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Abstract. Polynomial Identity Testing (PIT) algorithms have focussed
on polynomials computed either by small alternation-depth arithmetic
circuits, or by read-restricted formulas. Read-once polynomials (ROPs)
are computed by read-once formulas (ROFs) and are the simplest of
read-restricted polynomials. Building structures above these, we show
the following:

1. A deterministic polynomial-time non-black-box PIT algorithm for∑(2) ·
∏
·ROF.

2. Weak hardness of representation theorems for sums of powers of
constant-free ROPs and for 0-justified alternation-depth-3 ROPs.

1 Introduction

The Polynomial Identity Testing (PIT) problem is the most fundamental com-
putational question that can be asked about polynomials: is the polynomial
given by some implicit representation identically zero? The implicit representa-
tions of the polynomials can be arithmetic circuits, branching programs etc., or
the polynomial could be presented as a black-box, where the black-box takes
a query in the form of an assignment to the variables and outputs the evalu-
ation of the polynomial on the assignment. PIT has a randomized polynomial
time algorithm on almost all input representations, independently discovered
by Schwartz and Zippel [Sch80,Zip79]. However, obtaining deterministic poly-
nomial time algorithms for PIT remained open since then. In 2004, Impagliazzo
and Kabanets [KI04] showed that a deterministic polynomial time algorithm for
PIT implies lower bounds (either NEXP 6⊂ P/poly or permanent does not have
polynomial size arithmetic circuits), thus making it one of the central problems
in algebraic complexity. Following [KI04], intense efforts over the last decade
have been directed towards de-randomizing PIT (see for instance [SY10,Sax14]).
The attempts fall into two categories: considering special cases ([Sax14]), and
optimizing the random bits used in the Schwartz-Zippel test [BHS08,BE11].

The recent progress on PIT mainly focusses on special cases where the poly-
nomials are computed by restricted forms of arithmetic circuits. They can be
seen as following one of the two main lines of restrictions: 1. Shallow circuits
based on alternation depth of circuits computing the polynomial. 2. Restriction



on the number of times a variable is read by formulas (circuits with fanout 1)
computing the polynomial.

The study of PIT on shallow circuits began with depth two circuits, where
deterministic polynomial time algorithms are known even when the polynomial
is given as a black-box [BOT88,KS01]. Further, there were several interesting
approaches that lead to deterministic PIT algorithms on depth three circuits
with bounded top fan-in [DS07,KS07]. However, progressing from bounded fan-
in depth three circuits seemed to be a big challenge. In 2008, Agrawal and
Vinay [AV08] explained this difficulty, showing that deterministic polynomial
time algorithms for PIT on depth four circuits implies sub-exponential time de-
terministic algorithms for general circuits. There have been several interesting
approaches towards obtaining black-box algorithms for PIT on restricted classes
of depth three and four circuits, see [Sax14,SY10] for further details. Recently,
Kamath, Kayal and Saptharishi [GKKS13] showed that, over infinite fields, de-
terministic polynomial time algorithms for PIT on depth three circuits would
also imply lower bounds for the permanent.

A formula computing a polynomial that depends on all of its variables must
read each variable at least once (count each leaf labeled x as reading the vari-
able x). The simplest such formulas read each variable exactly once; these are
Read-Once Formulas ROFs, and the polynomials computed by such formulas
are known as read-once polynomials (ROP). In the case of an ROP f presented
by a read-once formula computing it, a simple reachability algorithm on for-
mulas can be applied to test if f ≡ 0. Shpilka and Volkovich [SV08] gave a
deterministic polynomial time algorithm for PIT on ROPs given as a black-box.
Generalizing this to formulas that read a variable more than once, they obtained
a deterministic polynomial time algorithm for polynomials presented as a sum
of O(1) ROFs. Anderson et. al [AvMV11] showed that if a read-k formula, with
k ∈ O(1), is additionally restricted to compute multilinear polynomials at every
gate, then PIT on such formulas can be done in deterministic polynomial time.
The result by [AvMV11] subsumes the result in [SV08] since a k-sum of read-
once formulas is read-k and computes multilinear polynomials at every gate.
However, both [SV08] and [AvMV11] crucially exploit the multilinearity prop-
erty of the polynomials computed under the respective models. In [MRS14], the
authors explored eliminating the multilinear-at-each-gate restriction, and gave a
non-blackbox deterministic polynomial time algorithm for read-3 formulas. How-
ever for the case of Read-k formulas for k ≥ 4, even the non-blackbox version
of the problem is open. Note that multilinearity checking itself is equivalent to
PIT on general circuits [FMM12].

