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Abstract. We study structural properties of restricted width arith-
metical circuits. It is shown that syntactically multilinear arithmetical
circuits of constant width can be efficiently simulated by syntactically
multilinear algebraic branching programs of constant width, i.e. that
sm-VSC0

⊆ sm-VBWBP. Also, we obtain a direct characteriztion of
poly-size arithmetical formulas in terms of multiplicatively disjoint con-
stant width circuits, i.e. MD-VSC0 = VNC1.
For log-width weakly-skew circuits a width efficient multilinearity pre-
serving simulation by algebraic branching programs is given, i.e.
weaklyskew-sm-VSC1

⊆ sm-VBP[width=log2 n].
Finally, coefficient functions are considered, and closure properties are
observed for sm-VSCi, and in general for a variety of other syntactic
multilinear restrictions of algebraic complexity classes.

1 Introduction

In this paper the computational power of space bounded computation is stud-
ied in the arithmetical setting by considering arithmetical circuits of restricted
width. For such circuits several elementary questions are still left unanswered.
We are interested in the following question posed in [MR08]: can arithmetical
circuits of constant width and polynomial degree be simulated by polynomial
size arithmetical formulas ? If indeed so, this would yield an equivalence, since
a simulation the other way around follows from a construction by Ben Or and
Cleve [BOC92].

One strategy to approach the above question is to investigate under what
additional assumptions one can indeed do the simulation. Mahajan and Rao
show that every syntactically multilinear constant width circuit has an equivalent
polynomial size arithmetical formula [MR08]. However, it was left open whether
this arithmetical formula can be guaranteed to be syntactically multilinear. The
starting point of this note is the observation that, with a careful modification,
this can in fact be achieved. In other words, letting sm-VSC0 and sm-VNC1

stand for the syntactically multilinear restrictions of the arithmetical complexity
classes corresponding to poly-size constant width circuits and poly-size circuits
of O(log n)-depth, respectively, we have the following theorem:

Theorem 1. sm-VSC0 ⊆ sm-VNC1.
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Details regarding this modification will appear in the full version of this pa-
per. Theorem 1 raises the following question: is it that syntactically multilinear
constant width arithmetical circuits are equivalent to constant width syntacti-
cally multilinear branching programs? The main result of this paper is an an-
swer to this question in the affirmative. Letting sm-VBWBP stand for the class
corresponding to poly-size algebraic branching program of constant width, we
strenghten Theorem 1 as follows:

Theorem 2. sm-VSC0 ⊆ sm-VBWBP.

Syntactically multilinear circuits can be assumed without loss of general-
ity to be multiplicatively disjoint (See [MP06]). Hence it is natural to consider
enhancements to the construction underlying Theorem 2 under assumption of
multiplicative disjoinness, and also the even more stringent condition of weak
skewness (See [MP06]). The best dependence on width we obtain under the lat-
ter restriction, allowing us to conclude O(log n)-width, poly-size weakly-skew
arithmetical circuits can be simulated by O(log2 n)-width, poly-size algebraic
branching program with preservation of syntactic multilinearity. This will follow
from a careful modification of the construction given in [Jan08].

In the general world, we observe that if a given constant width circuit is
multiplicatively disjoint, then it can be depth reduced to yield a formula. To the
best of our knowledge, this is the largest chunk of the class of constant width
arithmetical circuits which are known to have equivalent formulas.

Raz established an nΩ(log n) lower bound for the syntactically multilinear for-
mula size of the permanent [Raz04], which by our main theorem is now also es-
tablished for constant width syntactically multilinear arithmetical circuits. How-
ever, the best known multilinear formula for the permanent is given by Reyser,
which is of size O(n2n) [Rys63]. Raz and Yehudayoff strenghten the lower bound

to 2nΩ(1/d)

, for constant depth syntactically multilinear formulas with product
depth d [RY08]. The latter can be simulated within sm-VBWBP, and this class
appears to be the appropriate next place in line to strenghten the nΩ(log n) bound
for the permanent. We interpret Theorem 2 as an obstacle to overcome in this, i.e.
in spite of their conceptual simplicity, syntactically multilinear bounded width
branching programs turn out to be more powerful than perhaps expected.

