
Monomials in Read-Once/Twice Formulas and
Branching Programs?

Meena Mahajan1, B V Raghavendra Rao2, and Karteek Sreenivasaiah1

1 Institute of Mathematical Sciences, Chennai, India. {meena,karteek}@imsc.res.in
2 University of Saarland, Saarbrücken, Germany. bvrr@cs.uni-sb.de

Abstract. We study three computational problems on arithmetic cir-
cuits. Given an arithmetic circuit C, 1) ZMC: test if a given monomial in
C has zero coefficient, 2) MonCount: compute the number of monomials
in C, and 3) MLIN: test if C computes a multilinear polynomial. These
problems were introduced by Fournier, Malod and Mengel [STACS 2012],
and shown to characterize various levels of the counting hierarchy (CH).
We address the above problems on read-restricted arithmetic circuits
and branching programs. We prove several complexity characterizations
for the above problems on these restricted classes of arithmetic circuits.
Along the way, we also obtain a simple non-black box algorithm for the
arithmetic circuit identity testing problem (ACIT) on read-twice formu-
las. To the best of our knowledge, this is the first deterministic polyno-
mial time algorithm for ACIT on read-twice formulas.

1 Introduction

A fundamental question one can ask concerning a given arithmetic circuit is:
does the circuit compute the identically zero polynomial? This is the well-known
problem Arithmetic Circuit Identity Testing ACIT, that has spurred an enormous
amount of research in the last two decades. A complete derandomization of black-
box ACIT even for the case of depth four arithmetic circuits implies circuit lower
bounds [12, 1].

A recent paper by Fournier, Malod and Mengel [10] studies two related, and
apparently harder, problems: (1) MonCount: compute the number of monomials
in the polynomial computed by a given circuit, and (2) ZMC: Decide whether
a given monomial has zero coefficient in the polynomial computed by a given
circuit. The circuits are allowed to use only the constants {−1, 0, 1}. (Restricting
the allowed constants seems necessary to make the connection to uniform com-
plexity classes.) The authors show that these problems are complete for levels
of the counting hierarchy CH (the hierarchy based on the complexity classes PP
and C=P). They also show that if the circuits compute multilinear polynomials,
then these problems become easier (equivalent to PP and ACIT respectively),
and that multilinearity checking itself is equivalent to ACIT. All these results
from [10] are in the non-black-box model, where the circuit is given explicitly in

? partially supported by Indo-German Max Planck Center (IMPECS)



the input. For ZMC, their results improve those of [13], where a weaker upper
bound (albeit still in CH) is shown.

In this paper, we investigate the complexity of these problems when the
circuits are severely restricted, and obtain bounds corresponding to complexity
classes inside P. A very natural well-studied restriction is when the circuit is
a formula; evaluation of such formulas on Boolean-valued inputs is complete
for the arithmetic class GapNC1. Even in these cases, ACIT remains notoriously
hard, and so we consider further restrictions. The simplest kind of formulas are
read-once formulas ROFs: every variable appears at most once. Deterministic
polynomial-time algorithms for ACIT on such formulas are trivial, and are known
even on some generalizations of these, [14, 15, 4]. We show that MonCount and
ZMC for this class are in the GapNC1 hierarchy and in logspace respectively
(Theorem 1 and Theorem 5). It is straightforward to see that ZMC for ROFs is
hard for C=NC1, so this is almost tight.

Another equally natural and well-studied restriction is when the circuit is an
algebraic branching program BP with edges labeled by the allowed constants or
by variables. Evaluation of BPs on Boolean-valued inputs is complete for the
arithmetic class GapL, the logspace analogue of the class GapP. Three restric-
tions, in order of increasing generality, are: (1) occur-once BPs, or OBPs, where
each variable appears at most once anywhere in the BP (also called global read-
once BPs), these are known to subsume ROFs, (2) read-once BPs, or RBPs,
where no path has two occurrences of the same variable, and (3) multilinear
BPs, or MBPs, where the polynomial computed at every node is multilinear.
Again, deterministic algorithms are known for ACIT on OBPs, [11]. We show
that MonCount for OBPs is in the GapL hierarchy (Theorem 3), while ZMC for
OBPs and even MBPs is complete for the complexity class C=L (Theorem 4).

A related problem explored in [10] as a tool to solving MonCount is that of
checking, given a circuit C and monomial m, whether C computes any monomial
that extends m. Denote this problem ExistExtMon. Though our algorithms for
MonCount do not need this subroutine, we also show that for OBPs (and hence
for ROFs), ExistExtMon lies in the GapL hierarchy (Theorem 6).

Finally, we consider how these results can be pushed beyond the read-once
case. The read-once restriction guarantees that the polynomials computed at any
gate of the circuit (ROF or RBP) are multilinear, and this property is crucially
used in our algorithms. In fact, it is crucially used in many settings. For instance,
if the formula is read-k for some constant k, and is also multilinear, then ACIT is
in P [4]. If the input circuit is not read-once, can we efficiently decide if this algo-
rithm is applicable? That is, can we efficiently check whether the multilinearity
property holds? For general circuits, this is equivalent to ACIT, as shown in [10].
We show that for read-twice formulas, we can check multilinearity and test for
identically zero polynomials in deterministic polynomial time (Theorem 8). To
the best of our knowledge, this gives the first (non-black-box) polynomial time
algorithm for ACIT on read-twice formulas.

