
sponding segment of the model is also obtained. The larger of the two vectors is
downsampled and the bending energy cost is computed as follows:

Cb =
1

L

L∑

i=1

(1 − e−(
φi

c − φi
m

π
)2) (7)

where L is the minimum of the vector lengths of φm and φc. The difference
φi

c − φi
m (the difference in the ith elements of φc and φm) in the cost function

is normalized by π. The edge strength cost Cg is obtained from the gradient
magnitude image in a similar manner as the normalized edge score Eq. (1) that
was used in the basic segment match stage . The path between the two points
in the oriented box which minimizes the cost q is taken as the matched contour.
This contour extraction procedure is iterated for all adjacent pairs of points in
the matched k-segment groups.

a b c

Fig. 3. (a) The oriented boxes for a particular 3 point cluster are shown on the gradient
image of the example used in figure 2. (b) An example of the neighborhood search for
contour completion using oriented sectors (c) Final object contour detection result
shown in blue for the example used in figure 2.

Fine Match using Neighborhood Search: The contours of k-segment groups
(k-segment contour) obtained from the gradient image are now stitched together



Multi-Stage Contour based Detection of Deformable Objects 9

to obtain the full object contour in the localized boxes. The entire contour is
built in steps and a cost function is updated at each step. The following are the
steps of our fine object contour detection and completion algorithm:

1. The best k-segment contour (best in terms of the object contour cost dis-
cussed below) is used to start the contour build up in each of the localized
bounding boxes.

2. The neighborhood at both ends of the best contour is searched to obtain the
next k-segment contour candidates (refer to Figure 3(b)).

3. The contour in the gradient image that connects the two k-segment con-
tours is obtained. A comprehensive object contour cost (discussed below)
is assigned to this extended contour. In the case of multiple candidates for
contour extension, the one that gives the least total cost is chosen.

Steps 2 and 3 are iterated (with the extended matched contour updated as
the best contour at step 2) till either the entire object contour is completed
or the local neighborhood at both ends of the contour has no more candidate
segment groups that satisfy the cost. The object contour completion algorithm
is also started from a few other locations other than the best contour to obtain
contours missed out in the first search.

The search for candidate segment groups looking from both ends of the cur-
rent contour is implemented as follows: A sector with its origin placed at the end
point of the contour and radius determined by the maximum search distance is
used (Figure 3). The orientation of the sector is along the tangent direction at
the endpoint of the contour. We use a sector of radius 6 pixels and angle of 60o

for an image of size 357 × 216 pixels.

Object Contour Cost: The cost function for the extended contour at each
iteration of the algorithm is computed as follows:

Q = wsCs(m, t) + waCa(m, t) + wbCb(m, t) + wgCg(m, t) (8)

where Cs is the scale cost Eq. (3) , Ca the angle cost Eq. (4), Cb the bending
energy cost Eq. (7) and Cg the edge strength cost of the updated contour Eq. (1).
We empirically determined ws = 0.2, wa = 0.2, wb = 0.5 and wg = 0.1.

The first two components of the cost function Q constrain the local scales and
node angles of the extended segment group (obtained by combining the current
and candidate k-segment groups). They help account for inter-segment scale
and orientation variations. The last two components of Q are those associated
with the extended contour (bending energy and edge strength) and account for
intra-segment bending deformations.

All the components of Q have already been pre-computed except at the
links between the two contours (obtained at step 3 of the algorithm). We use
dynamic programming to efficiently update the comprehensive contour cost at
each iteration of the algorithm.

The cost at the end of each iteration is compared with a threshold to deter-
mine if we should continue matching. All the matched paths are retained in the
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next iteration. This type of dynamic programming helps in finding the best con-
tour in a given bounding box efficiently and accurately. The full object contour
in each bounding box is progressively built. Wrong contours or matched clutter
falling inside the bounding boxes will be discarded by the cost function. Thus,
the fine matching stage gives the object contours accurately.

4 Results of Experiments and Discussion

We tested our algorithm on the ETHZ database [5] which has 5 object classes
namely Applelogo, Swan, Bottle, Mug and Giraffe. It contains a total of 255 im-
ages divided among object classes as apple logos (40), bottles (48), giraffes(87),
mugs (48) and swans (32). The dataset contains objects of various scales, orien-
tations, deformations and images with multiple object instances which makes it
highly challenging for object detection. We use the simple hand drawn models
of [5] for our experiments. We also evaluated the algorithm on 50 additional
images obtained from Flickr, each having instances of one of the object classes
with considerable shape variations and clutter.

