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Abstract. Extraction and matching of discriminative feature points in images
is an important problem in computer vision with applications in image classi-
fication, object recognition, mosaicing, automatic 3D reconstruction and stereo.
Features are represented and matched via descriptors that must be invariant to
small errors in the localization and scale of the extracted feature point, viewpoint
changes, and other kinds of changes such as illumination, image compression and
blur. While currently used feature descriptors are able to deal with many of such
changes, they are not invariant to a generic monotonic change in the intensities,
which occurs in many cases. Furthermore, their performancedegrades rapidly
with many image degradations such as blur and compression where the intensity
transformation is non-linear. In this paper, we present a new feature descriptor
that obtains invariance to a monotonic change in the intensity of the patch by
looking at orders between certain pixels in the patch. An order change between
pixels indicates a difference between the patches which is penalized. Summation
of such penalties over carefully chosen pixel pairs that arestable to small errors
in their localization and are independent of each other leads to a robust measure
of change between two features. Promising results were obtained using this ap-
proach that show significant improvement over existing methods, especially in
the case of illumination change, blur and JPEG compression where the intensity
of the points changes from one image to the next.

1 Introduction

Extraction and matching of distinctive feature points in images has been a major focus
of research in the Computer Vision community for quite some time. Such an approach
has been used in many applications such as mosaicing, classification, object recognition,
automatic 3D reconstruction and stereo matching among others. The basic idea is to
determine certain feature points in images that have certain properties that allow them
to be distinguished from other points, either in the same image or in other images.
Then, certain properties of the region around the point are used in order to transform
this region to a normalized region that should remain the same under some (affine)
transformation of the original patch. Finally, certain features are extracted from these
normalized regions which form the feature “descriptor”. These feature descriptors are
matched between two feature points to determine the similarity between them.

Many methods have been proposed in the literature for feature point extraction and
subsequent affine normalization. Popular methods include the Harris corner detector
and its affine normalization [1, 2], the Hessian-affine detector [1], ’Maximally Sta-
ble Extremal Regions’(MSER) [3], edge and intensity-extrema based detectors [4, 5]
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and a ’salient regions’ detector [6]. All of these feature point extractors have different
strengths and weaknesses and yield different number of points depending on the im-
age. An evaluation of the performance of these detectors waspresented in [7]. MSER
was consistently shown to outperform others in repeatability and matching scores using
SIFT but produced lesser number of features, while hessian-affine and harris-affine pro-
duced more features than other methods while giving good repeatability and matching
scores.

Once the features have been detected and normalized, a descriptor is determined
for matching. Popular descriptors include SIFT (Scale-Invariant Feature Transform)
[8], Shape Context [9], GLOH (Gradient Location Orientation Histogram) [10], SURF
(Speeded up Robust Features) [11], PCA-SIFT[12], differential invariants and spin im-
ages among others. A performance evaluation of these descritors was presented in [10],
where it was shown that the SIFT-based descriptors such as SIFT and GLOH perform
the best while Shape Context, which is also a based on histogram of gradients/edges,
comes quite close. More recently, Moreels and Perona [13] have reported results for
matching in 3D objects where they show the best performance for hessian-affine detec-
tor combined with SIFT for viewpoint changes and harris-affine with SIFT and hessian-
affine with Shape Context for lighting change and camera focal length change respec-
tively.

The remarkable outperformance of SIFT can possibly be attributed to the fact that
since it uses a statistical measure (histogram) of the gradients, it is relatively robust to
small errors in feature localization and normalization, and small changes in the shape
of the feature due to viewpoint or other changes. Furthermore, it normalizes the gradi-
ents which yields a method that is invariant to alinear change in intensities. However,
while this descriptor has these interesting properties, itis not invariant to a non-linear
change in intensities which often occurs in practice. This can happen, for instance, due
to gamma correction, a non-linear camera response functionespecially near saturation
and low light [1, 21, 6], small specular reflections, different illumination in different
parts of an object, and image effects such as blur and image compression.

