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Abstract. The parallel complexity clagdC! has many equivalent models such

as bounded width branching programs. Caussinus et.al[11] considered arithmeti-
zations of two of these classe@#\|C! and#BWBP. We further this study to in-
clude arithmetization of other classes. In particular, we show that counting paths
in branching programs over visibly pushdown automata has the same power as
#BWBP, while counting proof-trees in logarithmic width formulae has the same
power as#NC!. We also consider polynomial-degree restrictionsSaf, de-
notedsSC?, and show that the Boolean clasSC' lies betweerNC! andL,
whereassSC° equalsNC!. On the other handtsSC° contains#BWBP and is
contained inFL, and#sSC' contains#NC* and is inSC?2. We also investigate
some closure properties of the newly defined arithmetic classes.

1 Introduction

The parallel complexity classC', comprising of languages accepted by logarithmic
depth, polynomial size, bounded fan in Boolean circuits, is of fundamental interest
in circuit complexity.NC! is known to be contained within logarithmic spaceThe
classedNC! andL have many equivalent characterizations. Bounded width branching
programsBWBP, as well as bounded width circui®C®, (both of polynomial size),
were shown by Barrington [7] to be equivalentNE€*, while it it is folklore that poly
sizeO(log n) width circuitsSC! equalsL..

However, arithmetizations of these classes are not necessarily equivalent. In [11],
Caussinus et al proposed three arithmetizationsl©f: (1) counting proof-trees in
an NC! circuit, (2) computation by a poly size log depth circuit overand x, and
(3) counting paths in a nondeterministic bounded width branching program. It is straight-
forward to see that the first two definitions of function classes, dyeroincide (see
for instance [26, 28]); and this class is denot@tC'. It is shown in [11] that the third
class#BWBP, is contained iftNC!, though the converse inclusion is still open. (How-
ever, the arithmetizations ov&rare shown to coincide.) Also, using the programs over
monoids framework, [11] observe theBWBP equals#BP-NFA, the class of functions
that count the number of accepting paths in a nondeterministic finite-state automaton
NFA when run on the output of a deterministic branching program. Itis known (see e.qg.
[3,28]) that#NC! has Boolean poly size circuits of depthlogn log* n) and is thus
very close toNC!. It follows from more recent results [12] th&NC! is contained in
FL; see e.g. [3].

We continue this study here (and also extend it)tby arithmetizing other Boolean
classes also known to be equivalentNG!. The first extension we consider is from



NFA to VPA. Visibly pushdown automata (VPA) atemoves-free pushdown automata
whose stack behaviour (push/pop/no change) is dictated solely by the input letter under
consideration. They are also referred to as input-driven pda, and have been studied in
[19,9, 15, 6,5]. In [15], languages accepted by such pda are shown td\Ng2 irwhile

in [6] it is shown that such pda can be determinized. Thus they lie properly between reg-
ular languages and deterministic context-free languages, and membership is complete
for NC!. The arithmetic version we consider8P-VPA, counting the number of ac-
cepting paths in a VPA, when run on the output of a deterministic branching program.
Clearly, this containggBP-NFA; we show that in fact the two are equal. Thus adding a
stack to arNFA but restricting its usage to a visible nature adds no power to the closure
of the class under projections.

The next class we consider is arithmetic formulae. It is known that formflae
(circuits with fanout 1 for each gate) and even logarithmic width formula& have
the same power @8C! [17]. Applying either of definition (1) or (2) above to formulae
give the function classes= and#LWF. It is known [10] that#LWF C #F = #NC!.
We show that this is in fact an equality. Thus even in the arithmetic settilg, have
the full power ofNC!.

Next we consider bounded width circui8C is the class of polynomial size poly
logarithmic width (widthO(log’ ) for SC) circuits, and corresponds in the uniform
setting to a simultaneous time-space bouBd §tands for Steve’s Classes, named after
Stephen Cook who proved the first non-trivial result about polynomial time log-squared
space PL0SS, i.65C?, in [13]. See for instance [18]). It is known th&C° equals
NC! [7]. However, this equality provably does not carry over to the arithmetic setting,
since it is easy to see that ev&C® over N can compute values that are infeasible
(needing more than polynomially long representation). So we consider the restriction to
polynomial degree, denoted I8BC°, before arithmetizing to getsSC°. We observe
that in the Boolean setting, this is not a restriction at s8C° equalsNC' as well.
However, the arithmetization does not appear to collapse to either of the existing classes.
We show thatsSC? lies betweertBWBP andFL.