Following [Mal07], we study the complexity of coefficient functions of poly-
nomials. Closure properties will be observed that hold quite universally among
the syntactically multilinear circuit classes, in particular for the restricted width
classes mentioned above. Although coefficient functions are known to be VNP
hard even in the case of depth three arithmetic formula, generally syntactically
multilinear circuit classes are closed for coefficient functions. Also, we show that
if any coefficient function of a polynomial is in a syntactic multilinear class, then
so is the polynomial itself. Hence, in the terminology of [Mal07], generally a syn-
tactically multilinear arithmetic circuit class is stable for coefficient functions.

The rest of this paper is divided as follows. In Section 2 we introduce defini-
tions and notations. Section 3 contains the construction for weakly-skew circuits.
Section 4 contains a proof of Main Theorem 2. In Section 5 we study coefficient
functions. Finally, we end in Section 6 by posing several open problems.



2 Preliminaries

For integer n, [n] denotes the set {1, 2, . . . , n}. Let R be a commutative ring with
multiplicative identity 1. An arithmetical circuit C over R is a directed acyclic
graph, with nodes (called gates) with labels taken from {+,×} ∪ X ∪ R, where
X = {x1, x2, . . . , xn}. A node with in-degree zero must take its label from X or
R, depending on whether it represents and input or constant gate. C has at least
one node of out-degree zero called an output gate. Every gate in g computes a
polynomial in R[X] defined in the usual way. The polynomial computed by the
circuit is the polynomial computed by the output gate, and if C has more than
one output gate, then this is the union of all such polynomials. For a gate f ,
Var(f) denotes the subset of X of variables that appear in the subcircuit rooted
at f . A circuit is layered, if the node set can be partitioned into a sequence of
sets, called layers, with edges only between consecutive layers.

Fan-in (fan-out) of C is the maximum in-degree (out-degree) of any gate in
C. The size of C is defined as the number of gates and edges (called wires) in C.
If C has a constant fan-in then we mean size to be simply the total number of
gates. Depth of a circuit is the length of longest directed path in the underlying
graph. Width of a layered circuit is the maximum number of nodes at any layer.
A formula is a circuit, where fan-out of every gate is bounded by one. The formal
degree of a gate (degree for short) is defined inductively as follows: input gates
have degree one, and for an addition or multiplication gate it is the sum or
product of the degree of its inputs, respectively. The degree of a gate and the
degree of the polynomial computed at the gate can differ due to cancellations.

A circuit C is said to be skew, if for every multilplication gate f = g×h, one
of g or h is an input or constant gate. C is said to be weakly skew, if for every
f = g × h, either the edge (g, f) or (h, f) is a bridge in the circuit, i.e removing
the edge increase the number of weakly connected components. Further, in a
multiplicatively disjoint (MD for short) circuit, for every gate f = g × h, the
sub-circuits rooted at g and h are disjoint (as graphs). Note that MD-circuits
are generalisations of weakly skew circuits, which in turn contains skew circuits.

The following are the arithmetical circuit classes that will be used in the
next sections. These contain families of polynomials (fm)m≥1, where fm ∈
R[x1, x2, . . . , xp(m)], for some polynomial p. The measures size, width, depth,
fan-in and fan-out are all defined in terms of m.

VAC0 : poly-size, constant-depth, unbounded fan-in circuits.
VNC1 : poly-size, log-depth, constant fan-in circuits.
VF : poly size formulas.

VsSCi : poly-size, O(logi m)-width, poly-degree circuits.
VSAC1 : poly-size, log-depth, constant ×-fan-in circuits.
VP : poly-size, poly-degree circuits.

The class VNP is defined as families of polynomials (gm)m≥1, where gm =∑
b∈{0,1}q(m) fm(x, b), for polynomial q(m) and (fm)m≥1 ∈ VP.



An algebraic branching program (BP for short) is a directed acyclic graph,
where edges are labeled from X ∪ R. There are two designated nodes, s and t,
where s has in-degree zero and t has out-degree zero. We assume that a BP is
layered. Size of a BP is the number of nodes and edges in it and width is the
maximum number of nodes at any layer. Length of a BP is the number of layers in
it. Depth of a BP B equals 1+length(B). The polynomial computed by a BP P , is
the sum of weights of all s-t paths in P , where the weight of a path is the product
of all edge labels in the path. We will also consider multi output BPs, where the
above is generalized in the obvious way to several nodes t1, t2, . . . , tm existing
at the last level. Note that BPs can be simulated by skew circuits and vice
versa with a constant blow up in the width. We let VBP, VLWBP and VBWBP
stand for classes corresponding to poly-size BPs of poly, log and constant width,
respectively. Known relationships among the classes defined so far are: VAC0 ⊆
VNC1 = VF = VBWBP [Bre73,BOC92], and VBP ⊆ VSAC1 = VP ⊆ VNP
[VSBR83].