To deal with such effects, several papers have proposed the use of orders between
pixels rather than the intensities themselves [14, 15]. These methods transform the in-
tensity space to an “order” space that captures the order of apixel with respect to its
neighbors and develops a binary pattern from such orders. Statistical matching of his-
tograms of these binary patterns has shown extremely good performance in some appli-
cations such as texture classification[15] and face recognition[16]. Although this may
be a good monotonic illumination-invariant scheme for textures and faces, the relatively
large space of the binary patterns makes it unsuitable for feature point description where
the patch size is limited. Also, the intensity information is totally lost in the process and
this can make the descriptor susceptible to Gaussian noise.Also, this gives equal weigh-
tage to high gradient and low gradient regions, which can be undesirable (SIFT gives
weightage proportional to the gradient value).

Mittal and Ramesh[17] proposed an approach that utilizes a combination of inten-
sity and order in order to develop a change measure that is more robust to Gaussian
noise and weighs higher gradients more compared to lower gradients while still main-
taining invariance to monotonic changes. However, while such a matching technique
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can be used in some applications such as stereo matching, such an approach cannot
handle errors in point localization, scale and shape changes etc. very well that is needed
in a feature matching application. In order to localize and normalize the points more
accurately so that such an approach can be used, Gupta and Mittal[18] develop a fea-
ture point detector that detects feature points at the intersection of two lines. However,
although they report quite high performance numbers, the number of features points
detected by such an approach is rather low and this approach is not suitable for many
applications where such linear structures are not present.Another work that is some-
what related to ours is that of [19] who use the idea of comparing pixel values for some
random points around a keypoint in order to drop this keypoint down a randomized tree
for recognition. They warp the keypoints in a given image in order to obtain numerous
possible patch realizations under viewpoint changes (for wide-baseline point matching)
and the problem is posed as a classification problem of a givenkeypoint in the second
image to belong to one of the keypoints in this (first) image.

In this paper, we present a new feature descriptor that obtains invariance to a mono-
tonic change in the intensities while at the same time works with any of the feature
detectors used in the literature. We look at orders between certain pixels in the patch
and the feature descriptor consists of point pairs. A penalty is awarded if there is an
order change for a point pair between the two patches and suchpenalties for different
pairs are summed in order to determine the “difference” between the two features. The
point pairs have the property that the points in the pair are relatively stable in their inten-
sity order with respect to both intensity noise and localization error. In order to obtain
invariance to Gaussian noise, the points in a pair are chosensuch that they have a certain
minimum difference between their intensities. On the otherhand, robustness to changes
in the scale and localization of the feature point is obtained by picking point pairs such
that moving the points a certain distance in their neighborhood does not change the or-
der of the intensities of the pair. Furthermore, we allow a point to repeat only a certain
number of times in the pairs in order to improve the independence between the different
point pairs. Two features are matched by comparing the orders of the pixel pairs. The
method was found to be extremely robust and on a standard dataset, it yielded results
that are significantly superior to currently used methods. This makes the method highly
suitable for many applications.

2 Basic Goals of Our Feature Matching Approach

We have several goals for feature comparison. First, the approach must be invariant to
a monotonic change in the intensities. Second, it must be robust to noise in the pixel
intensities as well as feature point localization and distortion. Third, the method must
be reasonably efficient. Towards these goals, we extract certain point pairs for which
the order will be tested across the feature points. Such points must have the following
properties:

1. They must have a minimum intensity difference between them. This is needed so
that the order between these pixels does not change with someamount of noise in
the pixel intensities.



4 SMD: A Locally Stable Monotonic Change Invariant Feature Descriptor

2. The order between these pixels should not change if there is some error in the
localization of these points.

3. The different point pairs must not repeat the same points too many times so that the
tests for the different point pairs are more or less independent of each other.

Computation of optimal points according to all of the above criteria appears diffi-
cult. However, we show that it is possible to do so quite efficiently using the concept of
extremal regions and distance transforms. This is discussed next.

3 The Feature Descriptor

3.1 Computation of Extremal Regions

The first step in our algorithm is the computation of extremalregions. Extremal regions
are regions that have intensities above or below a given threshold. Given that the points
in the point pairs must have a given difference of intensityδI between them, we compute
extremal regions with two thresholdsT1 andT2 such thatT1 − T2 = δI :

R
+ = Thresh+(I, T1)

R
− = Thresh−(I, T2)

whereThresh+(I, T ) is the set of all points in the ImageI that are above a given
thresholdT andThresh−(I, T ) is the set of all pointsI belowT .

