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Abstract

We address the problem of multiple pedestrian tracking
in crowded scenes in videos recorded by a static uncali-
brated camera. We propose an online multiple pedestrian
tracking algorithm that utilizes group behaviour of pedes-
trians using minimum spanning trees (MST). We first di-
vide pedestrians into several groups using the agglomera-
tive hierarchical clustering, taking position and velocity of
pedestrians as features, and then we track each group, rep-
resented by an MST, with the pictorial structures method.
We also propose: (1) a method to detect and handle inter-
pedestrian occlusions using a custom trained head detec-
tor for crowded scenes, and (2) an efficient method to de-
tect newly entered pedestrians in the frame with help of a
background subtraction method. Finally, we present exper-
iments on two challenging and publicly available datasets
and show improvements on multiple object tracking accu-
racy (MOTA) over other methods.

1. Introduction and Related Work

Multiple pedestrian tracking in crowded scenes remains
an important problem in computer vision. In this paper, we
address the problem of automatically detecting and tracking
multiple pedestrians in videos recorded by a static camera.
This problem is very challenging because of the following
factors: (1) changing background, (2) varying pedestrians
appearance and inter-pedestrian occlusions, and (3) image
noise and illumination variation.

Most popular approach to solve this problem has been
tracking-by-detection [24] because of availability of fast re-
liable pedestrian detectors [12, 13]. These approaches in-
volve continuous application of pedestrian detector on every
frame and association of detections across frames. These
approaches are generally robust to changing background
and pedestrians appearance. In our work also, we use the
Histogram of Oriented gradients (HOG) [12] features and
support vector machine (SVM) classifier based appearance

model for detecting pedestrians in images.
Multiple pedestrian tracking algorithms can also be clas-

sified into two groups: online and offline. Several track-
ing algorithms use a large temporal window to store de-
tections including detections from future frames and then
perform association to get the final optimized trajectories
of pedestrians [2, 4, 18]. These algorithms are offline track-
ing algorithms and they suffer with a small delay depending
on the temporal window. On the other hand, online algo-
rithms [24, 15, 21], including ours, consider only informa-
tion available from past frames for tracking and are more
suitable for time critical applications.

Many existing online algorithms that track multiple ob-
jects are based on tracking each object individually [8, 24,
21, 3, 15]. They use an appearance model to detect hu-
mans in each frame and perform associations across frames
to get final results. The problem with these approaches is
that the output of appearance models is unreliable when a
pedestrian is occluded, and performing correct associations
in this case is very difficult. We, on the other hand, propose
an approach that relies on pedestrians group behaviour. We
propose that if some of the pedestrians are moving in a di-
rection then they form a certain structure. Hence, this gives
us extra prior to effectively track them.

SPOT method by Zhang et. al. [26] also uses a group
behaviour to track multiple objects robustly and shows
promising results where there is a common movement of
objects in the video (e.g. flower movement in presence of
wind and camera movement). However, this method as-
sumes that the objects have same size throughout the video
and all objects move together in one particular direction.
Hence, this method is hard to use for tracking multiple
pedestrians because of change in their size as they move in
the video frame and their uncertain movements in different
directions.

We, on the other hand, first divide pedestrians into sev-
eral groups and then perform group-wise tracking. To di-
vide pedestrians into different groups, we use a greedy
clustering method with our own custom metric that makes
sure that the formed groups have a particular directions and
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are compact. And for tracking, we use method similar to
SPOT [26] using the pictorial structure method [14] on the
minimum spanning tree (MST) formed with members of a
group.

Some multiple pedestrian tracking algorithm perform
occlusion handling using part based appearance models
[15, 21]. They detect which parts of pedestrians are oc-
cluded on basis of part detector scores and take necessary
steps to improve tracking. However, training and running
individual part detectors is a cumbersome task and it re-
quires a lot of extra computation during tracking. We, on
the other hand, first mark the occluded pedestrians based on
their bounding box locations and then use a simple HOG-
SVM based head detector to handle occlusions.