Our results: In this paper, we explore further structural properties of ROPs
and polynomials that can be expressed as polynomial functions of a small num-
ber of ROPs. Our structural observations lead to efficient algorithms on special
classes of bounded-read formulas.

We attempt to extend the class considered in [SV08] (namely, formulas of
the form

∑
i fi where each fi is an ROF) to the class of polynomials of the



form
∑k
i=1 figi where the fis and gis are presented as ROFs and k is some con-

stant. These are read-2k polynomials, not necessarily multilinear. Over the ring
of integers and the field of rationals, we can give an efficient deterministic non-
blackbox PIT algorithm for the case k = 2; the polynomial is f1f2 + g1g2 where
f1, f2, g1, g2 are all read-once polynomials presented by ROFs. This class can
also be seen as a special case of read-4 polynomials. Our algorithm exploits the
structural decomposition properties of ROPs and combines this with an algo-
rithm that extracts greatest common divisors of the coefficients in an ROP. The
algorithm easily generalises to polynomials of the form f1f2f3 · · · fm+g1g2 · · · gs
where fis and gis are presented as ROFs, but m, s can be unbounded; that is, the

class
∑(2) ·

∏
·ROF. Note that this class of polynomials includes non-multilinear

polynomials and also polynomials with no bound on the number of times vari-
ables are read. Thus it is incomparable with the classes considered in [SV08],
[AvMV11] and [MRS14]. This result is presented in Section 3, Theorem 1.

Central to the PIT algorithm in [SV08] is a “hardness of representation”
lemma showing that the polynomialMn = x1x2 · · ·xn, consisting of just a single
monomial, cannot be represented as a sum of less than n/3 ROPs of a particular
form (weakly 0-justified). More recently, a similar hardness of representation
result appeared in [Kay12]: if Mn is represented as a sum of powers of low-
degree (at most d) polynomials, then the number of summands is exp(Ω(n/d)).
As is implicit in [Kay12], such a hardness of representation statement can be
used to give a PIT algorithm. We analyze this connection explicitly, and show
that the results in [Kay12] lead to a deterministic sub-exponential time algorithm
for black-box PIT for sums of powers of polynomials with appropriate size and
degree (Section 4, Theorem 2).

A minor drawback of both these statements is that they consider a model that
cannot even individually compute all monomials. One would expect any reason-
able model of representing polynomials to be able to computeMn. In Section 5,
we consider the restriction of read-once formulas to constant-free formulas that
are only allowed leaf labels ax, where x is a variable and a is a field element.
This model can compute any single monomial. We show (Theorem 3) that the
elementary symmetric polynomial Symn,d of degree d cannot be written as a sum
of powers of such formulas unless the number of summands is Ω(log(n/d)). This
appears weak compared to the n/3 bound from [SV08], but this is to be expected
since unlike in [SV08] where the ROPs could only be added, we allow sums of
powers. We also consider 0− justified read-once formulas with alternation depth
(between + and ×) 3, and obtain a similar hardness-of-representation result for
the polynomial Mn against sums of powers of polynomials computed by such
formulas, showing that n

1
2−ε summands are needed (Theorem 4). Again, this

appears weak compared to the exp(Ω(n/d)) bound from [Kay12], but unlike in
[Kay12] where the degree of the inner functions is a parameter, our inner ROPs
could have arbitrarily high degree.



2 Preliminaries

An arithmetic formula on n variables X = {x1, . . . , xn} is a rooted binary tree
with leaves labeled from F ∪X and internal nodes labeled by ◦ ∈ {+,×}. Each
node computes a polynomial in the obvious way, and the formula computes the
polynomial computed at the root gate. An arithmetic formula is said to be read-
once (ROF) if each x ∈ X appears at most once at a leaf. Polynomials computed
by ROFs are called read-once polynomials ROPs.

It is more convenient for us to allow leaves to be labeled by forms ax+ b for
some x ∈ X and some a, b ∈ F. This does not change the class of polynomials
computed, even when restricted to ROFs. Henceforth we assume that ROFs are
of this form.

The alternation depth of the formula is the maximum number of maximal
blocks of + and × gates on any root-to-leaf path in the formula.