The polynomial-degree restriction 8C° immediately suggests a similar restriction
on all theSC! classes. We thus explore the poweis&C? andsSC, the polynomial-
degree restrictions $C* andSC respectively, and their corresponding arithmetic ver-
sions#sSC' and#sSC. This restriction automatically places the corresponding classes
in LogCFL and #0gCFL, sinceLogCFL is known to equal languages accepted by
polynomial size polynomial degree circuits [24, 22], and since the arithmetic analogue
also holds [26,20]. Thus we have a hierarchy of circuit classes betN&nand
LogCFL. Other hierarchies sitting in this region are poly size branching programs of
polylog width, limited byNL in LogCFL, and poly size log depth circuits with AND
fan in 2 and OR fan in polylog, limited bAC! which equald.ogCFL [25]; see [27].

In both of these hierarchies, [27] establishes closure under complementatis&&or
we have a weaker result: @8C is contained irsSC%.

It is not clear what power the Boolean cl&SC' possesses: is it strong enough to
equalSC!, or is the polynomial degree restriction crippling enough to bring it down
to SC°=NC'? We show that all o#NC! is captured by#sSC!, which is contained
in BooleanSC2. Note that the maximal fragments NIC hitherto known to be ir§C



BWBP = BP-NFA
= BP-VPA = NC! 1
Lo CFL
= LWF = sSC° = L=sc!] | LogCFL |
SSCl LogDCFL — SC2
FNC! — #BWBP — #NC! / L \ NC2
#BP-NFA #LWF FL —> FLogDCFL — #LogCFL
#BP-VPA #sSC? — #sSC! sc?

Fig. 1. Boolean classes and their arithmetizations

wereLogDCFL [23, 14, 16] and randomized log spaké [21]; we do not know how
this fragment compares with them. In fact, turning the question around, stusi$itig
is an attempt to understand fragment&N& that lie within SC.

Our main results can be summarized in Figure 1. It shows that corresponding to
BooleanNC!, there are three naturally defined arithmetizations, while the correct arith-
metization ofL is still not clear. We also show that the three arithmetizationsd©f
coincide under modulo tests, for any fixed modulus.

A key to understanding function classes better is to investigate their closure proper-
ties. We present some such results concer#sgC’.

This paper is organized as follows. Definitions and notation are presented in Sec-
tion 2. Sections 3 and 4 present the bounds#8i-VPA and #LWF, respectively.
Section 5 introduces and presents bounds involgi8g’ and#sSC?. Some closure
properties of these classes are presented in Section 6, where also the collapse of the
modulus test class&$C'= ®NC! = BWBP = sSC" follows.

2 Preliminaries

By NC! we denote the class of languages which can be accepted by a faily,>o

of polynomial sizeO(log n) depth bounded circuits, with each gate having a constant
fan-in. A branching program is a layered acyclic graptwith edges labeled by con-
stants or literals, and with two special verticeandt. It accepts an input if it has an

s ~ t path where each edge is labeled by a true literal or the constBRYBP denotes

the class of languages that can be accepted by polynomial size bounded width branching



programsBWC is the class of languages which can be accepted by a fgifiily.,>o

of constant width, polynomial size circuits, whesédth of a circuit is the maximum
number of gates at any level of the circuit. A branching program can be equivalently
viewed as a skew circuiti.e, a circuit in which each AND gate has at most one input wire
that is not a circuit input; hendWBP is in BWC. SC' is the class of languages which
can be accepted by a fami{y’,, }.,>0 of polynomial size circuits of widtlD((log n)*).

Thus we have by definitiolBWC = SCP. For the clas$SC* we assume, without loss

of generality, that every gate has fanéii1) (fan-in f = O((logn)?) is replaced by a
width O(1), depthO(f) circuit). LWF is the class of languages which can be accepted
by a family { F,, },,>o of polynomial size formulae with width bounded I6)(log n).
Without the width bound, denote the family of poly size formulaFby

For defining branching programs over automata, we follow notation from [11]. A
nondeterministic automaton is a tuple of the fdigh A, qo, §, F'), whereQ is the finite
set of statesA is the input alphabey, € Q is the initial state ' C Q is the set of
accepting states arid: Q x X — P(Q).