Our contributions are the following: (1) we propose an
online tracking algorithm that utilizes group behavior of
pedestrians using minimum spanning trees, (2) We exploit
pedestrian location and directions for clustering to divide
them into separate groups and then track each group sepa-
rately, (3) we propose a method to handle inter-pedestrian
occlusions in crowded scenes, and (4) we propose an ef-
ficient method for detection of newly entered pedestrians
parallel to tracking.

In the rest of this paper, we first present details of appear-
ance model used in our algorithm in Section 2, followed by
an overview and step by step details of our algorithm in
Section 3, and then we presents details of pedestrian entry
and exit detection method in Section 4. We later present
the computational complexity of our algorithm in Section
5, experiments, results and comparison with others on two
datasets in Section 6, and conclusion in Section 7.

2. The Appearance Model
An appearance model in any tracking system predicts

the likelihood of an object present at a particular loca-
tion in an image. We use the popular Dalal-Triggs detec-
tor’s [12] appearance model in our algorithm. This detec-
tor uses Histogram-of-Oriented-Gradients (HOG) features
to describe rectangular image patches and a linear Support
Vector Machine (SVM) classifier to predict the likelihood
of a pedestrian presence. Advantages of using HOG feature
over others are: (1) they cover orientations other than only
horizontal and vertical ones, (2) they are robust to changes
in the illumination of the tracked objects because they al-
low more variations in the appearance and shape than other
more rigid methods, and, (3) they can be summed on rel-
atively smaller image regions. Together, they make HOG
features highly sensitive to the object location in the image,
which is very useful for tracking as pedestrians move con-
tinuously. For further details, we refer the reader to [12].

Let l = [x, y, w, h] be a location in an image I , where
x, y, w, h are the x, y coordinates, width and height of an
image patch, and we are searching for a pedestrian at this

Figure 1. Box diagram describing high level description of our
tracking algorithm.

particular location. Formally, the detector response is given
by:

R(I|l) = wTφ(I|l) + bias (1)

where φ(I|l) is an HOG feature vector of the image patch,
andw, bias are an SVM weight vector and bias respectively.
The response of the SVM classifier is a real number and to
convert it to a probability response, we use Platt scaling[20]:

P (I|l) =
1

1 + exp(−R)
(2)

where P (I|l) represents the probability of the presence of a
pedestrian at a location l in the image.

3. Tracking
We propose an online tracking algorithm that tracks mul-

tiple pedestrians over time in a video. Our key idea is that
we exploit the group behavior of pedestrians through divid-
ing pedestrians into one or more separate clusters (groups),
and then we track each group separately. We divide pedes-
trians into several groups using agglomerative hierarchical
clustering taking location and velocity of pedestrians as fea-
tures, and then we track each group optimally, which is rep-
resented by an MST, with pictorial structures [14] method.

We show by experiments that exploiting group behavior
of pedestrians is advantageous for robust tracking. It en-
ables our algorithm to better predict the locations of some
of the pedestrians when they are occluded or when the im-
age is noisy. For example, let G be a group of pedestrians
Xi ∈ G, i = [1...n], and at some point of time a pedestrian
Xk ∈ G is occluded while the rest of the members of G are
visible. Since we have prior information about the group
velocity, we can predict the location of the occluded pedes-
trian Xk based on the velocities of other group members
X ⊆ G \Xk.

A brief overview of our approach is as follows. For the
first frame, we use a trained appearance model as described
in Section 2 to detect pedestrians. Then for the next few
frames, we track them individually with the help of only
the detector responses (described in Section 3.4). Then, for
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each pedestrian bounding box, once we have its history of
locations, we use Kalman filtering to predict its velocity (
Section 3.1). Subsequently, we perform clustering on the
current set of pedestrian bounding boxes and cluster them
into groups (Section 3.2). Then, we find the optimal loca-
tion of each of the group members with the method speci-
fied in Section 3.3. The occluded pedestrians are handeled
by with method described in Section 3.5. Apart from the
tracked objects, one needs to check for entry and exit events
of pedestrians (this is described in Sections 4.1 and 4.2 re-
spectively). A box diagram showing the various steps in our
algorithm is shown in Figure 1.

