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Abstract. The parallel complexity classNC1 has many equivalent models such
as bounded width branching programs. Caussinus et.al[11] considered arithmeti-
zations of two of these classes,#NC1 and#BWBP. We further this study to in-
clude arithmetization of other classes. In particular, we show that counting paths
in branching programs over visibly pushdown automata has the same power as
#BWBP, while counting proof-trees in logarithmic width formulae has the same
power as#NC1. We also consider polynomial-degree restrictions ofSCi, de-
notedsSCi, and show that the Boolean classsSC1 lies betweenNC1 and L,
whereassSC0 equalsNC1. On the other hand,#sSC0 contains#BWBP and is
contained inFL, and#sSC1 contains#NC1 and is inSC2. We also investigate
some closure properties of the newly defined arithmetic classes.

1 Introduction

The parallel complexity classNC1, comprising of languages accepted by logarithmic
depth, polynomial size, bounded fan in Boolean circuits, is of fundamental interest
in circuit complexity.NC1 is known to be contained within logarithmic spaceL. The
classesNC1 andL have many equivalent characterizations. Bounded width branching
programsBWBP, as well as bounded width circuitsSC0, (both of polynomial size),
were shown by Barrington [7] to be equivalent toNC1, while it it is folklore that poly
sizeO(log n) width circuitsSC1 equalsL.

However, arithmetizations of these classes are not necessarily equivalent. In [11],
Caussinus et al proposed three arithmetizations ofNC1: (1) counting proof-trees in
an NC1 circuit, (2) computation by a poly size log depth circuit over+ and×, and
(3) counting paths in a nondeterministic bounded width branching program. It is straight-
forward to see that the first two definitions of function classes, overN, coincide (see
for instance [26, 28]); and this class is denoted#NC1. It is shown in [11] that the third
class,#BWBP, is contained in#NC1, though the converse inclusion is still open. (How-
ever, the arithmetizations overZ are shown to coincide.) Also, using the programs over
monoids framework, [11] observe that#BWBP equals#BP-NFA, the class of functions
that count the number of accepting paths in a nondeterministic finite-state automaton
NFA when run on the output of a deterministic branching program. It is known (see e.g.
[3, 28]) that#NC1 has Boolean poly size circuits of depthO(log n log∗ n) and is thus
very close toNC1. It follows from more recent results [12] that#NC1 is contained in
FL; see e.g. [3].

We continue this study here (and also extend it toL) by arithmetizing other Boolean
classes also known to be equivalent toNC1. The first extension we consider is from



NFA to VPA. Visibly pushdown automata (VPA) areε-moves-free pushdown automata
whose stack behaviour (push/pop/no change) is dictated solely by the input letter under
consideration. They are also referred to as input-driven pda, and have been studied in
[19, 9, 15, 6, 5]. In [15], languages accepted by such pda are shown to be inNC1, while
in [6] it is shown that such pda can be determinized. Thus they lie properly between reg-
ular languages and deterministic context-free languages, and membership is complete
for NC1. The arithmetic version we consider is#BP-VPA, counting the number of ac-
cepting paths in a VPA, when run on the output of a deterministic branching program.
Clearly, this contains#BP-NFA; we show that in fact the two are equal. Thus adding a
stack to anNFA but restricting its usage to a visible nature adds no power to the closure
of the class under projections.

The next class we consider is arithmetic formulae. It is known that formulaeF
(circuits with fanout 1 for each gate) and even logarithmic width formulaeLWF have
the same power asNC1 [17]. Applying either of definition (1) or (2) above to formulae
give the function classes#F and#LWF. It is known [10] that#LWF ⊆ #F = #NC1.
We show that this is in fact an equality. Thus even in the arithmetic setting,LWF have
the full power ofNC1.