We say that an ROF is constant-free (denoted CF-ROF) if the labels at the
leaves are of the form ax for x ∈ X and a ∈ F \ {0}. We call polynomials
computed by such formulas constant-free ROPs, denoted CF-ROP.

For a polynomial f ∈ F[x1, x2, · · · , xn], a set S ⊆ [n] and an assignment a,
let fS→aS denote the polynomial on variables {xi : i 6∈ S} obtained from f by
setting xj = aj for j ∈ S. Using notation from [SV08], for a polynomial f , var(f)
denotes the set of variables that f depends on non-trivially. We say that f is
0-justified if for all S ⊆ var(f), var(f |S→0) = var(f) \ S.

3 Identity testing for
∑(2) ·

∏
·ROPs over Z or Q

In this section we show that PIT can be solved efficiently for formulas presented
in the form f1f2 . . . fm + g1g2 . . . gs, where each of the fi, gj is an ROF over the
field of rationals.

Theorem 1. Given Read-Once Formulas computing each of the polynomials
f1, f2, · · · , fr, g1, g2, . . . , gs ∈ Q[x1, . . . , xn], checking if f1 ·f2 · · · fr ≡ g1 ·g2 · · · gs
can be done in deterministic polynomial time.

A crucial ingredient in our proof is the following structural characterization
from [RS11,RS13] and its constructive version; this is a direct consequence of
the characterisation of ROPs given in [SV08].

Lemma 1 ([RS13]). Let f be an ROP. Then exactly one of the following holds:

1. k ≥ 1, there exist ROPs f1, . . . , fk, with var(fi) ∩ var(fj) = ∅ for all distinct
i, j ∈ [k], such that f = a + f1 + · · · + fk, for some a ∈ F, and each fi is
either uni-variate or decomposes into variable-disjoint factors.

2. k ≥ 2, there exist ROPs f1, . . . , fk, with var(fi) ∩ var(fj) = ∅ for all distinct
i, j ∈ [k], such that f = a× f1× f2×· · ·× fk for some a ∈ F \ {0}, and none
of the fis can be factorised into variable-disjoint factors.

Furthermore, ROFs computing such fis can be constructed from an ROF com-
puting f in polynomial time.



Given an ROF over Q, we can clear all denominators to get an ROF over Z,
without changing the status of the ? ≡ 0? question. So we now assume that all the
numbers a, b appearing in the ROF (recall, leaf labels are of the form ax+ b) are
integers. For a polynomial p(X), let content(p(X)) denote the greatest common
divisor (gcd) of the non-zero coefficients of p. The next crucial ingredient in our
proof is that for an ROF f , we can efficiently compute its content.

Lemma 2. There is a polynomial-time algorithm that, given an ROF f in
Z[X], computes content(f) and constructs an ROF f ′ in Q[X] such that f =
content(f) · f ′.

Proof. It suffices to show how to compute content(f); then the ROF f ′ is just
1

content(f)×f . We proceed bottom-up, or alternatively, we prove this by induction

on the structure of f .
For a polynomial p ∈ Z[X], let p̂ = p − p(0), where p(0) = p(0, . . . , 0), and

let p̂′ be the polynomial such that p̂ = content(p̂)p̂′.

If f is a single leaf node, then computing content(f) and content(f̂) is trivial.
Otherwise, say f = g ◦ h. Since f is an ROF, var(g) ∩ var(h) = ∅.
Case f = g + h: Then f̂ = ĝ + ĥ, and f(0) = g(0) + h(0). So

content(f) := gcd(content(ĝ), content(ĥ), g(0) + h(0)),

content(f̂) := gcd(content(ĝ), content(ĥ)).

Case f = g × h: Then f̂ = ĝĥ + h(0)ĝ + g(0)ĥ, and f(0) = g(0)h(0). We can
show that

Claim. For any two variable-disjoint polynomials p, q ∈ Z[X], content(pq) =
content(p)content(q).

Proof. Let p = content(p)(a1M1+a2M2+· · ·+akMk) and q = content(q)(b1N1+
b2N2 + · · · + b`N`), where Mi, Nj are monomials. By definition of content,
gcd(. . . , ai, . . .) = gcd(. . . , bj , . . .) = 1. Since p and q are variable-disjoint, every
monomial of the form content(p)content(q)(aibjMiNj) appears in the polynomial
p×q, and there are no other monomials. Hence content(p)content(q)|content(p×
q). For the converse, we need to show that gcd(S) = 1, where S = {aibj | i ∈
[k], j ∈ [`]}. Suppose not. Let c be the largest prime that divides all numbers in
S. Then, ∀i ∈ [k],

c|aib1 and c|aib2 and . . . and c|aibk.
Hence c|ai or (c|b1, c|b2, · · · , c|b`) .
Hence c|ai or c = 1, since gcd(b1, . . . , b`) = 1.