3.1. Velocity Prediction using Kalman Filtering

As we have fresh pedestrians in the frame, we track
them by detection with our appearance model for a few
frames Fwin, and then, for each subsequent frame, we re-
cursively compute individual pedestrian velocity using a
linear Kalman filter [16] taking all previous locations as in-
put. Then, the predicted velocity for each pedestrian is used
as input to the clustering algorithm.

We use the following Kalman filter model:

X(t) = FX(t− 1) +W (t),W ∼ N(0, Q)

Y (t) = HX(t) + V (t), V ∼ N(0, R)
(3)

where X(t) = [x, y, dx, dy]T is a state vector of position
and velocity of a pedestrian bounding box for time t, F (t) is
a state transition matrix, andW (t) is a vector containing the
process noise terms for each parameter in the state vector.
The process noise is assumed to be drawn from a zero mean
multivariate normal distribution with covariance matrix Q.
Y (t) here denotes an observation at time t, H(t) is a trans-
formation matrix that maps the state vector parameters into
the observation domain, and V (t) is a vector containing the
observation noise terms. Similar to the process noise, this
observation noise is assumed to be a zero mean Gaussian
white noise with covariance matrix R. For further details of
Kalman filtering algorithm, the reader is referred to [16].

3.2. Clustering Pedestrians into Groups

After we have velocities of moving pedestrians in video
frame, we perform clustering on them and group them into
one or more separate clusters (groups). Each group consists
of pedestrians moving in a similar direction and close to
each other. The idea is that the motion of people in a group
is most probably correlated to each other and that there is a
high chance that they will continue to move together.

We use positions and directions of pedestrians exclud-
ing their speed as features for clustering. This is because
that there is not much variation in the speed since the cam-
era is mounted on a high platform and covers only small
part of the scene. Although, pedestrians’ speed can also be

used as a feature for clustering in a scenario where there is
high variance in the speed of pedestrians belonging to same
group.

The following qualities are required for a good clustering
algorithm: (1) it should be fast (2) the maximum difference
in the directions of pedestrians in a cluster should be low,
and (3) the maximum pairwise Euclidian distance in a clus-
ter should be low.

Many clustering algorithms such as K-means take the
number of clusters (k) as input and have a high computa-
tional complexity O(nkd+1 log n), where n is number of
observations and d is the feature dimension, which makes it
unsuitable for our purpose. However, fast greedy clustering
algorithms, such as hierarchical agglomerative clustering,
run in O(n3) and are suitable for our purpose.

Hierarchical agglomerative clustering is popular in data
mining and works in a bottom up fashion. Each observa-
tion starts as a cluster and a pair of clusters is merged in
moving up the hierarchy. The merges are determined in a
greedy manner and the results of clustering are presented
using a dendrogram. There are several measures for the dis-
tance between a pair of observations, also called clustering
metric, for the purpose of clustering. The most commonly
used metric is the Euclidian metric. The choice of metric in
the clustering influences the shape of the clusters. Let ith

pedestrian have the set of features Oi = (xi, yi, di), where
xi, yi are the x and y coordinates, and di ∈ [0, 2π) is the
direction in which the pedestrian is moving. With these fea-
tures, we use the following metric to compute the distance
between any pair of observations Oi, Oj :

D(Oi, Oj) =
√

(xi − xj)2 + (yi − yj)2

+Aw(1− cos(dθ))
(4)

Here dθ ∈ (0, π) is the absolute angle difference measured
as dθ = min(|di−dj |, 2π−|di−dj |), andD(Oi, Oj) is the
distance measure between observation Oi and Oj . The first
term of this metric is Euclidian that focuses on the location
difference of the observations, and the second term denotes
the directional difference of the observations. The weight
of the direction difference is determined by the parameter
Aw.