A circuit C is said to be syntactic multilinear, if for every multiplication gate
f = g×h in C, Var(g)∩Var(h) = ∅. A BP is said to be syntactic multilinear, if
on every s-t path every variable appears at most once. For arithmetical circuit
classes we add the prefix ‘sm-’ to indicate the syntactic multilinear version of
the corresponding class. For the class sSCi we drop one ‘s’ as poly bounded
degree is implied by syntactic multilinearity, i.e. we write sm-VSCi and also
MD-SCi. Known relationships are: sm-VBWBP ⊆ sm-VsSC0 ⊆ sm-VNC1 =
sm-VF ([MR08]) and sm-VBP ⊆ sm-VSAC1 = sm-VP ([RY08]).

The above results together with the main theorem of our paper lead to the
scenario as depicted in Figures 1 and 2. The main contrasting point is that
VBWBP = VNC1 ⊆ VsSC0, whereas sm-VSC0 = sm-VBWBP ⊆ sm-VNC1.

VAC0 // VBWBP = VF =
MD-VsSC0 = VNC1

//

**V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

VsSC0 // VsSC1 // VSAC1

VLWBP //

OO

VBP

OO

Fig. 1. Relationship among arithmetic classes around arithmetic formulas

3 Weakly Skew Circuits

The main objective of this section is to prove the following result:

Theorem 3. weaklyskew-sm-VSC0 = sm-VBWBP.

Lemma 1. Let C be an arithmetical circuit of width w and size s. Then there is
an equivalent arithmetic circuit C ′ of width O(w) and size poly(s) such that fan-
in and fan-out of every gate is bounded by two, and every layer has at most one



sm-VAC0 // sm-VBWBP =
sm-VSC0

��

// sm-VSC1 // sm-VSAC1

sm-VNC1 // sm-VLWBP //

OO

sm-VBP

OO

Fig. 2. Syntactic Multilinear Versions

× gate. Moreover, C ′ preserves any of the properties of syntactic multilinearity,
weakly-skewness and multiplicatively disjointness.

Proof. Let k be the bound on maximum fan-in and fan-out of C. First we can
reduce the fan-in to two by staggering the circuit and keeping copies of the gates
as and when needed. This blows up the width to 2w and size to wks. Now in a
similar manner we can ensure that the fan-out of a gate is bounded by two and
the size blow up will now be w2k2s and width will be 4w. To ensure the second
condition we need to push the gates (using staggering and dummy + gates) up
by at most 4w levels, thus making the total width 8w and size 2w2k2s. Since
k ≤ w + n and w ≤ s we have size bounded by poly(s, n). ⊓⊔

For a BP B of depth d with a single source s, we say B is endowed with
a mainline, if there exist nodes v1, v2, . . . , vd−1 reachable only along the path
s, v1, v2, . . . , vd−1, and if the labels on this path are all set to the field constant
1. We require this feature to ensure our construction builds programs with a
single source. For BPs B1 and B2, piping the mainline of B1 into the mainline
of B2 is the operation of removing the edge from the source of B2 to the first
node v of the mainline of B2, and adding an edge from the last node w of the
mainline of B1 to v.

In the following, as a typical next step we draw an edge from an output of
B1 to the source of B2. This can be from last node w, if we just want to compute
B2 or some other output in case we want to do multiplication. Note the width
of this composition is bounded by max(width(B1),width(B2)).

Lemma 2. Let C be a weakly skew circuit of width w > 1 and size s > 1 as
given by Lemma 1. Let f1, . . . , fw be the output gates of C. Then there exists an
equivalent arithmetical BP [C] of width w2 +1, length O(2ws) and size O((w2 +
1)2ws). [C] has a single start node b and and terminal nodes [f1], . . . , [fw], v and
will be endowed with a mainline ending in v. Moreover, if C is syntactically
multilinear then so is [C].

Proof. We proceed by induction on both s and w. If s = 2, the lemma holds
trivially. If w = 2, C is a skew-circuit hence can be seen as a BP of width 3 (We
also need to add a mainline hence width is 3).

Let s > 2 and w > 2 be given, and assume that C has at least 2 layers. By
induction hypothesis, the lemma holds for all circuits of size s′ and w′, where
either s′ < s and w′ ≤ w or s′ ≤ s and w′ < w.