Owing to space constraints, some proofs appear in the Appendix.



2 Preliminaries

Circuits, formulas, branching programs. Let X = {x1, . . . , xn} be a set of
variables. An arithmetic circuit C over a ring R is a directed acyclic graph with
internal nodes labeled + or × and leaves labeled from X ∪ R. Every node has
in-degree zero or two, and there is at least one node of out-degree zero, called the
output gate. Unless otherwise stated, we consider R to be the ring of integers Z,
and we allow only the constants {−1, 0, 1} in the circuits. An arithmetic formula
F is an arithmetic circuit where fan-out for every gate is at most one.

Every node in C computes a polynomial in R[x1, . . . , xn] in a natural way.
For gate g in C, we denote by pg the polynomial computed at g. We denote by
pC the polynomial pr, where r is the output gate of C. We define the set

varg = {xi | some descendant of g is a leaf labelled xi}.

A read-once arithmetic formula (ROF for short) is an arithmetic formula
where each variable occurs at most once as a label. More generally, in a read-k
arithmetic formula a variable occurs at most k times as a label.

An algebraic branching program (ABP) over R is an undirected acyclic graph
B with edges labeled from X ∪ R, and with two designated nodes, s with zero
in-degree, and t with zero out-degree. For any directed path ρ in B, define

weight(ρ) =
∏

e: an edge in ρ

label(e).

A pair of nodes u, v in B computes a polynomial defined as follows:

pB(u, v) =
∑

ρ: ρ is a u v path in B

weight(ρ).

The ABP B computes the polynomial pB
4
= pB(s, t). We drop the subscript B

from the above when clear from context.
We consider the following restrictions of ABPs in increasing order of gen-

erality: (1) occur-once ABPs, or OBPs, where each variable appears at most
once anywhere in the ABP (such BPs generalize ROFs), (2) read-once ABPs, or
RBPs, where no path has two occurrences of the same variable, and (3) multilin-
ear BPs, or MBPs, where the polynomial computed at every node is multilinear.

Complexity Classes. For standard complexity classes, the reader is referred
to [5]. We define some of the non-standard complexity classes that are used in the
paper. Let f = (fn)n≥0 be a family of integer valued functions fn : {0, 1}n → Z.
f is in the complexity class GapL exactly when there is some nondeterministic
logspace machine M such that for every x, f(x) equals the number of accepting
paths of M on x minus the the number of rejecting paths of M on x. C=L is the
class of languages L such that for some f ∈ GapL, for every x, x ∈ L⇔ f(x) = 0.
The GapL hierarchy is built over C=L languages or bit access to GapL functions,



with a deterministic logspace machine at the base, and is known to be contained
in NC2. (See [3, 2] for more details.)

GapNC denotes the class of families of functions (fn)(n≥0), fn : {0, 1} → Z,
where fn can be computed by a uniform polynomial size log depth arithmetic
circuit. This equals the class of functions computed by uniform polynomial-
sized arithmetic formulas ([7]). C=NC1 is the class of languages L such that for
some GapNC function family (fn)n≥0, and for every x, x ∈ L ⇐⇒ f|x|(x) =
0. The GapNC hierarchy comprises of languages accepted by polynomial-size
constant depth unbounded fanin circuits (AC0) with oracle access to bits of
GapNC functions, and is known to be contained in DLOG. (See [8, 9] for more
details.)

Miscellaneous Notation. A monomial is represented by the sequence of de-
grees of the variables. For any set S ⊆ [n], we denote by mS the multilinear
monomial

∏
i∈S xi. For a monomial m and polynomial p, coeff(p,m) denotes

the coefficient of m in p.
[statement S] is a Boolean 0-1 valued predicate that is 1 exactly when the

statement S is true.

Prolems Considered. We now describe the computational problems consid-
ered in this paper.

Problem 1 (MonCount). Input: An arithmetic circuit C over Z.
Output: The number of monomials in the polynomial computed by C.

Problem 2 (MLIN). Input: An arithmetic formula F over Z.
Output: Test if the polynomial pF is multilinear or not.

Problem 3 (ZMC). Input: An arithmetic circuit C over Z, and a monomial m.
Output: Test if coeff(pC ,m) = 0 or not.

Problem 4 (ExistExtMon). Input: An arithmetic circuit C over Z, and a mono-
mial m.
Output: Test if there is a monomial M with non-zero coefficient in pC such that
M extends m; that is, m|M .

Known Facts. We list here some known results that we use in our constructions.

Proposition 1 ( [6, 7]). Evaluating an arithmetic formula where the leaves are
labelled {−1, 0, 1} is in DLOG (even GapNC1).

Proposition 2 ( [15]). Given k ROFs in n variables, there is a deterministic
(non black-box) algorithm that checks whether they sum to zero or not. The
running time of the algorithm is nO(k).

