
A Probabilistic Analysis of Christofides’
Algorithm ?
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Abstract. Christofides’ algorithm is a well known approximation algo-
rithm for the metric travelling salesman problem. As a first step towards
obtaining an average case analysis of Christofides’ algorithm, we provide
a probabilistic analysis for the stochastic version of the algorithm for
the Euclidean traveling salesman problem, where the input consists of n
randomly chosen points in [0, 1]d. Our main result provides bounds for
the length of the computed tour that hold almost surely. We also provide
an experimental evaluation of Christofides’s algorithm.

1 Introduction

The Traveling Salesman Problem, TSP for short, is a well-known NP-hard com-
binatorial optimization problem. For general edge weights, it is even NP-hard
to find any sub-exponential approximation, see e.g. [10]. One natural restriction
is the case where the edge weights fulfill the triangle inequality. The problem
remains NP-hard (and APX-hard) for this restriction as well, but constant factor
approximation algorithms are well known, like Christofides’ algorithm [6] or the
tree doubling algorithm [7]. Euclidean Traveling Salesman Problem (ETSP for
short) is the restriction of metric TSP, where the vertices of the graph are points
in Rd and the edge weights are the Euclidean distances between them. ETSP is
also NP-hard to compute exactly, however efficient approximation schemes are
known [1, 13].

There has been a lot of interest to understand the asymptotic behavior of
Euclidean combinatorial optimization problems, in particular ETSP. In their
seminal paper [4], Beardwood, Halton and Hammersley performed a probabilistic
analysis, where they showed the following remarkable result:

Theorem 1. Let d ≥ 2. Let U1, . . . , Un be n independent uniformly distributed
random points over [0, 1]d. There exists a constant γETSP = γETSP(d) > 0 such
that almost surely

lim
n→∞

ETSP(U1, . . . , Un)

n(d−1)/d
= γETSP.
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In words, the authors of [4] showed that when we draw n points uniformly at
random from [0, 1]d, the cost of an optimal tour is almost surely asymptotically
equal to γETSP n

(d−1)/d. Later on, this result was generalized to many other
problems on Euclidean spaces, like the minimum spanning tree problem [17]. In
particular, Steele [16] provided a general framework that provides similar results
for all Euclidean functionals that are sub-additive (see Definition 1).

Motivated by the result of Beardwood et al., Karp [12] gave a partitioning
heuristic for ETSP that runs in polynomial time and asymptotically outputs an
optimal tour with probability 1 over points uniformly sampled from [0, 1]d. Start-
ing with Karp’s work, there has been a lot of interest in the probabilistic analysis
of heuristic algorithms for Euclidean optimization problems. For instance, Avis,
Davis, and Steele [2] showed complete convergence for the greedy algorithm for
the Euclidean minimum matching problem and Goemans and Bertsimas [9] pro-
vided the almost sure asymptotics for the Held-Karp relaxation of ETSP. For
an overview of further results, we refer to [8, 18, 19, 3].

In this paper we study Christofides’ algorithm, a popular heuristic for metric
TSP. It starts with computing a minimum spanning tree and then a minimum
matching on the odd-degree vertices. In the resulting graph, every node has even
degree and therefore, the graph is Eulerian. We obtain a TSP tour by taking
shortcuts in the Eulerian tour. For arbitrary metrics, Christofides’ algorithm
achieves a 3/2-approximation.

Despite its worst case approximation ratio of 3/2, Christofides’ algorithm
is known to perform better in practice. Analyzing Christofides’ algorithm on
random point sets has been an open problem, as posed by Frieze and Yukich in
2002 [8]. In this work, we introduce the functional CHR as the sum of cost of a
minimum spanning tree and a minimum matching on the odd-degree vertices of
the minimum spanning tree (see Section 3). Clearly, CHR serves as a worst case
upper bound on the cost of the tour computed by Christofides’ algorithm. We
prove:

Theorem 2. Let d ≥ 2. Let U1, . . . , Un be n i.i.d. uniformly distributed random
points over [0, 1]d. There exists a constant γCHR = γCHR(d) > 0 such that almost
surely

lim
n→∞

CHR(U1, . . . , Un)

n(d−1)/d
= γCHR.

