
Small-space analogues of Valiant’s classes

Meena Mahajan and B.V. Raghavendra Rao

The Institute of Mathematical Sciences, Chennai 600 113, India.
{meena,bvrr}@imsc.res.in

Abstract. In the uniform circuit model of computation, the width of
a boolean circuit exactly characterises the “space” complexity of the
computed function. Looking for a similar relationship in Valiant’s alge-
braic model of computation, we propose width of an arithmetic circuit
as a possible measure of space. We introduce the class VL as an algebraic
variant of deterministic log-space L. In the uniform setting, we show that
our definition coincides with that of VPSPACE at polynomial width.
Further, to define algebraic variants of non-deterministic space-bounded
classes, we introduce the notion of “read-once” certificates for arithmetic
circuits. We show that polynomial-size algebraic branching programs can
be expressed as a read-once exponential sum over polynomials in VL, i.e.

VBP ∈ Σ
R ·VL. We also show that ΣR ·VBP = VBP, i.e. VBPs are sta-

ble under read-once exponential sums. Further, we show that read-once
exponential sums over a restricted class of constant-width arithmetic
circuits are within VQP, and this is the largest known such subclass of
poly-log-width circuits with this property.

1 Introduction

In the arithmetic circuit model of computation, Valiant introduced the classes
VP and VNP to capture the complexity of polynomial families ([15], see also
[4]). Over Boolean computation these classes correspond roughly to P and NP;
over arithmetic computation with Boolean inputs they correspond roughly to
#LogCFL and #P. Given the rich structure within P and LogCFL, it is natural
to ask for a complexity theory that can describe arithmetic computation at this
level. In particular, there are two well-known hierarchies within polynomial-size
Boolean circuit families: the NC hierarchy based on depth, modelling parallel
time on a parallel computer, and the SC hierarchy based on width, modelling
simultaneous time-space complexity of Pmachines. It is straightforward to adapt
Valiant’s definition of VP to NC. But an adaptation capturing a space-bound is
more tricky, especially when dealing with sub-linear space. The main question
is: what would be a “right” measure for space? Two obvious choices are: 1) the
number of arithmetic “cells” or registers used during the course of computation
(i.e., the unit-space model), and 2) the size of a succinct description of the
polynomials computed at each cell. A third choice is the complexity of computing
the coefficient function for polynomials in the family. All three of these space
measures have been studied in the literature, [14, 6, 9, 8], with varying degrees of

success. In particular, the models [14, 9, 8], when adapted to logarithmic space,
are too powerful to give meaningful insights into small-space classes, whereas
the model of [6] as defined for log-space is too weak.

In this paper, we propose yet another model for describing space-bounded
computations of families of polynomials. Our model is based on width of arith-
metic circuits, and captures both succinctness of coefficients and ease of evalu-
ating the polynomials. Special cases of this model have been studied in the past:
in [10], such circuits over Z with Boolean inputs and an additional syntactic
degree restriction are studied, while in [11, 7] such circuits over arbitrary rings
but restricted to be syntactic multilinear are studied. We show that our notion
of space VSPACE(s) coincides with that of [9, 8] at polynomial space with uni-
formity (Theorem 1), and so far avoids the pitfalls of being too powerful or too
weak at logarithmic space.

Continuing along this line, we propose a way of describing non-deterministic
space-bounded computation in this context. The specific motivation for this is
to obtain an analogue of the class non-deterministic log-space NL as well as an
analogue of the result that VNP = Σ · VP. Again, there is a well-known model
for NL that easily carries over to the arithmetic setting, namely polynomial-size
branching programs BP. But we are unable to compare VBP with our version of
VL. Our model here for NL is based on read-once certificates, which also provide
the correct description of NL in terms of L in the Boolean world. We show that
the arithmetization of this model, ΣR · VL does contain arithmetic branching
programs (Theorem 2).