Proposition 3 (folklore). Given a formula F , a gate g ∈ F , and a variable
x, checking whether x ∈ varg is in DLOG.

Proposition 4 (folklore). Given a rooted tree T , and two nodes u, v, the lowest
common ancestor (LCA) of u and v can be found in DLOG.



3 Counting Monomials

We consider the MonCount problem for ROFs and OBPs. In both ROFs and
OBPs, a monomial, once generated in a sub-formula/program, can be cancelled
only by multiplication with a zero polynomial. We exploit this fact to obtain
efficient algorithms for counting monomials in ROFs and OBPs.

Theorem 1. Given a read-once formula F , MonCount(pF ) can be computed by
an AC0 circuit with oracle access to for GapNC1, and hence in DLOG.

Proof. We start with some notations. For gate g in F , let #g denote the number
of monomials in the polynomial pg computed at g. (The constant term, even if
non-zero, does not count as a monomial.) Define the predicate NZ(g) = [pg(0) 6=
0]. The lemma below is proved in the appendix.

Lemma 1. The language L defined below is in C=NC1:

L = {〈F, g〉 | F is an arithmetic formula, g is a gate in F , and NZ(g) = 0}

Since F is a read-once formula, we can compute the value of #f for each gate
f inductively, based on the structure of F beneath f . When f is a leaf node, it
is labelled 0 or ±1 or xi for some i. Then #(0) = #(±1) = 0; #(xi) = 1.

Now assume f is not a leaf. Suppose f = g + h, then g and h are variable-
disjoint read-once formulas. Since the monomials of g and h are distinct,

#f = #g + #h; (1)

Finally, suppose f = g × h, then again g and h are variable-disjoint. Each
pair of monomials m in pf and m′ in pg gives rise to a monomial mm′ in pf . In
addition, if pg(0) 6= 0, then each m′ also appears as a monomial in pf ; similarly
for ph(0) and m. Thus

#f = [#g ×#h] + [#g × NZ(h)] + [NZ(g)×#h]. (2)

Using Equation 1 and Equation 2, we can transform the given read-once
formula F to a new formula F ′ over Z that computes MonCount(F ). The trans-
formation is local, and can be done in AC0 with oracle access to C=NC1. For each
gate f in F the local transformation can be described as follows: If f is a leaf
gate, then relabel f by #f . If f = g + h, then apply Equation 1. If f = g × h,
using Equation 2 involves using #g and #h more than once, and so we do not
get a formula. However, we can modify Equation 2 so that #f gets the structure
of a formula, with oracle access to NZ. We use the identity

#(g × h) = (#g + NZ(g))× (#h+ NZ(h))− (NZ(g)× NZ(h)) .

The values NZ(g) and NZ(h) can be obtained with oracle access to the language
L defined in Lemma 1. Now #g and #h are used only once.

Thus, from F we construct a formula F ′′ where the leaves of F ′′ are labeled
by constants 0,±1 or by the outputs of C=NC1 oracle gates. Equivalently, in
AC0(C=NC1), we can transform F to formula F ′ whose leaves are labeled by
0,±1. By construction, F ′ is variable-free, and #pF = val(F ′). By Proposition 1,
val(F ′) can be computed in GapNC1, completing the proof. ut



Remark 1. The AC0 circuit constructed above needs oracle access mainly to
C=NC1 gates, which check whether a GapNC1 function is zero or not. Only the
topmost oracle query requires the entire value of the GapNC1 function.

For any polynomial p, p ≡ 0 if and only if the constant term of p is 0 and
MonCount(p) is 0. Hence, from Theorem 1 and Lemma 1, we have the following:

Corollary 1. In the non-blackbox setting, ACIT on ROFs is in the GapNC hi-
erarchy and hence in DLOG.

We now show how to count monomials in OBPs. The approach used in Theo-
rem 1 does not directly generalize to OBPs, i.e., knowing MonCount at immedi-
ately preceding nodes is not enough to compute MonCount at a given node in an
OBP. However, since every variable occurs at most once in an OBP, every path
generating a monomial should pass through one of these edges. This allows us to
keep track of the monomials at any given node of the OBP, given the monomial
count of all of its predecessors.

We begin with some notations. Let B be an occur-once BP on the set of
variables X, and u, v be any nodes in B. Let c(u, v) be the constant term in
p(u, v). We define the predicate NZ(u, v) = [c(u, v) 6= 0].

We cannot directly use the strategy we used for ROFs, since even in an OBP,
there can be cancellations due to the constant terms. We therefore identify edges
critical for a polynomial. We say that edge e = (w, u) of B is critical to v if
(1) label((w, u)) ∈ X; and (2) B has a directed path ρ from u to v consisting
only of edges labeled by {−1, 1}.

We have the following structural property for the monomials in p(s, v):

Lemma 2. In an occur-once OBP B with start node s, for any node v in B,

p(s, v) = c(s, v) +
∑

(w,u) critical to v

p(s, w) · label(w, u) · c(u, v) .

