
Arithmetic Circuits, Syntactic Multilinearity,

and the Limitations of Skew Formulae

Meena Mahajan and B. V. Raghavendra Rao

The Institute of Mathematical Sciences, Chennai 600 113, India.
{meena,bvrr}@imsc.res.in

Abstract. Functions in arithmetic NC
1 are known to have equivalent

constant width polynomial degree circuits, but the converse containment
is unknown. In a partial answer to this question, we show that syntac-
tic multilinear circuits of constant width and polynomial degree can be
depth-reduced, though the resulting circuits need not be syntactic multi-
linear. We then focus specifically on polynomial-size syntactic multilinear
circuits, and study relationships between classes of functions obtained by
imposing various resource (width, depth, degree) restrictions on these
circuits. Along the way, we obtain a characterisation of NC

1 (and its
arithmetic counterparts) in terms of log width restricted planar branch-
ing programs. We also study the power of skew formulae, and show that
even exponential sums of these are unlikely to suffice to express the de-
terminant function.

1 Introduction

Among the parallel complexity classes, the class NC1 of boolean functions com-
puted by logarithmic depth polynomial size circuits has several equivalent char-
acterisations, in the form of bounded width branching programs, polynomial
size formulae and bounded width circuits of polynomial size. Its subclass AC0,
consisting of polynomial size constant depth unbounded fan-in circuits, has also
been characterised via restricted branching programs.

However, when we consider the counting and arithmetic versions of those
classes which are equivalent to NC1, they seem to represent different classes of
functions. In [10], it was shown that if inputs take values from {0, 1}, and only
the constants −1, 0, 1 are allowed, then counting the total weights of paths in
a bounded width branching program is equivalent to the functions computable
by log depth polynomial size arithmetic circuits, i.e. GapBWBP = GapNC1. In
[12], this study was extended to bounded width circuits of polynomial degree
and size, sSC0, showing that GapNC1 ⊆ GapsSC0, but it left open the question
of equality of these classes.

The question of whether GapsSC0 is in GapNC1 can be seen as a depth re-
duction problem for bounded width circuits. We do not have an answer for this
general question. So it is natural to ask if there are any restrictions on the circuit
so that depth reduction is possible.

Syntactic multilinearity is a restriction which has been studied in the litera-
ture. Syntactic multilinear circuits are those in which every multiplication gate
operates on disjoint set of variables. The syntactic multilinear restriction is very
fruitful in the sense that there are known unconditional separations and lower
bounds for these classes (see [13–15]).

We show that depth reduction for small width circuits is possible if the circuit
is syntactic multilinear; however, the depth-reduced circuit may not be syntactic
multilinear or even multilinear. The setting we consider is more general than that
of [10] and [12]; here the input variables are allowed to take arbitrary values from
the underlying ring K. The main result (Theorem 1) is that polynomial size,
constant width syntactic multilinear circuits can be simulated (non-uniformly)
by log depth bounded fan-in circuits of polynomial size, but this construction
need not preserve the syntactic multilinearity property.

Once we take up the restriction of syntactic multilinearity for these arith-
metic circuits, it is worthwhile to explore the relationships among the syntactic
multilinear arithmetic circuit classes close to arithmetic NC1.

In the model of branching programs, syntactic multilinearity is a well-studied
notion, referred to as read-once branching programs (see e.g. [6]). There are
several known lower bounds for syntactic multilinear branching programs.

For formulae, syntactic multilinearity is defined exactly as for circuits. A care-
ful observation of the depth reduction for poly size arithmetic formula as given
in [7] shows that it preserves syntactic multilinearity. Also some of the construc-
tions in [10–12], relating branching programs and formulae, can be shown to
preserve syntactic multilinearity.

In [3], the class of bounded depth arithmetic circuits is characterised in terms
of a restricted version of grid programs, rGP, of bounded width BWrGP. We
observe that this construction can be extended to show a new (non-uniform)
characterisation of (arithmetic) NC1 in terms of restricted planar branching pro-
grams of log width LWrGP. In addition, this can be shown to preserve syntactic
multilinearity, for arithmetic NC1 as well as arithmetic AC0.