Such regions are computed over a range of values ofT1 (T2 is determined automat-
ically asT1 − δI ). As pointed out by Matas et.al. [3], the set of all extremal regions can
be computed in timeO(n log log n) wheren is the number of pixels in the image, using
methods based on the union-find algorithm[20].

As should be obvious, all points inR+ are greater than all points inR− by atleast
an intensity difference ofδI . The next step is to find points inR+ andR− that are as far
as possible from the boundaries. This will ensure that the points are stable with respect
to localization errors.

3.2 Computation of Point Pairs

Given a pair of extremal regionsR+ andR−, we wish to compute points that are as far
as possible from the boundaries of these regions. This can bedone quite efficiently using
the distance transform. We use the one based on the Euclideandistance measure[21].
Points that have high distances from the boundaries are selected as possible candidates
and points fromR+ are matched with points fromR−. Once a pair is selected for a
given region pair, we do not want to select points close to these points. To obtain this
behavior, we mark the selected points themselves as boundary points so that the points
that are selected next are those that have the largest distance not only from the original
boundaries but from the already selected points as well. This procedure is repeated till
we cannot obtain points that have a certain minimum “distance” from the boundaries.

The above mentioned procedure yields a set of points for a given extremal region
pair (R+,R−) obtained at a certain thresholdT1. This procedure is repeated for different
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Fig. 1. An Example of pair extraction at different levels. First column shows the extracted ex-
tremal regions where the brighter gray is the “Min” extremalregion, darker gray is the “Max’
extremal region and black are the boundary points. The second and third columns show the ex-
traction of some points in the min and max regions respectively, super-imposed on the original
patch. Finally, the last column shows the pairs formed at each level, again super-imposed on the
original patch. These are combined by throwing away pairs having common points in order to
obtain the final pairs shown in Fig. 2.

values ofT1 (For the experiments in this paper, we have used25 such values ranging
from 10 to 240 at a gap of10 each.). Now, given the set of point pairs obtained from all
of the above mentioned steps, we select the most stable ones based on the “distance”
value associated with the points as per the distance transform. The minimum of the
distance values of the two points in a pair is taken as thestability factor for that pair.
Now, using a greedy approach, we simply select the most stable point-pairs one by
one while taking care that any one point in the patch does not have too many close-by
points in the already existing point-pairs (For the experiments in this paper, we allow
a point to be taken a maximum of 3 times for building the point pairs). This is done
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Fig. 2. An Example of pairs extracted in a patch.

to ensure some independence between the different point pairs and to allow the pairs
to spread out in the patch so as to obtain discriminability. The above procedure can
be done quite efficiently by again using a distance transformimage taking the selected
points as the model points. The output of this procedure is a set of point pairs along
with their stability factors. Features which do not producea certain minimum number
of stable pairs are thrown out as being unreliable for matching. This set of extracted
point pairs, thus, forms our feature descriptor.

Fig. 1 shows the above process on an image patch, where the different rows show
the computation of the extremal regions and point pairs at different thresholds. These
are combined in the end in order to obtain the final point pairsshown in Fig. 2.

It is not hard to see that our algorithm yields a reasonably good set of pairs that
is also optimal in a certain sense. Suppose there exists a point pair such that a spatial
perturbation of the points in the pairand some point-wise noise in the intensity values
of the pixels does not lead to an order change. Suppose the maximum value of change
in the intensity of each pixel is∆I and the spatial perturbation possible isδx. Then, if
our thresholding levels were continuous andδI approximately two times∆I, then this
point pair will be observed by our method with a stability factor of atleast∆x when the
thresholds are set such that the lower threshold value is slightly higher than the lower
intensity point and the higher threshold value is just belowthe higher intensity point.
Our algorithm simply tries to pick point pairs from such set that are the most stable and
more or less independent, while capturing as much of the patch structure as possible.
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4 Matching