For nodes w, u, v where (w, u) is an edge, define the predicate critical(〈w, u〉, v) =
[(w, u) is critical for v]. Using this and Lemma 2, we can show:

Lemma 3. In an occur-once OBP B with start node s, for any node v in B,

#p(s, v) =
∑

e=(w,u)

critical(〈w, u〉, v) ·
(
#p(s,w) + NZ(s,w)

)
· NZ(u, v).

Proof. Consider the expression p(s, w)× label(w, u), where (w, u) is an edge crit-
ical to v. Then label(w, u) is in X, and multiplies every monomial in p(s, w).
Hence every monomial of p(s, w) contributes a monomial to p(s, w)× label(w, u).
Further, if c(s, w) 6= 0, then c(s, w) × label(w, u) too contributes a monomial.
Hence

#[p(s, w)× label(w, u)] = #p(s,w) + NZ(s,w) .

Using this observation along with Lemma 2 completes the proof. ut



If w is not in a layer to the left of v, then (w, u) cannot be critical to v, and
so #p(s, w) is not required while computing #p(s, v). Hence we can sequentially
evaluate #p(s, v) for all nodes v in layers going left to right, provided we have
all the values NZ(s, w) and critical(〈w, u〉, v).

Lemma 4. The languages L1, L2 defined below are both in C=L.

L1 = {〈B, u, v〉 | B is an OBP, u, v are nodes in B, and NZ(u, v) = 0. }

L2 =

{
〈B, u, v, w〉 | B is an OBP, u, v, w are nodes in B, and

critical(〈w, u〉, v) = 1.

}
From Lemma 3, the comment following it, and Lemma 4, we obtain a poly-

nomial time algorithm to count the monomials in pB .

Theorem 2. Given an occur-once branching program B, the number of mono-
mials in pB can be computed in P.

With a little bit of care, we can obtain the following stronger result:

Theorem 3. Given an occur-once branching program B, the number of mono-
mials in pB can be computed in the GapL hierarchy and hence in NC2.

As in Corollary 1, using Theorem 3 and Lemma 4, we have:

Corollary 2. In the non-blackbox setting, ACIT on OBPs is in the GapL hier-
archy and hence in NC2.

4 Zero-test on a Monomial Coefficient (ZMC)

From [10], ZMC is known to be in the second level of CH and hard for the
class C=P. For the case of multilinear BPs MBPs, we show that ZMC exactly
characterizes the complexity class C=L.

Theorem 4. Given a BP B computing a multilinear polynomial pB, and given
a multilinear monomial m, the coefficient of m in pB can be computed in GapL.
Hence ZMC for multilinear BPs is complete for C=L.

Proof. We first show that ZMC, even for OBPs, is hard for C=L. A complete
problem for C=L is: does a BP B with labels from {−1, 0, 1} evaluate to 0? Add
a node t′ as the new target node, and add edge t→ t′ labeled x to get B′. Then
B′ is an OBP, and (B′, x) ∈ ZMC if and only if B evaluates to 0.

Now we show the upper bound. We show that given an MBP B computing a
multilinear polynomial pB , and given a multilinear monomial m, the coefficient
of m in pB can be computed in GapL. This implies that ZMC is in C=L.

Let S ⊆ [n] be such that m = mS . Let pB =
∑
T⊆[n] coeff(pB ,mT )mT . We

are interested in coeff(pB ,mS). The idea is to construct a branching program
B′ computing a univariate polynomial, and a monomial m′, such that m ∈ pB
if and only if m′ ∈ pB′ . We obtain B′ by relabelling the edges of B as follows:



label in B constant c xi for i ∈ S xi for i 6∈ S
label in B′ constant c y 0

B′ now computes a univariate polynomial pB′ in y. The coefficient cS of m
in pB is equal to the coefficient of y|S| in pB′ . To see this, note that

pB =
∑
T⊆[n]

coeff(pB ,mT )mT =
∑
T⊆S

coeff(pB ,mT )mT +
∑
T 6⊆S

coeff(pB ,mT )mT

The substitution described above sends the second sum to zero in B′. Hence,

pB′(y) =
∑
T⊆S

coeff(pB ,mT )y|T | =

|S|∑
j=0

∑
T⊆S
|T |=j

coeff(pB ,mT )

 yj

The only monomial in pB that generates y|S| in pB′ is
∏
i∈S xi = mS .

(This argument only requires that pB be multilinear; we do not need B to
be occur-once or even read-once.)

Thus the problem now reduces to computing the coefficient of y|S| in B′,
which is a branching program over just one input variable. A standard con-
struction allows us to explicitly construct all coefficients of pB′(y) in another
branching program B′′. For completeness, we describe the construction of B′′.
For each node v in B′, B′′ has |S|+ 1 nodes v0, . . . , v|S|, with the intention that
vi should compute the coefficient of yi in the polynomial pB′(s, v). The start
node of B′′ is the node s0, and the final node is t|S|. If edge (u, v) has label y
in B′, we include the edges (ui, vi+1) with label 1, for 0 ≤ i < |S|, in B′′. If
edge (u, v) has label ` 6= y in B′, we include the edges (ui, vi) with label `, for
0 ≤ i ≤ |S| , in B′′. By induction on the structure of B′, we see that the value
computed by B′′ at t|S| is the coefficient of y|S| in pB′(s, v).

