
Counting Classes and the Fine Structure
between NC1 and L

Samir Datta1, Meena Mahajan2, B. V. Raghavendra Rao3, Michael Thomas4,
and Heribert Vollmer4

1 Chennai Mathematical Institute, India. sdatta@cmi.ac.in
2 The Institute of Mathematical Sciences, Chennai, India. meena@imsc.res.in

3 Universität des Saarlandes, Saarbrücken, Germany. bvrr@cs.uni-sb.de
4 Leibniz Universität, Hannover, Germany, {thomas,vollmer}@thi.uni-hannover.de

Abstract. The class NC1 of problems solvable by bounded fan-in circuit
families of logarithmic depth is known to be contained in logarithmic
space L, but not much about the converse is known. In this paper we
examine the structure of classes in between NC1 and L based on counting
functions or, equivalently, based on arithmetic circuits. The classes PNC1

and C=NC1, defined by a test for positivity and a test for zero, respectively,
of arithmetic circuit families of logarithmic depth, sit in this complexity
interval. We study the landscape of Boolean hierarchies, constant-depth
oracle hierarchies, and logarithmic-depth oracle hierarchies over PNC1

and C=NC1, provide complete problems, obtain the upper bound L for
all these hierarchies, and prove partial hierarchy collapses—in particular,
the constant-depth oracle hierarchy over PNC1 collapses to its first level
PNC1, and the constant-depth oracle hierarchy over C=NC1 collapses to
its second level.

1 Introduction

The class NC1 occupies a special place in the study of complexity classes inside P,
owing to its robustness and multiple characterizations. It is defined as the class of
languages accepted by families of circuits of polynomial size and logarithmic depth
using bounded fan-in Boolean gates. By uniform NC1 we mean the subclass where
the circuit families have succinct descriptions: given a (unary) size parameter, the
circuit for that size from the family can be “easily” computed. Various notions
of uniformity give rise to the same class of languages, also coinciding with the
class of languages accepted by logarithmic-time alternating machines ALOGTIME.
Other characterizations of NC1 include polynomial-sized formulas, bounded-width
branching programs, bounded-width circuits and programs over finite monoids.

It is known that all NC1 languages can be accepted in logarithmic space
L, but it is not known whether this containment is strict. However, there are
very few candidates for languages in L not known to be in NC1, and all these
candidates lie in classes defined using the natural counting classes associated with

Supported in part by the Indian DST and the German DAAD.

NC1, namely, #NC1 and GapNC1. The former counts “proving sub-circuits” in
an NC1 circuit (see Section 2 for formal definitions); the latter is its closure under
subtraction. It is not yet known whether these functions can be evaluated in NC1,
although the best upper bound is very very close (an O(log∗) factor in depth).
It is known that functions in #NC1 and GapNC1 can be evaluated in function
logarithmic space FL; thus languages definable by applying simple predicates to
such functions are also in L. The natural choices of predicates are a test for zero
and a test for positivity, giving rise to the language classes C=NC1 and PNC1

sitting between NC1 and L. (There are also predicates testing for zero modulo a
fixed prime; the resulting language classes are already known to coincide with
NC1.) A nice survey of these classes can be found in [1].

It is not clear how much structure is there between NC1 and L if the classes
are distinct. We attempt to explore the structure between NC1 and L, based on
hierarchies of language classes built upon C=NC1 and PNC1. For a complexity
class C, there are three standard ways of defining the hierarchies above C: the
Boolean hierarchy BH(C), the constant-depth hierarchy using oracle gates AC0(C),
and the NC1-oracle-gate hierarchy NC1(C), with BH(C) ⊆ AC0(C) ⊆ NC1(C).

Our results: As a first step in our study, we describe the oracle hierarchies in
terms of arithmetic circuits augmented with test gates. These are the arithmetic-
Boolean circuits defined in [14]; with size and depth restrictions as in NC1, and
with test gates for “= 0?” or “> 0?”, we obtain the classes a-NC1

= and a-NC1
>.

We observe that if each path in the circuit has O(1) test gates, then a-NC1
=

and a-NC1
> coincide with AC0(C=NC1) and AC0(PNC1) respectively (Proposi-

tion 3.4). However, there is a subtlety in similarly characterizing NC1(C=NC1)
and NC1(PNC1). We introduce a syntactic restriction on the arithmetic-Boolean
circuits giving rise to a reasonable definition, and show that (1) the classes so
defined coincide with NC1(C=NC1) and NC1(PNC1) (Proposition 3.5), and (2) as
expected, are indeed contained in L (Theorem 3.9). On the other hand, without
this restriction, the best upper bound we can show for the arithmetic circuit
hierarchy is the complexity class TC1 (Theorem 3.10), which subsumes L and
even nondeterministic logspace NL, but is contained in NC2.

Next, we show that the constant-depth hierarchy over PNC1 (and hence also
the Boolean hierarchy) collapses to PNC1 (Theorem 4.1). We adapt the proof of
[11], where an analogous result for PL is shown. One difficulty in the adaptation
is showing the required normal form for GapNC1 circuits. We use the equivalent
characterization of GapNC1 as arithmetic bounded-width branching programs
GapBWBP, and establish the normal form here. Another difficulty is computing
an exponential sum; we use the notion of read-once certified circuits and read-once
exponential sums, introduced in [10], to to carry the proof through.

Finally, we examine the hierarchies over C=NC1. Since C=NC1 is not even
known to be closed under complementation, we do not expect a collapse all the
way down. Our first result is a characterization of the Boolean hierarchy over
C=NC1 as the class of languages described by checking feasibility of small systems
of linear equations, where the coefficients themselves are GapNC1-computable
functions of the input word (Theorem 5.5). Our second result is that the constant-

depth hierarchy over C=NC1 collapses to a class slightly weaker than the second
level (Theorem 5.9). Both these results appear as analogues of known results
[2] for the corresponding logarithmic-space class C=L, but require substantially
different proofs.

Also, unlike in the case of PL and C=L, our results do not seem to go through
for the NC1-hierarchies over PNC1 and C=NC1.

2 Background

For any language L, χL denotes its characteristic function: χL(x) := 1 if x ∈ L,
χL(x) := 0 if x 6∈ L.

Boolean circuits and language classes: We denote by L the class of languages
accepted by deterministic logarithmic-space Turing machines.

We consider Boolean circuits with internal gates labelled ∨, ∧, or ¬. By NC1

we denote the class of languages which can be accepted by a family {Cn}n≥0 of
Boolean circuits of polynomial size whose depth is bounded by O(log n), with
each gate having constant fan-in. The class AC0 denotes the set of languages
accepted by a Boolean circuit family {Cn}n≥0 of polynomial size and constant
depth, with unbounded fan-in. Without loss of generality, we can assume that
negation gates appear only at the leaves, and that the AC0 and NC1 circuits are
actually formulas: every gate has out-degree one. An NC0 circuit is a Boolean
circuit, or formula, of constant size, with each gate having constant fan-in. We
denote by AC0

k (respectively) NC0
k the polynomial size (respectively, constant

size) circuit families of depth at most k.
By TC0 and TC1 we denote the class of languages decided by circuit families

of polynomial size and constant (respectively, logarithmic) depth, where each gate
is either a negation gate or an unbounded fan-in majority gate: it outputs 1 if
and only if more than half of its inputs are 1. Integer addition and multiplication
are known to be in TC0.

A branching program (BP for short) is a layered acyclic graph G with edges
labelled by constants (0 or 1) or literals, and with two special vertices s and t. It
accepts an input x if there is an s ; t path where each edge is labelled by a true
literal or the constant 1; we call such a path an accepting path on input x. BWBP
denotes the class of languages that can be accepted by families of polynomial size
bounded width branching programs {Gn}n≥0, where the graph Gn considers n
variables. It is known that BWBP equals NC1 ([4]). Restricted to uniform circuits
(with appropriate notions of uniformity, see for instance [13]), it is known that
NC1 = BWBP ⊆ L.

Proposition 2.1 (Known containments).
AC0 ⊆ TC0 ⊆ NC1 = BWBP ⊆ L ⊆ TC1 ⊆ DSPACE(log2 n) ∩ P.

Arithmetic circuit classes: For the purposes of this paper, an arithmetic circuit
is a circuit where the gates are labelled from the set {+,×,−1, 0, 1, x1, . . . , xn}.
The gates + and × are the addition and multiplication operations over Z. Such
a circuit computes a function f : {0, 1}n → Z.