A projectionP = (X, A, S, B, E) overAis afamilyP = (P,),cn of n-projections
over A, where an n-projection ovet is a finite sequence of paifs, f) with1 <i <n
andf : ¥ — A. The length of the sequence is denoted%y its j-th instruction is
denoted by B,,(5), E.(j)) whereS : N - N, B:NxN - N, E: Nx N — A*,

B pulls out a letterr g, ;) € X from the inputz and £ projects it to a letter in the
alphabetA. Thus the string: € X* is projected to a string’(x) € A*. FDLOGTIME
uniformity for the projections is assumed.

A branching program over a nondeterministic automain-= (Q, A, 0,0, F) is
a projectionP = (X, A, S, B, FE). It acceptse € X* if N accepts the projection
of z. BP-NFA is the class of all languages recognized by uniform polynomial length
branching programs over a nondeterministic automaton

Avisibly pushdown automatoVPA) is a pdaM = (Q, Qin, 4, I, §, Q) working
over an input alphabed that is partitioned agA.., A,., A;,+). Q is a finite set of states,
Qin, Qr C Q are the sets of initial and final states respectivElys the stack alphabet
containing a special bottom-of-stack markey and acceptance is by final state. The
transition functiond is constrained so that: § € A, thend(p,a) = (g,7) (push
move, independent of top-of-stack).dfe A,, thend(p,a,v) = ¢ (pop move), and
d(p,a, L) = g (pop onempty stack). i € A, thend(p,a) = ¢ (internal move,
independent of top-of-stack). The input letter completely dictates the stack movement.
Also the pda is assumed to benove-free, whil) is allowed to be non-deterministic.

BP-VPA is the class of all languages recognized by uniform polynomial length
branching programs oven#PA.

In [7], Barrington showed thatiC!= BWBP= BWC. As observed in [11]BWBP
coincides withBP-NFA; thusNC!= BP-NFA. Istrail and Zivkovic showed in [17] that
NC!=LWF. In [15], Dymond showed that acceptance by VPAs can be check¢@in
and henc®P-VPA= NC!. Thus

Lemmal ([7,11,17,15])NC'= BWBP= SC’= LWF= BP-NFA= BP-VPA

Y1n [11], this class is calle@®P. We introduce this new notation to better motivate the next
definition, ofBP-VPA.



The corresponding arithmetic classes are defined as follows:

#BWBP = {f : {0,1}" — N | f = #s ~~ t paths in 8BWBP}
1 ) n f can be computed by a poly siz&logn) depth
ANC = {f {01} = N | bounded fan in circuit ovef+, x, 1,0, z;, T; }.

) _ ) n_, f(x) = #acceptP,,x) for some uni
#BP-NFA = {f {01} N | form poly lengthBP P over anNFA N

Here,#acceptP, z) denotes the number of distinct accepting path&/odn the pro-
jection ofz, P(x).

For each of these counting classes, the correspordifiglasses are defined by
taking the difference of two # functions, while ti&ap classes are defined by taking
closure of the class under subtraction (equivalently, by allowing the constaintthe
circuit). For reasonable classes (in particular, for the classes we conBideandGap
coincide, see [28].

Though the above classes are all equal in the Boolean setting, in the arithmetic
setting the equivalences are not established, and strict containments are also not known.
The best known relationships among these classes are as below.

Lemma 2 ([11]).
FNC! C #BWBP = #BP-NFA C #NC! C GapBWBP = GapNC! C L.

3 Counting accepting runs in visibly pushdown automata

We introduce a natural arithmetizationBP-VPA, by counting the number of accept-
ing paths in avVPA rather than in arNFA. The definition mimics that oBP-NFA.
Given a uniform polynomial length branching progrdfrover aVPA M, the number
of distinct accepting paths @ on the projection of is denoted by #acce®, x).

f(z) = #accepth,,z) for som
Definition 1. #BP-VPA = { f:{0,1}" — N | uniform poly lengthBP P over a
VPA M

The main result of this section is that adding a visible pushdown tFadds no
power to the corresponding counting class. That is,

Theorem 1. #BP-NFA= #BP-VPA

Proof. #BP-NFAC #BP-VPA: Obvious from the definition, since\&PA can simulate
aNFA for anypartition of the input.