The above transformation from B′ to B′′ can be done in DLOG. Since B′′

is variable-free, it can be evaluated in GapL. Composing these procedures, we
obtain a GapL procedure for computing the coefficient of m in pB . ut

The upper bound above also applies to ROFs, since ROFs can be converted to
OBPs by a standard construction. However, with a careful top-down algorithm,
we get a stronger upper bound of DLOG for ZMC on ROFs. (See Appendix.)

Theorem 5. Given a read-once formula F computing a polynomial pF , and
given a multilinear monomial m, the coefficient of m in pF can be computed in
DLOG. Hence ZMC for ROFs is in DLOG.

For ROFs, the lower bound proof in Theorem 4 can be modified to show that
ZMC on ROFs is hard for C=NC1. It is natural to ask whether there is a matching
upper bound. In our construction above, we need to compute predicates of the
form [x ∈ varg]. If these can be computed in NC1 for ROFs, then the monomial
coefficients can be computed in GapNC1 and hence the upper bound of ZMC
can be improved to C=NC1. However, this depends on the specific encoding of
the input formula. In the standard pointer representation, the problem models
reachability in out-degree-1 directed acyclic graphs, and is as hard as DLOG.



5 Checking existence of monomial extensions

We now address the problem ExistExtMon. Given a monomial m, one wants to
check if the polynomial computed by the input arithmetic circuit has a monomial
M that extends m (that is, with m|M). This problem is seemingly harder than
ZMC, and hence the bound of Theorem 4 does not directly apply to ExistExtMon.
We show that ExistExtMon for OBPs is in the GapL hierarchy.

Theorem 6. The following problem lies in the GapL hierarchy: Given an occur-
once branching program B and a multilinear monomial m, check whether pB
contains any monomial M such that m|M .

Proof. (Sketch) Let S ⊆ [n] be such that m = mS . If S = ∅, then this amounts
to checking if pB 6≡ 0. By Corollary 2, this is in the GapL hierarchy. So now
assume that S 6= ∅. We call an edge labelled by a variable from S a “bridge”.
The algorithm is as follows:

if ∃i ∈ S such that xi does not appear in B at all then
Output NO and halt.

else if ∃ layer l with more than one bridge to layer l + 1 then
Output NO and halt.

else
For each layer l that has a bridge e to layer l + 1 in B, remove all edges
except e. Call the branching program thus obtained B′.

end if
Output ACIT(pB′) and halt.

The correctness is straightforward; see Appendix for details. By Corollary 2,
the above algorithm is in the GapL hierarchy. ut

The above bound can be brought down to DLOG for the case of ROFs.

Theorem 7. The following problem is in DLOG: Given a read-once formula F
computing a polynomial pF , and given a multilinear monomial m, check whether
pF contains any monomial M such that m|M .

Proof. (Sketch) Let S ⊆ [n] be such that m = mS . If S = ∅, then we need to
check if pF 6≡ 0; by Corollary 1, this is in DLOG. So now assume that S 6= ∅. As for
BPs, we transform F to a new formula F ′, by cutting off sub-formulas addititvely
related to variables in m, and then check ACIT(F ′). The transformation from
F to F ′ can be done in DLOG (using Proposition 4). Then by Corollary 1, the
algorithm can be implemented in DLOG. See the Appendix for details. ut

6 Read-twice Formulas: multilinearity and identity tests

In this section we consider read-twice formulas, and the problems MLIN and
ACIT on such formulas. The individual degree of a variable in a polynomial
p computed by read-twice formula F is bounded by two. Thus, multilinearity
testing boils down to testing if the second order partial derivative of xi is zero



for every variable xi. Note that the partial derivative of xi is a polynomial in
n − 1 variables; thus MLIN reduces to n instances of ACIT on n − 1 variables.
Our approach is to use the inductive structure of a read-twice polynomial to test
these partial derivatives for zero, using the knowledge of multilinearity of gates
at the lower levels. As an aid in this computation, we also check, for each gate
g and each variable x, whether x survives in pg.

Theorem 8. For read-twice formulas, the problems ACIT, MLIN, and ExistExtMon(φ, x)
(where φ is the input formula and x is a single variable in it) are in P.

Proof. Let φ be the given read-twice formula. Without loss of generality, assume
that φ is strictly alternating. That is, inputs to a + gate are either leaves or are
× gates, and inputs to a × gate are either leaves or are + gates.

We proceed by induction on the structure of φ. We iteratively compute, for
each gate g in φ and each variable x ∈ X, the following predicates: ACIT(g) =
[pg ≡ 0]; ExistExtMon(g, x) = [pg has a monomial containing x]; and MLIN(g) =
[pg is multilinear]. (We say that x survives in g if ExistExtMon(g, x) = 1.) The
base case is when φ consists of a single gate g that is labelled L ∈ X∪{0,+1,−1}.
Then ACIT(g) = 1 if and only if L = 0, MLIN(g) = 1 always, and ExistExtMon(g, x) =
1 if and only if L = x.