Linkage criteria also plays an important role in cluster-
ing. It determines the distance between clusters as a func-
tion of the pairwise distance between observations. In order
to get compact clusters, inter-cluster distance should be a
function of the maximum distance between two observa-
tions of members of the two clusters. Hence, we use a max-
imum linkage criterian that takes the maximum distance be-
tween two clusters as the distance measure:

Dist(A,B) = max{D(a, b) : a ∈ A, b ∈ B} (5)

where A,B are different clusters, and a, b are the observa-
tions belonging to cluster A and B respectively. Two clus-
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Figure 2. MSTs of clusters (groups) after clustering on a sample
frame from Oxford Town Center dataset [3]. The bounding boxes
are connected with colored lines that represents the tree and the
blue lines show the direction of pedestrians.

ters are paired if the distance between them is less than a
threshold Cth.

Apart from clustered (grouped) pedestrians, there are
newly arrived pedestrians that have unknown velocity.
Those are made as singleton clusters and are tracked indi-
vidually until their velocity is estimated.

3.3. Group Tracking

After clustering, we have one or more groups of pedes-
trians moving in different directions. To track each group,
we use a method similar to SPOT[26]. We assume that the
pedestrians in a group maintain a structure in their move-
ment, and the relative movement of pedestrians of a group
is less compared to the other groups.

We represent the pedestrian bounding boxes in a group
by B ∈ V where each bounding box Bi = (xi, yi, wi, hi)
is represented by x and y coordinates, width, and height re-
spectively. Subsequently, we define a graph G = (V,E)
over pedestrian bounding boxes of a group, where E de-
notes the set of edges in the graph. The edges in the graph
can be viewed as springs that represents spatial constraints
between pedestrians. Next, we define the score of the struc-
ture C = {B1, . . . B|V |} as a sum of two terms: (1) the
appearance scores of individual group member which is the
likelihood of the image patch being the pedestrian, and (2)
a deformation score that measures how much the structure
changes in tracking from the previous to the current frame:

s(C|I,Θ) =
∑
i∈V

P (I|Bi)

−
∑

(i,j)∈E

λij

√
(xi − xj − eijx)2 + (yi − yj − eijy)2

(6)

where, P (I|Bi) is the probability of the ith pedestrian be-

ing present at location Bi which is same as defined in the
Section 2, eij = (eijx, eijy) is a vector that represents the
length and orientation of the connection between the ith and
jth pedestrians, and Θ = {w, eij} denotes the set of param-
eters.

The parameter λij decides the importance given to the
deformation between each pair of connected pedestrians.
The higher the λij , the stiffer is the constraint for the (i, j)th

pair. Then, we set this parameter depending on the proxim-
ity of pedestrians in a pair:

λij =
λ√

(xi − xj)2 + (yi − yj)2
(7)

The purpose behind this is to a allow higher deformation
between farther pedestrians than the closer ones. This fol-
lows from the observation that farther objects have lessor
correlation in the motion compared to closer ones.

The graph structure of a group plays an important role
in inference. Ideally, one should employ the fully con-
nected graph structure, but this would make the inference
intractable. Therefore, we use a minimum spanning tree
(MST) model similar to [27] as the graph structure. This
retains connections only between the closest objects. Ex-
amples of different groups MSTs that are formed after clus-
tering in a sample frame are shown in Figure 2.

Given an MST of pedestrians, we estimate the optimal
configuration of each single group by maximizing Equa-
tion 6 over configuration C. We use the pictorial struc-
ture method [14] over a tree structure to maximize the same.
This method uses dynamic programming (DP) and is exact
and very efficient. The inference on each frame can be per-
formed in linear time depending on the number of pedestri-
ans present in frame. For further details, we refer the reader
to [14].