#BP-VPAC #BP-NFA: For this direction, we use the fact théBP-NFA equals
#BWBP (Lemma 1) and plac&BP-VPA in #BWBP.

Let f € #BP-VPA. There exists a uniform polynomial length branching progfam
overaVPA M = (Q, A, Qin, I, 6, Qr). Let inputw be projected tdP(w) = z € A",
whereA = (A., Ay, Aint), |z| = n. So f(w) = #accy ().

The strategy is as follows. We first construct an equivalent WPAhat never needs
to perform a pop on an empty stack.TCP circuit transformse to a stringy over a



larger alphabet, such théiccy, (x) = #accy/ (y). This latter quantityffaccy: (y), is
counted by paths in BWBP G whose edges are labeled NZ! predicates involving
M’ andy. Thus each edge can be replaced by an equiv@®WBP, and the whole
graph is still aBWBP.

The VPAM' = (Q', A", Q},,,I", ¢, Q%) is essentially the same &s. It has two
new input symbolsA, B, and a new stack symbd{. A is a push symbol on whick
is pushed, and® is a pop symbol on whiclX is expected and popped/’ has a new
stateq’ that is the only initial statel/’ expects an input fromdl* A* B*. On the prefix
of A’s it pushesX'’s. When it sees the first letter from, it starts behaving likd/. The
only exception is whe/ performs a pop move of, M’ can perform the same move
on L or on X. On the trailing suffix ofB’s it pops X''s. It is straightforward to design
o’ from .

TheTCV circuit does the following. It counts the differenddetween the number
of push and pop symbols id"z. It then outputsy = A"zB?. By the way M’ is
constructed, it should be clear th&dccy, (x) = #accy (y) and thatM’, ony, never
pops on an empty stack. In fagtis well-matchedi.e. for every push there exists a
corresponding pop and vice versa.

We now describe the layered directed acyclic graph= (V, F), with nodess, ¢
such thattgs ~~ t = #accy (y). It will be clear thatG; can be constructed INC!.

LetV = {(¢, X,i) g€ Q U{gt, X e I"U{Ll}, (g ¢ Q),0<i< (n+ 1)}
At layer 0 we need only the vertex labeled= (¢, L,0). Layeri, for1 < i < n,
contains vertices of the forrfy, X,i) Vg € Q" andVX € I". At layern + 1, we
keep onlyt = (g, L,n + 1). This describes the vertex set@f Note that every layer
has a constant number of vertices. The vertex labels are intended to denfates
configurationsof M’, i.e. state, top-of-stack, tape head position. Since VPAs have a
one-way tape and nomoves, the tape head position is also the time-stamp.

Now we describe the edge set Gf The edges should trace out computations of
M’'. Thus if(q, Z") € §(p,y;) fory; € AL, then we put an edge froffp, Z,i — 1) to
(g, Z',1) for eachZ. Similarly, if (¢, Z) € ¢'(p,y;) fory; € A, ,, then we put an edge
from (p, Z,i — 1) to (q, Z, ) for eachZ. The only problematic case is whgne A’.

If ¢ € §(p,yi, Z), then we want to put an edge frofp, Z,7 — 1) to (¢, Z', ). But we
don’t know Z’; it is the stack symbol that will be uncovered wh&ris popped.

In TCY, first find the matching symbgl j < i, such thay; € A. and the symbo¥
pushed byM’ while readingy; is popped while reading;. Because of the padding of
x to y, this matching symbol is uniquely defined. Note that the stack never dips below
Z betweery;11...y;—1. M’ can go from(p, Z,i — 1) to (¢, Z', i) and hence we should
put this edge irG if and only if for somep’, p” € @',

(@) (p",Z) € d'(p, y;) (and hence there is an edge frgph, Z’, j — 1) to (p”’, Z, j) ),

(b) M’ can move from(p”, Z) to (p, Z) on reading the string, 11 ...y;—1 (and without
dipping belowZ on the stack), and

© q€d(pyi,2).

(d) M’ can reach the configuratiofp’, Z’,j — 1) starting froms = (¢/, L,0) and
reading the string;...y;_1.

(a) and (c) are determined by a simple lookupjof(b) and (d) can be determined in
NC!, and hence by a determinisBWBP, since the following is established in [15].



