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Abstract

Determining the correspondence of image patches is one
of the most important problems in Computer Vision. When
the intensity space is variant due to several factors such as
the camera gain or gamma correction, one needs methods
that are robust to such transformations. While the most
common assumption is that of a linear transformation, a
more general assumption is that the change is monotonic.
Therefore, methods have been developed previously that
work on the rankings between different pixels as opposed
to the intensities themselves. In this paper, we develop a
new matching method that improves upon existing methods
by using a combination of intensity and rank information.
The method considers the difference in the intensities of
the changed pixels in order to achieve greater robustness
to Gaussian noise. Furthermore, only uncorrelated order
changes are considered, which makes the method robust to
changes in a single or a few pixels. These properties make
the algorithm quite robust to different types of noise and
other artifacts such as camera shake or image compres-
sion. Experiments illustrate the potential of the approach
in several different applications such as change detection
and feature matching.

1. Introduction

Determining the correspondence of image patches is one
of the most important problems in Computer Vision, with
applications to stereo matching, change detection, optical
flow, image registration etc. In many of these applications,
such matching has to be performed under many possible
intensity changes occuring due to the change in camera gain
and offset, gamma correction, illumination changes etc.

In order to achieve invariance to such factors, most meth-
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ods assume a linear transformation model such that the
same change in the illumination in different nearby pix-
els or color components creates the same proportion of
change in the intensity observed at these pixels. Nor-
malized cross-correlation is one such commonly consid-
ered distance measure between two image patches that
is invariant to a linear change in intensity. More com-
plex methods utilize a variety of different filters and tech-
niques in order to achieve invariance to a linear intensity
change[15, 12, 2, 5, 7, 8, 16, 18, 19, 17]. The normaliza-
tion can also be performed in the spectral space by methods
such as normalized color, including its variations that utilize
a robust matching technique[10].

However, it is well-known[1, 21, 6] that many image
transformations are non-linear in nature: gamma correc-
tion causes non-linearity, the camera response function is
not linear near saturation and low-light, small specular re-
flection or dust/rain/snow peckles can change some pixels,
and different parts of an object may be illuminated differ-
ently. One method that has been considered to handle such
changes in the visual space is that of mutual information[20]
that can handle a complete change in the image intensities.
While such an approach can be used[14], the most restric-
tive assumption that is able to handle the actual image trans-
formation should be used for best performance. An assump-
tion that is more appropriate in many circumstances is that
the changes are monotonic. Many methods have utilized
this assumption in order to achieve techniques that are more
robust under these more general changes. Most of these
methods transform the feature space such that only the “or-
der” of a particular pixel in relation to its neighbors is con-
sidered. The census transform[22] looks at all the neighbors
of a given pixel and creates a vector from the order of this
pixel with respect to the neighbors. Image matching can
then be performed by correlation in this transformed space.

Bhat and Nayar[4] improved upon such measure by a
carefully designed distance between two rank permutations.
While a single pixel error can cause disproportionate error
in the census algorithm, this method counts such changes
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only once. Thus, their method is more robust to random
pixel changes due to specularities, camera shake and salt
and pepper noise.

While such approaches are robust to monotonic changes
in the intensity and are relatively stable against random
changes in the signal, the presence of Gaussian noise can
severely deteriorate the performance of such methods. The
reason is that, under Gaussian noise, there is a high proba-
bility of an order flip when the intensities of the two pixels
are close to each other.

In this paper, we develop a new image matching method
that improves upon such methods by using a combination
of intensity and rank information in order to achieve greater
robustness to Gaussian noise while maintaining invariance
to monotonic intensity changes. The method looks at rank
changes amongst n pixels in a patch. A change of order
between pixels that are far from each other (in intensity) is
given a greater ’penalty’ compared to an order change be-
tween “closer” pixels. This makes the method relatively sta-
ble to Gaussian noise. Furthermore, while Cn

2 orders (and
possible order changes) exist between n pixel variables, we
develop a novel technique to choose only the most represen-
tative order changes without “double counting” the changes
occuring due to an error in a single pixel. This property
enables the algorithm to be robust to salt and pepper noise,
camera shake and specular reflections. Experiments illus-
trate the improvement achieved by the algorithm compared
to prior approaches.

