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Abstract. We study the complexity of testing if two given matroids
are isomorphic. The problem is easily seen to be in Σp

2
. In the case of

linear matroids, which are represented over polynomially growing fields,
we note that the problem is unlikely to be Σp

2
-complete and is coNP-

hard. We show that when the rank of the matroid is bounded by a
constant, linear matroid isomorphism and matroid isomorphism are both
polynomial time many-one equivalent to graph isomorphism.

We give a polynomial time Turing reduction from graphic matroid iso-
morphism problem to the graph isomorphism problem. We then give a
polynomial time many-one reduction from bounded rank matroid iso-
morphism problem to graphic matroid isomorphism, thus showing that
all the above problems are polynomial time equivalent.

Further, for linear and graphic matroids, we prove that the automor-
phism problem is polynomial time equivalent to the corresponding iso-
morphism problems. In addition, we give a polynomial time membership
test algorithm for the automorphism group of a graphic matroid.

1 Introduction

Isomorphism problems over various mathematical structures have been a source
of intriguing problems in complexity theory (see [1]). The most important prob-
lem of this domain is the well-known graph isomorphism problem. Though the
complexity characterisation of the general version of this problem is still un-
known, there have been various interesting special cases of the problem which
are known to have polynomial time algorithms [13, 10] and many structural re-
sults are known [9, 19, 11]. In this paper we talk about isomorphism problem
associated with matroids.

A matroid M is a combinatorial object defined over a finite set S (of size
m) called the ground set, equipped with a non-empty family I of subsets of
S (containing the empty subset) which is closed under taking of subsets and
satisfies the exchange axiom : for any I1, I2 ∈ I such that |I1| > |I2|, ∃x ∈ I1 \I2,
I2 ∪ {x} ∈ I. The sets in I are called independent sets. The rank of the matroid
is the size of the maximal independent set. This provides useful abstractions of
many concepts in combinatorics and linear algebra and is well studied [16]. We
study the problem of testing isomorphism between two given matroids.
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Two matroids M1 and M2 are said to be isomorphic if there is a bijection
between the elements of the ground set which maps independent sets to inde-
pendent sets (or equivalently circuits to circuits, or bases to bases, see section 2).
Quite naturally, the representation of the input matroids is important in deciding
the complexity of the algorithmic problem.

There are several equivalent representations of a matroid. For example, enu-
merating the maximal independent sets (called bases) or the minimal dependent
sets (called circuits) also defines the matroid. These representations, although
can be exponential in the size of the ground set, indeed exist for every matroid, by
definition. With this enumerative representation, Mayhew [14] studied the ma-
troid isomorphism problem, and shows that the problem is equivalent to graph
isomorphism problem. However, a natural question is whether the problem is
difficult when the representation of the matroid is more implicit? In a black-box
setting, one can also consider the input representation in the form of an oracle
or a black-box, where the oracle answers whether a given set is independent or
not.

More implicit (and efficient) representation of matroids have been studied.
One natural way is to identify the given matroid with matroids defined over
combinatorial or algebraic objects which have implicit descriptions. A general
framework in this direction is the representation of a matroid over a field. A
matroid M = (S, I) of rank r is said to be representable over a field F if there is
a map, φ : S → Fr such that, ∀A ⊆ S, A ∈ I ⇐⇒ φ(A) is linearly independent
over Fr as a vector space. However, there are matroids which do not admit linear
representations over any field. (For example, the Vamós Matroid, See Proposition
6.1.10, [16].). In contrast, there are matroids (called regular matroids) which
admit linear representations over all fields.

Another natural representation for a matroid is over graphs. For any graph
X, we can associate a matroid M(X) as follows: the set of edges of X is the
ground set, and the acyclic subgraphs of the given graph form the independent
sets. A matroid M is called a graphic matroid (also called polygon matroid or
cyclic matroid) if it is isomorphic to M(X) for some graph X. It is known that
graphic matroids are linear. Indeed, the incidence matrix of the graph will give a
representation over F2. There are linear matroids which are not graphic. (See [16]
for more details.)

The above definitions themselves highlight the importance of testing isomor-
phism between two given matroids. We study the isomorphism problem for the
case of linear matroids (Linear Matroid Isomorphism problem (LMI) and graphic
matroids (Graphic Matroid Isomorphism problem (GMI)) where the inputs are
in the implicit representation (matrices and graphs resp.).