Now assume that for every gate u below the root gate of φ, the above predi-
cates have been computed and stored. Let f be the root gate of φ. We show how
to compute these predicates at f . The order in which we compute them depends
on whether f is × or a + gate.

First, consider f = g × h. We compute the predicates in the order below.

1. ACIT(f) = ACIT(g) ∨ ACIT(h).
2. MLIN(f): If f is identically zero, then it is vacuously multilinear. Otherwise,

for it to be multilinear, it must be the product of two (non-zero) multilinear
polynomials in disjoint sets of variables. Thus

MLIN(f) = ACIT(f) ∨

MLIN(g) ∧MLIN(h)∧

( ∧
x∈X

[¬ExistExtMon(g, x) ∨ ¬ExistExtMon(h, x)]

)]
Note that the ACIT(f) term is necessary, since f can be multilinear even if,
for instance, g is not, provided h ≡ 0.

3. ExistExtMon(f, x) = ¬ACIT(f) ∧ [ExistExtMon(g, x) ∨ ExistExtMon(h, x)].
(x appears in pf if and only if pf 6≡ 0 and x appears in at least one of pg, ph.)

Next, consider f = g + h. We compute the predicates in the order below.

1. MLIN(f) = MLIN(g) ∧MLIN(h).
(Since f is read-twice, a non-multilinear monomial in g cannot get cancelled
by a non-multilinear monomial in h. Thus, f is multilinear only if both g
and h are. The converse is trivially true.)



2. ExistExtMon(f, x): See below.
3. ACIT(f) =

∧
x∈X ¬ExistExtMon(f, x).

We now complete the description for computing ExistExtMon(f, x) when f =
g + h. If x survives in neither g nor h, then it does not survive in f . But if it
survives in exactly one of g, h, it cannot get cancelled, so it survives in f . Thus

ExistExtMon(g, x) ∨ ExistExtMon(h, x) = 0 =⇒ ExistExtMon(f, x) = 0

ExistExtMon(g, x)⊕ ExistExtMon(h, x) = 1 =⇒ ExistExtMon(f, x) = 1

So now assume that x survives in both g and h. We can write the polynomials
computed at g, h as pg = αx+ α′ and ph = βx+ β′, where α′, β′ do not involve
x; and we know that α 6≡ 0, β 6≡ 0. We want to determine whether α+ β ≡ 0.

Since x appears in Vg and Vh, and since f is read-twice, we conclude that x
is read exactly once each in g and in h. Hence α, β also do not involve x.

We construct a formula computing α as follows: In the sub-formula rooted at
g, let ρ be the unique path from x to g. For each + gate u on the path ρ, let u′

be the child of u not on ρ; replace u′ by the constant 0. Thus we retain only the
parts that multiply x; that is, we compute αx. Setting x = 1 gives us a formula G
computing α. A similar construction with the formula rooted at h gives a formula
H computing β. Set F = G+H. Note that F is also a read-twice formula, and
it computes α + β. Thus in this case ExistExtMon(f, x) = 1⇔ ACIT(F ) = 0, so
we need to determine ACIT(F ).

Let Y denote the set of variables appearing in F ; Y ⊆ X \ {x}. Partition Y
into A (variables occurring only in G), B (variables occurring only in H), and
C (variables occurring in G and H).

If A∪B = ∅, then Y = C, and each variable in F appears once in G and once
in H. That is, both G and H are read-once formulas. We can now determine
ACIT(F ) in time polynomial in the size of F using Proposition 2.

If A ∪ B 6= ∅, then let y ∈ A. If y survives in G, it cannot get cancelled
by anything in H, so it survives in F and F 6≡ 0. Similarly, if any y ∈ B
survives in H, then F 6≡ 0. We briefly defer how to determine this and complete
the high-level argument. If no y ∈ A survives in G, and no y ∈ B survives
in H, then let F ′ = G′ + H ′ be the formula obtained from F,G,H by setting
variables in A∪B to 0. Clearly, the polynomial computed remains the same; thus
α+ β = pF = pF |A∪B←0 = pF ′ . But F ′ satisfies the previous case (with respect
to F ′, A′ ∪ B′ = ∅), and so we can use Proposition 2 as before to determine
ACIT(F ′) = ACIT(F ).

What remains is to describe how we determine whether a variable y ∈ A
survives in G. (The situation for y ∈ B surviving in H is identical.) We exploit
the special structure of G: there is a path ρ where all the + gates have one
argument 0 and the path ends in a leaf labeled 1. Let T = {T1, . . . , T`} be the
subtrees hanging off the × gates on ρ; let ui be the root of Ti. Note that each Ti ∈
T is a sub-formula of our input formula φ, and hence by the iterative construction
we know the values of the predicates ACIT, MLIN, ExistExtMon at gates in these
sub-trees. In fact, we already know that ACIT(ui) = 0 for all i, since we are in the



situation where α 6≡ 0, and α =
∏`
i=1 pui

. Hence, if y appears in just one sub-tree
Ti, then ExistExtMon(G, y) = ExistExtMon(ui, y). If y appears in two sub-trees
Ti, Tj , then ExistExtMon(G, y) = ExistExtMon(ui, y) ∨ ExistExtMon(uj , y). ut

7 Conclusion

Our results show that as expected, the complexity of MonCount,ZMC, and
ExistExtMon reduce drastically for the case of severely restricted circuits. Ide-
ally, we would like these problems to characterise complexity classes within P;
we have partially succeeded in this. We leave open the question of extending
these bounds for formulas and branching programs that are constant-read. It
appears that this will require non-trivial modifications of our techniques.