As a main ingredient in our proof, we show that the functional CHR satisfies
a weak form of geometric sub-additivity (see Definition 2). Then we show that
the techniques developed by Steele [16] can be extended to weakly sub-additive
functionals.

Note that this result for Christofides’ algorithm is not a consequence of the
results known for Euclidean minimum spanning trees and Euclidean minimum
matching, for the matching computed by the Christofides’ algorithm depends
on the odd degree vertices in the minimum spanning tree. Moreover, it is not
clear if Christofides’ functional is sub-additive, and thus it is not possible to
apply known methods. However, we show that Christofides’ functional fulfills a
weaker property, which is still strong enough to obtain the desired results. A



related approach to overcome the limitations of the classical methods was taken
by Baltz et al. [3], who studied a routing problem with multiple depots.

Before we proceed with the proofs we comment on the values of the con-
stants γETSP and γCHR in Theorems 1 and 2. It is well-known that the worst-case
approximation ratio of Christofides’ algorithm is 3/2. On the other hand, the
theorems above imply that the approximation ratio is at most γCHR/γTSP on
almost all pointsets. It is an intriguing question whether this ratio is < 3/2.
However, a numerical or analytical evaluation seems from a current perspective
very difficult: although numerous efforts have been made in the past, see e.g. [14,
5, 11] and many references therein, the constant γETSP is not known exactly. Sim-
ilarly, as in all previous proofs regarding the asymptotic behavior of Euclidean
functionals, our proof does not provide any way of computing the value of γCHR.
On the positive side, our experimental evaluation on random points shows that
γCHR is strictly below 1.5, even without shortcutting (see Section 5).

2 Preliminaries

Most of the notations used here are from [19]. In this paper the distance between
two points in [0, 1]d is always the Euclidean distance.

Euclidean Functionals Let d > 1 be a fixed dimension. An Euclidean functional
in dimension d is a function f that maps any finite point set X ⊂ Rd to a positive
real number f(X). We use the following Euclidean functionals in the paper:

– TSP(X) = total edge weight of a minimum Euclidean traveling salesman
tour of X.

– MM(X) = total edge weight of a minimum weight Euclidean perfect match-
ing of X. (If |X| is odd, then one point will be left unmatched.)

– MST(X) = total edge weight of a minimum Euclidean spanning tree of X.

Following standard notation, for an Euclidean functional f and a hypercube
H ⊂ Rd, f(.,H) will denote the restriction of f , when the points are restricted
to H. In other words, for any point set X we have that f(X,H) = f(X ∩H). We
define certain properties of Euclidean functionals that will be used throughout.

An Euclidean functional f is monotone if for every F ⊆ G, f(F,H) ≤
f(G,H). Moreover, f is said to be homogeneous if

∀α > 0 : f(αF, αH) = α · f(F,H),

where αX = {αx : x ∈ X} for any X ⊆ Rd. We will say that f is translation
invariant if

∀ a ∈ Rd : f(F,H) = f(F + a,H+ a)

where X + a = {x + a : x ∈ X} for X ⊆ Rd. We say that f admits a growth
bound, if there is a constant C > 0 such that

f(F, [0, 1]d) ≤ C|F |(d−1)/d, (1)



Finally, f is called smooth if there is a constant C such that for all F,G ⊂ [0, 1]d,

|f(F ∪G, [0, 1]d)− f(F, [0, 1]d)| ≤ C|G|(d−1)/d. (2)

A further important property of Euclidean functionals is sub-additivity.

Definition 1 (Sub-additivity). Let Q1, . . . , Qmd be a partition of [0, 1]d into
equal-sized sub-cubes of edge m−1 each. Then f is sub-additive if there is a
C = C(d) ≥ 0 such that for m ∈ Z+,

f(F, [0, 1]d) ≤
md∑
i=1

f(F,Qi) + Cmd−1. (3)

Sub-additivity is the one of the most important properties used in several studies
of Euclidean functionals, in particular TSP,MM, and MST, see [8, 19] for an
excellent survey.

Proposition 1. The Euclidean functionals TSP,MM, and MST are homoge-
neous, translation invariant, smooth, sub-additive, and admit a growth bound.

The Christofides’ functional is not sub-additive. However, we define a weaker
property that turns out to be sufficient for our analysis of the Christofides’
functional.