Thus we conclude that c divides gcd(a1, . . . , ak) = 1, a contradiction. ut

Using this claim, we see that

content(f) := content(g)× content(h),

content(f̂) := gcd(content(ĝ)content(ĥ), h(0)content(ĝ), g(0)content(ĥ)).

ut



Now we have all the ingredients for proving Theorem 1.

Proof (of Theorem 1). Let f = f1 · f2 · · · fr and g = g1 · g2 · · · gs As discussed
above, without loss of generality, each fi, gi is in Z[X]. Using Lemma 1 and 2,
we can compute the irreducible variable-disjoint factors of each fi and each gi,
and also pull out the content for each factor. That is, we express each fi as
αifi,1 · · · fi,ki , and each gi as βigi,1 · · · gi,`i where the fi,js, gi,js are irreducible
and have content 1. We obtain ROFs in Q[X] for each of the fi,js and gi,js. Note
that if

∑
i ki 6=

∑
j `j , then there cannot be a component-wise matching between

the factors of f and g, and hence we conclude f 6≡ g. Otherwise,
∑
i ki =

∑
j `j .

We now form multisets of the factors of f and of g, and we knock off equivalent
factors one by one. (See Algorithm 1.) Detecting equivalent factors (the condition

Algorithm 1 Test if
∏r
i=1 αi

∏ki
j=1 fi,j ≡

∏s
i=1 βi

∏`i
j=1 gi,j

1: S ← {f1,1, · · · , f1,k1 , f2,1, · · · , f2,k2 , . . . , fr,1, · · · , fr,kr}
2: T ← {g1,1, · · · , g1,`1 , g2,1, · · · , g2,`2 , . . . , gs,1, · · · , gs,`s}
3: (Both S and T are multisets; repeated factors are retained with multiplicity.)
4: for p ∈ S do
5: for q ∈ T do
6: if p ≡ q then
7: if S and T have unequal number of copies of p and q then
8: Return No
9: else

10: S ← S \ {p}. (Remove all copies).
11: T ← T \ {q}. (Remove all copies).
12: end if
13: end if
14: end for
15: end for
16: if (α1α2 · · ·αr = β1β2 · · ·βs) ∧ (S = T = ∅) then
17: Return Yes
18: else
19: Return No
20: end if

in Step 6) requires an identity test p ≡ q?, or p−q ≡ 0?, for ROFs in Q[X]. Since
we have explicit ROFs computing p and q, this can be done using [SV08]. ut

4 PIT for sums of powers of low degree polynomials

In this section, we give a blackbox identity testing algorithm for multilinear sums
of powers of low-degree polynomials.

We say that a polynomial f has a sum-powers representation of degree d
and size s if there are polynomials fi each of degree at most d, and a set of
positive integers ei, such that f = fe11 + . . . + fess . In [Kay12], it is shown that



computing the full multilinear monomialMn = x1x2 · · ·xn using sums of powers
of low-degree polynomials requires exponentially many summands:

Proposition 1. [Kay12] There is a constant c such that for the polynomial
x1x2 · · ·xn, any sum-powers representation of degree d requires size s ≥ 2

cn
d .

Shpilka and Volkovich [SV08] proved that sum of less than n/3 0-justified
ROPs cannot equal Mn, and used it to obtain a black-box PIT algorithm for
bounded sums of ROPs. Using these ideas along with Proposition 1, we note that
such a hardness of representation for sums of powers of low-degree polynomials,
where the final sum is multilinear, gives sub-exponential time algorithms for
black-box PIT for this class.

Let R = {0, 1} ⊆ F be a finite set that contains 0. For any k > 0, define

Wn
k (R) , {a ∈ Rn| a has at most k non-zero coordinates}.