Next we consider bounded width circuits.SC is the class of polynomial size poly
logarithmic width (widthO(logi n) for SCi) circuits, and corresponds in the uniform
setting to a simultaneous time-space bound. (SC stands for Steve’s Classes, named after
Stephen Cook who proved the first non-trivial result about polynomial time log-squared
space PLoSS, i.e.SC2, in [13]. See for instance [18]). It is known thatSC0 equals
NC1 [7]. However, this equality provably does not carry over to the arithmetic setting,
since it is easy to see that evenSC0 over N can compute values that are infeasible
(needing more than polynomially long representation). So we consider the restriction to
polynomial degree, denoted bysSC0, before arithmetizing to get#sSC0. We observe
that in the Boolean setting, this is not a restriction at all;sSC0 equalsNC1 as well.
However, the arithmetization does not appear to collapse to either of the existing classes.
We show that#sSC0 lies between#BWBP andFL.

The polynomial-degree restriction ofSC0 immediately suggests a similar restriction
on all theSCi classes. We thus explore the power ofsSCi andsSC, the polynomial-
degree restrictions ofSCi andSC respectively, and their corresponding arithmetic ver-
sions#sSCi and#sSC. This restriction automatically places the corresponding classes
in LogCFL and #LogCFL, sinceLogCFL is known to equal languages accepted by
polynomial size polynomial degree circuits [24, 22], and since the arithmetic analogue
also holds [26, 20]. Thus we have a hierarchy of circuit classes betweenNC1 and
LogCFL. Other hierarchies sitting in this region are poly size branching programs of
polylog width, limited byNL in LogCFL, and poly size log depth circuits with AND
fan in 2 and OR fan in polylog, limited bySAC1 which equalsLogCFL [25]; see [27].
In both of these hierarchies, [27] establishes closure under complementation. ForsSCi,
we have a weaker result: co-sSCi is contained insSC2i.

It is not clear what power the Boolean classsSC1 possesses: is it strong enough to
equalSC1, or is the polynomial degree restriction crippling enough to bring it down
to SC0=NC1? We show that all of#NC1 is captured by#sSC1, which is contained
in BooleanSC2. Note that the maximal fragments ofNC hitherto known to be inSC
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Fig. 1.Boolean classes and their arithmetizations

wereLogDCFL [23, 14, 16] and randomized log spaceRL [21]; we do not know how
this fragment compares with them. In fact, turning the question around, studyingsSC
is an attempt to understand fragments ofNC that lie withinSC.

Our main results can be summarized in Figure 1. It shows that corresponding to
BooleanNC1, there are three naturally defined arithmetizations, while the correct arith-
metization ofL is still not clear. We also show that the three arithmetizations ofNC1

coincide under modulo tests, for any fixed modulus.
A key to understanding function classes better is to investigate their closure proper-

ties. We present some such results concerning#sSCi.
This paper is organized as follows. Definitions and notation are presented in Sec-

tion 2. Sections 3 and 4 present the bounds on#BP-VPA and #LWF, respectively.
Section 5 introduces and presents bounds involvingsSCi and#sSCi. Some closure
properties of these classes are presented in Section 6, where also the collapse of the
modulus test classesNC1=⊕NC1 =⊕BWBP =⊕sSC0 follows.

2 Preliminaries

By NC1 we denote the class of languages which can be accepted by a family{Cn}n≥0

of polynomial sizeO(log n) depth bounded circuits, with each gate having a constant
fan-in. A branching program is a layered acyclic graphG with edges labeled by con-
stants or literals, and with two special verticess andt. It accepts an inputx if it has an
s t path where each edge is labeled by a true literal or the constant 1.BWBP denotes
the class of languages that can be accepted by polynomial size bounded width branching



programs.BWC is the class of languages which can be accepted by a family{Cn}n≥0

of constant width, polynomial size circuits, wherewidth of a circuit is the maximum
number of gates at any level of the circuit. A branching program can be equivalently
viewed as a skew circuit i.e, a circuit in which each AND gate has at most one input wire
that is not a circuit input; henceBWBP is in BWC. SCi is the class of languages which
can be accepted by a family{Cn}n≥0 of polynomial size circuits of widthO((log n)i).
Thus we have by definition,BWC = SC0. For the classSCi we assume, without loss
of generality, that every gate has fan-inO(1) (fan-in f = O((log n)i) is replaced by a
width O(1), depthO(f) circuit). LWF is the class of languages which can be accepted
by a family {Fn}n≥0 of polynomial size formulae with width bounded byO(log n).
Without the width bound, denote the family of poly size formula byF.