We also study the class of polynomial size skew formulas, denoted SkewF. The
motivation for this study arises from Valiant’s characterisations of the classes VP

and VNP (see [18]; also, for more exposure on algebraic complexity theory, the
reader is referred to [8, 9]). Valiant proved that every polynomial p(X) ∈ VNPK
(where K is an arbitrary ring), and in particular every polynomial in VPK, can be
written as p(X) =

∑

e∈{0,1}m φ(X, e), where the polynomial φ has an arithmetic
formula of polynomial size. So we ask if we can prove a similar equivalence
in the case of skew circuits. That is, can we write polynomials computed by
skew circuits as an exponential sum of polynomials computed by skew formulae?
We show that this is highly unlikely, by showing that any polynomial which is
expressible as an exponential sum of skew formulae belongs to the class VNC1.

The existing and new relationships amongst the arithmetic classes (prefix a-)
can be seen in Figure 1; Figure 2 shows the corresponding picture for the syntac-
tic multilinear classes (prefix sma-). Our main depth-reduction result straddles
the two figures, and along with [12] gives sma-sSC0 ⊆ a-NC1 ⊆ a-sSC0.

a-SkewF //
a-AC

0=a-BWrGP

��

a-sSC
0 //

Over Z ,Q
GGGG

##GG
GG

G

a-sSC
1 //

a-SAC
1

a-SAC
0

OO

a-LWrGP=
a-BWBP=a-NC

1
//

77pppppppppp

a-LWBP //

;;wwwwwwwwwww

a-BP

;;xxxxxxxxxxx

Fig. 1. Arithmetic classes around NC
1

sma-BWBP //

((RRRRRRRRRRRRRRRRRR

sma-LWrGP

= sma-NC
1

// sma-LWBP //

��

sma-BP

��
sma-BWrGP=sma-AC

0

OO

sma-sSC
0 //

sma-sSC
1 //

sma-SAC
1

Fig. 2. Relationship among syntactic multilinear classes

The rest of the paper is organised as follows. Section 2 introduces basic
definitions. In Section 3 we prove that small-width syntactic multilinear circuits
can be depth-reduced. In Section 4, we establish the containments among the
syntactic multilinear classes and obtain a new characterisation for NC1 in terms
of a restricted class of grid branching programs. In Section 5 we describe our
results concerning skew formulae.

2 Preliminaries

We use standard notation for Boolean circuits and their size, width, depth
and degree; see e.g. [12],[21]. Unless otherwise stated, fan-in is assumed to be
bounded. NC1 denotes the class of boolean functions which can be computed
by boolean circuits of depth O(log n) and size poly(n). SCi denotes the class
of boolean functions computed by poly(n) size circuits of width O(logi n). sSCi

is the class of boolean functions computed by poly(n) degree, poly(n) size cir-
cuits of width O(logi n). SACi denotes the class of boolean functions computed
by polynomial circuits of size poly(n) and depth O(logi n), where ∨ gates can
have unbounded fan-in. AC0 denotes the class of boolean functions which can be
computed by unbounded fan-in constant depth boolean circuits of size poly(n).

A formula is a circuit where every non-input gate has fan-out bounded by
one. F and LWF denote the set of boolean functions which can be computed by
polynomial size formulae of unbounded and log width respectively. Without loss
of generality, NC1, AC0 and SAC0 circuits can be assumed to be formulae.

A branching program (BP) is a directed acyclic layered graph with edges
labelled from {x1, . . . , xn,¬x1, . . . ,¬xn, 0, 1}, and with two designated nodes s
and t. A BP is said to accept its input if and only if there exists an s-t path, in
which every edge label evaluates to 1. A BP can also be viewed as a skew-circuit,
i.e. a circuit where every ∧ gate has at most one non-circuit input.

Let BWBP and LWBP denote the functions computed by constant width and
log width branching programs of polynomial size respectively.