An a-NC1 circuit family {Cn}n≥0 is a family of bounded fan-in arithmetic
circuits where for each n, Cn is of size polynomial in n, depth logarithmic in n,
and computes a function fn : {0, 1}n → Z. The family computes the function
f : {0, 1}∗ → Z where f(x) := C|x|(x). GapNC1 is the class of functions computed
by a-NC1 circuit families. The analogous arithmetic class for constant-depth
unbounded fan-in circuits is denoted by a-AC0.

An arithmetic branching program is a BP B where edges are labelled by
literals or constants from the set {−1, 0, 1}. For an s ; t path P , let wt(P (a))
denote the product of all the edge labels in P under the assignment a. Then the
function computed by B is defined as follows:

for all a ∈ {0, 1}n f(a) :=
∑

P is an s;t path in B

wt(P (a))

An a-BWBP family {Bn}n≥0 is a family of arithmetic branching programs of
polynomial size and bounded width. GapBWBP is the class of functions computed
by a-BWBP program families.

For a Boolean (no edge labelled −1) BP B and an input assignment a, let
#[s ; t](a) denote the the number of s ; t paths in B under the assignment
a. #BWBP is the class of functions : {0, 1}∗ → N computed by BWBP. The
class DiffBWBP is the closure of #BWBP under finite subtractions; DiffBWBP =
{f − g | f, g ∈ #BWBP}.

The above three classes coincide:

Proposition 2.2 ([6]). GapNC1 = GapBWBP = DiffBWBP.

We will often use the following equivalent form for GapNC1 functions: for any
GapNC1 function f , there is a BWBP B with start node s, two target nodes t1
and t2, and f(a) = #[s ; t1](a)−#[s ; t2](a). We say that B gap-represents
the function f .

It is known that NC1 circuits can be made unambiguous [9]. In terms of
arithmetic circuits, this yields:

Proposition 2.3. Let L be any AC0 (or NC1) language. Then there is an a-AC0

(a-NC1, respectively) circuit family C that does not use the constant −1 such that
for each string w, C(w) = χL(w).

The classes C=NC1 and PNC1, central to this paper, are defined as follows.

C=NC1 :=
{
L ∈ {0, 1}∗

∣∣∣∣ for some f ∈ GapNC1, for all x ∈ {0, 1}∗,
x ∈ L if and only if f(x) = 0.

}
PNC1 :=

{
L ∈ {0, 1}∗

∣∣∣∣ for some f ∈ GapNC1, for all x ∈ {0, 1}∗,
x ∈ L if and only if f(x) > 0.

}
Proposition 2.4 ([6]).

1. NC1 ⊆ C=NC1 ⊆ PNC1 ⊆ L.
2. C=NC1 is closed under union and intersection.

3. PNC1 is closed under union, intersection and complementation.

Arithmetic-Boolean circuits: Let a test gate for “=0?” (respectively “>0?”)
be a unary gate that outputs 1 if its input is equal to 0 (respectively greater
than 0) and 0 otherwise. Define an a-NC1

= circuit (respectively a-NC1
> circuit) to

be an arithmetic circuit of logarithmic depth and polynomial size over Boolean
input gates, binary +- and ×-gates, constants −1, 0 and 1 as well as test gates
for “=0?” (respectively “>0?”). From the definitions, it follows that

Proposition 2.5. A language L is in C=NC1 (or PNC1) if and only if χL can be
computed by an a-NC1

= (respectively a-NC1
>) circuit family in which each circuit

has exactly one test gate appearing as the output gate.

Read-once certificates: Let B be a branching program on variables X =
{x1, . . . , xn} ∪ Y = {y1, . . . , ym}. B is said to be read-once certified in Y if there
are indices i0 = 1 < i1 < i2 < . . . < im such that variable yj appears only
between layer ij−1 and ij . By specialising the arguments in [10] to the counting
classes, we can compute exponential sums over the variables in Y efficiently.

Proposition 2.6 ([10]). Let f(X,Y) be a function computed by an a-BP B of
size s and width w, read-once certified in Y . Let g be the function defined as
g(X) :=

∑
e∈{0,1}m f(X, e). Then g can be computed by an a-BP of size poly(s)

and width O(w2). Hence, if f ∈ GapBWBP, then g ∈ GapBWBP.

Miscellaneous We denote by C1 · C2 a circuit which can be split horizontally
into two parts, with the top part being a circuit of type C1, and all its inputs
being either circuit inputs (literals or constants) or circuits of type C2. We denote
by [C] an oracle gate for a language in [C]. Thus [C] · AC0 is the class of all
languages accepted by AC0(C) oracle circuits such that each circuit has a single
oracle gate at the output, and each input bit to the oracle gate is the output of
an AC0 sub-circuit.

3 Hierarchies: Definitions and Upper Bounds

Among the simplest is the Boolean hierarchy, which characterizes the languages
expressible as Boolean combinations of any constant number of languages from
respectively C=NC1 or PNC1.

Definition 3.1 (The Boolean Hierarchy). Let C be a complexity class. The
Boolean hierarchy over C is defined as the set of languages L for which there exists
an NC0 circuit C with k inputs and A1, . . . , Ak ∈ C such that for all x ∈ {0, 1}∗,

x ∈ L⇐⇒ C(χA1(x), χA2(x), . . . , χAk
(x)) = 1

We denote this class of languages by NC0 · C or BH(C).

Remark 3.2. A more standard way of defining the Boolean hierarchy is to define
the levels BH0(C) := C, BHi(C) := {L14L2 | L1, L2 ∈ BHi−1(C)}, and then take
the union

⋃
i>0 BHi(C). If C is closed under union and intersection, then these

definitions coincide with each other and with the definition of NC0 · C above ([8]).

The other way of defining hierarchies is via oracle queries. As shown in [3]
(see also [2]), nesting queries above a base machine is equivalent to adding oracle
gates in an AC0 circuit. And it also often turns out to be equivalent to adding
oracle gates in an NC1 circuit. We present the oracle-circuit definitions below.

Let L be any language. An AC0(L) circuit family is a sequence {Cn}n≥0 of
AC0circuits containing additional oracle gates for L of unbounded fan-in. Similarly,
an NC1(L) circuit family is a sequence {Cn}n≥0 of NC1 circuits with additional
oracle gates for L of unbounded fan-in such that oracle gates of fan-in m account
for depth dlogme.

Definition 3.3 (The AC0 and the NC1 Hierarchy). Let C be a complexity
class. Then AC0(C) (respectively NC1(C)) is defined to comprise those problems
decidable by an AC0(L) (respectively NC1(L)) circuit family for some L ∈ C.

We now characterize the hierarchies using Arithmetic-Boolean Circuits. From
Proposition 2.5, we know that C=NC1 and PNC1 have equivalent arithmetic-
Boolean circuits. It is natural to ask whether there are equivalent such circuits
for the hierarchies above these classes. For the AC0 hierarchy, this is easy to see;
we show below that AC0(C=NC1) and AC0(PNC1) can be characterized using
arithmetic-Boolean circuits. We need the notion of nesting depth: in a circuit
C, the nesting depth of gates of a type t is the largest number k such that some
path from the output to a leaf of C goes through exactly k gates of type t.

Proposition 3.4. AC0(C=NC1) (respectively AC0(PNC1)) equals the class of
languages decidable by a-NC1

= (respectively a-NC1
>) circuit families such that the

nesting depth of test gates is bounded by a constant and the output gate of each
circuit is a test gate.

It is tempting to believe that dropping the requirement on nesting depth of
test gates will characterize NC1(C=NC1) and NC1(PNC1). This, however, is not
the case. The conversion from left to right (NC1(C=NC1) to a-NC1

=) goes through,
but for the converse, the requisite depth bound does not follow. We describe a
certain condition under which we can obtain an exact characterization.

Let C be an a-NC1
= circuit (respectively a-NC1

> circuit) with n inputs and let
g1, . . . , gm enumerate all of its test gates. Denote by Si the maximal connected
sub-circuit of C rooted at gi that consists of +, ×-gates and the constants −1,
0, 1; these are the “blobs” in the proof of Proposition 3.4. As the depth of C
is logarithmic in the number of its inputs, we may without loss of generality
assume that S1, . . . , Sm induce a partition of the non-input gates of C. Thus any
path from the output to a leaf in C goes through a chain of these blobs. There
can be O(log n) blobs on any such chain, and the logarithm of the size of a blob
can be as large as θ(log n), and this causes the problem in replicating the above
proof. We “define away” the problem: We say that C has the small-blob-chains
property if for every path π from the root of C to an input gate or a constant,∑

gi occurs in π

log |Si| ∈ O(log n).