2. Designing a Robust Change Measure

As noted above, invariance to a monotonic intensity
transformation is a desirable property of a robust matching
method. Monotonicity in the observations implies that the
order of such observations is still maintained. Thus, one can
use this property in order to develop a measure of change
that detects changes in such order information.

Methods exist in the literature that utilize such order
information in order to determine changes[4, 3, 22, 11].
These methods first transform the original patch into a rank
space that only considers the rankings between pixels. Mea-
sures are then developed to determine changes between two
patches based on a change in the rankings.

When the two patches have n pixels each, there are
Cn

2 different pairs, among which one can compute an or-
der change. Traditional methods such as Spearman’s ρ and
Kendall’s τ [13, 9]have looked at measures that compute an
order change among all such pairs, and determine a score
for a rank change based on some kind of average, or pro-
portion of the rankings that undergo a change. Such mea-
sures, however, severely penalize change in even a single
observation and count all the possibly n order changes due
to a single pixel even though such changes are correlated.
such measures are not too robust, and In order to address

this drawback, Bhat and Nayar[4] proposed a method that
is relatively invariant to such changes. They devise a clever
method to count, for each pixel, the number of elements less
than it that are out of position and determine the maximum
of such count over all pixels. This method counts one pixel
change only once and works fairly well in practice.

However, while such methods are very robust to mono-
tonic changes and are designed to be pretty robust to random
pixel changes (the so-called salt and pepper noise occuring
due to the camera, dust particles, rain, snow, specular re-
flections etc.), they are not very robust to Gaussian noise
since even a small amount of Gaussian noise can completely
change the rankings between pixels that are not far from
each other in intensity. Such drawback occurs since they do
not consider the actual intensities at all during the matching
process. Therefore, one property of a desired algorithm is
that the change measure should be a function of the differ-
ence between the pixels that undergo an order change, mea-
suring a higher change as such difference increases. In this
paper, we develop a strategy that yields a change measure
that is robust to such small changes in the input data, while
also maintaining most of the advantages of such order-based
methods.

3. Our Change Measure

Let I1 and I2 be two windows that are to be compared.
Then, let πi

1 be the rank of Ii
1 among the I1 data, and πi

2 be
the rank of Ii

2 among the I2 data. Let us consider a class
of sets Sc where any set S ∈ Sc consists of a set of (i, j)
indices, where i and j represent the i-th and j-th elements
of windows I1 and I2:

S ⊂ {(i, j) : i, j ∈ 1 . . . n} (1)

Now, define a flip set SFL ∈ Sc such that:

SFL = {(i, j) : Sgn(πi
1 − πj

1) �= Sgn(πi
2 − πj

2)} (2)

where Sgn signifies the sign function. In simple words,
SFL is the set of index pairs (i, j) that have their orders
flipped from one window to the other. The basic idea behind
defining this set is that it specifies all the order changes that
have occured between the two sets and can thus be used to
develop a change measure. For instance, Kendall’s τ simply
counts the number of elements in SFL. Similarly, the cen-
sus algorithm[22] and the algorithm by Bhat and Nayar[4]
derive useful measures by working on this set directly with-
out regard to the intensity values. In our algorithm, we
go beyond the rank of the elements and develop a distance
measure using the underlying intensities.

In order to do so, let us further define a distance function
f on the difference between two intensity values. Then, a
forward distance function on sets S ∈ Sc may be defined
thus:

D1
f (S) = Σ(i,j)∈Sf(Ii

1 − Ij
1) (3)
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A backward distance function D2
f (S) is defined similarly.

When applied to sets containing flipped pairs of elements,
this distance measures not the number of pairs that are
flipped, but the sum of the intensity differences between the
flipped elements. Thus, a flip in elements that are close to
each other is counted less compared to a flip in elements
that are far from each other. This property helps in making
the distance measure robust to Gaussian noise that can eas-
ily cause a flip in elements that are close to each other in
intensity. However, if this distance measure is used directly
on SFL, then the distance measure would be very sensitive
to change in even a single pixel as all pairs containing this
pixel would be counted. All such flip pairs are correlated
with each other and hence we design our detection measure
so as to avoid such double counting.