From a complexity perspective, the general case of the problem (where the
matroid is given as an independent set oracle) is in Σp

2 . However, it is not even
clear a priori if the problem is in NP even in the above restricted cases where there
are implicit representations. But we note that for the case of graphic matroids
the problem admits an NP algorithm. Hence an intriguing question is about the
comparison of this problem to the well studied graph isomorphism problem.



An important result in this direction, due to Whitney (see [21]), says that in
the case of 3-connected graphs, the graphs are isomorphic if and only if the cor-
responding matroids are isomorphic (see section 5). Thus the problems of testing
isomorphism of graphs and of the corresponding graphic matroids are equivalent
for the case of 3-connected graphs. Despite this similarity between the problems,
to the best of our knowledge, there has not been a systematic study of GMI and
its relationships to graph isomorphism problem (GI). This immediately gives a
motivation to study the isomorphism problem for 3-connected graphs. In partic-
ular, from the recent results on graph isomorphism problem for these classes of
graphs [4], it follows that graphic matroid isomorphism problem for 3-connected
planar graphs is L-complete.

In this context we study the general, linear and graphic matroid isomorphism
problems. Our main contributions in the paper are as follows:

– We prove that when the rank of the matroid is bounded, linear matroid iso-
morphism and matroid isomorphism are both equivalent to GI (Theorem 2)1

– We develop tools to handle colouring of ground set elements in the context of
the isomorphism problem. We show that coloured versions of linear matroid
isomorphism and graphic matroid isomorphism are as hard as the general
version (Lemma 2, 1). As an immediate application of this, we show that the
automorphism problems for graphic matroids and linear matroids are poly-
nomial time Turing equivalent to the corresponding isomorphism problems.
In this context, we also give a polynomial time membership test algorithm
for the automorphism group of a graphic matroid (Theorem 8).

– We give a polynomial time Turing reduction (Theorem 3) from graphic ma-
troid isomorphism problem to the graph isomorphism problem by developing
an edge colouring scheme which algorithmically uses a decomposition given
by [7] (and [3]). Our reduction, in particular implies that the graphic ma-
troid isomorphism testing for planar graphs can be done in deterministic
polynomial time (Corollary 2).

– Finally, we give a reduction from bounded rank matroid isomorphism prob-
lem to graphic matroid isomorphism (Theorem 5), thus showing that all the
above problems are poly-time equivalent.

Due to space limitations we have omitted many proofs. The omitted proofs
can be found in the full version [17].

2 Notations and Preliminaries

All the complexity classes used here are standard and we refer the reader to any
standard text book (for e.g. see [5]).

1 We note that, although not explicitly stated, the equivalence of bounded rank ma-
troid isomorphism and and graph isomorphism also follows from the results of May-
hew [14]. However, it is not immediately clear if the GI-hard instances of [14] are
linearly representable. Our proof is different and extend this to linear matroids.



An isomorphism between two matroids M1 and M2 is a bijection φ : S1 → S2

such that ∀C ⊆ S1 : C ∈ C1 ⇐⇒ φ(C) ∈ C2, where C1 and C2 are the family of
circuits of the matroids M1 and M2 respectively. It is clear that for two matroids
to be isomorphic the ground set has to be of the same size (say m) and they
have to be of the same rank (say r). Now we state the computational problems
more precisely.

Problem 1 (Matroid Isomorphism(MI)). Given two matroids M1 and M2 as
their ground sets and the independent set oracles, test if M1

∼= M2.

Given a matrix An×m over a field F, we can define a matroid M [A] with columns
of A as the ground set (of m elements) and linearly independent columns as the
independent sets of M [A]. A matroid M = (E, I) of rank r (≤ n) is said to
be representable over F, if there exists a matrix A ∈ F

r×m such that M is
isomorphic to the matroid M [A]. Linear matroids are matroids representable
over fields. We assume that the field on which the matroid is represented is also
a part of the input as the table for both operations, and that the field has at
least m elements and at most poly(m) elements.

Problem 2 (Linear Matroid Isomorphism(LMI)). Given two matricesA and
B over a given field F, test if M [A] ∼= M [B].

As mentioned in the introduction, given a graph X = (V,E) (|V | = n, |E| = m),
a classical way to associate a matroid M(X) with X is to treat E as ground set
elements, the bases of M(X) are spanning forests of X. Equivalently circuits of
M(X) are simple cycles in X. A matroid M is called graphic iff ∃X such that
M is isomorphic to M(X).