Now we can characterize exactly the NC1 hierarchies above C=NC1 and PNC1.

Proposition 3.5. NC1(C=NC1) (respectively NC1(PNC1)) equals the class of
languages decidable by a-NC1

= (respectively a-NC1
>) circuit families with the small-

blob-chains property in which the output gate of each circuit is a test gate.

There exist arithmetic-Boolean circuits violating the small-blob-chains prop-
erty. (See, for instance, the example in the Appendix.) Hence, dropping the
small-blob-chains property from the circuits in Proposition 3.5 leads to presum-
ably different class of languages. We denote these classes by AH, for arithmetic
hierarchy, defined analogously to the classes figuring in Propositions 2.5 and 3.5.

Definition 3.6 (Arithmetic Circuit Hierarchies over C=NC1 and PNC1).
A language L is said to be in AH(C=NC1) (or AH(PNC1)) if and only if χL can
be computed by an a-NC1

= (respectively a-NC1
>) circuit family such that in each

circuit, the output gate is a test gate.

The following chain of inclusions holds.

Observation 3.7.

C=NC1

PNC1

⊆

⊆

BH(C=NC1)⊆

BH(PNC1)

⊆

⊆

AC0(C=NC1)⊆

AC0(PNC1)

⊆

⊆

NC1(C=NC1)⊆

NC1(PNC1)

⊆

⊆

AH(C=NC1)⊆

AH(PNC1).

⊆

Remark 3.8. We can also augment the a-NC1
= and a-NC1

> circuits in Definition 3.6
by allowing oracle gates, with dlog(fan-in(g))e charged to the depth of each such
gate g. Since, without loss of generality, we deal with languages over a binary
alphabet, the inputs to the oracle gate must be Boolean inputs. But the circuit
computes arithmetic values, except at test gates. Thus, we will require that all
the inputs to an oracle gate are either Boolean circuit inputs (literals or the
constants 0,1, but not −1) or the outputs of test gates. It can be shown that
allowing C=NC1 oracle gates in a-NC1

= circuits, or PNC1 oracle gates in a-NC1
>

circuits, with this condition, does not add to the power of the circuit families
beyond AH(C=NC1) and AH(PNC1) respectively.

We now show some upper bounds. We first establish that the AC0 and the
NC1 hierarchies over C=NC1 and PNC1 are contained in L. By the containments
depicted in Observation 3.7, it suffices to show this bound for NC1(PNC1).

Theorem 3.9. NC1(PNC1) ⊆ L.

We give (in the appendix) two proofs of this theorem; one works directly with the
oracle circuit, and the second works with the a-NC1

= circuit. By Proposition 3.5,
AH(PNC1) differs from NC1(PNC1) only in the small-blob-chains property. In
the absence of this property, the recursive simulation in the second proof of
Theorem 3.9 yields only a O(log2 n) space bound. Also, since the log-space
evaluation of each blob may not be read-once in its inputs, each blob may have
to be evaluated several times. So we cannot obtain a polynomial time bound for
the recursive procedure. However, using a bottom-up evaluation, we can show
that AH(PNC1) circuits can be evaluated in TC1.

Theorem 3.10. AH(PNC1) ⊆ TC1.

4 The PNC1 hierarchy collapses

In this section we show that the constant-depth PNC1 hierarchy, AC0(PNC1),
collapses to the base level.

Theorem 4.1. AC0(PNC1) = PNC1.

Proof. Since PNC1 is closed under complementation, and since unbounded fan-in
∨ and ∧ functions are in NC1 and hence in PNC1, we can assume without loss of
generality that the AC0(PNC1) circuit has only oracle gates. Theorem 4.2 below
shows how to collapse two adjacent levels of PNC1 oracle gates into one. Applying
this repeatedly gives the desired result. 2

The rest of this section is devoted to proving Theorem 4.2:

Theorem 4.2. [PNC1] · [PNC1] = PNC1.

We adapt the techniques of [11] to the case of constant width branching
programs. Also, as in [11], we use the polynomial technique developed earlier
([5, 7]) to show closure properties of the complexity class PP. A new ingredient
we need is read-once certified circuits and exponential sums, from [10].

4.1 Overview of the Collapse Argument

Consider a language L in [PNC1] · [PNC1]. Then there is a language H ∈ PNC1

and a circuit family {Cn} accepting L where each Cn has depth 2 and has only
oracle gates for H. That is, the output gate g is an oracle gate whose inputs are
themselves oracle gates or literals or constants. Without loss of generality, we
can assume that in fact all inputs to g are outputs of oracle gates. Let g have
fan-in t. On input x, its inputs are χH(Y1), χH(Y2), . . . , χH(Yt), where each Yi is
a projection (re-ordering of bits) of the input x.

Let f be the GapNC1 function witnessing that H ∈ PNC1. Then there is a
a-BWBP family computing f . The idea is to consider the a-BWBP B for inputs
of length t, say y1, . . . , yt, and try to replace each edge labeled yi by a copy of the
a-BWBP on Yi. However, since Yi is the input to an oracle gate, we want a 0-1
value for the sign of f(Yi), not the value of f(Yi) itself. If the sign function can
be computed by a suitable polynomial function, then we can apply this function
to each f(Yi) to get another GapNC1 function. Unfortunately, the sign function
cannot be represented in this fashion. However, it can be approximated by rational
functions (ratios of polynomials); this approximation was first used in [5], and
later in [7] and [11]. We follow the presentation from [11]. For completeness, we
describe the polynomials in the Appendix.

To show that using such approximations is valid, we require that B satisfies
a certain condition: All paths should have equal susceptibility to error, so as to
not change the overall outcome. In particular, since a yi edge label corresponds
to using the output of an oracle gate, and since different oracle gates can have
different errors, we will require that each path has exactly the same multiset

of edge labels, independent of the input. This is a strong normal form. Such a
normal form was required to collapse AC0(PL) to PL, and was shown in [11]. We
show a corresponding normal form for a-BWBPs in Lemma 4.3.

Finally, we need to show that there is a GapBWBP function h which has
the same sign as the value of the a-BWBP B with the rational approximations
in place. In [11], the analogous result is shown by describing an appropriate
probabilistic log-space machine. In the GapBWBP setting, things are a bit more
complicated since we have only O(1) storage. We get around this by using
the notion of exponential sums over read-once certified circuits, introduced in
[10]. The GapBWBP family computing the desired h is described in Section 4.2,
completing the proof of Theorem 4.2.

4.2 Some Details of the Proof

We introduce a notation here. A node v in a BP B is called a nondeterministic
node if there is an input assignment for which v has two out-edges labelled 1.
We show the following normal form for branching programs computing functions
in GapNC1; this is analogous to Lemma 3.1 in [11] for PL and #L functions.

Lemma 4.3. Let f be a function in GapNC1. Then there exists a branching
program Q of width O(1) such that

1. Q has a single start node s and two terminal nodes t1 and t2;
2. every path originating from s ends at either t1 or t2 and nowhere else;
3. any path of Q on any given input x contains exactly q nondeterministic nodes;
4. every edge is labelled by a literal yi or ¬yi;
5. on any input y, Q has exactly 2q paths, originating from s, where q = q(n) ≤

poly(n);
6. f = #[s ; t1]−#[s ; t2].

We use the following characterization of the class PNC1.

Proposition 4.4. A language L belongs to PNC1 if and only if there is a function
f ∈ GapNC1 such that if x ∈ L then f(x) ≥ 1 and if x /∈ L then f(x) ≤ −1.

We now complete the proof of Theorem 4.2. Let L ∈ [PNC1] · [PNC1]. As
described in Section 4.1, there is a GapNC1 function f and a circuit family
accepting L such that for any word x, f(x) 6= 0 and x ∈ L⇔ f(b1, . . . , bt) > 0,
where bi = χH(Yi) and so bi = 1 if f(Yi) > 0; bi = 0 otherwise. Each query string
Yi is obtained from x by a projection and is an oracle query at the bottom layer;
bi is the oracle reply.