G-graphs are the graphs that have planar embeddings where vertices are em-
bedded on a rectangular grid, and all edges are between adjacent columns from
left to right. Let BWGP denote the class
of boolean functions accepted by con-
stant width polynomial size branching
programs which are G-graphs. In these
graphs, the node s is fixed as the left-
most bottom node and t is the right-
most top node. In [3], a restriction of G-
graphs is considered where the width of
the grid is a constant, and only certain
kinds of connections are allowed between
any two layers. Namely, for width 2k+2,
the connecting pattern at any layer is
one of the graphs Gk,i shown alongside
for 0 ≤ i ≤ 2k+2. Let BWrGP denote the

G0,1(c)G0,0
G0,2

Gk−1,i

Gk,i Gk,2k+1 Gk,2k+2

c

class of boolean functions accepted by constant width polynomial size branching
programs that are restricted G-graphs, and LWrGP the class corresponding to
log width polynomial size programs that are restricted G-graphs. (see [3]).

The following proposition summaries the known relationships among the
boolean complexity classes defined above; see for instance [21].

Proposition 1 ([20, 4, 16, 11, 3]). SAC1 = Circuit Size, Deg(poly(n), poly(n));

NC1 = BWBP = SC0 = sSC0 = F = LWF; AC0 = BWrGP

An arithmetic circuit over a ring 〈K,+,−,×, 0, 1〉 is a circuit with internal
nodes labelled from {×,+}, and leaves labelled by input variables x1, . . . , xn

that take values in K or by one of the constants from {−1, 0, 1}.
The arithmetic circuit classes corresponding to the above defined boolean

classes consist of functions f : K
∗ → K, and are defined as follows.

BWBP[K] = {f : K∗ → K | f = sum of weights of all s ; t paths in a BWBP}

Here the weight of a path is the product of the labels of edges along the path.

NC1[K] = {f | f has a poly size, O(log n) depth, fan-in 2 circuit.}

sSCi[K] =
{

f | f has a poly size, O(logi n) width, poly(n) degree circuit.
}

For notational convenience we drop the K where understood from context to be
any (or a specific) ring. To distinguish from the boolean case, we write C[K] as
a-C. The following proposition summarises the known relationships among the
arithmetic classes.

Proposition 2 ([3, 10, 12]). a-BWrGP = a-AC0 ⊆ a-BWBP = a-NC1 ⊆ a-sSC0

Multilinear and syntactic multilinear circuits are as defined in [14]. Let C be
an arithmetic circuit over the ring K. For a gate g in C, let Pg ∈ K[X] be the

polynomial represented at g. Let Xg ⊆ X denote the set of variables that occur
in the sub-circuit rooted at g. We call C multilinear if for every gate g ∈ C, Pg

is a multilinear polynomial, and syntactic multilinear if for every multiplication
gate g = h × f in C, Xh ∩ Xf = ∅.

In the case of formulae, the notion of multilinearity and syntactic multilinear-
ity are (non-uniformly) equivalent. Viewing branching programs as skew-circuits,
a multilinear branching program P is one which computes multilinear polynomi-
als at every node, and P is syntactic multilinear if in every path of the program
(not just s-to-t paths), no variable appears more than once; i.e. the branching
program is syntactic read-once.

For any arithmetic complexity class a-C, we denote by ma-C and sma-C respec-
tively the functions computed by multilinear and syntactic multilinear versions
of the corresponding circuits.

In [15] it is shown that the depth reduction of [19] preserves syntactic mul-
tilinearity; thus

Proposition 3 ([15]). Any function computed by a syntactic multilinear poly-
nomial size polynomial degree arithmetic circuit is in sma-SAC1.

3 Depth reduction in small width sm-circuits

This entire section is devoted to a proof of Theorem 1 below, which says that
a circuit width bound can be translated to a circuit depth bound, provided the
given small-width circuit is syntactic multilinear.

Theorem 1. Let C be a syntactic multilinear circuit of length l and width w
and circuit degree d, with X = {x1, . . . , xn} as the input variables, and con-
stants {−1, 0, 1} from the ring K. Then there is an equivalent circuit E of depth

O(w2 log l + log d) and size O(2w2+3wl25w + 4lwd).

Corollary 1. sma-sSC0 ⊆ a-NC1.

Corollary 2. sma-Size,Width,Deg(2poly(log), poly(log), 2poly(log))

⊆ a-Size,Depth(2poly(log), poly(log))

We first give a brief outline of the technique used. The main idea is to first
cut the circuit C at length ⌈ l

2⌉, to obtain circuits A (the upper part) and B

(the lower part). Let M = {h1, . . . , hw} be the output gates of C at level ⌈ l
2⌉.

