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Abstract. Extraction and matching of discriminative feature poimtsimages

is an important problem in computer vision with applicaidn image classi-

fication, object recognition, mosaicing, automatic 3D restouction and stereo.
Features are represented and matched via descriptors tisathe invariant to

small errors in the localization and scale of the extractedure point, viewpoint
changes, and other kinds of changes such as illuminati@gémompression and
blur. While currently used feature descriptors are ablesta @iith many of such

changes, they are not invariant to a generic monotonic eanthe intensities,

which occurs in many cases. Furthermore, their performalecgades rapidly
with many image degradations such as blur and compressierevthe intensity

transformation is non-linear. In this paper, we present\va feature descriptor
that obtains invariance to a monotonic change in the intgmdithe patch by

looking at orders between certain pixels in the patch. Areoahange between
pixels indicates a difference between the patches whichnalized. Summation
of such penalties over carefully chosen pixel pairs thastable to small errors
in their localization and are independent of each otherdéad robust measure
of change between two features. Promising results werengataising this ap-

proach that show significant improvement over existing io@sh especially in

the case of illumination change, blur and JPEG compressharevthe intensity

of the points changes from one image to the next.

1 Introduction

Extraction and matching of distinctive feature points iragas has been a major focus
of research in the Computer Vision community for quite soimet Such an approach
has been used in many applications such as mosaicing fitassn, object recognition,
automatic 3D reconstruction and stereo matching amongsthée basic idea is to
determine certain feature points in images that have ceptaiperties that allow them
to be distinguished from other points, either in the samegenar in other images.
Then, certain properties of the region around the point aelun order to transform
this region to a normalized region that should remain theesander some (affine)
transformation of the original patch. Finally, certaintigas are extracted from these
normalized regions which form the feature “descriptor”’e$a feature descriptors are
matched between two feature points to determine the sityilaetween them.

Many methods have been proposed in the literature for feqtoint extraction and
subsequent affine normalization. Popular methods inclhdeHarris corner detector
and its affine normalization [1, 2], the Hessian-affine dmtefl], 'Maximally Sta-
ble Extremal Regions’(MSER) [3], edge and intensity-extaebased detectors [4, 5]
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and a 'salient regions’ detector [6]. All of these featurénp@xtractors have different
strengths and weaknesses and yield different number otgpdapending on the im-

age. An evaluation of the performance of these detectorpwesented in [7]. MSER

was consistently shown to outperform others in repeatslaifid matching scores using
SIFT but produced lesser number of features, while hessffame and harris-affine pro-
duced more features than other methods while giving googiatapility and matching

scores.

Once the features have been detected and normalized, apdesis determined
for matching. Popular descriptors include SIFT (Scaleatiant Feature Transform)
[8], Shape Context [9], GLOH (Gradient Location Orientatidistogram) [10], SURF
(Speeded up Robust Features) [11], PCA-SIFT[12], diffegaéimvariants and spin im-
ages among others. A performance evaluation of these t@sasias presented in [10],
where it was shown that the SIFT-based descriptors suchFas&Id GLOH perform
the best while Shape Context, which is also a based on ha&togf gradients/edges,
comes quite close. More recently, Moreels and Perona [13} heported results for
matching in 3D objects where they show the best performardedssian-affine detec-
tor combined with SIFT for viewpoint changes and harrispaffivith SIFT and hessian-
affine with Shape Context for lighting change and cameral flecgth change respec-
tively.

The remarkable outperformance of SIFT can possibly bebatd to the fact that
since it uses a statistical measuhesiogram) of the gradients, it is relatively robust to
small errors in feature localization and normalizationd amall changes in the shape
of the feature due to viewpoint or other changes. Furtheeribnormalizes the gradi-
ents which yields a method that is invariant traar change in intensities. However,
while this descriptor has these interesting properties, it invariant to a non-linear
change in intensities which often occurs in practice. Thislsappen, for instance, due
to gamma correction, a non-linear camera response funesipeacially near saturation
and low light [1, 21, 6], small specular reflections, differdlumination in different
parts of an object, and image effects such as blur and imagpression.