Replace each bi by a variable yi and apply Lemma 4.3 to get a polynomial
size branching program Q, with three special nodes s, t1, and t2, computing f(Y)
on t-bit inputs via the gap f = #[s ; t1] − #[s ; t2]. Note that for every
layer k of Q, there is a variable uk ∈ Y such that the edges from layer k to
layer k + 1 are labelled from the set {uk,¬uk}. Note that all the uk need not be
distinct. Henceforth, we denote by yk and Yk the variable at layer k of Q and
the corresponding query string, respectively. Without loss of generality we can

assume that every layer is a nondeterministic layer. Let Q have p layers. Then
every pair of bit-strings w, u, each of length p, uniquely represents a path in the
BP Q, by considering the ith bit wi of w as the query answer at the ith layer
and ith bit ui of u as the nondeterministic choice. For w, u, with |w| = |u| = p,
define the Boolean function e(x,w, u) as follows: e(x,w, u) = 1 if and only if the
path of Q represented by the strings w and u on input x is an accepting path
(that is, it terminates at t1). Now define the following functions:

T (x) :=
∑

u,w∈{0,1}p

e(x,w, u)S̃(x,w),

a(x) :=
∑

u,w∈{0,1}p

e(x,w, u)α̃(x,w), and

h(x) := 4a(x)− 2p+1β(x).

Here, S̃(x,w), α̃(x,w) and β(x) are Ogihara’s polynomials (see Appendix).
As shown in [11] (see Lemma 6.4), T (x) = a(x)/β(x). Using the properties of

S̃ we have:

Lemma 4.5. [11] If x ∈ L then T (x) > 2p−1, and if x /∈ L then T (x) < 2p−1.
Hence, x ∈ L if and only if h(x) ≥ 0.

Now it suffices to prove the following; see the appendix for a complete proof.

Lemma 4.6. h(x) ∈ GapBWBP=GapNC1.

5 The Hierarchy above C=NC1

Since we do not even know if C=NC1 is closed under complementation, we cannot
hope for a direct collapse of the hierarchies above C=NC1 all the way down to
C=NC1. However, we show here two partial collapses. For the analogous class C=L,
it has been shown in [2] that the hierarchy collapses to LC=L, and that testing
feasibility of systems of linear equations FSLE is complete for this class. At the
level of NC1, we show that the analogous situation splits into two counterparts.
We define an appropriate non-trivial notion of constant-dimension FSLE and show
that it is complete for the Boolean hierarchy over C=NC1, BH(C=NC1). We then
show that the constant-depth hierarchy over C=NC1, AC0(C=NC1), collapses to a
certain level within the hierarchy that we denote AC0 · C=NC1; this is contained
in the second level of the hierarchy.

5.1 The Boolean Hierarchy above C=NC1

Definition 5.1. For any k ∈ N, and any class C of functions from words to
integers, the language class FSLEk[C] is defined as follows: A language L belongs
to the class FSLEk[C] if there are functions Aij ∈ C for 1 ≤ i, j ≤ k and a vector
b ∈ Zk such that for each w ∈ {0, 1}∗, w ∈ L if and only if the system Az = b of
linear equations in k variables zj, where Aij = Aij(w), has a feasible solution
over the rationals. The class FSLEbdd[C] is the union of FSLEk[C] over all k.

Proposition 5.2. The following two containments hold:

coC=NC1 ⊆ FSLE1[GapNC1], C=NC1 ⊆ FSLE2[GapNC1].

We prove something stronger, by showing that FSLEbdd[GapNC1] can express
conjunctions and negations.

Lemma 5.3. NC0
d · C=NC1 ⊆ FSLE3(2d+1−1)[GapNC1].

And we establish a converse as well, with somewhat different parameters. The
proof uses the fact that to check feasibility, the ranks of finitely many sub-matrices
need to be computed.

Lemma 5.4. FSLEk[GapNC1] ⊆ NC0
3k · C=NC1.

From Lemmas 5.3 and 5.4, we have shown the following:

Theorem 5.5. NC0 · C=NC1 = FSLEbdd[GapNC1].

5.2 The AC0 Hierarchy above C=NC1

We now show the collapse of the constant-depth hierarchy over C=NC1, that is,
we prove AC0(C=NC1) = AC0

3 · [C=NC1]. First we set up some notation.
Let AC0

k(C) denote the class of languages accepted by AC0 oracle circuits,
where the oracle gates are for a language in C, and where on any root-to-
leaf path, the number of oracle gates encountered is at most k. (This is in
analogy with AC0

k denoting depth-k AC0 circuits.) Then, AC0
k(C) is exactly

AC0 · [C] · AC0 . . . (k times) . . . [C] · AC0. In particular, when C = C=NC1, using
notation from Proposition 3.4 we can see that AC0

k(C=NC1) equals a-NC1
= circuits

where the nesting depth of the test gates is at most k.

Proposition 5.6. [C=NC1] · AC0 = C=NC1 and [coC=NC1] · AC0 = coC=NC1.

The heart of our collapse result is the following lemma, stating that two
adjacent levels of coC=NC1 oracle gates can be combined into one.

Lemma 5.7. [coC=NC1] · [coC=NC1] ⊆ AC0 · [coC=NC1]. In particular, the AC0

circuitry is of depth 3, with an OR of ANDs and some negations at the leaves.

The result follows immediately from Lemma 5.8 below.

Lemma 5.8. Let h : {0, 1}t −→ {0, 1}, f1, f2, . . . , ft : {0, 1}n −→ {0, 1} be
functions in GapNC1, where for all w, fi(w) ≥ 0. Then for some T ∈ tO(1), there
exist GapNC1 functions g1, g2, . . . , gT : {0, 1}n −→ {0, 1} and an AC0 circuit H
on T inputs such that, for all w ∈ {0, 1}n,

h(b1, b2, . . . , bt) 6= 0⇐⇒ H(d1, d2, . . . , dT) = 1

where bi :=
{

1 if fi(w) 6= 0,
0 otherwise, and dj :=

{
1 if gj(w) 6= 0,
0 otherwise.

To establish this, we define appropriate symmetric polynomials such that when
evaluated at the values fi(w), a simple predicate involving them reveals the
value of h. We then use the fact that the symmetric polynomials are efficiently
computable over fields.

Using Proposition 5.6 and Lemma 5.7, we get our collapse result.

Theorem 5.9. The AC0 hierarchy over C=NC1 collapses to its first level, requir-
ing a single layer of oracle gates and a depth-3 circuit above it,

AC0(C=NC1) = AC0 · [C=NC1] = AC0 · [coC=NC1] = AC0
3 · [C=NC1].

References

[1] E. Allender. Arithmetic circuits and counting complexity classes. In Jan Krajicek,
editor, Complexity of Computations and Proofs, Quaderni di Matematica Vol. 13,
pages 33–72. Seconda Universita di Napoli, 2004. An earlier version appeared in
the Complexity Theory Column, SIGACT News 28, 4 (Dec. 1997) pp. 2-15.

[2] E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and feasible
systems of linear equations. Computational Complexity, 8(2):99–126, 1999.

[3] E. Allender and M. Ogihara. Relationships among PL, #L, and the determinant.
RAIRO Theoretical Information and Applications, 30:1–21, 1996. Conference
version in Proc. 9th IEEE Structure in Complexity Theory Conference (1994),
267–278.

[4] D. A. Barrington. Bounded-width polynomial size branching programs recognize
exactly those languages in NC1. Journal of Computer and System Sciences,
38:150–164, 1989.

[5] R. Beigel, N. Reingold, and D. A. Spielman. PP is closed under intersection.
Journal of Computer and System Sciences, 50(2):191–202, 1995.

[6] H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1

computation. Journal of Computer and System Sciences, 57:200–212, 1998. Pre-
liminary version in Proceedings of the 11th IEEE Conference on Computational
Complexity, 1996, 12–21.

[7] L. Fortnow and N. Reingold. PP is closed under truth-table reductions. Inf.
Comput., 124(1):1–6, 1996.

[8] J. Köbler, U. Schöning, and K. W. Wagner. The difference and truth-table
hierarchies for NP. Theoretical Informatics and Applications, 21(4):419–435, 1987.