References

1. M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In FOCS,
pages 67–75, 2008.

2. E. Allender. Arithmetic circuits and counting complexity classes. In J. Krajicek,
editor, Complexity of Computations and Proofs, Quaderni di Matematica Vol. 13,
pages 33–72. Seconda Universita di Napoli, 2004. An earlier version appeared in
the Complexity Theory Column, SIGACT News 28, 4 (Dec. 1997) pp. 2-15.

3. E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and feasible
systems of linear equations. Computational Complexity, 8(2):99–126, 1999.

4. M. Anderson, D. van Melkebeek, and I. Volkovich. Derandomizing polynomial
identity testing for multilinear constant-read formulae. In IEEE Conference on
Computational Complexity, pages 273–282, 2011. ECCC TR 17, 2010.

5. S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, 2009.

6. S. Buss. The Boolean formula value problem is in ALOGTIME. In STOC, pages
123–131, 1987.

7. S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algorithm
for formula evaluation. SIAM Journal of Computation, 21(4):755–780, 1992.

8. H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1

computation. Journal of Computer and System Sciences, 57:200–212, 1998.
9. S. Datta, M. Mahajan, B. V. R. Rao, M. Thomas, and H. Vollmer. Counting

classes and the fine structure between NC1 and L. Theoretical Computer Science,
417:36–49, 2012.

10. H. Fournier, G. Malod, and S. Mengel. Monomials in arithmetic circuits: Complete
problems in the counting hierarchy. In STACS, 2012. To appear.

11. M. J. Jansen, Y. Qiao, and J. M. N. Sarma. Deterministic black-box identity testing
π-ordered algebraic branching programs. In FSTTCS, pages 296–307, 2010.

12. V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

13. P. Koiran and S. Perifel. The complexity of two problems on arithmetic circuits.
Theoretical Computer Science, 389(1-2):172–181, 2007.

14. A. Shpilka and I. Volkovich. Read-once polynomial identity testing. In STOC,
pages 507–516, 2008.

15. A. Shpilka and I. Volkovich. Improved polynomial identity testing for read-once
formulas. In APPROX-RANDOM, pages 700–713, 2009.



Appendix

We include here the proofs that were omitted in the main text due to space
constraints.

Proof. (Of Lemma 1) Convert F to formula F ′ where all variables are set to 0,
and g is the output gate. Then F ′ evaluates to pg(0), so we need to check if F ′

evaluates to 0. By Proposition 1, this check can be performed in C=NC1. ut

Proof. (Of Lemma 2) Note that if edges (w, u) 6= (w′, u′) are both critical to
v, then the monomials in p(s, w) · label(w, u) and p(s, w′) · label(w′, u′) will be
disjoint, because P is occur-once. (The variables labeling (w, u) and (w′, u′)
make the monomials distinct.) Moreover, for any monomial m in p(s, v), there is
exactly one critical edge (w, u) such that the monomial m has non-zero coefficient
in the polynomial p(s, w)× label(w, u). The critical edge corresponds to the last
variable of the monomial to be “collected” en route to v from s. This completes
the proof. ut

Proof. (Of Lemma 4) Delete from B all edges with labels from X to get a
variable-free BP B′. Then pB′(u, v) = cB(u, v). Checking whether pB′(u, v) =
0 is the canonical complete problem for C=L. Hence L1 is in C=L. To check
membership in L2, we need to check that label(w, u) ∈ X and that v is reachable
from u in B′. This can be done in NLOG, which is contained in C=L. ut

Proof. (Of Theorem 3 ) Starting from B, we construct another BP B′ as follows:
B′ has a node v′ for each node v of B. For each triple w, u, v where (w, u) is
an edge in B, we check via oracles for L1 and L2 whether (w, u) is critical to
v and whether NZ(u, v) = 1. If both checks pass, we add an edge from w′ to
v′. We also check whether NZ(s, w) = 1, and if so, we add an edge from s′ to
v′. (We do this for every w, u, so we may end up with multiple parallel edges
from s′ to v′. To avoid this, we can subdivide each such edge added.) B′ thus
implements the right-hand-side expression in Lemma 3. It follows that pB′(s′, v′)
equals #pB(s, v). Note that B′ can be constructed in logspace with oracle access
to C=L. Also, since B′ is variable-free, it can be evaluated in GapL. Hence #pB
can be computed in the GapL hierarchy. ut

Proof. (Of Theorem 5) Let α(g, T ) denote the coefficient of monomial mT in pg.
(That is, α(g, T ) = coeff(pg,mT ).) Let r be the output gate. Let S ⊆ [n] be such
that m = mS . The goal is to compute α(r, S). First, we observe some properties
of α:

1. For any gate g and any T ⊆ [n], if T 6⊆ varg, then α(g, T ) = 0.

2. For a leaf g labelled xi, α(g, T ) = 1 if T = {i}, 0 otherwise.

3. For a leaf g labelled by a constant c, α(g, T )=c if T = ∅, 0 otherwise.

4. For an addition gate that computes g + h, α(g + h, T ) = α(g, T ) + α(h, T ).
And since F is an ROF, at least one of α(g, T ), α(h, T ) is zero.