For defining branching programs over automata, we follow notation from [11]. A
nondeterministic automaton is a tuple of the form(Q, ∆, q0, δ, F ), whereQ is the finite
set of states,∆ is the input alphabet,q0 ∈ Q is the initial state,F ⊆ Q is the set of
accepting states andδ : Q×Σ → P(Q).

A projectionP = (Σ,∆, S,B,E) over∆ is a familyP = (Pn)n∈N of n-projections
over∆, where an n-projection over∆ is a finite sequence of pairs(i, f) with 1 ≤ i ≤ n
andf : Σ → ∆. The length of the sequence is denoted bySn, its j-th instruction is
denoted by(Bn(j), En(j)) whereS : N → N, B : N × N → N, E : N × N → ∆Σ .
B pulls out a letterxB|x|(j) ∈ Σ from the inputx andE projects it to a letter in the
alphabet∆. Thus the stringx ∈ Σ∗ is projected to a stringP (x) ∈ ∆∗. FDLOGTIME
uniformity for the projections is assumed.

A branching program over a nondeterministic automatonN = (Q,∆, q0, δ, F ) is
a projectionP = (Σ, ∆, S,B,E). It acceptsx ∈ Σ∗ if N accepts the projection
of x. BP-NFA is the class of all languages recognized by uniform polynomial length
branching programs over a nondeterministic automaton1.

A visibly pushdown automaton (VPA) is a pdaM = (Q, Qin,∆, Γ, δ, QF ) working
over an input alphabet∆ that is partitioned as(∆c,∆r,∆int). Q is a finite set of states,
Qin, QF ⊆ Q are the sets of initial and final states respectively,Γ is the stack alphabet
containing a special bottom-of-stack marker⊥, and acceptance is by final state. The
transition functionδ is constrained so that: Ifa ∈ ∆c, thenδ(p, a) = (q, γ) (push
move, independent of top-of-stack). Ifa ∈ ∆r, thenδ(p, a, γ) = q (pop move), and
δ(p, a,⊥) = q (pop on empty stack). Ifa ∈ ∆int, thenδ(p, a) = q (internal move,
independent of top-of-stack). The input letter completely dictates the stack movement.
Also the pda is assumed to beε-move-free, whileδ is allowed to be non-deterministic.

BP-VPA is the class of all languages recognized by uniform polynomial length
branching programs over aVPA.

In [7], Barrington showed thatNC1= BWBP= BWC. As observed in [11],BWBP
coincides withBP-NFA; thusNC1= BP-NFA. Istrail and Zivkovic showed in [17] that
NC1= LWF. In [15], Dymond showed that acceptance by VPAs can be checked inNC1,
and henceBP-VPA= NC1. Thus

Lemma 1 ([7, 11, 17, 15]).NC1= BWBP= SC0= LWF= BP-NFA= BP-VPA

1 In [11], this class is calledBP. We introduce this new notation to better motivate the next
definition, ofBP-VPA.



The corresponding arithmetic classes are defined as follows:

#BWBP = {f : {0, 1}n → N | f = #s t paths in aBWBP}

#NC1 =
{

f : {0, 1}n → N | f can be computed by a poly sizeO(log n) depth
bounded fan in circuit over{+,×, 1, 0, xi, xi}.

}
#BP-NFA =

{
f : {0, 1}n → N | f(x) = #accept(Pn, x) for some uni-

form poly lengthBP P over anNFA N

}
Here,#accept(P, x) denotes the number of distinct accepting paths ofN on the pro-
jection ofx, P (x).