Surprisingly, we are unable to show a good upper bound on the complexity
of read-once certified log-space polynomial families. This raises the question: Is
the read-once certification procedure inherently too powerful? We show that this
is not always the case; for branching programs, read-once-certification adds no
power at all (Theorem 3). Similarly, for polylog-width circuits where the syntac-
tic degree is bounded by a polynomial, read-once certification does not take us
beyond VQP (Theorem 4). Further, if the circuit is multiplicatively disjoint and
of constant width, then read-once certification does not take us beyond VP.

2 Preliminaries

We use standard definitions for complexity classes such as polynomial space
PSPACE, NC, L, NL and LogCFL (see e.g. [17],[1]).

An arithmetic circuit over a ring 〈K,+,×, 0, 1〉 is a directed acyclic graph C,
where vertices with non-zero in-degree are labelled from {+,×}, and vertices of
zero-in-degree (called leaf nodes) are labelled fromX∪K, whereX = {x1 . . . , xn}
is the set of variable inputs to the circuit. An output node of C is a node of zero
out-degree, and it computes a polynomial in K[X]. (A circuit can have more
than one output node, thus computing a set of polynomials.)

The following definitions apply to both arithmetic and boolean circuits, hence
we simply use the term circuit. Depth of a circuit is the length of a longest path
from a leaf node to an output node. Size of the circuit is the number of nodes

and edges in it. Width of a layered circuit is the maximum number of nodes at
any particular layer. We assume that all output nodes appear at the last layer.

Polynomial size poly-log depth Boolean circuits form the class NC; NC1 is
the subclass of log-depth circuits and is known to be contained in L. Polynomial
size poly-log width boolean circuits form the class SC; SC0 is the subclass of
constant-width circuits and SC1 is the subclass of log-width circuits. It is known
that SC0 equals NC1 ([2]) and uniform SC1 equals L.

An arithmetic (resp. Boolean) circuit C is said to be skew if for every multi-
plication gate f = g × h (resp. ∧ gate f = g ∧ h), either h or g is in X ∪ K. C
is said to be weakly skew if for every f = g × h, either the edge (g, f) or (h, f)
is a bridge in the circuit, i.e removing the edge disconnects the circuit. Poly-size
Boolean skew circuits are known to characterise NL([16]).

An algebraic branching program (BP for short) over a ring K is a layered
directed acyclic graph, where edges are labelled from {x1, . . . , xn} ∪ K. There
are two designated nodes, s and t, where s has zero in-degree and t has zero
out-degree. Size of a BP is the number of nodes and edges in it and width is the
maximum number of nodes at any layer. Length of a BP is the number of layers
in it. Depth of a BP B equals 1 + length(B). The polynomial P computed by
a BP is the sum of weights of all s-t paths in P , where weight of a path is the
product of all edge labels in the path. We will also consider multi output BPs,
where the above is generalised in the obvious way to several nodes t1, t2, . . . , tm
existing at the last level. Note that BPs can be simulated by skew circuits and
vice versa with a constant blow up in the width.

VP denotes the class of families of polynomials (fn)n≥0 such that ∀n ≥ 0

– fn ∈ K[x1, . . . , xu(n)], where u ≤ poly(n)

– deg(fn) ≤ poly(n)

– fn can be computed by a polynomial size arithmetic circuit.

VPe is the sub-class of VP corresponding to poly-size arithmetic formula (i.e.
circuits with out-degree at most 1). If fn can be computed by arithmetic circuits
with resource bounds the same as NC1 or SC0 or SC1, then we say the family
is in VNC1 or VSC0 or VSC1 respectively. It is known that VPe is the same as
VNC1. If the circuits computing fn have quasipolynomial size 2log

c n, we say that
{fn} is in the class VQP.

A polynomial family (fn)n≥0 is in VNP if there exists a family (gℓ)n≥0 in VP

such that fn(X) =
∑

e∈{0,1}m gn(X, e), where m is bounded by poly(n).

We let VBP and VBWBP stand for classes corresponding to poly-size BPs of
poly and constant width, respectively. Without loss of generality, we can treat
these classes as skew circuits. ([13])

Let C be a complexity class defined in terms of Turing machines. A circuit
family (Bn)n≥0 is said to be C-uniform, if the direct connection language for Bn

can be decided in C. (see [17])

3 Notion of space for arithmetic computations?

In the case of boolean computations, the notion of “width” of a circuit captures
the notion of space in the Turing machine model (under certain uniformity as-
sumptions). In the case of arithmetic computations, defining a notion of “space
bounded computation” seems to be a hard task.