To deal with such effects, several papers have proposedsthefliorders between
pixels rather than the intensities themselves [14, 15]séhmethods transform the in-
tensity space to an “order” space that captures the ordelpodfeh with respect to its
neighbors and develops a binary pattern from such ordeatistital matching of his-
tograms of these binary patterns has shown extremely gadafpgnce in some appli-
cations such as texture classification[15] and face retiogfiL6]. Although this may
be a good monotonic illumination-invariant scheme fortiegs and faces, the relatively
large space of the binary patterns makes it unsuitable &ufe point description where
the patch size is limited. Also, the intensity informatisriatally lost in the process and
this can make the descriptor susceptible to Gaussian id&®.this gives equal weigh-
tage to high gradient and low gradient regions, which canrzesirable (SIFT gives
weightage proportional to the gradient value).

Mittal and Ramesh[17] proposed an approach that utilizesngbination of inten-
sity and order in order to develop a change measure that ie nobust to Gaussian
noise and weighs higher gradients more compared to loweliggts while still main-
taining invariance to monotonic changes. However, whilehsa matching technique
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can be used in some applications such as stereo matchirtgasuapproach cannot
handle errors in point localization, scale and shape chagigevery well that is needed
in a feature matching application. In order to localize andmalize the points more
accurately so that such an approach can be used, Gupta atad] 18t develop a fea-

ture point detector that detects feature points at thesatgion of two lines. However,
although they report quite high performance numbers, thebmu of features points
detected by such an approach is rather low and this appreaudt suitable for many

applications where such linear structures are not pregemther work that is some-
what related to ours is that of [19] who use the idea of conmggpixel values for some
random points around a keypointin order to drop this keygadwn a randomized tree
for recognition. They warp the keypoints in a given imagerides to obtain numerous
possible patch realizations under viewpoint changes (fdevaseline point matching)
and the problem is posed as a classification problem of a diegpoint in the second

image to belong to one of the keypoints in this (first) image.

In this paper, we present a new feature descriptor thatmbiavariance to a mono-
tonic change in the intensities while at the same time worits any of the feature
detectors used in the literature. We look at orders betweemin pixels in the patch
and the feature descriptor consists of point pairs. A pgnalawarded if there is an
order change for a point pair between the two patches andprtdities for different
pairs are summed in order to determine the “difference” betwthe two features. The
point pairs have the property that the points in the pairelaively stable in their inten-
sity order with respect to both intensity noise and locaiaraerror. In order to obtain
invariance to Gaussian noise, the points in a pair are chagganthat they have a certain
minimum difference between their intensities. On the obtard, robustness to changes
in the scale and localization of the feature point is obtdib picking point pairs such
that moving the points a certain distance in their neighboddoes not change the or-
der of the intensities of the pair. Furthermore, we allow api repeat only a certain
number of times in the pairs in order to improve the independédetween the different
point pairs. Two features are matched by comparing the sraliethe pixel pairs. The
method was found to be extremely robust and on a standardedaiayielded results
that are significantly superior to currently used methodiés hakes the method highly
suitable for many applications.

2 Basic Goalsof Our Feature Matching Approach

We have several goals for feature comparison. First, theoagh must be invariant to
a monotonic change in the intensities. Second, it must bestab noise in the pixel
intensities as well as feature point localization and digin. Third, the method must
be reasonably efficient. Towards these goals, we extratdingroint pairs for which

the order will be tested across the feature points. Suchtpoinst have the following
properties:

1. They must have a minimum intensity difference betweemthghis is needed so
that the order between these pixels does not change with aormoent of noise in
the pixel intensities.
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2. The order between these pixels should not change if tlseserne error in the
localization of these points.

3. The different point pairs must not repeat the same padatsiany times so that the
tests for the different point pairs are more or less indepandf each other.

Computation of optimal points according to all of the aborxieeda appears diffi-
cult. However, we show that it is possible to do so quite effitly using the concept of
extremal regions and distance transforms. This is discusset.