(Note that output gates are at the topmost layer of the circuit.) A is obtained
from C by replacing the gates in M by a set Z = {z1, . . . , zw} of new variables.
Each gate g of A (or B) represents a polynomial pg ∈ K[X,Z], and can also be
viewed as a polynomial in K[Z], where K = K[X]. Since A and B are circuits of
length bounded by ⌈ l

2⌉, if we can prove inductively that the coefficients of the
polynomials at the output gates of A and B can be computed by small depth
circuits (say O(w log(l/2)), then, since pg has at most 2w monomials in variables
from Z, we can substitute for the zi’s by the value at the output gate gi of B
(i .e. polynomials in K[X]). This requires an additional depth of O(w).

The first difficulty in the above argument can be seen even when w = O(1).
Though C is syntactic multilinear, the circuit A need not be multilinear in the
new dummy variables from Z. This is because there can be gates which com-
pute large constants from K (i .e. without involving any of the variables), and
hence have large degree (bounded by the degree of the circuit). This means
that the polynomials in the new variables Z at the output gates of A can have
non-constant degree, and the number of monomials can be large. Thus the addi-
tional depth needed to compute the monomials will be non-constant; hence the
argument fails.

To overcome this difficulty, we first transform the circuit C into a new circuit
C ′, where no gates compute “large” constants in K. Assume without loss of
generality that every gate in C has a maximum fan-out of 2. Let G = {g ∈ C |
leaf(g) ∩ X = ∅}, where for a gate g ∈ C, we define

leaf(g) = {h ∈ C | h is a leaf node in C, and g is reachable from h in C}

Thus G is exactly the nodes that syntactically compute constants. Now define C ′

as a new circuit which is the same as C except that for all g ∈ G, we replace the
ith (i = 1, 2) outgoing wire of g by a new variable ygi

. Note that the number of
such new variables introduced is at most 4lw. Let Y = {ygi

| g ∈ G, 1 ≤ i ≤ 2}.
We show that C ′ is syntactic multilinear in the variables X ∪ Y .

Lemma 1. The circuit C ′ constructed above is syntactic multilinear in the vari-
ables X ∪ Y . Further, C ′ does not have any constants.

Next we show, in Lemma 2, how to achieve depth reduction for syntactic
multilinear bounded width circuits which have no constants. Then we complete
the proof of Theorem 1 by explicitly computing the constants (i .e. the actual
values represented by variables in Y) computed by the circuit C.

Lemma 2. Let C ′ be a width w, length l syntactic multilinear arithmetic circuit
with leaves labelled from X∪Y (no constants). Then there is an equivalent arith-

metic circuit C ′′ of size O(2w2+3wl25w) and depth O(w2 log l) which computes
the same function as C ′.

To establish lemma 2, we use the intuitive idea sketched in the beginning
of the section; namely, slice the circuit horizontally, introduce dummy variables
along the slice, and proceed inductively on each part.

Now the top part has three types of variables: circuit inputs X, variables
representing constants Y as introduced in Lemma 1, and variables along the
slice Z. The variables Z appear only at the lowest level of this circuit. Note that
this circuit for the top part is syntactic multilinear in Z as well (because there
are no constants at the leaves).

To complete an inductive proof for Lemma 2, we need to show depth reduc-
tion for such circuits. We use Lemma 3 below, which tells us that viewing each
gate as computing a polynomial in Z, with coefficients from K = K[X,Y], there
are small-depth circuits representing each of the coefficients. We then combine
these circuits to evaluate the original circuit.

Formally, let D be a width w, length l, syntactic multilinear circuit, with
leaves labelled from X ∪ Y ∪ Z (no constants), where variables from Z =
{z1, . . . zw} appear only at the lowest level of the circuit. Let h1, . . . , hw be
the set of output gates of D. Let phi

∈ K[X,Y,Z] denote the multilinear poly-
nomial computed at hi. Note that phi

can also be viewed as a polynomial in
K[Z], i .e. a multilinear polynomial with variables from Z and polynomials from
K[X,Y] as its coefficients; we use this viewpoint below. For T ⊆ {1, . . . , w}, let
[phi

, T] ∈ K[X,Y] denote the coefficient of the monomial mT =
∏

j∈T zj in phi
.