[9] K.-J. Lange. Unambiguity of circuits. Theor. Comput. Sci., 107(1):77–94, 1993.
[10] M. Mahajan and B. V. Raghavendra Rao. Small-space analogues of Valiant’s

classes. In FCT, LNCS vol. 5699, pages 250–261, 2009.
[11] M. Ogihara. The PL hierarchy collapses. SIAM J. Comput., 27(5):1430–1437,

1998.
[12] I. Tzamaret. Studies in Algebraic and Propositional Proof Complexity. PhD thesis,

Tel Aviv University, 2008.
[13] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-

Verlag New York Inc., 1999.
[14] J. von zur Gathen and G. Seroussi. Boolean circuits versus arithmetic circuits.

Information and Computation, 91(1):142–154, 1991.

6 Appendix

Proposition 3.4. AC0(C=NC1) (respectively AC0(PNC1)) equals the class of
languages decidable by a-NC1

= (respectively a-NC1
>) circuit families such that the

nesting depth of test gates is bounded by a constant and the output gate of each
circuit is a test gate.

Proof. We will consider the case C=NC1 only, the proof for PNC1 is completely
analogous.

For the direction from left to right, let L ∈ C=NC1 and denote by f the
function witnessing this fact (that is, x ∈ L ⇐⇒ f(x) = 0 for all x). Let C be
an unambiguous AC0(L) circuit with n inputs (without loss of generality we may
assume that C is unambiguous. From C, construct an arithmetic circuit C ′ as
follows:

– Replace each ∧-gate with a ×-gate.
– Replace each ¬-gate with input x with the sub-circuit 1 + (−1× x).
– Replace each ∨-gate with inputs x1 and x2 with the sub-circuit x1 + ((1 +

(−1× x1))× x2).
– Replace each oracle gate with inputs x1, . . . , xm with a test gate whose input

is the arithmetic circuit that computes f(x1 · · ·xm).

It holds that C ′(x) ∈ {0, 1} and C ′(x) = C(x) for all possible inputs x. The size
of C ′ is clearly polynomial in the size of C. Its depth is O(log n) owing to the
replacement of an oracle gate by a test gate atop an a-NC1 circuit; however, the
nesting gate of test gates is at most the depth of C and hence a constant. Thus,
the circuit D deciding whether C ′(x) + (−1) is equal to zero is the desired a-NC1

=

circuit.
For the converse direction, let C denote an a-NC1

= circuit with a test gate at
the output and O(1) nesting depth of test gates. Without loss of generality, we
can assume that the circuit is a formula: every gate has out-degree 1. If we cut
all the edges leading out of a test gate, the circuit breaks up into blobs, each
of which is an arithmetic circuit with a test gate at the output. In particular,
let g1, . . . , gm enumerate all test gates in C, and denote by Si the maximal
connected sub-circuit of C rooted at gi that consists of +, ×-gates and the
constants −1, 0, 1. Then each Si computes some function fi : {0, 1}m → {0, 1}.
By the structure of the circuit, using Proposition 2.5, we see that these functions
fi are all characteristic functions of C=NC1 languages. Replacing Si with an oracle
gate for the corresponding language yields a Boolean circuit C ′ of polynomial
size comprising input gates and oracle gates for C=NC1 only. The depth of this
circuit is the nesting depth of test gates in C and hence a constant. This is the
required AC0(C=NC1) circuit. 2

Remark 6.1. A small technicality in the above proof: in going from right to left,
different oracle gates appear to query different languages in C=NC1. However,
these can all be replaced by queries to any one language that is complete for
C=NC1 under projections.

Proposition 3.5. NC1(C=NC1) (respectively NC1(PNC1)) equals the class
of languages decidable by a-NC1

= (respectively a-NC1
>) circuit families with the

small-blob-chains property in which the output gate of each circuit is a test gate.

Proof. We will consider the case C=NC1 only, the proof for PNC1 is completely
analogous. The constructions are exactly as in the proof of Proposition 3.4, only
the analysis is different.

For the direction from left to right, let C ′ be the circuit obtained from the
unambiguous NC1(L) circuit C. The size of C ′ is clearly polynomial in the size of
C. As in C any oracle gate of fan-in m accounts for depth logm and the depth
of C bounded by O(log n), we obtain that the depth C ′ remains bounded by
O(log n) and also satisfies the small-blob-chain property. Thus, the circuit D
deciding whether C ′(x) + (−1) is equal to zero is the desired a-NC1

= circuit.
For the converse direction, let C ′ be the Boolean circuit constructed from C; it

is of polynomial size comprising input gates and oracle gates for C=NC1 only. From
the small-blob-chains property, we finally obtain that for each path π′ starting in
the root of C ′ and leading to an input gate or a constant,

∑
g∈π′ log(fan-in(g)) =∑

S∈π O(log |S|) ∈ O(log n), where π is the corresponding path in C going
through blob S instead of oracle gate g. Thus the depth of C ′ remains bounded
by O(log n). 2

Dropping the small-blob-chains property Consider, for example, any circuit family
{Cn}n≥0 such that Cn contains n input gates, log n test gates, and the input
to each of these test gates is a binary gate g with inputs i1 and i2 such that
the sub-circuits computing i1 and i2 are disjoint, the sub-circuit computing i1
contains ≥ n gates, and the sub-circuit computing i2 is rooted at a test gate (see
Fig. 1). Then the path starting in the root of circuit Cn and proceeding to the
right ancestor of every binary gate crosses all maximal sub-circuits consisting of
all but test gates rooted at test gates that consist of +-, ×-gates as well as the
constants −1, 0, 1. Thus,∑

Si occurs in π

log |Si| ≥ log n · log n /∈ O(log n).

Theorem 3.9. NC1(PNC1) ⊆ L.

Proof. Let L be in NC1(PNC1) and suppose without loss of generality that
L ⊆ {0, 1}?. Then there exists a language B in PNC1 and an NC1(B) circuit
family {Cn}n≥0 such that C|x|(x) = 1 if and only if x ∈ L. As apparent from
the proof of Proposition 3.5, we may without loss of generality assume that Cn
contains oracle gates and input gates only.

Given x, we now simulate the circuit C|x| in a top-down way. At any (oracle)
gate for B, we simulate the PNC1 circuit for B, using the fact that PNC1 is
known to be in L (Proposition 2.4). If this simulation requests an input g, we
recursively simulate the sub-circuit of C rooted at g to obtain this bit.

=0?

+

+/×

≥ n gates

=0?

×

+/×

≥ n gates

=0?

×

+/×

≥ n gates

Fig. 1. A circuit violating the small-blob-chains property.

The amount of space required by this approach is O(log n) for the paths
in C plus the space needed for the simulations. As PNC1 ⊆ L, each simulation
requires space logarithmic in the fan-in of the oracle gate. Let s(g) denote the
space needed to simulate the circuit associated with the (oracle) gate g, assuming
that its inputs are explicitly available. Then, for each path π starting in the
root of C and leading to an input gate or a constant, we have

∑
g∈π s(g) =∑

g∈π O(log(fan-in(g))) ∈ O(log n). Thus the entire recursive simulation requires
O(log n) space, and so we conclude that NC1(PNC1) is contained in L. 2

Recall from Proposition 3.5 that NC1(PNC1) can be described in terms of
a-NC1

= circuits with the small-blob-chains property. The proof above can be
restated assuming that the equivalent a-NC1

= circuit family is given, rather than
the oracle circuit. We describe this restatement here, primarily to highlight why
it does not work for AH(PNC1).

Proof (Alternative proof of Theorem 3.9). Let C be the a-NC1
>circuit with test

gates placed so as to satisfy the small-blob-chains property. Let it have n input
gates, and let x ∈ {0, 1}n. We use the facts that PNC1 is known to be in L
(Proposition 2.4), and that PNC1 is characterized by a-NC1

> circuits with a single
test gate at the output (Proposition 2.5).

As in the proof of Proposition 3.4, we assume that the circuit is a formula, and
cut all the edges leading out of test gates, so that the circuit breaks up into blobs,
each of which is an arithmetic circuit with a test gate at the output. If g1, . . . , gm
enumerate all test gates in C, and Si the maximal connected sub-circuit of C
rooted at gi with no test gate other than gi, then each Si computes fi = χLi

for
some Li ∈ PNC1, and so each fi is computable in L.

Given x, we evaluate the circuit in a top-down way, starting with the topmost
blob and carrying out the logspace evaluation of the associated function. When
this evaluation needs a bit that is an input to this blob and is an output of
another test gate, we recursively starts a fresh logspace computation of the

required function. When this computation terminates, we resume the earlier
computation.