Figure (4) and Figure (5) show some of our results for the database. Images
1-c, 2-c, 4-c, 4-d and 5-g are from the additional dataset while the rest are from
the ETHZ database. The results of object contour detection are shown as white
bordered lines in the image. Images 4-c, 4-e, 6-h and 7-k show the detection of
object contours in very cluttered scenes by our algorithm. The object contour
forms only a fraction of the scene in these cases. Images 3-e, 5-k, 7-h and 7-i show
our detection results for images with multiple object instances. Images 3-e and
5-k also show detection results of multiple objects across scales present in the
same image. In image 5-k, two swans of drastically different sizes are detected
by our algorithm. Two of the other swans in image 5-k are near reflections of
the model and hence require a reflection of the model to be detected.

Images 2-f, 4-b and 5-i show our detection of applelogos which are heavily
deformed compared to the model. Image 4-b is obtained by applying an affine
transformation to image 3-b. The results for swans (2-b, 2-d, 1-e, 2-e, 5-k, 6-i)
also indicate that our method can handle intra-class variability very well. Image
6-j shows our detection result for a substantially rotated applelogo. We can
efficiently handle multiple object instances and object rotation using the centroid
boosting principle. Our algorithm successfully extracts the contour (silhouette)
of giraffe in test images where there is substantial pose change (1-b, 1-c, 1-f, 3-a,
3-c, 4-a, 5-j, 7-j). Image 4-d shows an example where our algorithm correctly
discriminates between an apple and an applelogo based on curvature.

A detection is counted as correct if its bounding-box overlaps more than 50%
with the ground-truth one. Our system achieves a very promising average detec-
tion rate of 92% at a low value of 0.2 FPPI (False Positives Per Image obtained
over all the 305 images). In contrast to [5], we obtain the object bounding box
very accurately using the mean and standard deviation of local scales contribut-
ing to the object centroid.
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Table 1 shows the comparison of results of Ferrari et. al [7] and Ferrari [5]
against our method for the ETHZ database. The detection rates at 0.4 FPPI and
0.3 FPPI averaged over the entire ETHZ dataset are shown in the table. The
results illustrate that our algorithm performs remarkably well on all the object
classes. Huge improvements with respect to [5] and [7] are seen for the giraffe
and applelogo classes since we efficiently account for object deformation. Our
method is more robust to false positives. The false positives are systematically
filtered out at each step of our multi stage approach. Our cost functions are also
more comprehensive compared to [5] and [7] since they take into account various
factors such as bending energy, intra segment orientations, local scales and edge
strength. The computational cost is also quite low (9-10 seconds on an average).
We also measure how accurately the output shapes differ from the true object
boundaries in a manner similar to [7]. Our method performs quite well in this
respect achieving an average error rate of about 2% on the ETHZ dataset.

Table 1. Comparison of detection rates of objects at 0.4 FPPI / 0.3 FPPI and accuracy
at 0.4 FPPI

Apple Bottle Giraffe Mug Swan

Ferrari et al. [5]: 72.7/56.8 90.9/89.1 68.1/62.6 81.8/68.2 93.9/75.8
Ferrari et al. [7]: 86.4/84.1 92.7/90.9 70.3/65.9 83.4/80.3 93.9/90.9

our system : 97.7/95.5 92.7/90.9 93.4/91.2 95.3/93.7 96.9/93.9
accuracy: 1.2 2.1 2.3 2.9 1.8

5 Conclusion

In this paper, an efficient multi-stage approach to object recognition in real,
cluttered images that is robust to scale, rotation and intra class variability is
presented. Shape information from simple model sketches is used to localize ob-
jects and detect their contours. Experiments confirm that k-segment grouping
together with centroid boosting can localize the objects accurately in an image.
Finally the object contours are extracted in the fine matching stage using a com-
prehensive score and dynamic programming. Separation of the matching into two
stages allows us to detect objects fast while maintaining accuracy and matching
of only k-segment groups initially allows to detect objects that may be partially
occluded or cluttered. Thus, the method handles local scale variations, bending
deformations, clutter, multiple object instances and rotations of the object in
an efficient manner and achieves results that are quite promising. Future work
would involve combining other object properties like color and texture along
with edge information to detect objects.
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