Problem 3 (Graphic Matroid Isomorphism(GMI)). Given two graphs X1

and X2, test if M(X1) ∼= M(X2)?.

We denote by PMI, the version of GMI where the input graphs are planar.
Another associated terminology in the literature is about 2-isomorphism. Two
graphs X1 and X2 are said to be 2-isomorphic (denoted by X1

∼=2 X2) if their
corresponding graphic matroids are isomorphic. Thus the above problem asks
to test if two given graphs are 2-isomorphic. In a rather surprising result, Whit-
ney [22] came up with a combinatorial characterisation of 2-isomorphic graphs.
See [16] for more details.

3 Linear Matroid Isomorphism

In this section we present some observations and results on LMI. Some of these
follow easily from the techniques in the literature. We make them explicit in a
form that is relevant to the problem that we are considering.

As a basic complexity bound, it is easy to see that MI ∈ Σ
p
2 . Indeed, the

algorithm will existentially guess a bijection σ : S1 → S2 and universally verify
if for every subset C ⊆ S1, C ∈ C1 ⇐⇒ σ(C) ∈ C2 using the independent set
oracle. We first observe that using the arguments similar to that of [11] one can
show,



Theorem 1. LMI ∈ Σ
p
2 . In addition, LMI is ΣP

2 -hard =⇒ PH = ΣP

3 .

Using the results of [15] and noting that uniform matroids are representable,
we have the following,

Proposition 1. LMI is coNP-hard.

The above proposition also holds when the representation is over infinite
fields. In this case, the proposition also more directly follows from a result of
Hlinený [6], where it is shown that the problem of testing if a spike (a special kind
of matroids) represented by a matrix over Q is the free spike is coNP complete.
He also derives a linear representation for spikes.

Now we look at bounded rank variants of the problem. We denote by LMIb
(MIb), the restriction of LMI (MI) for which the input matrices have rank
bounded by b. In the following, we use the following construction due to Babai
[2] to prove LMIb ≡

p
m GI.

Given a graph X = (V,E) and a k ∈ [3, d], where d is the minimum vertex
degree of X, define a matroid M = Stk(X) of rank k with the ground set as E
as follows: every subset of k − 1 edges is independent in M and every subset of
E with k edges is independent if and only if they do not share a common vertex.
Babai proved that Aut(X) ∼= Aut(Stk(X)) and also gave a linear representation
for Stk(X) (Lemma 2.1 in [2]) for all k in the above range. By tightening Babai’s
result, we obtain the following theorem, (See [17] for more details.)

Theorem 2. For any constant b ≥ 3, LMIb ≡
p
m GI.

The above reduction (LMIb ≤
p
m GI) works even if the matroids are not linear,

provided they are given via an independent set oracle. This gives the following
corollary.

Corollary 1. LMIb ≡
p
m MIb ≡

p
m GI.

4 Isomorphism Problem of Coloured Matroids

Vertex or edge colouring is a classical tool used extensively in proving various
results in graph isomorphism problem. We develop similar techniques for matroid
isomorphism problems too.

An edge-k-colouring of a graph X = (V,E) is a function f : E → {1, . . . , k}.
Given two graphs X1 = (V1, E1, f1) and X2 = (V2, E2, f2) with edge colourings,
the Coloured-GMI asks for an isomorphism which preserves the colours of the
edges. Not surprisingly, we can prove the following.

Lemma 1. Coloured-GMI is AC
0 many-one reducible to GMI.

Using linear algebraic constructions, which we defer to the full version due
to shortage of space, we generalise the above construction to the case of linear
matroid isomorphism. Coloured-LMI denotes the variant of LMI where the
inputs are the linear matroids M1 and M2 along with colour functions ci :
{1, . . . ,m} → N, i ∈ {1, 2}. The problem is to test if there is an isomorphism
between M1 and M2 which preserves the colours of the column indices. We have,

Lemma 2. Coloured-LMI is AC
0 many-one reducible to LMI.



5 Graphic Matroid Isomorphism

In this section we study GMI. Unlike in the case of the graph isomorphism
problem, an NP upper bound is not so obvious for GMI. We start with the
discussion of an NP upper bound for GMI.