In Theorem 7.4 of [SV10], it is shown that for a certain kind of formula F (k-
sum of degree-d 0-justified preprocessed ROP), and for any R ⊆ F containing
0 and of size at least d + 1, F ≡ 0 if and only if F |Wn

3k(R)≡ 0. The proof uses
the Combinatorial Nullstellensatz [Alo99], see also Lemma 2.13 in [SV10]. We
re-state it here for convenience:

Proposition 2 (Combinatorial Nullstellensatz, [Alo99]). Let P ∈ F[x1, . . . , xn]
be a polynomial where for every i ∈ [n], the degree of xi is bounded by t. Let R ⊆ F
have size at least t+ 1, and S = Rn. Then P ≡ 0⇔ P |S ≡ 0.

Along similar lines, using Propositions 1,2, we show that

Lemma 3. Let C(n, s, d) be the class of all n-variate multilinear polynomials
that have a sum-powers representation of degree d and size s. Let c be the con-
stant from Proposition 1. For f ∈ C(n, s, d), R = {0, 1}, and k = (d log s)/c,
f |Wn

k (R) ≡ 0 ⇐⇒ f ≡ 0.

Proof. The ⇐ direction in the claim is trivial. To prove the ⇒ direction, we
proceed by induction on n.
Base case: n ≤ k. Then Wn

k (R) = Rn. Using Proposition 2 (since f is multi-
linear, R is large enough), we conclude that f ≡ 0.
Induction Step: n > k. Suppose f 6≡ 0. Consider any i ∈ [n], and let f ′ =
f |xi=0. Then f ′ ∈ C(n − 1, s, d). Since f |Wn

k (R) ≡ 0, we have f ′|Wn−1
k (R) ≡ 0.

So by the induction hypothesis, f ′ ≡ 0. Hence xi|f . Since this holds for every
i ∈ [n], the monomial x1 · · ·xn must divide f . Since f is multilinear, it must
be that f = x1 · · ·xn. But n > k = (d log s)/c, so s < 2cn/d. This contradicts
Proposition 1. Hence we conclude f ≡ 0. ut

This gives the required black-box PIT algorithm, since for our choice of k in
the above lemma, |Wn

k ({0, 1})| ∈ nO(k) ∈ 2O(d log s logn). Thus

Theorem 2. Let C(n, s, d) be the class of all n-variate multilinear polynomials
that have a sum-powers representation of degree d and size s. There is a deter-
ministic black-box PIT algorithm for C(n, s, d) running in time 2O(d logn log s).

Remark 1. Though f is multilinear in Lemma 3 (and hence Theorem 2), the
polynomials fi in the sum-powers representation of f need not be multilinear.



5 Hardness of representation for sum of powers of
CF-ROPs

The hardness of representation result from [Kay12], stated in Proposition 1, and
its precursor from [SV08],[SV10], are both for Mn, the former using low-degree
polynomials and the latter using a kind of ROPs called 0-justified ROPs. Note
that ROPs, even when 0-justified, can have high degree, so these results are
incomparable. Here we extend such a hardness result in two ways.

Our first hardness result is for elementary symmetric polynomials Symn,d,
not just for d = n. It works against another subclass of ROPs, CF-ROF; as is
the case in [SV08,SV10], this class too can have high-degree polynomials. Recall
that this class consists of polynomials computed by read-once formulas that
have + and × gates, and labels ax at leaves (a 6= 0). Hence for any f in this
class, f(0) = 0. We show that powers of such polynomials cannot add up to
elementary symmetric polynomials of arbitrary degree d ≤ n unless there are
many such summands. First, we establish a useful property of this class.

Lemma 4. For every CF-ROP f ∈ F[x1, . . . , xn], there is a set S ⊆ [n] with
|S| ≤ |var(f)|/2 such that deg(f |S→0) ≤ 1.

Proof. Consider a CF-ROF F computing f . If F has a single node, then f is
already linear, so S = ∅. Otherwise, F = G1 ◦ G2, where G1, G2 are variable-
disjoint CF-ROFs computing CF-ROPs g1, g2, respectively.
Case 1: ◦ = ×. Without loss of generality, assume |var(g1)| ≤ |var(f)|/2. For
S = {i : xi ∈ var(g1)}, g1|S→0 ≡ f |S→0 ≡ 0.
Case 2: ◦ = +. Inductively, we can find sets Si of at most half the variables of
each gi, such that gi|Si→0 has degree at most 1. Define S = S1∪S2. Since G1, G2

are variable-disjoint, |S| ≤ |var(f)|/2, and f |S→0 has degree at most 1. ut

We use this to get our hardness-of-representation result for CF-ROPs, irrespective
of degree.

Theorem 3. Fix any d ∈ [n]. Suppose there are CF-ROPs f1, . . . , fk, and pos-
itive integers e1, . . . , ek such that

k∑
i=1

feii = Symn,d.