Given the feature descriptor, we now describe how one may match any two features.
For each of the features, we have a set of points pairs along with their stability factors
{(p1

i
, p2

i
, si), i = 1 . . . n}. For these point pairs, we test if the order of the pixels has

changed in the other patch. Then, we simply calculate a weighted sum of the order flips,
giving each point pair a weight that depends on its stabilityfactor. Since higher stability
points are very important for stable matching and should be given a higher weightage
(recall that the stability factor is the minimum distance that any of the two points has
to move in order to possibly have an order flip), we propose using the square of the
stability factor (s2) as the weight for a pair that has stability factors. The pairs from
both the feature points are combined in order to obtain the final weighted matching
score:

M =
Σn

i=1s
2
i
sgn(Io(p

1
i
) − Io(p

2
i
))

Σn

i=1
s2

i

(1)

whereIo(p) is the intensity of pointp in the patch “other” than the one in which the
point pair was computed (i.e. if the pair was computed in the first patch, thenIo is the
intensity in the second patch and if the pair was computed in the second patch, thenIo

is the intensity in the first patch).sgn is thesign function:

sgn(x) =







1 if x > 0
0 if x = 0
−1 if x < 0

(2)

We assume in Eq. 1 that the pair(p1
i
, p2

i
, si) is stored such that the first point has higher

intensity than the second in the original patch in which thispair was computed. We also
note here that as opposed to many other methods where only thefeature descriptors are
matched directly, we also use the underlying image patches for comparison.

5 Results and Experiments

We tested our algorithm on the standard dataset from the evaluation papers of Mikola-
jczyk and Schmid [10] and Mikolajczyk, Tuytelaars et. al. [7]. In [10], different feature
descriptors are evaluated for changes in scale, rotation, viewpoint (affine transforma-
tion), blur, jpeg compression and illumination. GLOH and SIFT performed better than
others and almost similar to each other, while Shape Contextcame quite close. Most of
the experiments were done using the Harris-affine and Hessian-affine feature detector
since these detectors give the most number of points. It was also stated that the rela-
tive performance of different descriptors remains almost the same for different feature
detectors.

We follow the approach of this paper in order to evaluate our descriptor by plot-
ting the recall vs. 1 - precision. This is similar to anROC curve. Recall is the number
of the correct matches found divided by the total number of correct matches present
while precision is the number of correct matches found divided by the total number of
matches found by the descriptor. The curve is obtained by varying the threshold for each
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Fig. 3. Comparison of our matching approach with SIFT for differentamounts of illumination
change (leuven) using the Harris-Affine and Hessian-Affine detectors. The amount of lighting
change increases from (a) to (e) with (e) having lighting change of approximately 60%. The
number of correct correspondences existing in the images were: 3902 and 2205 for Hessian-
Affine and Harris-Affine respectively for (a), 2952 and 1511 for (b), 2453 and 994 for (c), 1777
and 668 for (d) and 1197 and 299 for (e). The images in this standard dataset may be obtained
from http://www.robots.ox.ac.uk/ vgg/research/affine.



SMD: A Locally Stable Monotonic Change Invariant Feature Descriptor 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Precision

R
ec

al
l

Our Method : Hessian−Affine
Sift : Hessian−Affine
Our Method : Harris−Affine
Sift : Harris−Affine

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Precision

R
ec

al
l

Our Method : Hessian−Affine
Sift : Hessian−Affine
Our Method : Harris−Affine
Sift : Harris−Affine

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Precision

R
ec

al
l

Our Method : Hessian−Affine
Sift : Hessian−Affine
Our Method : Harris−Affine
Sift : Harris−Affine

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Precision

R
ec

al
l

Our Method : Hessian−Affine
Sift : Hessian−Affine
Our Method : Harris−Affine
Sift : Harris−Affine

(c) (d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Precision

R
ec

al
l

Our Method : Hessian−Affine
Sift : Hessian−Affine
Our Method : Harris−Affine
Sift : Harris−Affine

(e)