Whitney gave an exact characterisation of when two graphs are 2-isomorphic,
in terms of three operations; twisting, cleaving and identification. (see [16].) Note
that it is sufficient to find 2-isomorphisms between 2-connected components of
X1 and X2. In fact, any matching between the sets of 2-connected components
whose edges connect 2-isomorphic components will serve the purpose. This is
because, any 2-isomorphism preserves simple cycles, and any simple cycle of a
graph is always within a 2-connected component. Hence we can assume that
both the input graphs are 2-connected and in the case of 2-connected graphs,
twist is the only possible operation.

The set of separating pairs does not change under a twist operation. More-
over, despite the fact that the twist operations need not commute, Truemper [20]
proved : for any two 2-connected 2-isomorphic graphs X and Y (on n vertices),
X can be transformed to graph X ′ isomorphic to Y through a sequence at most
n− 2 twists.

Using this lemma we get an NP upper bound for GMI. Given two graphs,
X1 and X2, the NP machine just guesses the sequence of n− 2 separating pairs
which corresponding to the 2-isomorphism. For each pair, guess the cut w.r.t
which the twist operation is to be done, and apply each of them in sequence to
the graph X1 to obtain a graph X ′

1. Now ask if X ′

1
∼= X ′

2. This gives an upper
bound of ∃.GI ⊆ NP. Thus we have,

Proposition 2. GMI is in NP.

This can also be seen as an NP-reduction from GMI to GI. Now we will give
a deterministic reduction from GMI to GI. Although, this does not improve the
NP upper bound, it implies that GMI cannot be NP-hard unless PH collapses.
This deterministic reduction, stated in the theorem 3 below, is the main result
of the paper.

Theorem 3. GMI ≤pT GI

Let us first look into the case of 3-connected graphs. A separating pair is a pair
of vertices whose deletion leaves the graph disconnected. A 3-connected graph
is a connected graph which does not have any separating pairs. Whitney ([21])
proved the following equivalence,

Theorem 4 ([21]). X1 and X2 be 3-connected graphs, X1
∼=2 X2 ⇐⇒ X1

∼=
X2.

Before giving a formal proof of Theorem 3, we describe the idea roughly here:

Basic Idea: Let X1 and X2 be the given graphs. From the above discussion,
we can assume that the given graph is 2-connected.



In [7], Hopcroft and Tarjan proved that every 2-connected graph can be
decomposed uniquely into a tree of 3-connected components, bonds or polygons.2

Moreover, [7] showed that this decomposition can be computed in polynomial
time. The idea is to then find the isomorphism classes of these 3-connected
components using queries to GI (see theorem 4), and then colour the tree nodes
with the corresponding isomorphism class, and then compute a coloured tree
isomorphism between the two trees produced from the two graphs.

A first mind block is that these isomorphisms between the 3-connected com-
ponents need not map separating pairs to separating pairs. We overcome this by
colouring the separating pairs (in fact the edge between them), with a canonical
label of the two sub trees which the corresponding edge connects. To support
this, we observe the following. There may be many isomorphisms between two
3-connected components which preserves the colours of the separating pairs.
However, the order in which the vertices are mapped within a separating pair is
irrelevant, since any order will be canonical up to a twist operation with respect
to the separating pair.

So with the new colouring, the isomorphism between 3-connected components
maps a separating pair to a separating pair, if and only if the two pairs of sub
trees are isomorphic. However, even if this is the case, the coloured sub trees
need not be isomorphic. This creates a simultaneity problem of colouring of the
3-connected components and the tree nodes and thus a second mind block.

We overcome this by colouring again using the code for coloured sub trees,
and then finding the new isomorphism classes between the 3-connected compo-
nents. This process is iterated till the colours stabilise on the tree as well as on
the individual separating pairs (since there are only linear number of 3-connected
components). Once this is ensured, we can recover the 2-isomorphism of the orig-
inal graph by weaving the isomorphism of the 3-connected components guided
by the tree adjacency relationship. In addition, if two 3-connected components
are indeed isomorphic in the correctly aligned way, the above colouring scheme,
at any point, does not distinguish between them.

Breaking into Tree of 3-connected components: We use the algorithm
of Hopcroft and Tarjan [7] to compute the set of 3-connected components of a
2-connected graph in polynomial time. We will now describe some details of the
algorithm which we will exploit.