3.4. Individual Tracking

After clustering, there may be some pedestrians that are
already detected and are not assigned to any group. We,
then, track these pedestrians individually through tracking
by a detection method similar to [2] using only their detec-
tor response. For each such Pedestrian, we search around a
neighbourhood (±deltascale and ±δpx) of its size and se-
lect the location with the maximum detector response in the
current frame. The scale step for δscale is taken to be 1.05
as used in most of the detection algorithms. This δpx neigh-
bourhood depends on the video resolution. Higher resolu-
tion requires a higher δpx because the pedestrian movement
is higher. Please note that we only run the detector in the
neighbourhood of the pedestrians and not on the full frame,
which takes much less time per pedestrian and the overall
running time is linear in the number of pedestrians present
in the frame.
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Figure 3. Our trained head detector on Coffee Break Head Orien-
tation dataset [11], a sample positive image is on the left, positive
and negative weights of the detector are in middle and right re-
spectively.

3.5. Occlusion Handling

There are several instances when one or more pedestri-
ans are occluded by other pedestrians during tracking. Oc-
clusions happen when two or more pedestrians are travel-
ling in different directions and they overlap at some point of
time. Most detection-based tracking methods fail to main-
tain consistent trajectories for occluded pedestrians and re-
sult in drifting. Hence, occlusion handling is essential for
better accuracy in tracking.

In case of overhead surveillance cameras, the general
pattern in occlusion is that the foreground pedestrian oc-
cludes the lower part of the background pedestrian, and the
head of the background pedestrian stays visible. Now, with
this pattern, we first mark the occluded pedestrians. This,
we do by comparing each pair of existing bounding boxes.
Then, if two bounding boxes overlap, the one with the lower
y coordinate is marked as the occluded pedestrian.

The full body apperance model yields bad scores for the
occluded pedestrians. However, their head stays visible. So,
we use our separately trained head detector for computing
appearance score for occluded pedestrians. This gives reli-
able location as compared to full body appearance model.
Our head detector is trained on the positive images from
the Coffee Break Head Orientation dataset [11] and random
negative images from outdoor images from [12]. We use
the same HOG features and linear SVM classifier as men-
tioned in Section 2. An example of a positive head image
with positive and negative features is shown in Figure 3.

Formally, in a graph G = (V,E), if we denote the set of
visible pedestrians by Vv and the set of occluded pedestri-
ans by Vo, then the configuration score given in Equation 6
becomes:

s(C|I,Θ) =
∑
i∈Vv

P (I|Bi) +
∑
i∈Vo

P ′(I|Bi)

−
∑

(i,j)∈E

λij

√
(xi − xj − eijx)2 + (yi − yj − eijy)2

(8)

Here P ′ is the probability score after Platt scaling [20] of

Figure 4. Bright regions contain possible new pedestrians which
are not being tracked. A newly entered pedestrian is shown with
blue bounding box.

the response of our head detector. The graph structure and
the inference method remains the same as in Section 3.3.

4. Pedestrian Entry and Exit

In our tracking algorithm, we also detect entering and
leaving pedestrians in parallel to tracking. For new pedes-
trians detection, a naive approach is to run the pedestrian
detector on full frames and include only new high scor-
ing detections that do not overlap with current bounding
boxes. However, this takes significant amount of time to
run on a full frame. We use an efficient method to detect
new pedestrians that uses background subtraction. Details
of new pedestrian detection method is given in Section 4.1.
As pedestrians move, they leave the video frame at some
point of time. We track pedestrians as soon as they enter
the frame until they leave. Details of detecting the exit of
pedestrians is given in Section 4.2.

4.1. New Pedestrian Detection

The overall idea for detection of new pedestrians is
that background subtraction [22] outputs large blob-like re-
gions where moving pedestrians are present, and we run the
pedestrian detector in the close vicinity of these regions to
get new high scoring detections.