At any stage, the computation traces out a path, or a chain, through the
blobs in C, with the current computation focussing on the leaf of the chain.
The space requirement per blob is logarithmic in the size of the blob. By the
small-blob-chains propery, we conclude that the overall space requirement is
O(log n). 2

Theorem 3.10. AH(PNC1) ⊆ TC1.

Proof. We perform a straightforward bottom-up Boolean evaluation of the arith-
metic circuit; that is, we evaluate bit representations of the values carried on
the wires. Since C is a formula, all intermediate values have polynomial-sized bit
representations, so the + and × gates can be replaced by TC0 sub-circuits. The
test gates can also be trivially replaced by appropriate TC0 sub-circuits. This
yields a log depth circuit with majority gates, that is, a TC1 circuit. 2

Lemma 4.3. Let f be a function in GapNC1. Then there exists a branching
program Q of width O(1) such that

1. Q has a single start node s and two terminal nodes t1 and t2;
2. every path originating from s, ends at either t1 or t2 and nowhere else;
3. any path of Q on any given input x contains exactly q nondeterministic nodes;
4. every edge is labelled by a literal yi or ¬yi;
5. on any input y, Q has exactly 2q paths, originating from s, where q = q(n) ≤

poly(n);
6. f = #[s ; t1]−#[s ; t2].

Proof. From Proposition 2.2, there is a BP P of width w = O(1) and size
s = poly(n), with nodes s, t1 and t2 such that f = #[s ; t1]−#[s ; t2]. The
edge labels in P are literals or the constant 1. We modify P so that

– Every node has out-degree 0,1,or 2.
– For each layer k, there is an index ik such that, edges from layer k to k + 1

are labelled from the set {1, yik ,¬yik}.

This can be achieved by doing necessary staggering of the program P . Copy all
the nodes of a layer into new nodes, and then implement the edges according to
their labels, taking one variable at a time. Repeat this process for all the layers.
This ensures that every edge in a particular layer is labelled by a single variable,
its negation or a constant. This will double the width and increase the size by a
factor of wn. In a similar way, we can ensure that the out-degree of every node
is 0,1 or 2. The resulting BP P ′ will have width bounded by O(4w) and size
O(w2n2 · s), where s = size(P).

We create a new line (a path) called the “zero-gap” line starting from s. This
line remains a single path until the last layer and forks out to both t1 and t2,

with all the edges being labelled by 1. Note that this line produces a zero-gap.
To meet condition 2 in the lemma, for every node v, if v has an out-edge labelled
yi (respectively ¬yi) and no out-edge labelled ¬yi (respectively yi), then add an
edge labelled ¬yi (respectively yi) to the zero-gap line. Note that this process
ensures condition 2 without changing the gap-function.

Recall that a node in P ′ is nondeterministic if it has two out-going edges
labelled 1 on at least one input assignment to y (for example, a node with two
outgoing edges labelled yi and 1 respectively). A layer is called nondeterministic
if at least one of the nodes in that layer is nondeterministic. In order to ensure
that for every input y, the total number of paths originating from s remains the
same, we make all the nodes in every nondeterministic layer nondeterministic,
by adding necessary paths to the zero-line as follows: Consider a deterministic
node v in a nondeterministic layer. Let yi be the allowed variable label for this
layer. There are two possibilities: v has two out-edges, one labelled by yi and the
other labelled by ¬yi or v has a single out-edge labelled by 1. In both the cases,
we add an edge to the zero-gap line, with label 1. In the case when v is a node
already in the zero-gap line, we just add a parallel edge. Again, this construction
does not alter the gap function.

Finally we eliminate the constant 1 on edge labels: replace an edge labelled
1 by parallel edges, one labelled yi and the other labelled ¬yi, where yi is the
variable at this layer.

Let Q denote the resulting BP. Let q be the number of nondeterministic
layers of Q. Since we have two choices at every nondeterministic layer and only
one choice at deterministic layers, on any input y, the number of distinct paths
originating from s is exactly 2q. As we have not changed the gap values in the
whole process, this proves the lemma. 2

Lemma 4.6. h(x) ∈ GapBWBP

Proof. Since GapBWBP is closed under taking polynomially bounded sums and
products, it follows easily that α(x, i, wi) and β(x, i) are in GapBWBP. We now
show that a(x) ∈ GapBWBP.

First we show that e(x,W,U) can be computed by a constant width branching
program which is read-once certified in the variables W and U . Let r be the
width of Q; note that r = O(1). We build a Boolean circuit C which is “read-once
certified” in W and U (that is, there exists a partition of C into sub-ciruits
C1, . . . , C|U |+|W | such that for all inputs from U ∪W there exists an index i
such that all wires from the input gate lead to the sub-circuit Ci), has width
O(r), and computes e(x,W,U). We proceed layer by layer. At the ith stage, C
computes the index of the node v at layer i which is a part of the unique path in
Q represented by x, W and U . Note that this index requires O(log r) bits and
hence C has those many gates as the output of this stage. Now the (i + 1)th
stage computes the index of the node v′ at layer i+ 1, which is uniquely defined
given the index of v and bits wi and ui. Given the bit representation of the index
of v, the index of v′ depends only on wi and ui hence can be computed by a

B0 ·B1 P1 B2 P2 B3 · · · Pp Bp+1

Fig. 2. Composing Bis and Pis

circuitry of size (hence width) O(r). After the final stage, the circuit outputs 1
if and only if the index corresponds to the node t1 at the last layer. Clearly C
computes e(x,W,U) and is of size O(r · size(Q)) and width O(r). Also from the
description of C, it is clear that C is read-once certified in W as well as U .

Using a standard subset construction (see [4], Section 5), we obtain a BP B
computing e(x,W,U) so that:

– width(B) = 2O(r) and size(B) = 2O(r)size(C); and

– B is read-once certified in both W and U .

Let B0 be the initial part of B that depends on none of the variables from W an
U . Let Bi be the part that depends only on x, wi, and ui. Now we construct a
BP that gap-represents the product e(x,W,U)α̃(x,W) and is read-once certified
in the variables W and U . Let Pi be a constant width BP gap representing
α(x, i,Wi). We position the programs Bis and Pis as shown in the Figure 2 to
obtain the BP B′. Clearly B′ gap-represents e(x,W,U)α̃(x,W) and is read-once
certified in W s and Us. The size of B′ is bounded by size(B) +

∑
size(Bi), and

its width is max{width(B),width(Pi)}; these are bounded by 2O(r)size(Q)poly(p)
and 2O(r) respectively.

Notice that a(x) is exactly the read-once exponential sum of e(x,W,U)α̃(x,W)
over the variables from W and U . Thus, applying Proposition 2.6 to B′, we get a
BP B′′ of size poly(size(B′)) and width (width(B′))4 such that B′′ gap-represents
a(x). The width blows up by a power of 4 (since we need to do the read-once
exponential sum closure twice, once for the variables from W and then for those
from U), but remains O(1). Hence we obtain a GapBWBP for a(x). 2

Rational Approximations for the Sign: Ogihara’s Polynomials

In the following, we define the functions that will be needed in the construction.
We follow the same notations from [11].

Definition 6.2. [11]

Pm(z) := (z − 1)
m∏
i=1

(z − 2i)2,

Qm(z) := −(Pm(z) + Pm(−z))),

Rm,k(z) :=
(

2Pm(z)
Qm(z)

)2k

,

Sm,k(z) := (1 +Rm,k(z))−1
,

Am,k(z) := Q(z)2k, and
Bm,k(z) := Qm(z)2k + (2Pm(z))2k.

The following properties of Sm,k are proved in [11]:

Proposition 6.3. [11] For m, k ≥ 1, and for every z, the following holds:

1. Sm,k(z) = Am,k(z)
Bm,k(z) ,

2. 1 ≤ z ≤ 2m ⇒ 1− 2−k ≤ Sm,k ≤ 1, and
3. −2m ≤ z ≤ −1⇒ 0 ≤ Sm,k(z) ≤ 2−k.

Let f be a function from strings to non-zero integers, and let µ = µ(|x|) be
such that for all strings x, |f(x)| ≤ 2µ(|x|). Let B′ be a function mapping a string
x to a sequence Y1, . . . , Yp of p Boolean strings for some p, and let κ = 2p+ 1.
For i ∈ [1, p], define the following functions:

S(x, i, 1) := Sµ,κ(f(Yi)),
S(x, i, 0) := 1− Sµ,κ(f(Yi))
α(x, i, 1) := Aµ,κ(f(Yi)),
α(x, i, 0) := Bµ,κ(f(Yi))−Aµ,κ(f(Yi)), and
β(x, i) := Bµ,κ(f(Yi)).