The following lemma tells us how to evaluate these coefficients [phi
, T].

Lemma 3. With circuit D as above, ∀h ∈ {h1, . . . , hw} and T ⊆ {1, . . . , w},

there is a bounded fan-in arithmetic circuit Dh,T of size bounded by 2w2+2wl25w

and depth O(w2 log l), with leaves labelled from X ∪ Y ∪ {0, 1}, such that the
value computed at its output gate is exactly the value of [ph, T] evaluated at the
input setting to X ∪ Y .

Proof Sketch. We proceed by induction on the length l of the circuit D. The
base case, when l = 1, can be handled appropriately. Assume that the lemma
holds for all circuits D′ of length l′ < l and width w.

Now let D be the given circuit of length l, syntactic multilinear in X∪Y ∪Z,
where variables from Z appear only at the lowest level. Let {h1, . . . , hw} be
the output gates of D. Let {g1, . . . , gw} be the gates of D at level l′ = ⌈ l

2⌉.
Denote by A the circuit resulting from replacing gates gi with new variables z′i
for 1 ≤ i ≤ w, and removing all the gates below level l′, and denote by B the
circuit with {g1, . . . , gw} as output gates, i .e. gates above the gi’s are removed.
We rename the output gates of A as {f1, . . . , fw}. Both A and B are syntactic
multilinear circuits of length bounded by l′ and width w, and of a form where
the inductive hypothesis is applicable. For i ∈ {1, . . . , w}, pfi

is a polynomial in
K[Z ′] and pgi

is a polynomial in K[Z], where K = K[X,Y].
Applying induction on A and B, for all S,Q ⊆ {1, . . . , w}, [pfi

, S] and [pgi
, Q]

have circuits Afi,S and Bgi,Q. Note that phi
(Z) = pfi

(pg1
(Z), . . . , pgw

(Z)). But
due to multilinearity,

pfi
(Z ′) =

∑

S⊆[w]

[pfi
, S]

∏

j∈S

z′j

 pgj
(Z) =

∑

Q⊆[w]

[pgj
, Q]

∏

s∈Q

zs

Using this expression for pfi
in the formulation for phi

, we have

phi
(Z) =

∑

S⊆[w]

[pfi
, S]

∏

j∈S

pgj
(Z)

Hence, we can extract coefficients of phi
as follows. The coefficient of the mono-

mial mT , for any T ⊆ [w] in phi
is given by

[phi
, T] =

∑

S⊆[w]

[pfi
, S]

(

coefficient of mT in
∏

j∈S pgj
(Z)

)

If S has t elements, then the monomial mT is built up in t disjoint parts (not
necessarily non-empty), where the kth part is contributed by the kth polynomial
of the form pg in the above expression. So the coefficient of mT is the product
of the corresponding coefficients. Hence

[phi
, T] =

∑

S={ji,...,jt}⊆[w]

[pfi
, S]

∑

Q1, . . . , Qt :
partition of T

t
∏

k=1

[pgjk
, Qk]

We use this expression to compute [phi
, T]. We first compute [pfi

, S] and
[pgj

, Q] for all i, j ∈ [w] and all S,Q ⊆ [w] using the inductively constructed
sub-circuits. Then a circuit on top of these does the required combination. Since
the number of partitions of T is bounded by ww, while the number of sets S is
2w, this additional circuitry has size at most 2w2

(for w ≥ 2) and depth O(w2).
We can show that this construction satisfies the required bounds. ⊓⊔

Using Lemma 3, we can establish Lemma 2 and hence Theorem 1.

4 Relationships among syntactic multilinear classes

This section explores the relationships among the syntactic multilinear versions
of the arithmetic classes which are related to NC1.

A classical result from [7] shows that for every arithmetic formula F of size
s, there is an equivalent arithmetic formula F ′ which has depth O(log s) and
size poly(s). A careful observation of this proof shows that if we start with
a syntactic multilinear formula F , then the depth-reduced formula F ′ is also
syntactic multilinear.

Theorem 2. Every syntactic multilinear formula with n leaves has an equiva-
lent syntactic multilinear circuit of depth O(log n) and size O(n).
In particular, sma-F ⊆ sma-NC1.