3 TheFeature Descriptor

3.1 Computation of Extremal Regions

The first step in our algorithm is the computation of extrereglons. Extremal regions
are regions that have intensities above or below a givesttlotd. Given that the points
in the point pairs must have a given difference of intensitigetween them, we compute
extremal regions with two threshold$ and7> such thatly — 75 = é;:

Rt = Thresh™ (I, Ty)
R~ =Thresh™(I,T3)

whereThresh*(I,T) is the set of all points in the Imagethat are above a given
thresholdl" andThresh—(1,T) is the set of all pointg belowT'.

Such regions are computed over a range of valués ¢7; is determined automat-
ically asTy — dr). As pointed out by Matas et.al. [3], the set of all extrenegjions can
be computed in timé&(n log log n) wheren is the number of pixels in the image, using
methods based on the union-find algorithm[20].

As should be obvious, all points IR™ are greater than all points iR~ by atleast
an intensity difference af;. The next step is to find points iR™ andR~ that are as far
as possible from the boundaries. This will ensure that thetpare stable with respect
to localization errors.

3.2 Computation of Point Pairs

Given a pair of extremal regiori&™ andR~, we wish to compute points that are as far
as possible from the boundaries of these regions. This cdarieequite efficiently using
the distance transform. We use the one based on the Eucliigance measure[21].
Points that have high distances from the boundaries aretedlas possible candidates
and points fromR™ are matched with points froR—. Once a pair is selected for a
given region pair, we do not want to select points close tedhmints. To obtain this
behavior, we mark the selected points themselves as boupdants so that the points
that are selected next are those that have the largestcistan only from the original
boundaries but from the already selected points as wels piacedure is repeated till
we cannot obtain points that have a certain minimum “disgafrom the boundaries.
The above mentioned procedure yields a set of points forengextremal region
pair (RT,R™) obtained at a certain threshdlgl. This procedure is repeated for different
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Fig. 1. An Example of pair extraction at different levels. Firstwoin shows the extracted ex-
tremal regions where the brighter gray is the “Min” extremmagdion, darker gray is the “Max’
extremal region and black are the boundary points. The seand third columns show the ex-
traction of some points in the min and max regions respdygtigseper-imposed on the original
patch. Finally, the last column shows the pairs formed alt éael, again super-imposed on the
original patch. These are combined by throwing away paivénigacommon points in order to
obtain the final pairs shown in Fig. 2.

values ofT; (For the experiments in this paper, we have uggeduch values ranging
from 10 to 240 at a gap ofl 0 each.). Now, given the set of point pairs obtained from all
of the above mentioned steps, we select the most stable asesd lon the “distance”
value associated with the points as per the distance tnansfthe minimum of the
distance values of the two points in a pair is taken assthiality factor for that pair.
Now, using a greedy approach, we simply select the mostestadiht-pairs one by
one while taking care that any one point in the patch does aat tbo many close-by
points in the already existing point-pairs (For the experits in this paper, we allow
a point to be taken a maximum of 3 times for building the poiaitr$). This is done
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Fig.2. An Example of pairs extracted in a patch.

to ensure some independence between the different poirst ad to allow the pairs
to spread out in the patch so as to obtain discriminabilitye Bbove procedure can
be done quite efficiently by again using a distance transforage taking the selected
points as the model points. The output of this procedure ist @fspoint pairs along

with their stability factors. Features which do not prodaceertain minimum number
of stable pairs are thrown out as being unreliable for magghthis set of extracted
point pairs, thus, forms our feature descriptor.

Fig. 1 shows the above process on an image patch, where taeedifrows show
the computation of the extremal regions and point pairsfégreént thresholds. These
are combined in the end in order to obtain the final point petiavn in Fig. 2.