In order to achieve this property, let us define a property
which we call elemental uniqueness. Any set S with this
property has any element occuring only once (i.e. there do
not exist (i1, j1), (i2, j2) ∈ S such that i1 = i2 or j1 = j2).
Then, we define our forward distance measure as:

d1
f = max

S ⊂ SFL, and
S is elementally unique

D1
f (S) (4)

Thus, we design our measure in such a way that it max-
imizes the sum of elemental differences (according to the
function f ) among uncorrelated flipped pairs.

We then normalize the distance so obtained using the
maximum possible value of such measure since the mag-
nitude of the distance can vary significantly depending on
the amount of texture in the patch. Using the forward dis-
tance measure, a forward detection measure γ1

f may thus be
defined:

γ1
f =

d1
f

dmax1
f

(5)

where dmax1
f is the maximum possible measure of the dis-

tance and may be computed as:

dmax1
f =

n/2∑

i=1

f(Ii
1 − In−i

1 ) (6)

The backward detection measure γ2
f is defined similarly:

γ2
f =

d2
f

dmax2
f

(7)

The distances (and detection measures) from the two di-
rections are different since the intensities from the two sides
are different and even the maximal pairings that are selected
are different from the two sides. Since the orders must be
preserved from both sides, one could take the maximum of
the two detection measures max(γ1

f , γ2
f ) to determine the

change between two patches.

Figure 1. The response of the detection measure as a function of
the texture and noise levels. The experiments were conducted on
random image patches and the background was perturbed by a ran-
dom multiplicative factor. Note that the discriminability of the
method goes down as a function of the texture content (dmax) of
the patch.

Another consideration, however, is that the ranking of
the side with the higher texture contrast (as measured by
dmaxf ) is more stable (the response of the detection mea-
sure to foreground and background as a function of the tex-
ture and noise is shown in Fig. 1). Hence, we found that it
is more stable to simply select the change measure from the
side with the higher texture contrast value. Thus, we define
our detection measure γf as:

γf = γ
argmax(dmax1

f ,dmax2
f )

f (8)

Furthermore, if both dmax1
f and dmax2

f are below a cer-
tain threshold, we say that the comparison is ill-defined.

4. Efficient Computation of the Detection Mea-
sure

The detection measure defined above is extremely ex-
pensive to compute in the naive fashion. For a certain class
of functions f which are interesting to us, however, this
measure can be computed very efficiently. Let us assume
that f(x) = |x|. Then, the following algorithm computes
the distance d1

f in order O(n2) time, where n is the number
of pixels in the patch.

First, consider the element e1 with rank 1 in I1 (assum-
ing that I1 is pre-sorted in ascending order). Now, we con-
sider all elements that have a rank change with this element
in the other set. Then, we find the highest ranked element
eh1 that has an order flip with this pixel. Now, it can be
shown that for both of these elements, this order flip is the
flip with the highest inter-element difference. To see this,
note that for element e1, we have found the highest - flip-
ping counterpart by construction. For the paired element
eh1 that was found, e1 is obviously the element lower than
eh1 in rank that has the highest elemental difference. The
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Figure 2. Some detection results from our algorithm on a rain se-
quence. Note that some regions are not detected as both the back-
ground and foreground are homogenous.

Figure 3. Detection Results from Bhat and Nayar[4] on the rain
sequence. Each image in this figure may be compared with the
corresponding figure in Fig. 2.
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only elements left to consider are the ones greater than it
in rank. However, if there was any element eh2 greater
than this element with which it had a flip, then that ele-
ment eh2 would have a flip with e1 element as well (since
then, rankI2(eh2) < rankI2 (eh1) < rankI2 (e1)). If this
was the case, however, we would have found eh2 during our
search for the highest element and not eh1, thus contradict-
ing the definition of eh1. Hence, for both e1 and eh1, this is
the highest difference pairing.