It is easy to see that the path-preserving simulation of a constant width
branching program by a log depth circuit preserves syntactic multilinearity:

Lemma 4. For any syntactic multilinear branching program P of width w and
size s over ring K, there is an equivalent syntactic multilinear circuit C of depth
O(log s) and size O(s) with fan-in of + gate bounded by w (or alternatively,
depth O(log w log s) and bounded fan-in).
In particular, sma-BWBP ⊆ sma-NC1 and sma-BP ⊆ sma-SAC1.

It is also easy to see that the construction of [11], staggering a small-depth
formula into a small-width one, preserves syntactic multilinearity. Thus

Lemma 5. Let Φ be any sm-formula with depth d and size s. Then there is an
equivalent syntactic multilinear formula Φ′ of length 2s and width d.
In particular, sma-NC1 ⊆ sma-LWF.

From Lemma 5 and Theorem 2, we have the following equivalence.

Corollary 3. Over any ring K,
sma-F= sma-LWF= sma-NC1= sma-Formula-Depth,Size(log, poly).

A straightforward inductive construction of a branching program from a log
depth formula results in a log width BP and preserves syntactic multilinearity.
But the reverse containment may not hold. However, by restricting the branch-
ing program as in [3], we can obtain a characterisation for a-NC1 which also
preserves syntactic multilinearity. In [3] a characterisation for bounded depth
arithmetic circuits in terms of counting number of paths in a restricted version
of bounded width grid graphs is presented. We note that the characterisation
given in [3] works for bounded depth arithmetic circuits over arbitrary rings,
showing that a-BWrGP = a-AC0. By closely examining the parameters in [3],
we obtain a characterisation for a-NC1 in terms of the restricted version of log
width grid branching programs. We also note that these constructions preserve
syntactic multilinearity. In the statements and proofs below, we use the notion
of alternation-depth: a circuit C has alternation depth a if on every root-to-leaf
path, the number of maximal segments of gates of the same type is at most a.
Also, for an rGP (and in fact any branching program) P , we denote by Var(P)
the set of variables that appear on some s-to-t path in P . For a formula F ,
Var(F) denotes the variables appearing anywhere in the formula F ; if h is the
root of F , then without loss of generality Var(F) = Xh.

Lemma 6. Let Φ be an arithmetic formula of size s (i .e. number of wires) and
alternation-depth 2d over K and with input variables X ∈ K

n. Then there is a
restricted grid program P of length s2 + 2s (i .e. the number of edge layers) and
width max{2, 2d}, where the edges are labelled from Var(Φ) ∪ K, such that the
weighted sum of s-to-t paths in P is equal to the function computed by Φ.
Further, if Φ is syntactic multilinear, then so is P .

Lemma 7. Let P be an arithmetic rGP of length l (number of edge layers)
and of width 2w + 2 with variables from X ∈ K. Then there exists an equivalent
arithmetic formula Φ over K, with alternation depth at most 2w+2, size (number
of wires) at most 2l, and Var(Φ) = Var(P).
Further, if P is syntactic multilinear, then so is Φ.

Corollary 4. sma-AC0 = sma-BWrGP.
sma-NC1 = sma-LWrGP; a-NC1 = a-LWrGP.

The above construction also holds in the case of boolean circuits, giving

Corollary 5. NC1 = LWrGP.

Thus we get a characterisation for NC1 and a-NC1 in terms of a restricted class
of log width polynomial size planar branching programs.

In [5] it is shown that any O(log n) depth polynomial size formula has an
equivalent 3-register straight line program. This proves that a-NC1 ⊆ a-BWBP.
Can the same be stated for sma-NC1 and sma-BWBP? It turns out that applying
the construction of [5] does not preserve syntactic multilinearity; in fact the
resulting program need not even be multilinear.

5 Skew formulae

In this section, we consider a question motivated by the setting of Valiant’s
algebraic complexity classes defined in [18]. VP is the class of polynomials of
polynomial degree, computable by polynomial-sized circuits. Similarly one can
define VF, VNC1, and so on. VNP is the class of polynomials expressible as
p(x1, . . . , xn) =

∑

e∈{0,1}m g(X, e) where m ∈ O(poly(n)) and the polynomial g

is in VP. Thus, loosely speaking, VNP equals
∑

·VP. See [8, 9] for more details.