Definition 2 (Weak Sub-additivity). Let Q1, . . . , Qmd be a partition of the
unit box [0, 1]d into equal-sized sub-cubes of edge m−1 each. Then, f is said to
be weakly sub-additive, if there are constants C = C(d), C ′ = C ′(d) ≥ 0 and
ε = ε(d) > 0 such that for m ∈ Z+,

f(F, [0, 1]d) ≤
md∑
i=1

f(F,Qi) + Cn((d−1)/d)−εmε + C ′md−1. (4)

We will use the following (folklore) facts about Euclidean minimum matching.
We give a simple proof for completeness.

Lemma 1. Let A,B ⊂ [0, 1]d be two finite, disjoint sets of points with even
cardinality. Then

MM(B) ≤ MM(A ∪B) + MM(A)

Proof. Let M be a minimum matching of A∪B and M1 be that of A. Consider
the graph G = (A ∪ B,M1 ∪M2). For every u ∈ B, there is a unique path Pu
originating at u. Moreover, Pu ends at some u′ ∈ B, and all the remaining
vertices in P are from A. This gives a matching for B of the required cost.

Lemma 2 (Folklore). Let T be a MST of n points. Then the cost of minimum
matching on the odd-degree vertices of T is bounded by MST(T ).

Further Notation If S is any collection of edges in a graph, and v is a vertex
then ∆S(v) denotes the degree of v in the sub-graph induced by S. Moreover,
we will write ‖S‖ for the sum of the lengths of the edges in S.



3 Proof of the Main Result

In this section we present the main steps that are needed to achieve the proof of
Theorem 2. We begin with defining the Euclidean functional given by Christofides
algorithm. For any point set F ⊂ [0, 1]d let CHR(F ) denote the cost of a mini-
mum spanning tree T of the points in F plus the cost of a minimum matching
of the odd-degree points in T . In symbols, we write

CHR(F )
4
= MST(F ) + OM(F )

where OM(F ) denotes the cost of a minimum matching on the odd degree vertices
in the minimum spanning tree. When F has more than one minimum spanning
trees, CHR(F ) is defined as the minimum over all such trees. However, we will
not consider such exceptional cases in our analysis, since the spanning tree of a
random point set is unique.

Note that strictly speaking, the functional CHR defined above does not mea-
sure the length of the tour obtained by Christofides’ algorithm, as we ignore
shortcuts. This is done in order to have more structure in the functional CHR,
even though it weakens the analysis a bit.

The first step in our proof is to establish the following lemma about the
structure of the functional CHR. It is the main contribution of our paper, and it
is proved in Section 4.

Lemma 3. The Euclidean functional CHR is homogeneous, translation invari-
ant, smooth, and admits a growth bound. Moreover, it is weakly sub-additive.

With this fact at hand, we proceed with proving a general result that deter-
mines the asymptotic value of the expectation of a weakly sub-additive Euclidean
functional. This result, together with the proof, are generalizations of the cor-
responding theorems that hold for sub-additive functionals only, and thus they
can be applied to a wider class of functions. Due to space limitations, the proof
is omitted.

Theorem 3. Let d ≥ 2. Let f be a smooth, weakly sub-additive Euclidean func-
tional that admits a growth bound. There is a γf = γf (d) such that if U1, . . . , Un
are uniform i.i.d over [0, 1]d, then

lim
n→∞

E [f(U1, . . . , Un)]

n(d−1)/d
= γf .

Together with Lemma 3, the above theorem implies that there is a γCHR ≥ 0
such that

E [CHR(U1, . . . , Un)] = (1 + o(1)) · γCHR · n(d−1)/d. (5)

However, as γMST > 0, see [8], we also obtain that γCHR > 0.
Note that the above collection of arguments almost shows Theorem 2. To

complete the proof it remains to show that CHR(U1, . . . , Un) is typically very
close to its expected value. This is performed by the next well-known result,
which follows immediately from the arguments exposed in [15].



Theorem 4. Let f be a homogeneous, translation invariant and smooth Eu-
clidean functional. Suppose that there is a γf = γf (d) such that

lim
n→∞

E[f(U1, . . . , Un)]

n(d−1)/d
= γf .