Wlog. assume that f1 is a × gate and f2, . . . , fw are + gates. Let C ′ be the
circuit obtained by removing the output gates of C. Let g1, . . . , gw be the output
gates of C ′. Wlog. assume f1 = g1×g2, and also that the edge (g1, f1) is a bridge
in the circuit. We define subcircuits D,E and of C ′ as follows: D is obtained
from C ′ by deleting the sub-circuit rooted at g1, E is the sub-circuit rooted at
g1. Let s′ = size(C ′), w′ = width(C ′), sJ = size(J) and wJ = width(J) for
J ∈ {D,E}. Note that s = s′ + w, and sJ < s for J ∈ {D,E}.

By induction hypothesis, we have branching programs [D] and [E], both
endowed with a mainline. Let [g1], v

′ denote the output of E and [g2], . . . , [gw], v′′

denote the output nodes of [D], where v′ and v′′ are the last nodes on the
mainlines. Let [F ] be the subprogram of [D], which consists of all paths from
the source of [D] to [g2] and v′′. Construct the program [C] with output nodes
[f1], . . . , [fw], v as follows:

case 1: wE ≤ w − 1.
We compose [D] before [E] as follows:

1. For i, j ≥ 2, [gj ] has an edge to [fi] iff gj is an input to fi.
2. For input gates fi, draw an edge from v′′ to [fi] with the appropriate label.
3. Add an edge from [g2] to [f1].
4. Identify the start node of [E] with [f1] and relabel the output node of [E] as

[f1]. Pipe the mainline of [D] into the mainline of [E].
5. Stagger the nodes [f2], . . . , [fw] until the last level of the new program.

Size and width analysis: By induction hypothesis width([E]) ≤ (wE)2 + 1 ≤
(w − 1)2 + 1, and width([D]) ≤ w2 + 1, and length([E]) ≤ 2w−1size(E) and
length([D]) ≤ 2wsize(D). Now width([C]) = max{width([D]),width([E]) + w −
1} ≤ w2 + 1 and length([C]) = length([D]) + length([E)] ≤ 2wDsD + 2wE sE ≤
2wsD + 2w−1sE ≤ 2ws as s = sD + sE + w.

case 2: wE = w, and hence wF ≤ w − 1 and wD ≤ w − 1.
We compose [E] before [F ] before [D] as follows:

1. Identify [g1] with the source of [F ], and pipe the mainline of [E] into the
mainline of [F ].

2. Add an edge from v′ (last node of mainline of [F ]) to the source of [D],
3. Pipe the mainline of [F ] into the mainline of [D].
4. Alongside [D] stagger the output of [F ] (which equals [f1]).
5. For i, j ≥ 2, [gj ] has an edge to [fi] iff gj is an input to fi.
6. Finally, for input gates fi, draw an edge (v′′, [fi]) with the appropriate label.

Size and width analysis: By induction hypothesis, width([E]) ≤ w2 + 1,
width([D]) ≤ (w − 1)2 + 1. Hence also width([F ]) ≤ (w − 1)2 + 1. Observe,
width([C]) ≤ max(width([E]),width([F ]),width([D]) + 1) ≤ w2 + 1.

Now, length([C]) = length([E]) + length([F ]) + length([D]) + 1 ≤ 2wsE +
2w−1sF + 2w−1sD + 1 ≤ 2w(sD + sE) + 1 ≤ 2ws. Since size of a layered BP is
length × width we have the required size bound. If C was syntactic multilinear
to start with, then it is easy to see that so is [C].

⊓⊔



Corollary 1. weaklyskew-VSC0 = VNC1 = VBWBP.

Corollary 2. weaklyskew-sm-VSC1 ⊆ sm-VBP[width = log2 n].

Conversion to Weakly Skew: We note that it is possible to process a multiplica-
tively disjoint circuit into a weakly-skew circuit with preservation of syntactic
multilinearity.

Lemma 3. For any leveled syntactically multilinear multiplicatively disjoint cir-
cuit C of width w ≥ 1 and size s ≥ 1 such that each layer has at most one
multiplication gate, there exists a leveled syntactically multilinear weakly-skew
circuit [C] of size at most sw such that for any gate g of C, there is a gate [g]
in [C] that computes the same polynomial.