It is well known that the complexity class NP is equivalent to ∃·P and in fact
even to ∃ · F. A similar result holds in the case of Valiant’s algebraic complexity
classes too. Valiant has shown that VNP =

∑

·VF, and thus the polynomial
g in the expression above can be assumed to be computable by a formula of
polynomial size and polynomial degree.

Noting that VNP is the class of polynomials which are projection equivalent
to the “permanent” polynomial, a natural question arises about the polynomials
which are equivalent to determinant. Since the determinant exactly characterises
the class of polynomials which are computable by skew arithmetic circuits ([17]),
the question one could ask is: can the determinant be written as an exponential
sum of partial instantiations of a polynomial that can be computed by skew
formula of poly size, SkewF? Recall that a circuit is said to be skew if every ×
(or ∧) gate has at most one child that is not a circuit input. Skew circuits are
essentially equivalent to branching programs. Thus one could ask the related
question: since VP ⊆

∑

·VP =
∑

·VF, can we show that VSkew ⊆
∑

·VSkewF?

We show that this is highly unlikely. We first give a characterisation of poly-
nomials computed by skew formulae (Lemma 8) in terms of their degree and
number of monomials. (As a corollary, this places a-SkewF inside a-AC0.) We
then use this to show that

∑

·VSkewF is in fact contained in VNC1 (Theorem 3).
Thus placing VSkew in

∑

·VSkewF is analogous to the statement that GapL

equals GapNC1, which we believe is quite unlikely. 1

Lemma 8. Let f ∈ Z[X] have degree d, where m monomials have non-zero
coefficients. Then f can be computed by a skew formula Φ of size O(md). Further,
if all coefficients in f are bounded by c, then f can be computed by a skew formula
Φ′ that uses as constants only −1, 0, 1 and has size O(md + mc). Conversely,
let f ∈ Z[X] be computed by a skew formula Φ of size s. Then the degree and
number of monomials in f are bounded by s. Further, if −1, 0, 1 are the only
constants in Φ, then the absolute values of coefficients in f are bounded by s.

Corollary 6. a-SAC0 ⊂ a-SkewF ⊂ a-AC0.

Theorem 3. Let f ∈ Z[X] be expressible as f(X) =
∑

e∈{0,1}m φ(X, e), where

φ has a poly size skew formula. Then f ∈ VNC1. (i .e. ,
∑

·VSkewF ⊆ VNC1.)

1 For C ∈ {SkewF, NC
1
, BP}, a-C is essentially the same as VC except that VC allows

arbitrary constants from K.

Proof Sketch. Since φ(X,Y) has a poly size skew formula, by Lemma 8 we
know that the number of non-zero monomials in φ is bounded by some poly-
nomial q(n,m). Hence the number of non-zero monomials in φ(X,Y)|X , is also
bounded by q(n,m).

For any α ∈ N
n, consider the monomial Xα =

∏

αi
Xαi

i . Define the set Sα

as Sα = {β ∈ {0, 1}m | XαY β has a non-zero coefficient aα,β in φ}. Clearly, for
each α, |Sα| ≤ q(n,m). Since φ(X,Y) is evaluated only at Boolean settings of
Y , we can assume, w.l.o.g., that it is multilinear in Y . Hence

φ(X,Y) =
∑

α∈N
n

∑

β∈{0,1}m

aα,βXαY β

Hence we can show that

f(X) =
∑

α∈N
n

Xα
∑

β∈Sα

aα,β2m−lβ

where lβ = number of 1’s in the bit vector β ∈ {0, 1}m.

Now it is easy to see that the above expression can be computed in VNC1. ⊓⊔

Thus, if the Determinant polynomial is expressible as
∑

.VSkewF then it
belongs to VNC1.

We briefly consider (syntactic) multilinear versions of these classes. From
Lemma 8, we know that a-SkewF is characterised by polynomials with polyno-
mially many coefficients. The construction yields, for any multilinear polynomial
computed by a skew formula, an equivalent skew formula which is syntactic mul-
tilinear. Hence the notion of multilinearity and syntactic multilinearity are the
same for skew formulae. Since any multilinear polynomial that can be computed
by an a-SAC0 circuit has a small number of monomials, the containments of
corollary 6 hold in the syntactic multilinear case too. Also, note that the poly-
nomial

∏

i(xi + yi) is multilinear, and can be computed by a sma-AC0 circuit.