For w ∈ {0, 1}p, define

S̃(x,w) :=
p∏
i=1

S(x, i, wi),

α̃(x,w) :=
p∏
i=1

α(x, i, wi), and

β̃(x) :=
p∏
i=1

β(x, i).

Let H be the language defined as {y | f(y) > 0}. Then

Lemma 6.4. [11]

1. If wi = χH(Yi), then 1− p2−κ ≤ S̃(x,w) ≤ 1 and 0 ≤ S̃(x,w) ≤ 2−κ.

2. S̃(x,w) = α̃(x,w)

β̃(x,w)
.

Proposition 5.2. The following two containments hold:

coC=NC1 ⊆ FSLE1[GapNC1],
C=NC1 ⊆ FSLE2[GapNC1].

Proof. Given g = g(x1, . . . , xn) ∈ GapNC1, and a word a ∈ {0, 1}n, consider the
system of equations Az = b, where

1. A := (g(a)), b := (1), and z consists of a single variable z1. Clearly, the system
is feasible if and only if g(a) 6= 0.

2. A :=
(
g(a) 0

1 0

)
, b :=

(
0
1

)
, and z consists of two variables. Clearly, the

system is feasible if and only if g(a) = 0.
2

Lemma 5.3. NC0
d · C=NC1 ⊆ FSLE3(2d+1−1)[GapNC1].

Proof. We use the following constructions:

Claim. If (A1, b1), (A2, b2) are FSLEk1 [GapNC1]- and FSLEk2 [GapNC1]-instances
respectively, then we can construct an instance of FSLEk1+k2 [GapNC1]-instance
(A, b) which is feasible if and only if both (A1, b1), (A2, b2) are feasible.

Proof. Let

A :=
(
A1 O1

O2 A2

)
, b :=

(
b1
b2

)
,

where O1, O2 are all zeroes matrices of appropriate dimensions (k1 × k2 and
k2 × k1 respectively). 2

Claim. FSLEk[GapNC1] ⊆ co-FSLEk+1[GapNC1]

Proof. We need to show that given an FSLEk[GapNC1]-instance (A, b), we can
construct an FSLEk+1[GapNC1]-instance (A′, b′) such that (A, b) is feasible if and
only if (A′, b′) is infeasible. We essentially mimic the construction in [2] to achieve
this. We set

A′ :=
(
AT O
bT 0

)
, b′ :=

(
O
1

)
,

where O is a k × 1 column vector of all zeroes. For a proof of correctness see
[2]. 2

Assume that the NC0 circuit consists of ∧- and ∨-gates, with ¬-gates ocurring
only at the base level. This is to fix the notion of depth for such circuits.

We proceed by induction on the depth d of the NC0circuit. For the purposes of
the construction, we eliminate all internal ∨ gates, replacing them by equivalent
sub-circuits using ∧ and ¬.

The base case d = 0 is considered in Proposition 5.2—notice that we do not
include negation gates in our depth computation.

Depending on what the top gate is, we use one or both of the preceding claims.
Notice that the dimension of the FSLEbdd[GapNC1]-instance constructed at most
doubles at an ∧-gate. To simulate an ∨-gate, we need a negation, an ∧, and then
one more negation, so the the dimension of the FSLEbdd[GapNC1]-instance goes
from k to 2k + 3.

Hence, we conclude that a depth-d NC0 circuit over C=NC1 or coC=NC1

translates to an FSLEbdd[GapNC1]-instance of dimension at most 2×3(2d−1)+3 =
3(2d+1 − 1). 2

Lemma 5.4. FSLEk[GapNC1] ⊆ NC0
3k · C=NC1.

Proof. Let us fix some notation first. Given a k×k square matrix A, for S, T ⊆ [k],
let AS,T denote the square submatrix of A with exactly the rows in S and columns
in T . Also denote by bS the column vector of b with only the entries indexed in
S. Also denote by [A|ib] the square matrix formed by replacing the i-th column
of A by b. Thus [AS,T |tbS] for some t ∈ T is the matrix formed by replacing the
t-th column of AS,T by bS .

Let Az = b describe the system of linear equations on an input word, and let
r = rank(A). We observe the following.

Proposition 6.5. The following are equivalent.

1. For every S, T ⊆ [k] such that |S| = |T | = r and rank(AS,T) = r, and for
every j 6∈ S, det([AS′,T bS′]) = 0, where S′ = S ∪ {j}.

2. For some S, T ⊆ [k] such that |S| = |T | = r and rank(AS,T) = r, and for
every j 6∈ S, det([AS′,T bS′]) = 0, where S′ = S ∪ {j}.

3. The system Az = b is feasible.

Proof. 1⇒ 2: Obvious.
2⇒ 3: Let S, T be the subsets with the given property. Since rank(AS,T) = r,

AS,T is full-rank, and so the sub-system AS,T zT = bS has a unique solution zT .
Now extend this to a solution by setting z = 0 outside T . Clearly, this satisfies
the equations indexed by S. By the condition det([AS′,T bS′]) = 0 for j 6∈ S and
S′ = S ∪ {j}, it also satisfies every equation j 6∈ S. So it is a feasible solution.

3⇒ 1: Let z be a feasible solution, and let S, T be any pair of subsets of [k]
of size r such that AS,T is non-singular. If z is 0 outside T , then AS,T zT = bS
and for each j 6∈ S, A{j},T zT = bj . But A{j},T is expressible uniquely as a linear
combination of the rows of AS,T . It follows that bj is the same combination of
bS , and so det([AS′,T bS′]) = 0.

But we can assume without loss of generality that z is 0 outside T . This is
because the columns indexed by T span all the columns of A. So if for j 6∈ T ,
zj 6= 0, then we can set it to 0 and adjust the values of z in the T part to account
for the contribution of the jth column. 2

So now, to check if the system Az = b is feasible, we check condition (2) of
Proposition 6.5. We claim that this can be checked in NC0

k+1 ·C=NC1. To see this,
note that A is a matrix of O(1) size. So determinants of all its sub-matrices can
be computed by O(1)-size arithmetic formulas taking the GapNC1 function values
as inputs. In terms of the input word, these are themselves GapNC1 functions.
Thus, in particular, using the closure properties of C=NC1 (Proposition 2.4),
computing the rank of A or a submatrix of A is in C=NC1.

Now, the condition (2) is a disjunction over 22k conditions, one for each
S, T ⊆ [k]. Each condition is of the form

[|S| = |T | = rank(A) = rank(AS,T)]⇒
∧

j 6∈S;S′=S∪{j}

[det([AS′,T bS′]) = 0]

The whole condition can thus be expressed as an NC0 circuit of depth at most
2k +O(log k) ≤ 3k. 2

Proposition 5.6.

[C=NC1] · AC0 = C=NC1

[coC=NC1] · AC0 = coC=NC1

Proof. The inlcusion from right to left is obvious. We prove the left-to-right
inclusion for C=NC1; the proof for coC=NC1 is identical. So let A be a language
in [C=NC1] · AC0. At each length n, there is an AC0 oracle circuit C with a
single oracle gate g at the top. Let r be the number of input wires to g. On
input x = x1x2 · · ·xn, let these wires carry the values zi(x) for i = 1, . . . , r. By
Proposition 2.3, there are arithmetic a-AC0 circuits and hence a-NC1 circuits Zi
such that for all x, Zi(x) = zi(x). By Proposition 2.5, there is an a-NC1

= circuit
Dg with a single test gate at the output such that Dg(z1(x), . . . , zr(x)) is the bit
computed by the oracle gate g. Replacing the inputs zi(x) in Dg by the circuits
Zi gives an a-NC1

= circuit D′g computing the same function as C. Since D′g has
a single test gate at the top, by Proposition 2.5, it computes the characteristic
funciton of a language in C=NC1. 2

Lemma 5.8. Let h : {0, 1}t −→ {0, 1}, f1, f2, . . . , ft : {0, 1}n −→ {0, 1} be
functions in GapNC1, where ∀w : fi(w) ≥ 0. Then for some T ∈ tO(1), there exist
GapNC1 functions g1, g2, . . . , gT : {0, 1}n −→ {0, 1} and an AC0 circuit H on T
inputs such that, for all w ∈ {0, 1}n,

h(b1, b2, . . . , bt) 6= 0⇐⇒ H(d1, d2, . . . , dT) = 1

where bi :=
{

1 if fi(w) 6= 0,
0 otherwise, and dj :=

{
1 if gj(w) 6= 0,
0 otherwise.