Proof. We prove the above lemma by induction on both s and w. We have two
base cases: s = 1 and w = 1. In both cases the lemma trivially holds.

Let s > 2 and w > 1 be given. By induction hypothesis, the lemma holds for
any circuit of size s′ and width w′ for which either s′ < s or w′ < w.

Case I: The output layer has addition and input gates only.
Let C ′ be the circuit C excluding the output layer. Recursively process C ′

and add the output layer back to form [C] from [C ′]. We have that size([C]) ≤
size([C ′])w + w ≤ (s − w)w + w ≤ sw.

Case II: The output layer contains a multiplication gate f .
Let C1 and C2 be the subcircuits rooted at the inputs of the multiplication

gate f . Since C1 and C2 are disjoint, one of them is guaranteed to have width at
most w − 1. Wlog. assume C1 has width at most w − 1. Let g1, g2, . . . , gm be all
gates not in C1 that take input from C1. Let D be the subcircuits formed by the
gates in C excluding C1, where any input g taken by a gi from C1 is removed.
Let sd = size(D) and s1 = size(C1). Then s = sd + s1. Recursively process D
and C1 (separately) to obtain weakly skew circuits [D] and [C1] of sizes sw

d and
sw−1
1 , respectively. Now we put back removed inputs to each of [g1], [g2], . . . , [gm]

from the appropriate gate in [C1].
The circuit we obtain from [C1] and [D] this way is almost weakly skew. The

only issue is that the adding back of original inputs from say [g] ∈ [C1] at input
[gi] can violate the weak skewness condition for [gi] and also for gates in [C1].
We resolve this by simply duplicating the subcircuit rooted at [g]. Observe that
size([C]) ≤ sw

d + m · sw−1
1 ≤ sw

d + sd · sw−1
1 ≤ (sd + s1)

w = sw.
⊓⊔

The above gives an alternative proof of sm-VSC0 ⊆ sm-VBP. Namely, by
above lemma we get that sm-VSC0 ⊆ weaklyskew-sm-VP. Next use the con-
struction from [Jan08] that shows weaklyskew-sm-VP ⊆ sm-VBP. The other
way to arrive at this is by Theorem 1. However, there the size of the resulting
BP is O(2w2

s25w). In this regard, Lemma 3 still yields a slightly better size
bound than the construction underlying Theorem 2, since there the resulting
size is O(w2sw).



4 Multiplicatively Disjoint Circuits

In this section we prove Theorem 2. In fact, we prove that multiplicatively dis-
joint circuits of constant width and polynomial size can be simulated by BPs
of constant width and polynomial size preserving the syntactic multilinearity
property. In general multiplicatively disjoint circuits are equivalent to polyno-
mial degree circuits (see [MP06]). The following theorem can be deduced from
[MR08]:

Theorem 4. MD-VSC0 = VNC1

Proof. Let C be a multiplicatively disjoint arithmetic circuit of width w and
size s. Let X = {x1, x2, . . . , xn} be the set of variables in the circuit. Construct
a new circuit by replacing jth occurence of xi by a new variable yi,j , for all
i.j. Note that C ′ is a circuit with at most ns many variables and of size s and
width w. Also, as C is multiplicatively disjoint, C ′ is syntactic multilinear in the
variables Y = {y1,1, y1,2 . . . , yn,s}. Now applying the construction of [MR08], we

get an arithmetic formula of depth O(w2 log s) and size O(2w2

s25w), but as w a
constant, we get the required formula by replacing the yi,js with xis. Now the
equivalence follows from [BOC92]. ⊓⊔

Remark 1. Note that the above theorem does not already give Theorem 2, as
the only known procedure to convert an arithmetic formula into an equivalent
bounded width branching program of [BOC92] does not preserve syntactic mul-
tilinearity (For an example see [MR08]).

We strengthen the above result by giving a direct construction of BPs from
multiplicatively disjoint circuits.

Lemma 4. C be a multiplicatively disjoint arithmetical circuit of width w and
size s as given by Lemma 1. Let f1, . . . , fw be the output gates of C. Then there
exists an equivalent arithmetical branching program [C] of width O(w2), length
O(sw), and size O(w2sw). [C] has a single start node b and and terminal nodes
[f1], . . . , [fw], v, and will be endowed with a mainline ending in v. Moreover, if
C is syntactic multilinear then so is [C].

Proof. The proof is similar to that of Lemma 2. We proceed by induction on
both s and w. If s = 2, the lemma holds trivially. If w = 1, C is a skew-circuit,
and hence can be seen as a BP of width 3 (by adding a mainline).