Then there is a C = C(d) > 0 such that for sufficiently large n

P [|f(U1, . . . , Un)− E[f(U1, . . . , Un)]| > t] ≤ exp

{
−C t

2d/(d−1)

n

}
.

Theorem 2 is then a direct consequence of (5) together with Lemma 3 and the
above result, which we apply with, say, t = n2(d−1)/3d = o(n(d−1)/d).

4 Christofides’ functional

This section is devoted to the proof of Lemma 3. We start with proving all the
properties except for the weak sub-additivity of it.

Lemma 4. CHR is a homogeneous, translation invariant, smooth Euclidean
functional that admits a growth bound.

Proof. As translation or scaling does not change the relative distances between
the points, CHR is homogeneous and translation invariant. The growth bound
can be obtained by that of MST and minimum matching, see [8, 19].

We now argue that CHR is also smooth. Let D(d) denote the bound on the
maximum degree in any Euclidean minimum spanning tree of a d-dimensional
pointset. Note that D(d) depends only on d. Let F,G ⊂ [0, 1]d be any finite sets
of points. Let T be a minimum spanning tree of F and O ⊆ F denote the set of
odd-degree points in T . Let T ′ be the minimum spanning tree of F ∪G, obtained
by iteratively adding points from G, one at a time, and then adding/removing
necessary edges to/from T . Let us examine the first step in the above procedure.
Let v ∈ G, and let T1 be a minimum spanning tree of F ∪ {v}. Then by the
degree bound on the Euclidean minimum spanning tree, v can have at most D(d)
incident edges in any MST of F ∪ {v}. For each such edge there is at most one
edge in T that has to be removed to ensure the acyclicity of T1. So, each edge
incident to v can affect the degrees of at most 3 points. Thus, the degrees of
at most 3D(d) points in T1 are different from that in T , and we infer that in
total at most 3D(d)|G| points will have their degrees in T ′ different from that
in T . Let O′ denote the set of odd degree vertices in T ′. The above discussion
guarantees that

||O| − |O′|| ≤ 3D(d)|G|.

As O ∩O′ and O \O′ form a partition of O, we have:

MM(O) ≤ MM(O ∩O′) + MM(O \O′) + t1, (6)



where t1 is the cost of a single edge if |O ∩ O′| is odd and zero otherwise. By
Lemma 1 with B = O ∩O′, A = O′ \ (O ∩O′) (hence A ∪B = O′),

MM(O ∩O′) ≤ MM(O′) + MM (O′ \ (O ∩O′)) .

Substituting in (6), and using that |O \ O′|, |O′ \ (O ∩ O′)| ≤ 3D(d)|G| and
MM(X) = O(|X|(d−1)/d) for any pointset X ⊂ [0, 1]d

MM(O) ≤ MM(O′) + MM(O \O′) + MM (O′ \ (O ∩O′)) + t1

≤ MM(O′) + 3(3D(d)|G|)(d−1)/d

By interchanging the roles of O and O′ in the above argument, we can show
similarly that

MM(O′) ≤ MM(O) + MM(O′ \O) + MM(O \O′) + t2

where t2 is the cost of a single edge in [0, 1]d . Hence,

MM(O′) ≤ MM(O) + 3(3D(d)|G|)(d−1)/d

Thus we have shown that there is a C = C(d) > 0 such that

OM(F )− C|G|(d−1)/d ≤ OM(F ∪G) ≤ OM(F ) + C|G|(d−1)/d. (7)

By the definition of CHR and the triangle inequality, we have

|CHR(F )− CHR(F ∪G)| ≤ |MST(F )−MST(F ∪G)|+ |OM(F )− OM(F ∪G)|.

As MST is a smooth functional, |MST(F ) − MST(F ∪ G)| = O(|G|(d−1)/d).
Combining this with (7) then proves the claim.

We cannot show that CHR is sub-additive. However, we show that it satisfies
a weaker form of subadditivity, which, however, is sufficient for our purposes.

Lemma 5. CHR is weakly sub-additive.

Before proving Lemma 5, we prove some of the structural properties of Eu-
clidean minimum spanning trees and minimum matchings.