Proposition 1 ([15]). Determining whether a pair of height-matched surface configu-
rations of aVPA is realizable (one is reachable from the other without dipping below
the given stack top) is iINC'.

(b) is already in the required form to use this result. To check (d), we need to pad the
string y;...y;—1 with appropriate number of extra copies Bfto get a well-matched
string, and then check realizability. As argued above, this can be doR€%nThus,
the AND of the four conditions is recognised by a determiniBWgBP. We insert this
BWBP in G, identifying its start and sink vertices with, Z,i — 1) and(q, Z', ).

Also put all the edges of the forrip, L, n),(g, L,n + 1)) providedp € F’

This completely describes the graph We need to prove that the number of ac-
cepting paths in th&PA M equals the number of paths frosto ¢ in G. This can be
done through simple induction. O

4 Counting proof trees in (log width) formula

We show that the result of [17], asserting that log width formula capt@é, holds in
the arithmetized setting as well. This result is crucially used in showing Theorem 4.

Definition 2. #F — {f 0,1} S N | f can be computed by a poly size form}lla

over{+, x,1,0,2;,T;}.

SLWE — {f {0,137 SN | f can be computed by a poly si@élog n) Wldth}

formula over{+, x, 1,0, z;, 7; }.
Theorem 2. #LWF = #F = #NC!

Proof. Clearly,#LWF C #F. It follows from [10] (see also [3]) thatF, and hence also
#LWF, is in #NC*. To show tha#*NC! is in #LWF, we observe that the construction
of Lemma 2 in [17], establishing th&tC! C LWF, preserves proof-trees. O

5 Polynomial degree small-width circuits and their arithmetization

We now consider arithmetization 8. A straightforward arithmetization of any Boolean
circuit class ovefA, Vv, x;, 77, 0, 1) is to replace eacti gate by a+ gate and each gate

by a x gate. In the case &C" (SC* in general), this enables the circuit to compute
infeasible values (i.e exponential sized values), which makes the class uninteresting.
Hence we propose bounded degree versions of these classes and then arithmetize them.
The degree of a circuit is the maximum degree of any gate in it, where the degree of a
leaf is 1, the degree of an or + gate is the maximum of the degrees of its children,

and the degree of a or x gate is the sum of the degrees of its children.

Definition 3. sSC' is the class of languages accepted by Boolean circuits of polyno-
mial size,0(log’ n) width and polynomial degree.

#sSC' is the class of functions computed by arithmetic circuits of polynomial size,
O(log" n) width and polynomial degree. Equivalently, it is the class of functions count-
ing the number of proof trees in @8C! circuit.



sSC = U sSC¢ #sSC = U #sSCi
i>0 i>0

Note thatSC circuits can have internal NOT gates as well; moving the negations
to the leaves only doubles the width. However, when we restrict degrees&Cinwe
explicitly disallow internal negations. The circuits have only AND and OR gates, and
constants and literals appear at leaves.

Itis known that polynomial-size circuits of polynomial degree, irrespective of width
or depth, characteriZzeogCFL, which is equivalent to semi-unbounded log depth cir-
cuits SAC!, and hence is contained MC?2 [24, 22, 25]. This equivalence also holds in
the arithmetic settings for # and f@ap, see [26, 20, 4]. Thus

Proposition 2. For all i > 0,
(1)sSC? C LogCFL.  (2)#sSC? C #LogCFL.  (3)GapsSC! C GapLogCFL

A branching program can be viewed as a skew circuit, and a skew circuit's degree is
bounded by its size; BWBP is contained irsSC°. But SC° = BWBP = NC!. Thus

Proposition 3. sSCY = SC?% = NC!.

We do not know whether such an equaligC? = SC?) holds at any other level. If
it holds for anyi > 2, it would bring a larger chunk d8C into theNC hierarchy.

We now show that the individual bits of ea#sSC? function can be computed
in polynomial time using)(log'™") space. However, the Boolean circuits constructed
may not have polynomial degree.

Theorem 3. For all i > 0, #sSC’ C GapsSC’ C SCi*!

Proof. We show how to computg#sSC* in SC**!. The result foDiff and henceéSap
follows since subtraction can be performedSiGP.