It is not hard to see that our algorithm yields a reasonabbydgset of pairs that
is also optimal in a certain sense. Suppose there existsna pair such that a spatial
perturbation of the points in the pand some point-wise noise in the intensity values
of the pixels does not lead to an order change. Suppose thienmaxvalue of change
in the intensity of each pixel i8] and the spatial perturbation possibl&is Then, if
our thresholding levels were continuous andpproximately two timeg\7, then this
point pair will be observed by our method with a stabilityttaicof atleastAx when the
thresholds are set such that the lower threshold valuegbtkfihigher than the lower
intensity point and the higher threshold value is just belloeshigher intensity point.
Our algorithm simply tries to pick point pairs from such detttare the most stable and
more or less independent, while capturing as much of thénsditacture as possible.
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4 Matching

Given the feature descriptor, we now describe how one maghreaty two features.
For each of the features, we have a set of points pairs alotiigtheir stability factors
{(p},p?,s;),i = 1...n}. For these point pairs, we test if the order of the pixels has
changed in the other patch. Then, we simply calculate a weiggum of the order flips,
giving each point pair a weight that depends on its stalféityor. Since higher stability
points are very important for stable matching and shouldibenga higher weightage
(recall that the stability factor is the minimum distancattany of the two points has
to move in order to possibly have an order flip), we proposegistie square of the
stability factor 62) as the weight for a pair that has stability factoiThe pairs from
both the feature points are combined in order to obtain tha fireighted matching

score: ) L )
s s2sen(Io(pl) — I (p?
A = Zie18isen( (pg) ) )
Vitys;

wherel,(p) is the intensity of poinp in the patch “other” than the one in which the
point pair was computed (i.e. if the pair was computed in tist fiatch, ther, is the
intensity in the second patch and if the pair was computelérsecond patch, thep

is the intensity in the first patchjgn is thesign function:

1 ifz>0
sgn(z)=4¢0 ifz=0 (2
—1lifz <0

We assume in Eq. 1 that the pgir} , p?, s;) is stored such that the first point has higher
intensity than the second in the original patch in which (fg@s was computed. We also
note here that as opposed to many other methods where orflyatuee descriptors are
matched directly, we also use the underlying image patavesoimparison.

5 Resultsand Experiments

We tested our algorithm on the standard dataset from the&ah papers of Mikola-
jczyk and Schmid [10] and Mikolajczyk, Tuytelaars et. al. [A [10], different feature
descriptors are evaluated for changes in scale, rotatiemjpoint (affine transforma-
tion), blur, jpeg compression and illumination. GLOH an&Sperformed better than
others and almost similar to each other, while Shape Congaxe quite close. Most of
the experiments were done using the Harris-affine and Hesdfme feature detector
since these detectors give the most number of points. It Vgasssated that the rela-
tive performance of different descriptors remains almbstdame for different feature
detectors.

We follow the approach of this paper in order to evaluate ascdptor by plot-
ting the recall vs. 1 - precision. This is similar to ROC curve. Recall is the number
of the correct matches found divided by the total number ofemd matches present
while precision is the number of correct matches found @iglidy the total number of
matches found by the descriptor. The curve is obtained byngthe threshold for each
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Fig. 3. Comparison of our matching approach with SIFT for differantounts of illumination
change (leuven) using the Harris-Affine and Hessian-Affiaeectors. The amount of lighting
change increases from (a) to (e) with (e) having lightingngfeaof approximately 60%. The
number of correct correspondences existing in the images:v8902 and 2205 for Hessian-
Affine and Harris-Affine respectively for (a), 2952 and 15bt (b), 2453 and 994 for (c), 1777
and 668 for (d) and 1197 and 299 for (e). The images in thisdsrahdataset may be obtained
from http://www.robots.ox.ac.uk/ vgg/research/affine.
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Fig.4. Comparison of the performance of our method with SIFT fofedént amounts of im-

(e)

9

age blur (Bikes) using the Harris-Affine and Hessian-Affimt¢edtors. The amount of blurring
increases from a values of 2 to 6 in plots (a) to (e). The nurabeorrect correspondences exist-

ing in the images were: 4150 and 2372 for Hessian-Affine andisiaffine respectively for (a),