For each of these counting classes, the correspondingDiff classes are defined by
taking the difference of two # functions, while theGap classes are defined by taking
closure of the class under subtraction (equivalently, by allowing the constant−1 in the
circuit). For reasonable classes (in particular, for the classes we consider),Diff andGap
coincide, see [28].

Though the above classes are all equal in the Boolean setting, in the arithmetic
setting the equivalences are not established, and strict containments are also not known.
The best known relationships among these classes are as below.

Lemma 2 ([11]).
FNC1 ⊆ #BWBP = #BP-NFA ⊆ #NC1 ⊆ GapBWBP = GapNC1 ⊆ L.

3 Counting accepting runs in visibly pushdown automata

We introduce a natural arithmetization ofBP-VPA, by counting the number of accept-
ing paths in aVPA rather than in anNFA. The definition mimics that ofBP-NFA.
Given a uniform polynomial length branching programP over aVPA M , the number
of distinct accepting paths ofM on the projection ofx is denoted by #accept(P, x).

Definition 1. #BP-VPA =

{
f : {0, 1}n → N |

f(x) = #accept(Pn, x) for some
uniform poly lengthBP P over a
VPA M

}

The main result of this section is that adding a visible pushdown to anNFA adds no
power to the corresponding counting class. That is,

Theorem 1. #BP-NFA= #BP-VPA

Proof. #BP-NFA⊆ #BP-VPA: Obvious from the definition, since aVPA can simulate
aNFA for anypartition of the input.

#BP-VPA⊆ #BP-NFA: For this direction, we use the fact that#BP-NFA equals
#BWBP (Lemma 1) and place#BP-VPA in #BWBP.

Let f ∈ #BP-VPA. There exists a uniform polynomial length branching programP
over aVPA M = (Q,∆, Qin, Γ, δ,QF ). Let inputw be projected toP (w) = x ∈ ∆n,
where∆ = (∆c,∆r,∆int), |x| = n. Sof(w) = #accM (x).

The strategy is as follows. We first construct an equivalent VPAM ′ that never needs
to perform a pop on an empty stack. ATC0 circuit transformsx to a stringy over a



larger alphabet, such that#accM (x) = #accM ′(y). This latter quantity,#accM ′(y), is
counted by paths in aBWBP G whose edges are labeled byNC1 predicates involving
M ′ andy. Thus each edge can be replaced by an equivalentBWBP, and the whole
graph is still aBWBP.

The VPAM ′ = (Q′,∆′′, Q′
in, Γ ′, δ′, Q′

F ) is essentially the same asM . It has two
new input symbolsA,B, and a new stack symbolX. A is a push symbol on whichX
is pushed, andB is a pop symbol on whichX is expected and popped.M ′ has a new
stateq′ that is the only initial state.M ′ expects an input fromA∗∆∗B∗. On the prefix
of A’s it pushesX ’s. When it sees the first letter from∆, it starts behaving likeM . The
only exception is whenM performs a pop move on⊥, M ′ can perform the same move
on⊥ or onX. On the trailing suffix ofB’s it popsX ’s. It is straightforward to design
δ′ from δ.

TheTC0 circuit does the following. It counts the differenced between the number
of push and pop symbols inAnx. It then outputsy = AnxBd. By the wayM ′ is
constructed, it should be clear that#accM (x) = #accM ′(y) and thatM ′, on y, never
pops on an empty stack. In facty is well-matched, i.e. for every push there exists a
corresponding pop and vice versa.

We now describe the layered directed acyclic graphG = (V,E), with nodess, t
such that#Gs t = #accM ′(y). It will be clear thatG can be constructed inNC1.

Let V = {(q, X, i) | q ∈ Q′ ∪ {g}, X ∈ Γ ′ ∪ {⊥}, (g /∈ Q′), 0 ≤ i ≤ (n + 1)}.
At layer 0 we need only the vertex labeleds = (q′,⊥, 0). Layer i, for 1 ≤ i ≤ n,
contains vertices of the form(q, X, i) ∀q ∈ Q′ and∀X ∈ Γ ′. At layer n + 1, we
keep onlyt = (g,⊥, n + 1). This describes the vertex set ofG. Note that every layer
has a constant number of vertices. The vertex labels are intended to denotesurface
configurationsof M ′, i.e. state, top-of-stack, tape head position. Since VPAs have a
one-way tape and noε moves, the tape head position is also the time-stamp.