3.1 Previously studied notions

One possible measure for space is the number of arithmetic “cells” or registers
used in the course of computation (i.e., the unit-space model). Michaux [14]
showed that with this notion of space, any language that is decided by a machine
in the Blum-Shub-Smale model of computation (a general model for algebraic
computation capturing the idea of computation over reals, [3]; see also [4]) can
also be computed using O(1) registers. Hence there is no space-hierarchy theorem
under this space measure.

Another possible measure is the size of a succinct description of the polyno-
mials computed at each cell. In [6], Naurois introduced a notion of weak space in
the Blum-Shub-Smale model, and introduced the corresponding log space classes
LOGSPACE W and PSPACEW . This is in fact a way of measuring the complexity
of succinctly describing the polynomials computed by or represented at each
“real” cell. Though this is a very natural notion of “succinctness” of describing
a polynomial, this definition has a few drawbacks:

1. LOGSPACE W seems to be too weak to contain even NC1 over R, which is in
contrast to the situation in the Boolean world.

2. The polynomials representable at every cell have to be “sparse”, i.e., the
number of monomials with non-zero coefficients should be bounded by some
polynomial in the number of variables.

The second condition above makes the notion of weak space very restrictive if
we adapt the definition to the Valiant’s algebraic computation model. This is
because the corresponding log-space class in this model will be computing only
sparse polynomials, but in the non-uniform setting sparse polynomials are known
to be contained in a highly restrictive class called skew formula ([11]), which is
in fact a proper subclass of constant depth arithmetic circuits (i.e., VAC0).

Koiran and Perifel ([9, 8]) suggested a notion of polynomial space for Valiant’s
([15, 4]) classes. The main purpose of their definition was to prove a transfer the-
orem over R and C. Under their definition Uniform-VPSPACE (the non-uniform
counterpart can be defined similarly) is defined as the set of families (fn) of mul-
tivariate polynomials fn ∈ F [x1, . . . , xu(n)] with integer coefficients such that

– u(n) is bounded by a polynomial in n.
– Size of coefficients of fn is bounded by 2poly(n).
– Degree of fn is bounded by 2poly(n).
– Every bit of the coefficient function of fn is computable in PSPACE.

In [9], it was observed that the class VPSPACE is equivalent to the class
of polynomials computed by arithmetic circuits of polynomial depth and expo-
nential size. Such Boolean circuits compute exactly PSPACE, hence the name
VPSPACE. Thus one approach to get reasonable smaller space complexity classes
is to generalise this definition. We can consider VSPACE(s(n)) to consist of fam-
ilies (fn)n≥1 of polynomials satisfying the following:

– fn ∈ Z[x1, . . . , xu(n)], where u(n), the number of variables in fn, is bounded
by some polynomial in n.

– Degree of fn is bounded by 2s(n).
– The number of bits required to represent each of the coefficients of fn is

bounded by 2s(n), i.e. the coefficients of fn are in the range [−22
s(n)

, 22
s(n)

]
– Given n in unary, an index i ∈ [1, 2s(n)], and a monomial M , the ith bit of

the coefficient of M in fn is computable in DSPACE(s(n)).

It is easy to see that with this definition, even the permanent function PERMn

is in log-space. Thus VSPACE(log n) would be too big a class to be an arith-
metic version of log-space. The reason here is that this definition, unlike that of
[6], goes to the other extreme of considering only the complexity of coefficient
functions and ignores the resource needed to add the monomials with non-zero
coefficients. The relationship between the complexity of coefficient functions and
the polynomials themselves is explored more thoroughly in [12].

3.2 Defining VPSPACE in terms of circuit width

In this section we propose width of a (layered) circuit as a possible measure of
space for arithmetic computations.