For each foreground pixel location, we first compute its
distance from the nearest bounding box with distance trans-
form [9]. Then we reject the pixels that have less than a
minimum foreground distance df from the current bound-
ing boxes. This yields locations of foreground pixels that do
not overlap with current set of bounding boxes. Now, these
selected foreground pixels form several connected compo-
nents and are potential places where the new pedestrians
might exist. However, some of the components may be
caused by noise, and hence, we reject small components
that are less than a minimum component size dc. Then

5
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we use our human detector in the nearby areas of the se-
lected foreground region, and select only those candidates
that have a high scores and are in the local neighbourhood
dt from this foreground region. In the final step, we define a
region of interest (ROI) on the image, where we allow entry
of new pedestrians only if it is inside that ROI.

ROIentry = [30, 30, wI − wD, hI − hD] (9)

where wI , hI are the width and height of the image and
wD, hD are the width and height of the pedestrian detec-
tor. An example image showing regions where new pedes-
trians might exist is presented with high brightness regions
in Figure 4.

4.2. Leaving Pedestrian Detection

Since, we have the velocity of each moving pedestrian,
we can predict when it is going to leave the frame. Also,
the pedestrian detector will produce a good score surly till
a pedestrian is completely in the frame. However, as soon
as the pedestrian is partially out of the frame, the detector
score becomes unreliable. So, we define an ROI for the
leaving pedestrians in the image.

ROIexit = [10, 10, wI − wD, hI − hD] (10)

where wI , hI , wD, hD are same as defined in Section 4.1
We stop tracking a pedestrian as soon as its predicted loca-
tion in the next frame is out of this ROI.

5. Computational Complexity

The complexity of our tracking algorithm depends on the
following steps: (1) velocity prediction, (2) clustering, (3)
individual and group tracking (4) new pedestrian detection,
and (5) leaving pedestrian detection. For n pedestrians, all
steps in our algorithm has linear time complexity O(n) ex-
cept clustering, which isO(n3). However, the constant term
of clustering algorithm is quite small. On a single core 3.0
GHz processor with MATLAB code, it takes about 1-2 sec-
onds to process a frame of 1920× 1080 resolution.

6. Experiments

We demonstrate our online multiple human tracking al-
gorithm on the two publicly available datasets: (1) Oxford
Town Center [3], and (2) PETS 2009 L1. These datasets
have challenges such as inter-person occlusion, cluttered
background, linear and non-linear motion, and crowded
scenarios. We describe the evaluation measures used for
comparison in brief in Section 6.1, while in Section 6.2,
we present details of the specific parameters used for each
dataset, results, and comparison with other methods.

6.1. Evaluation Measures

We evaluate our tracking results with the standard
CLEAR MOT metrics [7] and detection-detection preci-
sion and recall. The standard 50% overlap criteria is
used for detection-detection precision-recall. The CLEAR
MOT metrics includes two metrics: (1) Multiple Object
Tracking Precision (MOTP) measures the precision with
which objects are located using the intersection of the es-
timated region with the ground truth region, (2) Multiple
Object Tracking Accuracy (MOTA) measures the accuracy
of the estimated object regions with the ground truth re-
gions, including false positives, false negatives, and identity
switches. For further details of these metrics, the reader is
referred to [7].

6.2. Results

Oxford Town Center Dataset [3]: This dataset has a res-
olution of 1920 × 1080 at 25 fps and has 4500 (ground-
truth) frames with an average of 16 pedestrians visible at
any time. We use the following parameters for this dataset:
frame window for Kalman filtering Fwin = 20, direction
difference weight Aw = 500, clustering cut-off threshold
Cth = 500, deformation constant λ = 0.1. For new pedes-
trians detection: minimum foreground distance df = 40,
minimum component size dc = 300, and search neighbour-
hood size dt = 100. We show and compare our results on
this dataset in Table 1.