Then k ≥ min{log n
d , 2

Ω(d)}.

Proof. Let f = Symn,d.
We repeatedly apply Lemma 4 to restrictions of the fi’s obtain a formula of

degree at most 1. Let S0 = T0 = ∅, and let Si+1 be the set obtained by applying
the Lemma to fi+1|Ti→0, where each Ti = S1 ∪ . . . ∪ Si. Define S = Tk. Since
at least half the variables survive at each stage, we see that r , |var(f |S→0)| ≥
|var(f)|/2k = n/2k.



– If r ≥ d, then f |S→0 = Symr,d 6≡ 0. Add any r − d surviving variables to

the set S to obtain the expression Symd,d = f |S→0 =
∑k
i=1(fi|S→0)ei where

each fi is either linear or identically 0. Let k′ be the number of non-zero
polynomials fi|S→0. By Proposition 1, k′ ∈ 2Ω(d), and k ≥ k′.

– If r < d, then n/2k ≤ r < d. So k > log(nd ).

Thus if k ≤ log n
d , then k ∈ 2Ω(d). ut

What this tells us is that there is a threshold r ∼ log log n such that any
sum-powers representation of Symn,d using CF-ROPs needs size 2Ω(d) for d ≤ r,
and size ≥ log n

d for d ≥ r.
Our second hardness result is for Mn, but works against a different class of

ROFs. These ROFs may not be constant-free, but they have bounded alternation-
depth, and are also 0-justified. Again, first we establish a useful property of the
class.

Lemma 5. Let f ∈ F[x1, . . . , xn] be computed by an ROF with alternation depth
3. For any degree bound 1 ≤ d ≤ n, there is an S ⊆ [n] of size at most
|var(f)|/d, and an assignment of values AS to the variables xi for i ∈ S, such
that deg(f |S→A) ≤ d. Moreover, if f is 0-justified, then we can find an AS with
all non-zero values.

Proof. Let f be computed by the ROF F with alternation depth 3, where no
gate computes the 0 polynomial.

If the top gate in F is a +, then F =
∑r
i=1 fi, where each summand fi is

of the form
∏ti
j=1 `i,j and the factors `i,j ’s are linear forms on disjoint variable

sets. We find a partial assignment that kills all summand of degree more than d.
For each such summand fi, identify the factor with fewest variables, and assign
values to the variables in it to make it 0. We assign values to at most |var(fi)|/d
variables, so overall no more than |var(f)|/d variables are set.

Further, if f is 0-justified and read-once, then each fi is also a 0-justified ROF.
Hence no factor of fi vanishes at 0; each factor `i,j is of the form

∑p
k=1 ai,j,kxi,j,k−

ci,j where ci,j 6= 0. We can kill such a factor with an assignment avoiding 0s (eg
set xi,j,k = ci,j/pai,j,k.)

If the top gate in F is a ×, then F =
∏r
i=1 Fi, where the Fi have alternation

depth 2 and are on disjoint variables. If f has degree more than d, it suffices to
kill any one factor Fi to make the polynomial 0. Choosing the factor with fewest
variables, and proceeding as above, we set no more than |var(f)|/d variables.
Again, since F is an ROF, if F is 0-justified, then so are the Fi. So AS can be
chosen avoiding 0s. ut

Using this, we get a hardness of representation result for 0-justified alternation-
depth 3 ROPs.

Theorem 4. Let ε ∈ (0, 12 ). If there are 0-justified, alternation-depth-3 ROPs
f1, . . . , fs, and non-negative integers e1, . . . , es such that

s∑
i=1

feii = x1 · · ·xn



then s ≥ n 1
2−ε.

Proof. Let d be a parameter to be chosen later. We identify a subset of variables
S and an assignment A avoiding zeroes to variables of S, such that under this
partial assignment, all the fi’s are reduced to degree at most d. We show that

for any d ∈ [n], this is possible with |S| = t ≤ s2n
d . This gives a sum-powers

representation of degree d and size s for
∏
xi 6∈S xi = Mn−t. Invoking Kayal’s

result from Proposition 1, we see that s ≥ 2c(n−t)/d, and hence log s+ cns2

d2 ≥
cn
d .

Choosing d = 4n1−2ε, we conclude that s ≥ n 1
2−ε.