Definition 1. Let VWIDTH(S) (with S = S(n)) be the class of polynomial fam-
ilies (fn)n≥0 with the following properties,

– The number of variables u(n) in fn is bounded by poly(n)
– fn ∈ Z[x1, . . . , xu(n)], i.e fn has only integer coefficients

– deg(f) ≤ max{2S(n), poly(n)}.
– The coefficients of fn are representable using max{2S(n), poly(n)} many bits.
– fn is computable by an arithmetic circuit of width S(n) and size ≤ max{

2S(n), poly(n)}.

Further, if the arithmetic circuits in the last condition are DSPACE(S)-uniform,
we call the family Uniform-VWIDTH(S).

Remark 1. In [10], poly size circuits of log width and poly degree were introduced.
The above definition generalises this definition to arbitrary width. A notable
difference is that in [10] and [11], the degree bound was on the syntactic degree of
the width-bounded circuits rather than on the degree of output polynomial. This
was necessary to bound the degree of the output polynomial as well as the size
of its coefficients. Here we do not deal with syntactic degree but independently
bound the degree of the polynomial as well as the values of the coefficients.

We show in Theorem 1 below that with this definition, uniform VWIDTH(poly)
coincides with uniform VPSPACE as defined in [9]; thus polynomial width indeed
corresponds to polynomial space. Motivated by this equivalence, we define the
following complexity classes:

Definition 2. VSPACE(S(n)) = VWIDTH(S(n))
Uniform-VSPACE(S(n))= Uniform-VWIDTH(S(n))

We denote the log-space class by VL; thus VL = VWIDTH(logn) = VSC1.
The following containments and equalities follow directly from known results

about width-constrained arithmetic circuits.

Lemma 1 ([5, 10, 11, 7]). VBWBP = VNC1 = VPe ⊆ VSPACE(O(1)) = VSC0 ⊆
VL = VSC1 ⊆ VP

Thus VL according to this definition is in VP and avoids the trivially “too-
powerful” trap; also, it contains VNC1 and thus avoids the “too weak” trap.

The following closure property is easy to see.

Lemma 2. For every S(n) > logn, the classes VSPACE(S(n)) are closed under
polynomially bounded summations and constant many products.

3.3 Comparing VPSPACE and VWIDTH(poly)

This subsection is devoted to proving the following equivalence,

Theorem 1. The class Uniform-VPSPACE ([9]) and Uniform-VWIDTH(poly)
are equivalent.

The equivalence follows from the two lemmas below.

Lemma 3. Uniform-VPSPACE ⊆ Uniform-VWIDTH(poly).

The converse direction is a little more tedious, but essentially follows from
the Lagrange interpolation formula for multivariate polynomials.

Lemma 4. Uniform-VWIDTH(poly) ⊆ Uniform-VPSPACE.

Lemma 4 requires that the VWIDTH family be uniform (with a direct-connection
uniformity condition). If the VWIDTH family is non-uniform, this problem can-
not be circumvented with polynomial advice, since the circuit has exp-size.

4 Read-Once certificates

In general, non-deterministic complexity classes can be defined via existential
quantifiers. e.g. , NP = ∃·P . In the algebraic setting, Valiant ([15], [4]) introduced
the class VNP (algebraic counterpart of NP) obtained as an “exponential” sum
of values of a polynomial size arithmetic circuit. i.e. , VNP = Σ ·P . Valiant also
showed that VNP = Σ · VPe, which equals Σ · VNC1.

If we consider smaller classes, NL is the natural non-deterministic version
of L. However to capture it via existential quantifiers, we need to restrict the
use of the certificate, since otherwise ∃ · L = NP. It is known that with the
notion of “read once” certificates (see, e.g. , [1], Chapter 4) one can express
NL as an existential quantification over L. Analogously, we propose a notion of
“read-once” certificates in the context of arithmetic circuits so that we can get
meaningful classes by taking exponential sums over classes that are below VP.

Definition 3. Let C be a layered arithmetic circuit with ℓ layers. Let X =
{x1, . . . , xn} and Y = {y1, . . . , ym} be the input variables of C. C is said to be
“read-once certified” in Y if the layers of C can be partitioned into m blocks,
such that each block reads exactly one variable from Y . That is, C satisfies the
following:

– There is a fixed permutation π ∈ Sm such that the variables of Y appear in
the order yπ(1), . . . , yπ(m) along any leaf-to-root path.