Notation We use the following notation in Lemmas 6 and 7. Let T be a minimum
spanning tree of a finite point set F ⊂ [0, 1]d. Let Q1, . . . Qmd be the partitioning
of [0, 1]d into sub-cubes side length m−1 each. An edge e = (u, v) in T is called
a boundary edge, if u ∈ Qi and v ∈ Qj , where i 6= j. A boundary edge (u, v)
of T is called short, if Qi ∩ Qj 6= ∅. We shall say that Qi and Qj are adjacent
in this case. Every boundary edge that is not short will be denoted as long. A
point v ∈ F is said to be a boundary point, if it is incident to at least one of
the boundary edges of T . Let B denote the set of boundary points of T that
are incident on short edges. Let Bi = B ∩ Qi. Let r ≤ m−1 be a parameter
to be chosen later. Let Qi and Qj be two adjacent sub-cubes, and Bi,j denote



the boundary between them (i.e, a sub-cube in dimension at most d − 1). Let
C1, . . . , Ct denote the partitioning of Bi,j into sub-cubes of side length r each.

As
∑t
k=1 Vol(Ci) = Vol(Bi,j) ≤ m−(d−1), we have

t ≤ m−(d−1)/rd−1. (8)

For 1 ≤ k ≤ t, let Ci,k (resp. Cj,k) denote the hyper-rectangle in Qi (resp. Qj)
with Ck as one of its base face.

Lemmas 6 and 7 provide some structural properties of B. The proof of the
next statement is not very difficult and can be found in the Appendix.

Lemma 6. With the notations above, suppose that AB and CD are two bound-
ary edges such that A,D ∈ Ci,k and B,C ∈ Cj,k′ for some 1 ≤ k, k′ ≤ t. Then, at

least one point each from {A,D} and {B,C} is at distance at most
√
dr to Bi,j.

Corollary 1. Let Qi and Qj be two adjacent sub-cubes. Then there are at

most t2 boundary edges between points in Qi and Qj of length more than 2
√
dr.

Proof. By Lemma 6, for a sub-rectangle Ci,k, there are at most t boundary

points in Qj at a distance of at least
√
dr from the boundary. As there are t such

rectangles Ci,k, we get the desired bound.

In Lemma 7 below, we bound the cost of a minimum spanning tree or a minimum
matching for the points in Bi. (See Appendix for a proof.)

Lemma 7. Suppose ni = |Qi ∩ F | ≥ 1. There is an ε = ε(d) > 0 such that the
cost of a minimum matching or a minimum spanning tree of any subset of points

in Bi is O(m−1n
((d−1)/d)−ε
i ).

We also bound the total edge length of long boundary edges in T . (See
Appendix for a proof.)

Lemma 8. The total length of all long boundary edges in T is O(md−1).

Proof (of Lemma 5). Let T be a minimum spanning tree of F . Let O denote
the set of odd degree points in T . Let Ti denote the restriction of T to Qi
obtained by removing the edges incident to points outside Qi. Let T ′i denote a
minimum spanning tree for Fi = F ∩Qi obtained by adding necessary edges to
Ti. Let Si = E(T ′i )\E(Ti). Let O′i denote the set of odd degree points in T ′i . Let
Oi = O ∩Qi. By definition, CHR(F, [0, 1]d) = ‖T‖+ MM(O). We need to prove

CHR(F, [0, 1]d) ≤
md∑
i=1

CHR(Fi, Qi) +O(n((d−1)/d)−εmε +md−1). (9)

for some ε = ε(d) > 0. Applying the geometric sub-additivity of the Euclidean
minimum spanning tree functional, and that of Euclidean minimum matching,

CHR(F, [0, 1]d) ≤
md∑
i=1

‖T ′i‖+

md∑
i=1

MM(Oi) +O(md−1). (10)

By the definition of CHR, we have CHR(Fi) = ‖T ′i‖+MM(O′i). Thus it is sufficient
to bound MM(Oi) in terms of MM(O′i). This is performed by the next claim.



Claim 5 MM(Oi) ≤ MM(O′i) + ‖Si‖+O(m−1n
((d−1)/d)−ε
i +m−1).