The construction of S proceeds in stages. At the kth stage, polynomials
f1, . . . , fi−1 have already been reduced to low-degree polynomials, and we con-
sider fi. We want to use Lemma 5 at each stage. This requires that each poly-
nomial fi, after all the substitutions from the previous stages, is still a
0-justified ROF with alternation-depth 3. The alternation-depth-3 ROF is ob-
vious; it is only maintaining 0-justified that is a bit tricky. We describe the
construction for stage 1; the other stages are similar.

Applying Lemma 5 to f1 with d as the parameter, we obtain a set R1

of variables with |R1| ≤ n/d and an assignment AR1
avoiding 0, such that

deg(f1|R1→AR1
) ≤ d. It may be the case that for some i > 1, the polynomial

fi|R1→AR1
is no longer 0-justified. We fix this by augmenting R1 as follows.

Assume first that the ROFs for all the fi’s have top-gate +; we will discuss
top-gate × later. So, as discussed in the proof of Lemma 5, each fi has the form∑∏

`j,k where each `j,k is a linear form. If fi|R1→AR1
is not 0-justified, then

some of the linear forms in it are homogeneous linear (no constant term). We
identify such linear forms in each fi, i ≥ 2. Call this set L1. That is,

L1 =

{
` |
` is a linear form at level-2 of some fi;
`|R1→AR1

is homogeneous linear but not
identically 0.

}
Since each fi is a ROF, it contributes at most |R1| linear forms to L1. Hence
|L1| ≤ (s − 1)|R1|. Now pick a minimal set T1 of variables from X \ R1 that
intersects each of the linear forms in L1. By minimality, |T| ≤ |L1| ≤ (s−1)|R1|.
We want to assign non-zero values AT1

to variables in T1 in such a way that for
all i ≥ 2, the fi|R1→AR1

;T1→AT1
are 0-justified. We must ensure that the linear

forms in L1 become homogeneous (or vanish altogether), and we must also ensure
that previously non-homogeneous forms do not become homogeneous. To achieve
this, consider

L2 =

{
` |
` is a linear form at level-2 of some fi;
`|R1→AR1

6≡ 0; `|R1→AR1
contains a variable from T1.

}
Clearly, L1 ⊆ L2. It suffices to find an assignment AT1

to variables in T1,
avoiding zeroes, such that for each ` ∈ L2, either `|R1→AR1

;T1→AT1
≡ 0 or

`|R1→AR1
;T1→AT1

(0) 6= 0. For sufficiently large fields, such an assignment can
always be found.

If some of the fi’s have top-gate ×, we need only a minor modification. We
use this fact:



Observation 1 If F =
∏
Fr is a read-once formula, then F is 0-justified if and

only if for each r, Fr is 0-justified and satisfies Fr(0) 6= 0.

Treat each factor of the polynomials with top-gate × exactly as we dealt with
the other polynomials. Add their level-2 linear factors to L1. Note that each such
fi can have many factors, but since it is read-once, any one variable can occur in
at most one of these factors. So fi still contributes no more than R1 linear forms
to L1. Also modify the definition of L2 to include also all linear forms at level
3 of such fi’s, containing a variable of T1. Finally, look for an assignment also
satisfying the additional condition that the factors do not vanish at 0. Again,
over sufficiently large fields, it is possible to find such an assignment.

Now we set S1 = R1∪T1, and A1 = AR1
∪AT1

. We have ensured the following:

1. deg(f1|S1→A1) ≤ d; and
2. for i ≥ 2, fi|S1→A1 is 0-justified.

Furthermore, |S1| = |R1|+ |T1| ≤ |R1|(1 + (s− 1)) ≤ sn/d.
Other stages are identical, working on the polynomials restricted by the

already-chosen assignments. Finally, S = S1 ∪ . . . ∪ Ss, and so |S| ≤ s2n/d,
as required. ut

6 Further Questions

– Can the results of [SV08] be extended to the case
∑k
i=1 f

ri
i , where f ′is are

ROFs?
– Can a hardness of representation for Symn,d be transformed into a polyno-

mial identity test for a related model?
– Can the bound given by Theorem 3 be improved? We conjecture:

Conjecture 1. There is a constant ε > 0 such that if there are CF-ROPs
f1, . . . , fk, and integers e1, . . . ek ≥ 0 satisfying

k∑
i=1

feii = Symn,n/2,

then k = Ω(nε).

– Do the results of [AvMV11] extend to read-k-multilinear branching pro-
grams?
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