Now we describe the edge set ofG. The edges should trace out computations of
M ′. Thus if (q, Z ′) ∈ δ′(p, yi) for yi ∈ ∆′

c, then we put an edge from(p, Z, i − 1) to
(q, Z ′, i) for eachZ. Similarly, if (q, Z) ∈ δ′(p, yi) for yi ∈ ∆′

int, then we put an edge
from (p, Z, i − 1) to (q, Z, i) for eachZ. The only problematic case is whenyi ∈ ∆′

r.
If q ∈ δ′(p, yi, Z), then we want to put an edge from(p, Z, i − 1) to (q, Z ′, i). But we
don’t knowZ ′; it is the stack symbol that will be uncovered whenZ is popped.

In TC0, first find the matching symbolj, j < i, such thatyj ∈ ∆c and the symbolZ
pushed byM ′ while readingyj is popped while readingyi. Because of the padding of
x to y, this matching symbol is uniquely defined. Note that the stack never dips below
Z betweenyj+1...yi−1. M ′ can go from(p, Z, i− 1) to (q, Z ′, i) and hence we should
put this edge inG if and only if for somep′, p” ∈ Q′,

(a) (p′′, Z) ∈ δ′(p′, yj) (and hence there is an edge from(p′, Z ′, j − 1) to (p′′, Z, j) ),
(b) M ′ can move from(p′′, Z) to (p, Z) on reading the stringyj+1...yi−1 (and without

dipping belowZ on the stack), and
(c) q ∈ δ′(p, yi, Z).
(d) M ′ can reach the configuration(p′, Z ′, j − 1) starting froms = (q′,⊥, 0) and

reading the stringy1...yj−1.

(a) and (c) are determined by a simple lookup ofδ′. (b) and (d) can be determined in
NC1, and hence by a deterministicBWBP, since the following is established in [15].



Proposition 1 ([15]). Determining whether a pair of height-matched surface configu-
rations of aVPA is realizable (one is reachable from the other without dipping below
the given stack top) is inNC1.

(b) is already in the required form to use this result. To check (d), we need to pad the
string y1...yj−1 with appropriate number of extra copies ofB to get a well-matched
string, and then check realizability. As argued above, this can be done inTC0. Thus,
the AND of the four conditions is recognised by a deterministicBWBP. We insert this
BWBP in G, identifying its start and sink vertices with(p, Z, i− 1) and(q, Z ′, i).

Also put all the edges of the form〈(p,⊥, n),(g,⊥, n + 1)〉 providedp ∈ F ′

This completely describes the graphG. We need to prove that the number of ac-
cepting paths in theVPA M equals the number of paths froms to t in G. This can be
done through simple induction. ut

4 Counting proof trees in (log width) formula

We show that the result of [17], asserting that log width formula captureNC1, holds in
the arithmetized setting as well. This result is crucially used in showing Theorem 4.

Definition 2. #F =
{

f : {0, 1}n → N | f can be computed by a poly size formula
over{+,×, 1, 0, xi, xi}.

}
#LWF =

{
f : {0, 1}n → N | f can be computed by a poly sizeO(log n) width

formula over{+,×, 1, 0, xi, xi}.