Let X(V,E) be a 2-connected graph. Let Y be a connected component of
X \ {a, b}, where {a, b} is a separating pair. X is an excisable component w.r.t
{a, b} if X \Y has at least 2 edges and is 2-connected. The operation of excising
Y from X results in two graphs: C1 = X \ Y plus a virtual edge joining (a, b),
and C2 = the induced subgraph on X ∪ {a, b} plus a virtual edge joining (a, b).
This operation may introduce multiple edges.

2 Cunningham et al. [3] shows that any graphic matroid M(X) is isomorphic to
M(X1) ⊕ M(X2) . . . ⊕ M(Xk)/{e1, e2, . . . , ek}, where M(X1), . . . , M(Xk) are 3-
connected components, bonds or polygons of M(X) and e1, . . . , ek are the virtual
edges. However, it is unclear if this can be turned into a reduction from GMI to GI
using edge/vertex colouring.



The decomposition of X into its 3-connected components is achieved by the
repeated application of the excising operation (we call the corresponding sep-
arating pairs as excised pairs) until all the resulting graphs are free of excis-
able components. This decomposition is represented by a graph GX with the
3-connected components of X as its vertices and two components are adjacent
in GX if and only if they share a virtual edge. In the above explanation, the
graph GX need not be a tree as the components which share a separating pair
will form a clique.

To make it a tree, [7] introduces another component corresponding to the
virtual edges thus identifying all the virtual edges created in the same excising
operation with each other.

Instead, we do a surgery on the original graph X and the graph GX . We add
an edge between all the excised pairs (excised while obtaining GX) to get the
graph X ′. Notice that, following the same series of decomposition gives a new
graph TX which is the same as GX except that the cliques are replaced by star
centred at a newly introduced vertex (component) corresponding to the newly
introduced excised edges in X ′. The newly introduced edges form a 3-connected
component themselves with one virtual edge corresponding to each edge of the
clique they replace.

We list down the properties of the tree TX for further reference. (1) For every
node in t ∈ TX , there is exactly one 3-connected component in X ′. We denote
this by ct. (2) For every edge e = (u, v) ∈ TX , there are exactly two virtual
edges, one each in the 3-connected components cu and cv. We call these virtual
edges as the twin edges of each other. (3) For any given graph X, TX is unique
up to isomorphism (since GX is unique [7]). In addition, TX can be obtained
from GX in polynomial time.

The following claim states that (we omit the proof) this surgery in the graphs
does not affect the existence of 2-isomorphisms.

Claim. X1
∼=2 X2 ⇐⇒ X ′

1
∼=2 X

′

2.

Thus it is sufficient to give an algorithm to test if X ′

1
∼=2 X ′

2, which we
describe as follows.

Input: 2-connected graphs X ′

1 and X ′

2 and tree of 3-connected components T1 and
T2.
Output: Yes if X ′

1
∼=2 X ′

2, and No otherwise.
Algorithm:
Notation: code(T ) denotes the canonical label3 for a tree T .

1. Initialise T ′

1 = T1, T ′

2 = T2.

2. Repeat

(a) Set T1 = T ′

1, T2 = T ′

2.

(b) For each edge e = (u, v) ∈ Ti, i ∈ {1, 2}:

3 When T is coloured, code(T ) is the code of the tree obtained after attaching the
necessary gadgets to the coloured nodes. Notice that even after colouring, the graph
is still a tree. In addition, for any T , code(T ) can be computed in P.



Let Ti(e, u) and Ti(e, v) be subtrees of Ti obtained by deleting the edge e,
containing u and v respectively.
Colour virtual edges corresponding to the separating pairs in the components
cu and cv with the set {code(Ti(e, u)),code(Ti(e, v))}. From now on, ct de-
notes the coloured 3-connected component corresponding to node t ∈ T1 ∪ T2.

(c) Let S1 and S2 be the set of coloured 3-connected components of X ′

1 and X ′

2

and let S = S1 ∪ S2. Using queries to GI (see Proposition 3) find out the
isomorphism classes in S. Let C1, . . . , Cq denote the isomorphism classes.

(d) Colour each node t ∈ Ti, i ∈ {1, 2}, with colour ℓ if ct ∈ Cℓ. (This gives two
coloured trees T ′

1 and T ′

2.)
Until (code(Ti) 6= code(T ′

i ), ∀i ∈ {1, 2})
3. Check if T ′

1
∼= T ′

2 preserving the colours. Answer Yes if T ′

1
∼= T ′

2, and No otherwise.