Let s > 2 and w > 2 be given, and assume that C has at least 2 layers.
Suppose, by induction hypothesis that the lemma holds for all circuits of size s′

and w′, where either s′ < s and w′ ≤ w or s′ ≤ s and w′ < w.
Let C ′ be the sub-circuit obtained by deleting f1, . . . , fw. Let G =

{g1, . . . , gw} be the output gates of C ′. Wlog. let f1 = g1 × g2 be the only mul-
tiplication gate at the output layer of C. Let D denote the sub-circuit rooted
at g1. Since C is multiplicatively disjoint, we have either width(D) ≤ w − 1 or
width(E) ≤ w − 1. Wlog. assume that width(D) ≤ w − 1.



Let s′ = size(C ′), sD = size(D), w′ = width(C ′), and wD = width(D). By
induction hypothesis, we obtain BPs [C ′] and [D]. [C ′] has w + 1 output nodes,
namely [g1], . . . , [gw], v. [D] has two output nodes [g′1] and v′.

Now construct the BP [C] with output nodes [f1], . . . , [fw], v by composing
[C ′] before [D] as follows: For all i ≥ 2, connect [gj ]s to [fi]s according the edges
in the circuit C, i.e edge ([gj ], [fi]) is in [C] iff gj is an input for fi. In case fi is an
input gate, draw an appropriately labeled edge from v. Put an edge from [g2] to
[f1]. Now identify the start node of [D] with [f1] and re-label the terminal node
of [D] as [f1]. Do the necessary staggerings to carry on the values f2, . . . , fw to
the last layer. We also pipe the mainline of [C ′] into the mainline of [D].

Analysis: By induction hypothesis, we have length([C ′]) ≤ s′w
′

≤ (s − w)w

as s′ = s − w and w′ ≤ w. Furthermore, width([C ′]) ≤ w′2 + 1 ≤ w2 + 1,
length([D]) ≤ swD

D ≤ (s − w)w−1, and width([D]) ≤ (w − 1)2 + 1 as sD ≤ s − w
and wD ≤ w − 1.

Now by the construction, width([C]) = max{width([C ′],width([D]) + w −
1} ≤ max{w2+1, (w−1)2+w−1} ≤ w2+1. Hence, length([C]) = length([C ′])+
length([D]) ≤ (s − w)w + (s − w)w−1 ≤ sw, for w > 2 and w < s. Hence
size([C]) = (w2 + 1)sw. It is easy to see that this construction preserves the
syntactic multilinearity property. ⊓⊔

4.1 Proof of Main Theorem 2

Given a syntactically multilinear circuit C of width w and size s, we first replace
all the wires carrying only ring constants in C by new variables (as done in
[MR08]), to get a circuit D of width wd ≤ w2 and size sd ≤ ws. Note that the
circuit D is multiplicatively disjoint. By Lemma 4 we get a syntactic multilinear
BP [D] of width w2

d + 1 and size sw
d . Now replacing the introduced variables by

the original constants they represent, we get the required syntactic multilinear
BP [C]. ⊓⊔

Remark 2. By closer inspection of how Lemma 4 deals with input gates one can
actually conclude width([D]) ≤ w2 + 1 and size([D]) ≤ O(sw) in the above.

5 Coefficient Functions

Let f be a polynomial over variables X = {x1, x2, . . . , xn}. For a monomial m
in variables from X, the partial coefficient function coef (f,m) is defined to be
the unique polynomial g for which there exists polynomial h with none of its
monomials divisble by m such that f = mg + h.

Malod studies the complexity of computing coefficient functions computed
by class of arithmetic circuits [Mal07]. From an old observation by Hammon, it
can be seen that the permanent polynomial equals coef (f, y1y2 . . . yn), where f is
given by the following depth three formula f =

∏
i∈[n]

∑
j∈[n] xijyj . In [Mal07]

it is shown that Hamiltonian polynomial can be represented as a coefficient
of a polynomial g computed by polynomial size arithmetic circuits. A closer



inspection shows that this g is actually in VBP. Thus the arithmetic circuit
classes which are at least as powerful as VAC0 can generate VNP complete
polynomials as coefficient functions, and hence the coefficient functions in general
are hard.