Applying the above claim on (10),

CHR(F, [0, 1]d) ≤
md∑
i=1

(
‖T ′i‖+ MM(O′i) + ‖Si‖+ C ′m−1n

((d−1)/d)−ε
i +O(m−1)

)
The crucial observation is that it is sufficient to replace ‖T ′i‖ by ‖Ti‖ with a
small additive term in the above sum, since ‖T ′i‖ = ‖Ti‖ + ‖Si‖. This can be
done using Lemma 7. We prove

‖T ′i‖ ≤ ‖Ti‖+O(m−1n
((d−1)/d)−ε
i +m−1)

To see this, note first that if Ti is connected, then ‖Si‖ = 0, hence assume that
Ti is not connected. Then at least one point in each of the connected components
of Ti is a boundary point. So, Ti plus a spanning tree of all boundary points in
Fi and a single edge connecting them gives a spanning tree τi of Fi, and hence
‖T ′i‖ ≤ ‖τi‖. The boundary points in Fi can be partitioned into Bi, and the
remaining boundary points of Fi that are incident on long boundary points. By

Lemma 7, we have MST(Bi) ≤ O(m−1n
((d−1)/d)−ε
i ) + O(m−1). The boundary

points that are incident on long boundary points can be connected arbitrarily
to each other, as their total length is at most O(md−1) by Lemma 8. Thus,

‖T ′i‖ ≤ ‖τi‖ ≤ ‖Ti‖+ MST(Bi) +O(m−1) + MST(long boundary points in Fi)

Thus there is a constant C1 = C1(d) ≥ 0 such that,

‖T‖ ≤
md∑
i=1

‖Ti‖+ C1 · (n((d−1)/d)−εi +m−1) + MST(long boundary points in Fi)

≤
md∑
i=1

(
‖Ti‖+ C1 · (n((d−1)/d)−εi +m−1)

)
+O(md−1).

Hence, there is a C ′′ = C ′′(d) ≥ 0 such that

CHR(F, [0, 1]d) = ‖T‖+ MM(O)

≤
md∑
i=1

(
‖Ti‖+ C1 · (m−1n((d−1)/d)−εi +m−1)

)

+

md∑
i=1

(
MM(O′i) + ‖Si‖+ C ′m−1n

((d−1)/d)−ε
i +O(m−1)

)

=

md∑
i=1

(
‖Ti‖+ ‖Si‖+ MM(O′i) + C ′′m−1n

((d−1)/d)−ε
i +O(m−1)

)



As ‖T ′i‖ = ‖Ti‖+ ‖Si‖ and CHR(F,Qi) = ‖T ′i‖+ MM(O′i), we have that

CHR(F, [0, 1]d) ≤
md∑
i=1

{
CHR(Fi, Qi) + C ′′(m−1n

((d−1)/d)−ε
i +m−1)

}

≤
md∑
i=1

CHR(Fi, Qi) + C2

(∑
i

ni
)((d−1)/d)−ε

mε

(Hölder’s inequality)

=

md∑
i=1

CHR(Fi, Qi) + C2n
((d−1)/d)−εmε.

To complete the proof of Lemma 5, we need to prove Claim 5. Due to space
limitations, the proof is omitted and can be found in the full version of the
paper.

5 Experimental Evaluation

In this section we present simulation results that shed some light on the actual
values of the constants γETSP and γCHR. In particular, we provide experimental
evidence that the value of Christofides’ functional is strictly less than 3/2 times
the length of an optimal TSP tour through n random points.

Our experimental setup is as follows. Let ni = 500 i, where 1 ≤ i ≤ 20. For
any i in the given range, we generated independently 100 sets of ni uniformly
distributed random points in [0, 1]2, and computed the average and the standard
deviation of three parameters: i) the size of a minimum spanning tree (MST),
ii) the size of a minimum matching on the odd degree vertices (OM) of the
minimum spanning tree, and iii) the ratio (MST + OM) / MST. Note that the
latter is an upper bound for the approximation ratio of Christofides’ algorithm,
since the length of a minimum spanning tree is a lower bound for the length of
a TSP tour.

The results of the experiments are summarized in Figures 1 and 2, and lead to
the following conclusions. Observe that the ratio (MST + OM) / MST stabilizes
quickly around approximately 1.3347, and the standard deviation becomes small
very quickly. In other words, even if we do not perform any shortcutting, the
approximation ratio stays well below the worst-case value 3/2.
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