– There exist indices 0 = i1 ≤ . . . ≤ im ≤ ℓ such that the variable yπ(j) appears
only from layers ij + 1 to ij+1.

We usually assume, without loss of generality, that π is the identity permutation.
Now we define the the exponential sum over read-once certified circuits.

Definition 4. Let C be any arithmetic circuit complexity class. A polynomial
family (fn)n≥0 is said to be in the class ΣR · C, if there is a family (gn)n≥0 such
that fn(X) =

∑

Y ∈{0,1}m(n) gn(X,Y) and gn is computed by a circuit of type C

that is read-once certified in Y and m(n) ≤ poly(n).

We also use the term “read once exponential sum” over C to denote ΣR · C.
For circuits of width polynomial or more, the restriction to read-once certi-

fication is immaterial: the circuit can read a variable once and carry its value
forward to any desired layer via internal gates. This is equivalent to saying that
for a P machine, read-once input is the same as two-way-readable input. Thus

Lemma 5. ΣR · VP = Σ · VP = VNP

Having seen that the read-once certificate definition is general enough for the
case of large width circuits, we turn our focus on circuits of smaller width. Once
the width of the circuit is substantially smaller than the number of bits in the
certificate, the read-once property becomes a real restriction. If this restriction
correctly captures non-determinism, we would expect that in analogy to BP =
NL = ΣR · L, we should be able to show that VBP equals ΣR · VL. In a partial
answer, we show in the following theorem one direction: read-once exponential
sums over VL are indeed powerful enough to contain VBP.

Theorem 2. VBP ⊆ ΣR · VL.

In order to prove the above theorem, we consider a problem that is complete for
VBP under projections. (see [4] for definition of a projection). Let Gn = (Vn, En)
(with Vn = {1, . . . , n}) be the complete layered graph with variable xi,j as label

on the edge (i, j) ∈ En. Let s = 1 and t = n denote two special nodes in Gn. Let
X = (xi,j)i,j∈{1,...,n}. For any directed s−t path P = 〈v0, v1, . . . , vℓ, vℓ+1〉 in Gn,
let MP denote the monomial that is the product of the variables corresponding
to edges in P . Let PATHn

G =
∑

P MP , where P is over all the s − t paths in
Gn.

Proposition 1. (folklore) (PATHn
G)n≥0 is complete for VBP under projections.

We prove theorem 2 by showing that PATHn
G ∈ ΣR · VL.

Proof (of theorem 2). Here onwards we drop the index n from Gn.

We define function hG(Y, Z) : {0, 1}⌈logn⌉ × {0, 1}n
2

→ {0, 1} as follows.
Assume that the variables in Y = {y1, . . . , yk} and Z = {z1,1, . . . , zn,n} take
only values from {0, 1}. hG(Y, Z) = 1 if and only if Z = z1,1, . . . , zn,n represents
a directed s-t path in G of length exactly ℓ, where ℓ written in binary is y1 . . . yk,
and Z reads off the entries of X in column-major order. Note that s − t paths
P in G are in one-to-one correspondence with assignments to Y, Z such that
hG(Y, Z) = 1. Hence

PATHn
G =

∑

P

MP =
∑

Y,Z

hG(Y, Z) [weight of path specified by Y, Z]

=
∑

Y,Z

hG(Y, Z)
∏

i,j

(xi,jzi,j + (1− zi,j))

There is a deterministic log-space algorithm A which computes hG(Y, Z) when
Y, Z is given on a “read once” input tape (see [1]). Let C be the corresponding
logn width boolean circuit. (w.l.o.g., all negation gates in C are at the leaves.)
Call its natural arithmetization D. Since Y and Z are on a read-once input tape,
it is easy to see that C, and hence D, are read-once certified in the variables from
Y and Z. We can attach, parallel to D, constant-width circuitry that collects
factors of the product

∏

i,j (xi,jzi,j + (1− zi,j)) as and when the zi,j variables
are read, and finally multiplies this with hG(Y, Z). The resulting circuit remains
O(log n)-width, and remains read-once certified on Y, Z. ⊓⊔

While we are unable to show the converse, we are also unable to show a
reasonable upper bound on ΣR ·VL. It is not even clear if ΣR ·VL is contained in
VP. One possible interpretation is that the ΣR operator is too powerful and can
lift up small classes unreasonably. We show that this is not the case in general;
in particular, it does not lift up VBP and VBWBP.