Let f € #sSC'. Let d be the degree bound fgf. Then the value off can be
represented using € n°(") bits. By the Chinese Remainder Theorefigan be com-
puted exactly from its residues modulo the fiestd®(")) primes, each of which has
O(log d) = O(logn) bits. These primes are small enough that they can be found in log
space. Further, due to [12], the computatiorf éfom its residues can also be performed
in L= SC!; see also [2]. If the residues can be compute8@t, then the overall com-
putation will also be irSC* because we can think of composing the computations in a
sequential machine with a simultaneous time-space bound.

It thus remains to computg mod p wherep is a small prime. Consider a bottom-
up evaluation of thésSC’ circuit, where we keep track of the values of all interme-
diate nodes modulp. The space neededlisg p times the width of the circuit, that is,
O(log"™ n) space, while the time is clearly polynomial. 0

In particular, bits of a#sSC? function can be computed i8C*!, which equals
L. On the other hand, similar to the discussion preceding Proposition 3, we know that
#BWBP is contained intsSC°. Thus

Corollary 1. FNC!' C #BWBP C #sSC° C FL.
GapNC! = GapBWBP C GapsSC' C FL.



We cannot establish any direct connection betwgsBC® and#NC!. Thus this
is potentially a third arithmetization of the Boolean cl&¢§!, the other two being
#BWBP and#NC!.

We also do not know whethesSC' properly restrictsSC'=L. Even if it does, it
cannot fall belowNC?, sinceNC! = sSC°(Proposition 3). We note that this holds in
the arithmetic setting as well:

Theorem 4. #NC! C #sSC!.

Proof. ¢From Theorem 2, we know thaC' equals#LWF. But anLWF has log width
and has poly degree since it is a formula; he#ld&/F is in #sSC!. O

Since the levels o§SC are sandwiched betwedC! andLogCFL, both of which
are closed under complementation, it is natural to ask whether the lewsS€are also
closed under complement. While we are unable to show this, we show that fot,each
cosSC' is contained irsSC?'; thussSC as a whole is closed under complement.

Theorem 5. For eachi > 1, cosSC’ is contained irsSC2t.

Proof. Consider the proof of closure under complementlfogCFL, from [8]. This
is shown by considering the characterization.o§CFL as semi-unbounded log depth
circuits, and applying an inductive counting technique to such circuits. Our approach
for complementingSC' is similar: use inductive counting as applied by [8]. However,
one problem is that the construction of [8] uséG! circuits for threshold internally,
and if we use these directly, the degree will blow up. So for the thresholds, we use the
construction from [27]. A careful analysis of the parameters then yields the result.

Let C,, be a boolean circuit of lengthwidth w = O(log’ n) and degree. Without
loss of generality, assume that, has onlyv gates at odd levels and gates at even
levels. Also assume that all gates have fan in 2 or less. If an input literal is read by a
gate at levek, the literal is counted as a gate at leel- 1. We construct a boolean
circuit C?,, which compute€’,,. C/, contains a copy of’,,. Besides, for each levélof
C,, C! contains the gates:(g|c) whereg is a gate at levek of C,, and0 < ¢ < w,
and gatesount(c, k) for 0 < ¢ < w. These represent the conditional complement of
assuming the count at the previous level,iand verifying that the count at levilis c,
and are defined as follows:

cc(gle) = cc(ai|e) V cclazle), if g=a1 Aag
g o Thc(bl,"',bj), |f g = a; \/ag

whereb,, - -- ,b; range over all gates at the previous level exegpndas.

Thi(c,k) A\ y_glcount(d, k — 1) AThO(c, k,d)] if k>0
count(c, k) = < 1if k= 0,c=4# of inputs with value 1 at level 0
0 otherwise

The is the c-threshold value of its inputsTh1(c, k) = The of all original gates at
currentlevelTh0(c, k, d) is Th*~¢ of all cc(g|d) at the current level. Finally, the output



w

gate ofC}, is comp(g) = \/._, Count(c,l —1) A cc(g|c), whereg is the output gate of
C,,, at levell. Correctness follows from the analysis in [8].

A crucial observation, used also in [8], is that any root-to-leaf path goes through at
most two threshold blocks.