}
Theorem 2. #LWF = #F = #NC1

Proof. Clearly,#LWF ⊆ #F. It follows from [10] (see also [3]) that#F, and hence also
#LWF, is in #NC1. To show that#NC1 is in #LWF, we observe that the construction
of Lemma 2 in [17], establishing thatNC1 ⊆ LWF, preserves proof-trees. ut

5 Polynomial degree small-width circuits and their arithmetization

We now consider arithmetization ofSC. A straightforward arithmetization of any Boolean
circuit class over(∧,∨, xi, xi, 0, 1) is to replace each∨ gate by a+ gate and each∧ gate
by a× gate. In the case ofSC0 (SCi in general), this enables the circuit to compute
infeasible values (i.e exponential sized values), which makes the class uninteresting.
Hence we propose bounded degree versions of these classes and then arithmetize them.
The degree of a circuit is the maximum degree of any gate in it, where the degree of a
leaf is 1, the degree of an∨ or + gate is the maximum of the degrees of its children,
and the degree of a∧ or× gate is the sum of the degrees of its children.

Definition 3. sSCi is the class of languages accepted by Boolean circuits of polyno-
mial size,O(logi n) width and polynomial degree.

#sSCi is the class of functions computed by arithmetic circuits of polynomial size,
O(logi n) width and polynomial degree. Equivalently, it is the class of functions count-
ing the number of proof trees in ansSCi circuit.



sSC =
⋃
i≥0

sSCi #sSC =
⋃
i≥0

#sSCi

Note thatSC circuits can have internal NOT gates as well; moving the negations
to the leaves only doubles the width. However, when we restrict degree as insSC, we
explicitly disallow internal negations. The circuits have only AND and OR gates, and
constants and literals appear at leaves.

It is known that polynomial-size circuits of polynomial degree, irrespective of width
or depth, characterizeLogCFL, which is equivalent to semi-unbounded log depth cir-
cuitsSAC1, and hence is contained inNC2 [24, 22, 25]. This equivalence also holds in
the arithmetic settings for # and forGap, see [26, 20, 4]. Thus

Proposition 2. For all i ≥ 0,
(1) sSCi ⊆ LogCFL. (2) #sSCi ⊆ #LogCFL. (3) GapsSCi ⊆ GapLogCFL

A branching program can be viewed as a skew circuit, and a skew circuit’s degree is
bounded by its size; soBWBP is contained insSC0. But SC0 = BWBP = NC1. Thus

Proposition 3. sSC0 = SC0 = NC1.

We do not know whether such an equality (sSCi = SCi) holds at any other level. If
it holds for anyi ≥ 2, it would bring a larger chunk ofSC into theNC hierarchy.

We now show that the individual bits of each#sSCi function can be computed
in polynomial time usingO(logi+1) space. However, the Boolean circuits constructed
may not have polynomial degree.

Theorem 3. For all i ≥ 0, #sSCi ⊆ GapsSCi ⊆ SCi+1

Proof. We show how to compute#sSCi in SCi+1. The result forDiff and henceGap
follows since subtraction can be performed inSC0.

Let f ∈ #sSCi. Let d be the degree bound forf . Then the value off can be
represented usingd ∈ nO(1) bits. By the Chinese Remainder Theorem,f can be com-
puted exactly from its residues modulo the firstO(dO(1)) primes, each of which has
O(log d) = O(log n) bits. These primes are small enough that they can be found in log
space. Further, due to [12], the computation off from its residues can also be performed
in L= SC1; see also [2]. If the residues can be computed inSCk, then the overall com-
putation will also be inSCk because we can think of composing the computations in a
sequential machine with a simultaneous time-space bound.

It thus remains to computef mod p wherep is a small prime. Consider a bottom-
up evaluation of the#sSCi circuit, where we keep track of the values of all interme-
diate nodes modulop. The space needed islog p times the width of the circuit, that is,
O(logi+1 n) space, while the time is clearly polynomial. ut

In particular, bits of an#sSC0 function can be computed inSC1, which equals
L. On the other hand, similar to the discussion preceding Proposition 3, we know that
#BWBP is contained in#sSC0. Thus

Corollary 1. FNC1 ⊆ #BWBP ⊆ #sSC0 ⊆ FL.
GapNC1 = GapBWBP ⊆ GapsSC0 ⊆ FL.