In the next step, we remove both these elements from
consideration so as not to repeat them (the elemental
uniqueness constraint). Then, the above step for the rest of
the element list is repeated. The sum of the elemental dif-
ferences for all such pairs thus found is the detection mea-
sure d1

f . To prove that the algorithm finds the pairings with
the highest sum of elemental differences, it is sufficient to
show that the elemental pairing (e1, eh1) must be present
in the maximal set. The rest of the proof follows by induc-
tion. To show this, suppose this pairing is not present in the
set and instead, these elements are paired with some other
elements, i.e. the pairs (e1, ei) and (ej , eh1) are present.
However, since f(x) = |x|, it can directly be seen that
f(I(eh1)−I(e1)) > f(I(ei)−I(e1))+f(I(eh1)−I(ej)) if
I(ej) > I(ei), and f(I(eh1)−I(e1))+f(I(ei)−I(ej)) =
f(I(ei) − I(e1)) + f(I(eh1) − I(ej)) if I(ei) > I(ej). In
the first case, both the pairs (e1, ei) and (ej , eh1) could be
replaced with (e1, eh1) with a higher elemental difference
value. In the latter case, one could as well select (e1, eh1)
and (ej , ei) rather than (e1, ei) and (ej , eh1) with the same
elemental difference. Thus, selecting (e1, eh1) as opposed
to (e1, ei) and (ej , eh1) can only increase the difference
value and not decrease it. Thus, by induction, one can show
that the algorithm produces the sum of the maximum ele-
mental differences d1

f . The result is also true for all func-
tions f that have a positive second derivative everywhere
(for e.g. such f(x) = x2). The proof for this more general
result is very similar to the one above.

5. Applications and Experiments

Our basic matching technique can be applied to a variety
of different applications. Here, we will illustrate our al-
gorithm with respect to two applications: change detection
and feature matching.

5.1. Change Detection

First, we applied our matching technique to the common
application of background subtraction. An image without
any objects was used as the background and all subsequent
frames were compared with this image in order to detect
foreground objects. First, we illustrate our results on an
outdoor sequence where one wants to detect moving cars
in the presence of heavy rain. The scene contains a lot of

(a)

(b)

(c)

(d)

Figure 4. Comparative results for four algorithms. (a): Normalized
Cross-correlation, (b) Census Algorithm, (c) Bhat-Nayar, and (d)
Our approach.

noise due to the falling rain, reflection of the cars on the
ground and image blur due to the weather conditions. At
the same time, the sequence was captured via an IP cam-
era that transmits JPEG images. This also introduces some
compression noise. Our algorithm worked very well on this
sequence and sample results are presented in Fig. 2. The
only places where the algorithm failed to detect were re-
gions where the foreground as well as the background were
homogenous. Failure to detect such regions is an inher-
ent drawback of all methods that are illumination invariant.
In order to improve the detection in such regions (though
breaking the illumination-invariance), it is possible to com-
pare the means of the two patches and then detect an object
if the difference of the means is above a certain threshold.
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Figure 5. Results of our algorithm on a sequence containing people
on a subway platform. Note that the light was switched on in the
right top corner of the video.

We did not use this criteria for the results in this paper.
The same sequence was then processed via three other

algorithms: normalized cross-correlation, the Census algo-
rithm [22] and the algorithm by Bhat and Nayar [4]. We
found that normalized cross-correlation and the census al-
gorithms could not detect anything at all when the thresh-
olds were set such that the false alarm rate was equal to what
we obtained for the used settings of our algorithm. Only
when the false alarm rates were very high could the two al-
gorithms detect some objects. Some sample comparative
results are presented in Fig. 4. The algorithm by Bhat and
Nayar did detect some objects with the same false alarm
rate, but the detection rate was lower than our algorithm.
The detailed results from this algorithm on this sequence
are presented in Fig. 3. This may be compared image-by-
image to Fig. 2. The presence of rain introduces some salt
and pepper noise and hence, it was expected that the nor-
malized cross-correlation would not work very well. At the
same time, there is some Gaussian noise and blur, which

would throw off the census algorithm. Bhat-Nayar appears
to be more robust to these types of noise.