To achieve small width and small degree, we have to be careful about how we im-
plement the thresholds. Since the inputs to the threshold blocks are computed in the
circuit, we need monotone constructions. We do not know whether monblGhés
in monotonesSCP. But for our purpose, the following is sufficient: Lemma 4.3 of [27]
says that any threshold di bits can be computed by a monotone branching program
of width O(K) and sizeO(K?) (hence degre®(K?)). The thresholds we use have
K = O(w?). The threshold blocks can be staggered so thabthe?) extra width ap-
pears as an additive rather than multiplicative factor. Hence the widft & O (w?).

Let ¢ be the degree of a threshold bloekg O(K?) € O(w?). If the inputs to a
threshold block come from computations of degpeéhen the overall degree jg;. A
ce(gle) gate is a threshold block applied to gate<f at the previous level, and these
gates all have degree at mgstSo thecc(g|c) gate has degree at mgst. Also, the
degree of aount(c, k) gate is bounded by the sum of (1) the degree@hat(c, k—1)
gate, (2) the degree of a threshold block applied to gatés,ofnd (3) the degree of a
threshold block applied tec(g|c) gates. Hence it is bounded by ) w®™M)1, wherel
is the depth of”,,. Thus, the entire circuit has polynomial degree. ad

6 Extensions and Closure Properties

In this section, we show that some closure properties that holdN@* and#BWBP

also hold for#sSCP. (Construction details are omitted due to space restrictions.) The
simplest closures are under addition and multiplication, and it is straightforward to see
that#sSCV is closed under these. The next are weak sum and weak product: add (or
multiply) the value of a two-argument function over a polynomially large range of val-
ues for the second argument. (See [11, 28] for formal definitions.) A simple staggering
of computations yields:

Lemma 3. For eachi > 0, #sSC' is closed under weak sum and weak product.

#NC! and#BWBP are known to be closed under decremgstl = max{f—1,0}
and under division by a constahnl%j. ([1] credits Barrington with this observation for
#NC'. ) We show that these closures hold #8SC° as well. The following property
will be useful.

Proposition 4. For any f in #sSC° or #NC!, and for any constantn, the valuef
mod m is computable ifFNC!.

Lemma 4. #sSCP is closed under decrement and under division by a constant

Another consequence of Proposition 4 can be seen as follows. We have three com-
peting arithmetizations of the Boolean cla$é€'. The most natural one #NC!, de-
fined by arithmetic circuits. It contai$BWBP, which is contained i##sSC°, though
we do not know the relationship betwe#NC' and#sSC°. Applying a “> 07" test to
any yields the same class, Booldd@'. We show here that applying a&*0 mod p?”
test to any also yields the same language class, nai@ly



Definition 4. For any function class+C', let Mod,,C denote the class of languagés
such that there is aif € #C satisfyingvx € X*: € L < f(z) =0 mod p.

Theorem 6. For any fixedp, Mod,,BWBP = Mod,,sSC® = Mod,NC* = NC'.

Proof. From Proposition 4, foff € {#sSC° #BWBP,#NC'}, and a constant,, the
value[f(x) mod m] can be computed iFNC!. Hence the predicatef (z) = 0 mod
m] can be computed iNC!. 0

Another natural way to produce boolean circuits from arithmetic circuits is by al-
lowing the circuit to perform test-for-zero operations. Such circuits, knovArigsmetic-
Booleancircuits, were introduced by von zur Gathen, and have been studied in the lit-
erature; see e.g. [30, 29, 10, 3]. We extend this by looking at bounded width restrictions.

Definition 5. LetC be any of the arithmetic circuit classes studied above. Then Arith-
Bool C is defined to be the set of languages accepted by circuits ¢rovith the fol-
lowing additional gates, and with Boolean output. (Herés either a constant or a
literal.)

if £ = ity —
test(f) = {? IOti:GI‘V\?iSG select(fo, f1,y) = {!}? :f 3 :(1)

Assigningdeg(select(fo, f1,y)) = 1+max{deg(fo), deg(f1)} anddeg(test(f)) =
deg(f), we have the following,

Lemma5. 1. Arith-Boo#NC!' = #NC' [3]
2. Arith-BookBWBP = #BWBP.
3. Arith-BooksSCY = #sSC°

However, for the Gap classes, we do not have such a collapse. Analogous to the
definitions of SPP andSPL, define a clasSNC!: it consists of those languagésfor
which the characteristic functiogy, is in GapNC!. Then we have:

Lemma 6. Arith-BoolGapNC!'=GapNC!if and only if SNC'=C_NC".
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