Theorem 3. 1. ΣR · VBP = VBP

2. ΣR · VBWBP = VBWBP

This theorem follows from Lemma 6 below, and from the facts that polynomial
size weakly skew circuits can be transformed into (1) skew circuits of polynomial
size([13]), and (2) skew circuits of polynomial size with a quadratic blowup in
width ([7]) of . First, a definition.

Definition 5. For f ∈ K[X,Y] with X = {x1, . . . , xn} and Y = {y1, . . . , ym},
EY (f) denotes the exponential sum of f(X,Y) over all Boolean settings of Y .
That is,

EY (f)(X) =
∑

e⊆{0,1}m

f(X, e)

Lemma 6. Let C be a layered skew arithmetic circuit on variables X ∪ Y .
Suppose C is read-once certified in Y . Let w = width(C), s = size(C) and
ℓ = the number of layers in C. Let f1, . . . , fw denote the output gates (also
the polynomials computed by them) of C. There exists a weakly skew circuit
C′, of size O(mw4s) and width 4w, that computes all the exponential sums
EY (f1), . . . , EY (fw).

Proof. We proceed by induction on m = |Y |. In the base case when m = 1,
EY (fj)(X) = fj(X, 0) + fj(X, 1). Putting two copies of C next to each other,
one with y = 0 and the other with y = 1 hardwired, and adding corresponding
outputs, gives the desired circuit.

Assume now that the lemma is true for all skew circuits with m′ = |Y | < m.
Let C be a given circuit where |Y | = m. Let Y ′ denote Y \{ym} = {y1, . . . , ym−1}.
As per definition 3, the layers of C can be partitioned into m blocks, with the
kth block reading only yk from Y . Let 0 = i1 ≤ i2 ≤ . . . ≤ im ≤ ℓ be the layer
indices such that yk is read between layers ik +1 and ik+1. Let f1, . . . , fw be the
output gates of C.

We slice C into two parts: the bottom m− 1 blocks of the partition together
form the circuit D, and the top block forms the circuit Cm. Let g1, . . . , gw be the
output gates of D. These are also the inputs to Cm; we symbolically relabel the
non-leaf inputs at level 0 and the outputs of Cm as Z1, . . . Zw and h1, . . . , hw.
Clearly, Cm andD are both skew circuits of width w. Further, each hj depends on
X , ym and Z; that is, h1, . . . , hw ∈ R[Z1, . . . , Zw] where R = K[X, ym]. Similarly,
each gj depends on X and Y ′; g1, . . . , gw ∈ K[X,Y ′]. The values computed by
C can be expressed as fj(X,Y) = hj (X, ym, g1(X,Y ′), . . . , gw(X,Y ′)).

Since C and Cm are skew circuits, and since the variables Zj represent non-
leaf gates of C, Cm must be linear in these variables. Hence each hj can be written
as hj(X, ym, Z) = cj +

∑w

k=1 cj,kZk, where the coefficients cj , cj,k ∈ K[X, ym].
Combining this with the expression for fj , we have

fj(X,Y) = hj (X, ym, g1(X,Y ′), . . . , gw(X,Y ′))

= cj(X, ym) +

w
∑

k=1

cj,k(X, ym)gk(X,Y ′) and hence

∑

e∈{0,1}m

fj(X, e) =
∑

e∈{0,1}m

[

cj(X, em) +
w
∑

k=1

cj,k(X, em)gk(X, e′)

]

= 2m−1
1

∑

em=0

cj(X, em) +

w
∑

k=1

∑

e∈{0,1}m

cj,k(X, em)gk(X, e′)

= 2m−1
1

∑

em=0

cj(X, em) +

w
∑

k=1

∑

em∈{0,1}

cj,k(X, em)

∑

e′∈{0,1}m−1

gk(X, e′)

Thus EY (fj)(X) = 2m−1Eym
(cj)(X) +

w
∑

k=1

Eym
(cj,k)(X)EY ′(gk)(X)

By induction, we know that there is a weakly skew circuit D′ of width 4w
and size O((m− 1)w4s) computing EY ′(gk)(X) for all k simultaneously.