Fig. 4. Comparison of the performance of our method with SIFT for different amounts of im-
age blur (Bikes) using the Harris-Affine and Hessian-Affine detectors. The amount of blurring
increases from a values of 2 to 6 in plots (a) to (e). The numberof correct correspondences exist-
ing in the images were: 4150 and 2372 for Hessian-Affine and Harris-Affine respectively for (a),
4127 and 2253 for (b), 3147 and 1827 for (c), 2548 and 1478 for (d) and 1640 and 888 for (e).
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Fig. 5. Comparison of the performance of our method with SIFT for different amounts of JPEG
compression (ubc) using the Harris-Affine and Hessian-Affine detectors. The compression ratios
for the different plots are (a) 60 %, (b) 80 %, (c) 90 %, (d) 95, %and (e) 98 %. The number
of correct correspondences existing in the images were: 10876 and 4053 for Hessian-Affine and
Harris-Affine respectively for (a), 10751 and 3939 for (b), 10492 and 3548 for (c), 9243 and 2699
for (d) and 8043 and 2565 for (e).
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Fig. 6. Comparison of the performance of our method with SIFT for different amounts of
affine/viewpoint changes (graffiti) using the Harris-Affineand Hessian-Affine detectors. The
viewpoint change angle for the different plots are approximately (a)20o, (b) 30

o, (c) 40
o , (d)

50
o, and (e)60o. The number of correct correspondences existing in the images were: 504 and

228 for Hessian-Affine and Harris-Affine respectively for (a), 497 and 214 for (b), 398 and 191
for (c), 219 and 107 for (d) and 135 and 73 for (e).
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descriptor. As in [10], we show results using only the Harris-affine and Hessian-affine
feature detectors. Since we throw out some features as beingunreliable for matching,
the set of feature points that we use is a subset of the total feature points extracted. The
reduction in feature points is approximately 50% for all theimages combined, although
it varies for different images. All comparisons are done using this reduced set of feature
points1. Also, since the performance of different histogram-basedapproaches has been
shown to be quite similar to each other by several authors, weonly compare our method
with SIFT in this paper.

Fig.s 3-6 show the results of our algorithm on the different images of the dataset
provided and used by [10] and [7]. In Fig. 3, we show comparative results as a function
of illumination changes, while Figs. 4 and 5 show the resultsas a function of image blur
and compression. Finally, in Fig. 6, we show the performanceas a function of affine
transformation. In all of these plots, we have shown the results using both Harris-affine
and Hessian-affine.

As can be seen from the plots, we improve substantially compared to SIFT on im-
ages which had a substantial transformation in the intensity values of the pixels. This
happens not only under illumination changes but also when there is an image blur or
compression. Since SIFT can only do a linear correction in the intensities, our out-
performance on such images is not surprising. Even though blur and image compression
do not exactly follow a monotonic change transformation model, they do not deviate far
from such a model. Furthermore, since the points pixed for testing by our method are
stable and hence lie away from points whose blurring or compressioneffects could
cause an order flip, such image degradations do not affect us substantially. Our perfor-
mance under viewpoint changes was slightly better than SIFTfor Hessian-affine and
almost the same as SIFT for Harris-affine points and we do not seem to have any par-
ticular advantage in this case.

It was also observed that the performance gap between our method and SIFT was
larger for Hessian-affine points as compared to Harris-affine points. This could be due to
the higher localization accuracy of Hessian-affine as notedby several previous authors.
This helps our method more compared to SIFT as histogram-based approaches can
handle more localization error as compared to our approach.On the other hand, if the
feature point is localized relatively well, then we are ableto get more discriminative
structural information than just a statistical measure of the gradients in different regions.
This, along with our invariance to a monotonic change in intensities, probably explains
the superior performance of our approach compared to SIFT when the patches are better
localized. A drawback of our approach, on the other hand, is that we are not able to
obtain many stable points on patches that have very high frequency gradient changes.
On such kind of patches, histogram-based methods would probably give better results.

6 Conclusion

We have presented an approach for feature description and matching that is invariant
to a monotonic change in intensities while being robust to Gaussian noise and errors

1 The degradation in performance of the method without using this feature reduction is around
10% for our method and around 5% for SIFT
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in feature localization and normalization. The method can be implemented quite effi-
ciently since it depends on the fast algorithms that are available for extremal region
extraction and distance transform computation. We obtained a significant improvement
in performance compared to existing techniques such as SIFTon a standard dataset,
especially in cases where there is a substantial transformation in the pixel intensities.
Thus, the method holds great promise for many applications of feature matching such
as image classification, object recognition, mosaicing and3D reconstruction.
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