Next, we show the results of our algorithm on a sequence
from a subway station, where the algorithm was used to
detect any foreground objects. The scene contains many
illumination changes due to shadows, light from the train
and camera gain changes (which can be very severe when
some object becomes very big in the scene). At the same
time, there were specularities in the scene due to the reflec-
tion of the train lights from floor and there was significant
noise in the video due to MPEG compression effects. The
method was found to be very robust to all of such illumi-
nation changes and had a high detection rate. However, as
with the previous scene, the homogenous regions are often
missed.

5.2. Feature Matching

In order to evaluate our algorithm with respect to fea-
ture matching, we took a set of test images. Then, random
patches of size 10 × 10 were selected from these images
and tested against some other random patches in order to
determine the false match (detection) rate. The same patch
was then compared against itself after adding some par-
ticular types of perturbations. This gives us the detection
rate. Since textures with low contrast cannot be compared
against each other satisfactorily, the comparisons were only
considered valid if both the compared patches had a signifi-
cant contrast. For these same valid point matches, the algo-
rithm was tested against three other matching methods: nor-
mal cross correlation, the census algorithm[22] and Bhat-
Nayar[4]. The two latter algorithms are most comparable
to ours because of their invariance to a monotonic change
and normalized cross-correlation was chosen because of its
popularity and as a representative of methods that assume a
linear intensity transformation model.

First, we applied two types of noise to the data and com-
puted the ROC curves for all the algorithms. Fig. 6 shows
the ROC curves as a function of the amount of Gaussian
noise added. Our method performed better than all the
other methods tested in this experiment. As stated ear-
lier, ranking-based methods cannot deal satisfactorily with
Gaussian noise when some pixels have intensities that are
close to each other and can cause a rank change with only
a small amount of noise. Thus, this under-performance
was expected. The underperformance of normalized cross-
correlation is perhaps due to the over-generalization of a
linear model.

On the other hand, when salt and pepper noise was added
(Fig. 7), the rank-based methods out-performed the oth-
ers. This was expected since the rank-based methods simply
count the order changes and hence have a better tolerance
to salt and pepper noise. Normalized cross-correlation per-
formed the worst, while our method was in-between the two
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(a) σ = 10 (b) σ = 20 (c) σ = 30 (d) σ = 40 (e) σ = 50
Figure 6. The ROC curves for different Gaussian noise levels. In all figures, Black with squares represents our method, Red with crosses
represents Normalized Cross Correlation, Blue with circles represents Bhat-Nayar and Green with triangles represents the Census algo-
rithm. x-axis is the false detection rate and y-axis is the correct detection rate.

(a) change = 5 % (b) change = 10 % (c) change = 15 % (d) change = 20 % (e) change = 25 %
Figure 7. The ROC curves for different percentages of random pixel changes (salt and pepper noise). The legends are the same as in the
previous figure.

types of methods.
In practice, both these types of noise are present and

hence we tested the algorithms in the presence of both types
of noise. A typical scenario was used and as expected, it
was found that our algorithm was able to outperform the
others in this scenario (Fig. 8 (a)).

We also tested the performance of the algorithms when
the images were transformed via a gain change (Fig. 8).
This is a typical scenario as the gain can change dramati-
cally due to the change in lighting, or presence of a large ob-
ject in front of the camera. In general, our algorithm worked
much better than others under a change in gain. One of the
main reasons could be that a gain change can typically cause
non-monotonicity, especially near the two ends of the inten-
sity scale, throwing off linear methods such as normalized
cross-correlation. At the same time, Gaussian noise can sig-
nificantly affect the existing rank-based methods at the two
ends of the camera range. Some sample images under such
gain change are shown in Fig.s 8 (d), (e) and (f). Note the
loss of information due to saturation and low light in several
regions. Finally, the algorithms were tested in the presence
of the common problems of camera shake and image blur.
In the presence of both Gaussian and salt-and-pepper noise,
the ROC curves obtained are shown in Fig. 9.

6. Conclusion

In this paper, we have presented a method for feature
matching that is invariant to monotonic intensity changes.
While traditional rank-based methods neglect the intensity
completely, we have found that considering the intensity as

well makes the matching more robust to Gaussian noise that
is normally present. We demonstrated the application of
the method to the problems of change detection and feature
matching. Other possible applications include illumination-
invariant stereo matching, optical flow computation and im-
age registration.
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