We cannot establish any direct connection between#sSC0 and#NC1. Thus this
is potentially a third arithmetization of the Boolean classNC1, the other two being
#BWBP and#NC1.

We also do not know whethersSC1 properly restrictsSC1=L. Even if it does, it
cannot fall belowNC1, sinceNC1 = sSC0(Proposition 3). We note that this holds in
the arithmetic setting as well:

Theorem 4. #NC1 ⊆ #sSC1.

Proof. ¿From Theorem 2, we know that#NC1 equals#LWF. But anLWF has log width
and has poly degree since it is a formula; hence#LWF is in #sSC1. ut

Since the levels ofsSC are sandwiched betweenNC1 andLogCFL, both of which
are closed under complementation, it is natural to ask whether the levels ofsSC are also
closed under complement. While we are unable to show this, we show that for eachi,
co-sSCi is contained insSC2i; thussSC as a whole is closed under complement.

Theorem 5. For eachi ≥ 1, co-sSCi is contained insSC2i.

Proof. Consider the proof of closure under complement forLogCFL, from [8]. This
is shown by considering the characterization ofLogCFL as semi-unbounded log depth
circuits, and applying an inductive counting technique to such circuits. Our approach
for complementingsSCi is similar: use inductive counting as applied by [8]. However,
one problem is that the construction of [8] usesNC1 circuits for threshold internally,
and if we use these directly, the degree will blow up. So for the thresholds, we use the
construction from [27]. A careful analysis of the parameters then yields the result.

Let Cn be a boolean circuit of lengthl, widthw = O(logi n) and degreep. Without
loss of generality, assume thatCn has only∨ gates at odd levels and∧ gates at even
levels. Also assume that all gates have fan in 2 or less. If an input literal is read by a
gate at levelk, the literal is counted as a gate at levelk − 1. We construct a boolean
circuit C ′

n, which computesC̄n. C ′
n contains a copy ofCn. Besides, for each levelk of

Cn, C ′
n contains the gatescc(g|c) whereg is a gate at levelk of Cn and0 ≤ c ≤ w,

and gatescount(c, k) for 0 ≤ c ≤ w. These represent the conditional complement ofg
assuming the count at the previous level isc, and verifying that the count at levelk is c,
and are defined as follows:

cc(g|c) =

{
cc(a1|c) ∨ cc(a2|c), if g = a1 ∧ a2

Thc(b1, · · · , bj), if g = a1 ∨ a2

whereb1, · · · , bj range over all gates at the previous level excepta1 anda2.

count(c, k) =


Th1(c, k) ∧

∨w
d=0[count(d, k − 1) ∧ Th0(c, k, d)] if k > 0

1 if k = 0, c = # of inputs with value 1 at level 0

0 otherwise

Thc is thec-threshold value of its inputs ,Th1(c, k) = Thc of all original gates at
current level,Th0(c, k, d) isThk−c of all cc(g|d) at the current level. Finally, the output



gate ofC ′
n is comp(g) =

∨w
c=0 Count(c, l− 1)∧ cc(g|c), whereg is the output gate of

Cn, at levell. Correctness follows from the analysis in [8].
A crucial observation, used also in [8], is that any root-to-leaf path goes through at

most two threshold blocks.
To achieve small width and small degree, we have to be careful about how we im-

plement the thresholds. Since the inputs to the threshold blocks are computed in the
circuit, we need monotone constructions. We do not know whether monotoneNC1 is
in monotonesSC0. But for our purpose, the following is sufficient: Lemma 4.3 of [27]
says that any threshold onK bits can be computed by a monotone branching program
of width O(K) and sizeO(K2) (hence degreeO(K2)). The thresholds we use have
K = O(w2). The threshold blocks can be staggered so that theO(w2) extra width ap-
pears as an additive rather than multiplicative factor. Hence the width ofC ′

n is O(w2).
Let q be the degree of a threshold block;q ∈ O(K2) ∈ O(w4). If the inputs to a

threshold block come from computations of degreep, then the overall degree ispq. A
cc(g|c) gate is a threshold block applied to gates ofCn at the previous level, and these
gates all have degree at mostp. So thecc(g|c) gate has degree at mostpq. Also, the
degree of acount(c, k) gate is bounded by the sum of (1) the degree of acount(c, k−1)
gate, (2) the degree of a threshold block applied to gates ofCn, and (3) the degree of a
threshold block applied tocc(g|c) gates. Hence it is bounded bypO(1)wO(1)l, wherel
is the depth ofCn. Thus, the entire circuit has polynomial degree. ut