In the case of polynomials computed by syntactic multilinear circuits we
will prove that the situation is markedly different compared to the general case.
For a multilinear polynomial f over variables x1, x2, . . . , xn , we define coefficient
function mcoef (f, ·) by mcoef (f, a1, a2, . . . , an) = coef (f, xa1

1 xa2
2 . . . xan

n ), for any
a ∈ {0, 1}n. Corresponding to mcoef (f, ·) is a unique multilinear polynomial
g(x, e) in variables from X and E, such that for all a ∈ {0, 1}n, g(x, a) =
mcoef (f, a). Per abuse of notation we will denote this g by mcoef (f, a).

5.1 Closure Property

A syntactically multilinear complexity class sm-VC is said to be closed under
taking coefficients, if for any f ∈ sm-VC, mcoef (f, e) ∈ sm-VC. We have the
following identities: for any polynomials f and g,

mcoef (f + g, e) = mcoef (f, e) + mcoef (g, e). (1)

For polynomials f and g with Var(f) ∩ Var(g) = ∅,

mcoef (fg, e) = mcoef(f, e)[ ei := 0 for xi /∈ Var(f)] ·

mcoef(g, e)[ei := 0 for xi /∈ Var(g)] ·
∏

xi /∈Var (f)∪Var (g)

(1 − ei) (2)

For individual variables and constants µ we have mcoef (xi) = (xi(1 − ei) +
ei)

∏
j∈[n],j 6=i(1 − ej), and mcoef (µ) = µ

∏
j∈[n](1 − ej).

Theorem 5. Each of the following syntactically multilinear classes is closed un-
der taking coefficients: sm-VP, sm-VBP, sm-VNC1, sm-VSCi, sm-VBWBP, and
sm-VACi, for all i ≥ 0.

Proofsketch. For formula classes sm-VNC1 and ACi it is immediately clear how
to convert a formula Φ computing f into a formula computing mcoef (f, e) using
Equations (1) and (2). For circuits one has to ensure the substitution at a mul-
tiplication gate g = g1 × g2 using Equation (2) are consistent with other uses of
g1 and g2. This can be guaranteed by first levelling the circuit with alternating
layers of multiplication and addition gates. ⊓⊔

Consequently, we have no analogue of Hammon’s observation for the perma-
nent with f ∈ sm-VNC1 by [Raz04].

Corollary 3. Permanent (and also Determinant) cannot be expressed as a coef-
ficient of some monomial of a polynomial computed by a syntactically multilinear
arithmetic formula of polynomial size.



5.2 Stability

Following [Mal07], we say a complexity class sm-VC is stable for coefficient func-
tions, if sm-VC is closed under taking coefficients and whenever mcoef (f, e) ∈
sm-VC, then f ∈ sm-VC. For a multilinear polynomial f(x, e), let Σ(E) f de-
note

∑
b∈{0,1}m f(x, b). We say a complexity class sm-VC is closed under taking

exponential sums, if whenever f(x, e) ∈ sm-VC, then Σ(E)f ∈ sm-VC. Again
the situation is contrary to the non-multilinear case, e.g. one can obtain the
permanent as Σ(E) f , for f ∈ VNC1 [Val82], cf. [B0̈0].

Theorem 6. The following are closed under exponential sums, and hence sta-
ble for coefficient functions: sm-VP, sm-VBP, sm-VNC1, sm-VSCi, sm-VBWBP,
and sm-VACi, for all i ≥ 0.

The theorem will follow from the following straightforward proposition by
patching a given circuit at gates with constant multiplications of appropriate
powers of two. A proof will appear in the full version of the paper.

Proposition 1. Let f and g be multilinear polynomials over X and E. We have
that

Σ(E) (f + g) = 2aΣ(Var(f) ∩ E) f + 2bΣ(Var(g) ∩ E) g,

where a = |E − Var(f)| and b = |E − Var(g)|. Furthermore, if f and g are
defined on disjoint variables sets,

Σ(E) fg = 2cΣ(Var(f) ∩ E) f · Σ(Var(g) ∩ E) g,

where c = m − |Var(f) ∪ Var(g)|.

6 Open Problems

We ask the following four questions:

– Is sm-VSC1 ⊆ sm-VBP ?
– Is weaklyskew-sm-VSC1 ⊆ LWBP?
– Is VsSC0 ⊆ VBP ?
– Can we preserve width in Theorem 1 of [MP06]? If so, VsSC0 = VNC1.

Acknowledgements The second author thanks Meena Mahajan for enlightening
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