First we prove that the algorithm terminates in linear number of iterations of
the repeat-until loop. Let qi denote the number of isomorphism classes of the set
of the coloured 3-connected components after the ith iteration. We claim that, if
the termination condition is not satisfied, then |qi| > |qi−1|. To see this, suppose
the termination is not satisfied. This means that the coloured tree T ′

1 is different
from T1. This can happen only when the colour of a 3-connected component cv,
v ∈ T1 ∪T2 changes. In addition, this can only increase the isomorphism classes.
Thus |qi| > |qi−1|. Since q can be at most 2n, this shows that the algorithm exits
the loop after at most 2n steps.

Now we prove the correctness of the algorithm. We follow the notation de-
scribed in the algorithm.

Lemma 3. X ′

1
∼=2 X

′

2. ⇐⇒ T ′

1
∼= T ′

2.

Proof. We give a proof sketch here.
(⇒) This dirction is easy and we omit the proof.
(⇐) First, we recall some definitions needed in the proof. A centre of a tree T is
defined as a vertex v such that maxu∈T d(u, v) is minimised at v, where d(u, v)
is the number of edges in the unique path from u to v. It is known that every
tree T has a centre consisting of a single vertex or a pair of adjacent vertices.
The minimum achieved at the centre is called the height of the tree, denoted by
ht(T ).

Claim. Let ψ be a colour preserving isomorphism between T ′

1 and T ′

2, and χt is an
isomorphism between the 3-connected components ct and cψ(t). Then, X ′

1
∼=2 X

′

2

via a map σ such that ∀t ∈ T ′

1, ∀e ∈ ct ∩ E1 : σ(e) = χt(e) where E1 is the set
of edges in X ′

1.

Proof. The proof is by induction on height of the trees h = ht(T ′

1) = ht(T ′

2),
where the height (and centre) is computed with respect to the underlying tree
ignoring colours on the vertices. Base case is when h = 0; that is, T ′

1 and T ′

2

have just one node (3-connected component) without any virtual edges. Simply
define σ = χ. By Theorem 4, this gives the required 2-isomorphism. Suppose
that if h = ht(T ′

1) = ht(T ′

2) < k, the above claim is true. For the induction step,
suppose further that T ′

1
∼= T ′

2 via ψ, and ht(T ′

1) = ht(T ′

2) = k. Notice that ψ
should map the centre(s) of T1 to that of T2. We consider two cases.



In the first case, T ′

1 and T ′

2 have unique centres α and β. It is clear that ψ(α) =
β. Let c1 and c2 be the corresponding coloured (as in step 2b) 3-connected
components. Therefore, there is a colour preserving isomorphism χ = χα between
cα and cβ . Let f1, . . . fk be the virtual edges in cα corresponding to the tree edges
e1 = (α, v1), . . . , ek = (α, vk) where v1, . . . , vk are neighbours of α in T ′

1. Denote
ψ(ei) by e′i, and ψ(vi) by v′i.

Observe that only virtual edges are coloured in the 3-connected components
in step 2b while determining their isomorphism classes. Therefore, for each i,
χ(fi) will be a virtual edge in cβ , and in addition, with the same colour as fi.
That is, {code(T1(ei, α)),code(T1(ei, vi))} = {code(T2(e

′

i, β)),code(T2(e
′

i, v
′

i)))}.

Since α and β are the centres of T ′

1 and T ′

2, it must be the case that in the above
set equality, code(T1(ei, vi)) = code(T2(e

′

i, v
′

i)). From the termination condition
of the algorithm, this implies that code(T ′

1(ei, vi)) = code(T ′

2(e
′

i, v
′

i)). Hence,
T ′

1(ei, vi)
∼= T ′

2(e
′

i, v
′

i). In addition, ht(vi) = ht(v′i) < k. Let X ′

fi
and X ′

χ(fi)

denote the subgraphs of X ′

1 and X ′

2 corresponding to T ′

1(ei, vi) and T ′

2(e
′

i, v
′

i) re-
spectively. By induction hypothesis, the graphs X ′

fi
and X ′

χ(fi)
are 2-isomorphic

via σi which agrees with the corresponding χt for t ∈ T ′

1(ei, vi). Define πi as a
map between the set of all edges, such that it agrees with σi on all edges of X ′

f(i)

and with χt (for t ∈ T ′

1(ei, vi)) on the coloured virtual edges.
We claim that πi must map the twin-edge of fi to twin-edge of τ(fi). Suppose

not. By the property of the colouring, this implies that there is a subtree of
T ′