In comparison to other methods, we get better MOTA
score. However, the MOTP score is lower. This is because
of the extra margin in the Dalal-Triggs human detector that
outputs larger bounding box than the ground truth locations.
Izadinia et. al. [15] used part-based human detector as the
appearance model for tracking, which yields tight bounding
boxes, but requires high computation for this frame size.
This is why their MOTP score is highest. Our MOTA score
is higher because of the occlusion handeling and the group
tracking. The deformation constant λ plays a very important
role for tracking occluded pedestrians. If there are many
instances of occlusion, higher value of λ gives better accu-
racy. Aw also affects the results in great extent: lower value
results in groups that includes people moving in many di-
rection and vice-versa. This affects the tracking and causes
large deformation in the tree structure over the time. Track-
ing group with people moving in a single direction results
in better accuracy. Some sample results from this dataset
are shown in the first row of Figure 5.

PETS 2009 Dataset L1: This dataset has a resolution of
756×576 and has a total of 795 frames. Annotation for this
data is provided by TUD GRIS group. We use the follow-
ing parameters for this dataset: frame window for Kalman
filtering Fwin = 10, direction difference weightAw = 500,
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Table 1. Quantitative comparison of tracking performance on Ox-
ford Town Center dataset [3] with other methods.

Method MOTP MOTA Prec. Rec.
Benfold[3] 80.3 61.3 82.0 79.0
Yamaguchi[23] 70.9 63.3 71.1 64.0
Pellegrini[19] 70.7 63.4 70.8 64.1
Zhang[25] 71.5 65.7 71.5 66.1
Leal-Taixe[17] 71.5 67.3 71.6 67.6
Izadinia[15] 71.6 75.7 93.6 81.8
Ours 65.7 76.5 87.1 70.4

Table 2. Quantitative comparison of tracking performance on
PETS 2009 L1 dataset with other methods.

Method MOTP MOTA Prec. Rec.
Breitenstein[8] 59.0 74.0 89.0 60.0
Berclaz[6] 62.0 78.0 78.0 62.0
Conte[10] 57.0 81.0 85.0 58.0
Berclaz[5] 52.0 83.0 82.0 53.0
Alahi[1] 52.0 83.0 69.0 53.0
Izadinia[15] 76.0 93.7 96.8 95.2
Ours 58.1 95.8 83.6 83.1

clustering cut-off threshold Cth = 250, deformation con-
stant λ = 1.0. For new pedestrians detection: minimum
foreground distance df = 40, minimum component size
dc = 200, and search neighbourhood size dt = 50. We
show and compare our results on this dataset in Table 2.

This dataset has low resolution images. So, we had to
retrain both appearance models, the full body and head de-
tector, on low resolution images to get better results. How-
ever, similar to the previous dataset, we get better MOTA
score than other methods, but we get lower MOTP score
because our appearance model outputs larger bounding box
than the ground truth locations. Some sample results from
this dataset are shown in the second row of Figure 5.

7. Conclusion

We proposed an online multiple pedestrian tracking al-
gorithm that utilizes group behaviour using minimum span-
ning trees (MST) and performs tracking after dividing
pedestrians into several groups. We used position and ve-
locity of pedestrians as features for agglomerative hierar-
chical clustering algorithm with our own custom metric for
clustering pedestrians into compact groups, and we used the
pictorial structures method to track each group MST opti-
mally. We handled inter-pedestrian occlusions using a cus-
tom trained head detector. Also, we proposed an efficient
method to detect newly entered pedestrians in the frame par-
allel to tracking with help of background subtraction. We
performed experiments on two challenging publicly avail-
able datasets and showed improvements on multiple object
tracking accuracy (MOTA) over other methods.
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Figure 5. Sample results from Oxford Town Center dataset [3] in first row, and from PETS 2009 L1 dataset in second row. The green
rectangles show pedestrians being tracked, the red show leaving pedestrians, the black show occluded, and the blue show newly entered
pedestrians.
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