6 Extensions and Closure Properties

In this section, we show that some closure properties that hold for#NC1 and#BWBP
also hold for#sSC0. (Construction details are omitted due to space restrictions.) The
simplest closures are under addition and multiplication, and it is straightforward to see
that #sSC0 is closed under these. The next are weak sum and weak product: add (or
multiply) the value of a two-argument function over a polynomially large range of val-
ues for the second argument. (See [11, 28] for formal definitions.) A simple staggering
of computations yields:

Lemma 3. For eachi ≥ 0, #sSCi is closed under weak sum and weak product.

#NC1 and#BWBP are known to be closed under decrementf	1 = max{f−1, 0}
and under division by a constantb f

mc. ([1] credits Barrington with this observation for
#NC1. ) We show that these closures hold for#sSC0 as well. The following property
will be useful.

Proposition 4. For any f in #sSC0 or #NC1, and for any constantm, the valuef
mod m is computable inFNC1.

Lemma 4. #sSC0 is closed under decrement and under division by a constantm.

Another consequence of Proposition 4 can be seen as follows. We have three com-
peting arithmetizations of the Boolean classNC1. The most natural one is#NC1, de-
fined by arithmetic circuits. It contains#BWBP, which is contained in#sSC0, though
we do not know the relationship between#NC1 and#sSC0. Applying a “> 0?” test to
any yields the same class, BooleanNC1. We show here that applying a “≡ 0 mod p?”
test to any also yields the same language class, namelyNC1.



Definition 4. For any function class#C, let ModpC denote the class of languagesL
such that there is anf ∈ #C satisfying∀x ∈ Σ∗ : x ∈ L ⇐⇒ f(x) ≡ 0 mod p.

Theorem 6. For any fixedp, ModpBWBP = ModpsSC0 = ModpNC1 = NC1.

Proof. From Proposition 4, forf ∈ {#sSC0, #BWBP, #NC1}, and a constantm, the
value[f(x) mod m] can be computed inFNC1. Hence the predicate[f(x) ≡ 0 mod
m] can be computed inNC1. ut

Another natural way to produce boolean circuits from arithmetic circuits is by al-
lowing the circuit to perform test-for-zero operations. Such circuits, known asArithmetic-
Booleancircuits, were introduced by von zur Gathen, and have been studied in the lit-
erature; see e.g. [30, 29, 10, 3]. We extend this by looking at bounded width restrictions.

Definition 5. Let C be any of the arithmetic circuit classes studied above. Then Arith-
Bool C is defined to be the set of languages accepted by circuits fromC with the fol-
lowing additional gates, and with Boolean output. (Herey is either a constant or a
literal.)

test(f) =
{

0 if f = 0
1 otherwise

select(f0, f1, y) =
{

f0 if y = 0
f1 if y = 1

Assigningdeg(select(f0, f1, y)) = 1+max{deg(f0), deg(f1)} anddeg(test(f)) =
deg(f), we have the following,

Lemma 5. 1. Arith-Bool#NC1 = #NC1.[3]
2. Arith-Bool#BWBP = #BWBP.
3. Arith-Bool#sSC0 = #sSC0

However, for the Gap classes, we do not have such a collapse. Analogous to the
definitions ofSPP andSPL, define a classSNC1: it consists of those languagesL for
which the characteristic functionχL is in GapNC1. Then we have:

Lemma 6. Arith-BoolGapNC1=GapNC1if and only ifSNC1=C=NC1.
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