Corollary 7. sma-SAC0 ⊂ sma-SkewF = ma-SkewF ⊂ sma-AC0.

6 Conclusion

This work came out of an attempt to close the gap in a-NC1 ⊆ a-sSC0. We
have not been able to do this; we can only show that sma-sSC0 ⊆ a-NC1. Can
the depth-reduction be pushed to all of a-sSC0? At least ma-sSC0? Alternatively,
can the depth-reduced circuit be made multilinear?

Another unsettled question is to better understand the Boolean containments
NC1 = LWrGP ⊆ LWGP ⊆ LWBP ⊆ sSC1 ⊆ SC1 = L. Where exactly does the
power of the classes actually jump from NC1 to L?

Making the constructions described here uniform would also be of interest.

Acknowledgements: The referees’ comments are gratefully acknowledged.

References

1. M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and arithmetic circuits.
Journal of Computer and System Sciences, 60(2):395–421, 2000.

2. E. Allender. Arithmetic circuits and counting complexity classes. In J. Krajicek,
editor, Complexity of Computations and Proofs, Quaderni di Matematica Vol. 13,
pages 33–72. Seconda Universita di Napoli, 2004.

3. E. Allender, A. Ambainis, D. A. Barrington, S. Datta, and H. LêThanh. Bounded
depth arithmetic circuits: Counting and closure. In International Colloquium on
Automata, Languages, and Programming ICALP, ICALP’99, pages 149–158, 1999.

4. D. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. Journal of Computer and System Sciences,
38(1):150–164, 1989.

5. M. Ben-Or and R. Cleve. Computing algebraic formulas using a constant number
of registers. SIAM J. Comput., 21(1):54–58, 1992.

6. A. Borodin, A. A. Razborov, and R. Smolensky. On lower bounds for read-k-times
branching programs. Computational Complexity, 3:1–18, 1993.

7. R. P. Brent. The parallel evaluation of arithmetic expressions in logarithmic time.
In Complexity of sequential and parallel numerical algorithms (Proc. Sympos.,
Carnegie-Mellon Univ., Pittsburgh, Pa., 1973), pages 83–102. Academic Press, New
York, 1973.

8. P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory. Algo-
rithms and Computation in Mathematics. Springer-Verlag, 2000.

9. P. Bürgisser, M. Clausen, and M. Shokrollahi. Algebraic Complexity Theory.
Springer-Verlag, 1997.

10. H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1

computation. Journal of Computer and System Sciences, 57:200–212, 1998.
11. S. Istrail and D. Zivkovic. Bounded width polynomial size Boolean formulas com-

pute exactly those functions in AC0. Information Processing Letters, 50:211–216,
1994.

12. N. Limaye, M. Mahajan, and B. V. R. Rao. Arithmetizing classes around NC1

and L. ECCC TR07-087,2007. Preliminary version appeared in STACS 2007.
13. R. Raz. Multi-linear formulas for permanent and determinant are of super-

polynomial size. In STOC, pages 633–641, 2004.
14. R. Raz. Multilinear-NC1 6= multilinear-NC2. In FOCS, pages 344–351, 2004.
15. R. Raz and A. Yehudayoff. Balancing syntactically multilinear arithmetic circuits.

Computational Complexity, to appear.
16. P. M. Spira. On time hardware complexity tradeoffs for boolean functions. In

Fourth Hawaii International Symposium on System Sciences, pages 525–527, 1971.
17. S.Toda. Counting problems computationally equivalent to the determinant. Tech-

nical Report CSIM 91-07, Dept. Comp. Sci. and Inf. Math., Univ. of Electro-
Communications, Tokyo, 1991.

18. L. G. Valiant. Completeness classes in algebra. In Symposium on Theory of Com-
puting STOC, pages 249–261, 1979.

19. L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation
of polynomials using few processors. SIAM J. Comput., 12(4):641–644, 1983.

20. H. Venkateswaran. Circuit definitions of nondeterministic complexity classes.
SIAM Journal on Computing, 21:655–670, 1992.

21. H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-
Verlag New York Inc., 1999.