5. For a product gate that computes g × h,

α(g × h, T ) = α(g, T ∩ varg) · α(h,T ∩ varh) · [T ⊆ varg ∪ varh].

This is because α(g×h, T ) =
∑
Z⊆T α(g, Z)α(h, T \Z). But if either Z 6⊆ varg

or T \ Z 6⊆ varh, then α(g, Z) = 0 or α(h, T \ Z) = 0. Further, F is a read
once formula, so varg ∩ varh = ∅, and varg and varh partition var(g×h). Hence
T must also be similarly partitioned.

Now we construct a formula F ′ whose evaluation gives us α(r, S). F ′ will
recursively compute α(g, S ∩ varg) for each gate g. If g is a leaf, we just use
properties (2,3) to compute α(g, S∩varg) We show how to compute α(f, S∩varf)
for an internal gate f with children g and h knowing the values for α(g, S∩varg)
and α(h, S ∩ varh):

– Case f = g + h:

α(f, S ∩ varf) = α(g, S ∩ varf) + α(h,S ∩ varf) from property (4)

= α(g, S ∩ varg)[S ∩ varg = S ∩ varf ]

+ α(h, S ∩ varh)[S ∩ varh = S ∩ varf ] from property (1)

– Case f = g × h:

α(f, S ∩ varf) = α(g, S ∩ varg) · α(h,S ∩ varh) from properties (1,5)

This gives us the formula F ′ that computes α(r, S) at the topmost gate. By
Proposition 1, F ′ can be evaluated in GapNC1. Constructing F ′ from F requires
a local transformation at + gates and computation of the predicates [S ∩ varf =
S ∩ varg]. By Proposition 3, these predicates can be computed in DLOG. ut

Proof. (Details, for Theorem 6) Let S ⊆ [n] be such that m = mS . If S = ∅, then
this amounts to checking if pB 6≡ 0. By Corollary 2, this is in the GapL hierarchy.
So now assume that S 6= ∅. We call an edge that is labelled by a variable from
S a “bridge”.

The algorithm is as follows:

if ∃i ∈ S such that xi does not appear in B at all then
Output NO and halt.

else if ∃ layer l with more than one bridge to layer l + 1 then
Output NO and halt.

else
For each layer l that has a bridge e to layer l + 1 in B, remove all edges
except e. Call the branching program thus obtained B′.

end if
Output ACIT(pB′) and halt.



We now show that mS has an extended monomial in pB if and only if the
above algorithm outputs YES. If any of the variables of mS do not appear at
all in B, then clearly an extension to mS cannot exist. So the algorithm rejects
correctly. If there is a layer with more than one bridge to the next layer, then any
path can go through at most one of these bridges. Since B is occur-once, every
path would compute a monomial with at least one variable from mS missing. So
the algorithm correctly rejects. We are only interested in monomial extensions
of mS . So paths that do not go through all the bridges can be ignored. Hence we
can safely delete all non-bridge edges in layers which have a bridge to the next
layer. Thus pB′ is a polynomial where each monomial is an extension of mS .

By Corollary 2, the above algorithm is in the GapL hierarchy. ut

Proof. (Details for Theorem 7) Let S ⊆ [n] be such that m = mS . If S = ∅,
then this amounts to checking if pF 6≡ 0, which, by Corollary 1, is in DLOG. So
now assume that S 6= ∅. As for BPs, we transform F to a new formula F ′ as
follows:

if ∃xi ∈ S such that xi does not appear in F at all then
Output NO and halt.

else if ∃xi, xj ∈ S, i 6= j, with LCA(xi, xj) in F labeled + then
Output NO and halt.

else
For every xi ∈ S, and every + gate g on the unique leaf-to-root path γ from
xi, replace the input of g not on the path γ by 0.
Let F ′ be the resulting formula.

end if
Output ACIT(F ′).

We show correctness of the above algorithm. Since F is read-once, if any of
the two variables in S have a + gate as their lowest common ancestor, then m
cannot appear as a monomial in F . The second step in the algorithm removes all
sub-formulas that are additively related to some variable xi in S. This implies
that every monomial produced by F ′ has m as a factor. Also, any monomial m′

of pF with m|m′ has the same coefficient in pF ′ as in pF . Thus, the resulting
formula F ′ computes a polynomial that contains exactly all monomials m′ of pF
such that m|m′. This proves the correctness.

For the complexity bound, we note that the transformation from F to F ′

can be done in DLOG (using Proposition 4). Then by Corollary 1, the overall
algorithm can be implemented in DLOG. ut