1(ei, vi) isomorphic to T ′

1 \ T
′

1(ei, vi). This contradicts the assumption that cα
is the centre of T ′

1.
For each edge e ∈ E1, define σ(e) to be χ(e) when e ∈ cα and to be πi(e)

when e ∈ Efi
(edges of Xfi

).
From the above argument, χ = χα and σi indeed agrees on where it maps fi

to. This ensures that every cycle passing through the separating pairs of cα gets
preserved. Thus σ is a 2-isomorphism between X ′

1 and X ′

2.
For case 2, let T ′

1 and T ′

2 have two centres (α1, α2) and (β1, β2) respectively.
An essentially similar argument works in this case too.

This completes the proof of correctness of the algorithm (Lemma 3).

To complete the proof of Theorem 3, we need the following proposition:

Proposition 3. Coloured-GMI for 3-connected graphs reduces to GI

Observe that the above construction does not use non-planar gadgets. It is
known that isomorphism testing for planar 3-connected graphs can be done in
linear time [7] (in fact in L [4]) we get the following.

Corollary 2. PMI ∈ P

Now we give a polynomial time many-one reduction from MIb to GMI.

Theorem 5. MIb ≤
p
m GMI.

Combining Corollary 1, Theorem 3 and Theorem 5 we have,

Theorem 6. GI ≡pT GMI ≡pT MIb ≡
p
T LMIb



6 Matroid Automorphism Problem

With any isomorphism problem, there is an associated automorphism problem
i.e, to find a generating set for the automorphism group of the underlying object.
Relating the isomorphism problem to the corresponding automorphism problem
gives access to algebraic tools associated with the automorphism groups. In the
case of graphs, studying automorphism problem has been fruitful.(e.g. see [13].)
In this section we turn our attention to Matroid automorphism problem.

An automorphism of a matroid M = (S, C) (where S is the ground set and
C is the set of circuits) is a permutation φ of elements of S such that ∀C ⊆
S, C ∈ C ⇐⇒ φ(C) ∈ C. Aut(M) denotes the group of automorphisms of the
matroid M . When the matroid is graphic we denote by Aut(X) and Aut(MX)
the automorphism group of the graph and the graphic matroid respectively.

To begin with, we note that given a graph X, and a permutation π ∈ Sm,
it is not clear a priori how to check if π ∈ Aut(MX) efficiently. This is because
we need to ensure that π preserves all the simple cycles, and there could be
exponentially many of them. Note that such a membership test (given a π ∈ Sn)
for Aut(X) can be done easily by testing whether π preserves all the edges. We
provide an efficient test for this problem, i.e.,

Theorem 7. Given any π ∈ Sm, testing if π ∈ Aut(MX) can be done in P.

To prove the above theorem, we use the notion of a cycle bases of X. A cycle
basis of a graph X is a minimal set of cycles B of X such that every cycle in X
can be written as a linear combination (viewing every cycle as a vector in F

m
2 )

of the cycles in B. Let B denote the set of all cycle basis of the graph X.

Lemma 4. Let π ∈ Sn, ∃B ∈ B : π(B) ∈ B =⇒ ∀B ∈ B : π(B) ∈ B

Lemma 5. Let π ∈ Sm, and let B ∈ B, then π ∈ Aut(MX) ⇐⇒ π(B) ∈ B.

Using Lemmas 4 and 5 it follows that, given a permutation π, to test if
π ∈ Aut(MX) it suffices to check if for a cycle basis B of X, π(B) is also a cycle
basis. Given a graph X a cycle basis B can be computed in polynomial time (see
e.g, [8]). Now it suffices to show:

Lemma 6. Given a permutation π ∈ Sm, and a cycle basis B ∈ B, testing
whether π(B) is a cycle basis, can be done in polynomial time.

Notice that similar arguments can also give another proof of Proposition 2.
As in the case of graphs, we can define automorphism problems for matroids.

Matroid Automorphism(MA): Given a matroid M as independent set
oracle, compute a generating set for Aut(M).

We define GMA and LMA as the corresponding automorphism problems for
graphic and linear matroids, when the input is a graph and matrix respectively.
Using the colouring techniques from Section 4, we prove the following.

Theorem 8. LMI ≡pT LMA, and GMI ≡pT GMA.
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