Proof. Let C be an a-NC1 circuit computing h. Without loss of generality, assume
that C is a formula (all gates have out-degree 1), that is is layered with alternating
+- and ×-layers, and that the underlying graph is a complete binary tree where
every root-to-leaf path is of length exactly 2d.

Without loss of generality, assume that each fi is non-negative everywhere.
(If this not the case, use the function f2

i instead of fi; this will not change the
zero-test and hence will not change bi. And f2

i is also in GapNC1.)
Let F denote the set of functions {f1, . . . , ft}. For each i ∈ [t], let Fi denote

the set of functions F \ {fi}. Also, for each w ∈ {0, 1}n, let F(w) and Fi(w)
denote the set (or possibly multiset) of values taken by the functions in F and
Fi on the input w.

Over any set Y of l variables, the symmetric polynomials Skl for 0 ≤ k ≤ l
are defined as follows.

Skl (Y) :=
∑

S⊆Y ;|S|=k

∏
y∈S

y

For each i, k ∈ [t], define the function

F ki (w) := fi(w)St−1
k−1(Fi(w)).

Let Ck be the circuit obtained from C by replacing the constant 1 with the value
Stk(F), and replacing the constant −1 with the value −Stk(F). Now define the
predicate Πk as follows:

Πk(w) ≡
[
Skt (F(w)) 6= 0 ∧ Sk+1

t (F(w)) = 0 ∧ Ck(F k1 (w), . . . , F kt (w)) 6= 0
]

Claim. For all w ∈ {0, 1}n,

h(b1, b2, . . . , bt) 6= 0⇐⇒ ∃k ∈ {0, 1, . . . , t} : Πk(w).

Proof. Fix w ∈ {0, 1}n and let kw = r denote the number of functions fi that
evaluate to a non-zero value at w. By the properties of symmetric polynomials,
and the fact that each fi(w) is non-negative, we can see that Skt (F(w)) 6= 0 is
false exactly when k > r, and Sk+1

t (F(w)) = 0 is false exactly when k < r. So
Πk is false whenever k 6= r, and

∃k ∈ {0, 1, . . . , t} : Πk(w) ≡ Πr(w) ≡ Cr(F r1 (w), . . . , F rt (w)) 6= 0.

But at k = r, for each i ∈ [t],

F ki (w) = fi(w)St−1
k−1(Fi(w)) =

{∏
fj(w)6=0 fj(w) if fi(w) 6= 0,

0 if fi(w) = 0.

Let G(w) denote
∏
fj(w)6=0 fj(w); if no fj(w) is non-zero, then G(w) := 1. Thus

G(w) 6= 0. Then F ri (w) = biG(w) for each i ∈ [t]. Since C was in normal layered
form as a complete binary tree with ×-depth d, and since in Cr we replace each
constant ±1 by ±G(w), and since we evaluate Cr replacing each each bit bi
by the value biG(w), we see that Cr(F r1 (w), . . . , F rt (w)) = [G(w)]2

d

C(b1, . . . , bt).
Thus Cr(F r1 (w), . . . , F rt (w)) 6= 0⇔ C(b1, . . . , bt) 6= 0, proving the claim. 2

Claim. For each k ∈ {0, 1, . . . , t}, there exist GapNC1 functions Nk
t and Dk

t such
that Skt (F(w)) = Nk

t (w)/Dk
t (w).

Proof. The symmetric polynomials can be computed efficiently over fields. Since
we are dealing with integers, we need to carry the numerators and denominators
separately. The functions Nk

t and Dk
t do just this.

For completeness, we describe the functions explicitly, following notation from
[12]. Consider the symmetric polynomial Skl (Y) over some set Y of l variables.
Then

∏l
i=1(yi + z) =

∑l
k=0 S

k
l (Y)zk. Given values to Y , this polynomial in z

can be computed by interpolation through values at any l + 1 points. So fix any
l + 1 distinct constants, without loss of generality they can be 0, 1, . . . , l. Let B
be the (l + 1) × (l + 1) Vandermonde matrix where for 0 ≤ i, j ≤ l, Bij := ij .
Then B

 ·

S0
l (Y)
S1
l (Y)

...
Sll(Y)

 =

∏l
i=1 yi∏l
i=1(yi + 1)

...∏l
i=1(yi + l)

 .
Since B can be precomputed, and since the vector on the right-hand side is easy
to compute for any given values to the variables in Y , the vector of symmetric
polynomials can be obtained. In particular,

Skl (Y) =
l∑

j=0

B−1
kj

l∏
i=1

(yi + j)

Each entry ofB−1 can be written as a rational function with det(B) =
∏

0≤i<j≤l(j−
i) in the denominator. So, as long as the variables in Y take integer values, the
function det(B)Skl (Y) is integral.

Thus to compute Skt (F(w)), set l = t in the argument above. Then Dk
t (w) =

det(B), and Nk
t (w) =

∑l
j=0 det(B)B−1

kj

∏l
i=1(fi(w) + j). The terms det(B) and

det(B)B−1
kj are constants that can be precomputed and can be expressed via

a-NC1 circuits. Since each fi is in GapNC1, the computation of Nk
t is also in

GapNC1. 2

Claim. For each k, there is a GapNC1 circuit Gk such that Gk(w) = 0 if and only
if Ck(F k1 (w), . . . , F kt (w)) = 0.

Proof. We do local surgery on the circuit Ck to carry at every gate g a rational
value as a pair of values corresponding to the numerator Ng and the denominator
Dg . At a leaf labeled by a constant c, set Ng = c, Dg = 1. At a leaf labeled
F k1 (w), set Ng and Dg as the output gates of the corresponding circuits described
in the previous claims. The gate g = g1 + g2 has the obvious implementation:
Dg = Dg1 ×Dg2 , and Ng = Ng2 ×Dg1 +Ng1 ×Dg2 . Similarly at gate g = g1× g2,
set Dg = Dg1 ×Dg2 , and Ng = Ng1 ×Ng2 . In the resulting circuit, label the wire
carrying Ng for the output gate of Ck as the output gate. 2

Now we can complete the proof of the lemma. The required GapNC1 functions
are those computed by the circuits Nk

t and Gk for each k. The AC0 circuit H
implements the check

t∨
k=0

[
Nk
t (F(w)) 6= 0 ∧ Nk+1

t (F(w)) = 0 ∧ Gk(w) 6= 0
]
.

2

Theorem 5.9. The AC0 hierarchy over C=NC1 collapses to its first level,
requiring a single layer of oracle gates and a depth-3 circuit above it,

AC0(C=NC1) = AC0 · [C=NC1] = AC0 · [coC=NC1] = AC0
3 · [C=NC1].

Proof. Let A be a language in AC0(C=NC1); since the AC0 circuitry is allowed to
use negation gates, equivalently A is in AC0(coC=NC1). Then there is a constant
k such that A ∈ AC0

k(coC=NC1). The circuit for A thus has the form

AC0 · [coC=NC1] · AC0 · . . . · [coC=NC1] · AC0.

Using Proposition 5.6, we can absorb all except the topmost AC0 circuitry into
the oracle gates, giving a circuit of the form

AC0 · [coC=NC1] · [coC=NC1] · · · · · [coC=NC1]︸ ︷︷ ︸
(k times)

.

Using Lemma 5.7, we replace the bottom two oracle layers by a sub-circuit of
the form AC0 · coC=NC1. Then using Proposition 5.6 again, we abosrb this new
AC0 circuitry into the oracle gate layer above it to get a circuit of the form

AC0 · [coC=NC1] · [coC=NC1] · · · · · [coC=NC1]︸ ︷︷ ︸
(k − 1 times)

.

Repeating this process another k − 2 times gives the desired circuit of the form
AC0 · [coC=NC1]. Since coC=NC1 contains AC0, it can be written in the form
[coC=NC1] · [coC=NC1]. Now using Lemma 5.7 again, we can replace the top
oracle gate by a depth-3 AC0 circuit. 2