4127 and 2253 for (b), 3147 and 1827 for (c), 2548 and 1478foarfd 1640 and 888 for (e).
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Fig.5. Comparison of the performance of our method with SIFT fofedént amounts of JPEG
compression (ubc) using the Harris-Affine and Hessian-Aftiatectors. The compression ratios
for the different plots are (a) 60 %, (b) 80 %, (c) 90 %, (d) 95afa (e) 98 %. The number
of correct correspondences existing in the images weref6.@8d 4053 for Hessian-Affine and
Harris-Affine respectively for (a), 10751 and 3939 for ()422 and 3548 for (c), 9243 and 2699
for (d) and 8043 and 2565 for (e).
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Fig.6. Comparison of the performance of our method with SIFT fofedént amounts of
affine/viewpoint changes (graffiti) using the Harris-Affinad Hessian-Affine detectors. The
viewpoint change angle for the different plots are apprataty (a)20°, (b) 30°, (c) 40° , (d)
507, and (e)60°. The number of correct correspondences existing in the ésmagere: 504 and
228 for Hessian-Affine and Harris-Affine respectively fo), (@97 and 214 for (b), 398 and 191
for (c), 219 and 107 for (d) and 135 and 73 for (e).
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descriptor. As in [10], we show results using only the Haafiftne and Hessian-affine
feature detectors. Since we throw out some features as baigjable for matching,
the set of feature points that we use is a subset of the t@alriepoints extracted. The
reduction in feature points is approximately 50% for allithhages combined, although
it varies for differentimages. All comparisons are don@égshis reduced set of feature
points'. Also, since the performance of different histogram-basgatoaches has been
shown to be quite similar to each other by several authorenkecompare our method
with SIFT in this paper.

Fig.s 3-6 show the results of our algorithm on the differemages of the dataset
provided and used by [10] and [7]. In Fig. 3, we show compegagsults as a function
of illumination changes, while Figs. 4 and 5 show the resasta function of image blur
and compression. Finally, in Fig. 6, we show the performaasa function of affine
transformation. In all of these plots, we have shown theltesising both Harris-affine
and Hessian-affine.

As can be seen from the plots, we improve substantially coegp@ SIFT on im-
ages which had a substantial transformation in the intgnsiues of the pixels. This
happens not only under illumination changes but also wheretfs an image blur or
compression. Since SIFT can only do a linear correction éithensities, our out-
performance on such images is not surprising. Even thouglabld image compression
do not exactly follow a monotonic change transformation edgithey do not deviate far
from such a model. Furthermore, since the points pixed firtg by our method are
stable and hence lie away from points whose blurring or compressitects could
cause an order flip, such image degradations do not affecthstamntially. Our perfor-
mance under viewpoint changes was slightly better than $FHessian-affine and
almost the same as SIFT for Harris-affine points and we doewmngo have any par-
ticular advantage in this case.

It was also observed that the performance gap between otochand SIFT was
larger for Hessian-affine points as compared to Harris-@ffwints. This could be due to
the higher localization accuracy of Hessian-affine as nbyeseveral previous authors.
This helps our method more compared to SIFT as histogramebagproaches can
handle more localization error as compared to our apprdastihe other hand, if the
feature point is localized relatively well, then we are atdeget more discriminative
structural information than just a statistical measurd&efgradients in different regions.
This, along with our invariance to a monotonic change inneites, probably explains
the superior performance of our approach compared to SIFEhwie patches are better
localized. A drawback of our approach, on the other handjas we are not able to
obtain many stable points on patches that have very higluémey gradient changes.
On such kind of patches, histogram-based methods wouldptplgive better results.

6 Conclusion

We have presented an approach for feature description atwhim@ that is invariant
to a monotonic change in intensities while being robust tosSen noise and errors

! The degradation in performance of the method without udiigfeature reduction is around
10% for our method and around 5% for SIFT
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in feature localization and normalization. The method cannplemented quite effi-

ciently since it depends on the fast algorithms that arelaai for extremal region

extraction and distance transform computation. We obtbéngignificant improvement
in performance compared to existing techniques such as 8iFT standard dataset,
especially in cases where there is a substantial transfammia the pixel intensities.

Thus, the method holds great promise for many applicatibfisature matching such
as image classification, object recognition, mosaicingZhdeconstruction.
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