To compute Eym
(cj)(X), note that a copy of Cm with all leaves labelled Zk

replaced by 0 computes exactly cj(X, ym). So the sum can be computed as in
the base case, in width w+1 and size 2(size(Cm)+ 1). Multiplying this by 2m−1

in the standard way adds nothing to width and 2 to size, so overall width is
w + 1 and size is at most 2s+ 4.

To compute Eym
(cj,k)(X), we modify Cm as follows: replace leaves labelled

Zk by the constant 1, replace leaves labelled Zk′ for k′ 6= k by 0, leave the rest
of the circuit unchanged, and let hj be the output gate. This circuit computes
cj(X, ym) + cj,k(X, ym). Subtracting cj(X, ym) (as computed above) from this
gives cj,k(X, ym). Now, the sum can be computed as in the base case. Again, to
compute Eym

(cj,k)(X), we use two copies of the difference circuit with ym = 0
and ym = 1 hardwired, and add their outputs. It is easy to see that this circuit
has width w + 2 and size at most 4(w + 2)size(Cm) ≤ 4(w + 2)s.

Putting together these circuits naively may increase width too much. So we
position D′ at the bottom, and carry w wires upwards from it corresponding
to its w outputs. Alongside these wires, we position circuitry to accumulate the
terms for each fj and to carry forward already-computed fk’s. The width in this
part is w for the wires carrying the outputs of D′, w for wires carrying the values
EY (fj), w + 2 for computing the terms in the sum above (they are computed
sequentially so the width does not add up), and 2 for computing partial sums
in this process, overall at most 3w + 4. Thus the resulting circuit has width at
most max{width(D′), 3w + 4} ≤ 4w.

To bound the size of the circuit, we bound its depth in the part above D′

by d; then size is at most size(D′) + width2 × d. The circuit has w modules to
compute the EY (fj)s. The depth of each module can be bounded by the depth
to compute Eym

(cj) plus w times the depth to compute any one Eym
(cj,k), that

is, at most (2s+4)+w2 × 4(w+2)s. So d ≤ w2(2s+4+4sw(w+2)) = θ(w4s),
and the size bound follows. ⊓⊔

5 Read-once exponential sums of some restricted circuits

In this section, we explore how far the result of Theorem 3 can be pushed to
larger classes within VP. In effect, we ask whether the technique of Lemma 6 is

applicable to larger classes of circuits. Such a question is relevant because we do
not have any bound (better than VNP) even for ΣR · VSC0 and ΣR · VL.

One generalization we consider is multiplicative disjointness. An arithmetic
circuit C is said to be multiplicatively disjoint (md) if every multiplication gate
operates on sub-circuits which are not connected to each other. (See [13].) i.e.
if g = u × v then the sub-circuits rooted at u and v are disjoint. Multiplicative
disjointness generalises skewness and weak-skewness.

A further generalization is polynomial syntactic degree. Let C be an arith-
metic circuit computing the polynomial f ∈ K[X]. The syntactic degree of C is
the degree of the polynomial f ′ ∈ K[X, y] computed by the circuit C′ which is
obtained by replacing all the leaves in C labelled by a constant from K with the
variable y. The syntactic degree is an upper bound on the actual degree of the
polynomial computed, though the two can differ significantly. All multiplicatively
disjoint circuits have syntactic degree bounded by their size.

We add a prefix md- to denote the multiplicative disjoint version of a class.
e.g. md-VSC0 denotes class of all polynomials that are computed by constant
width arithmetic circuits of polynomial size which are also multiplicatively dis-
joint. For i ≥ 0, let VsSCi denote the sub-class of families of polynomials in VSCi

whose witness circuits also have syntactic degree bounded by poly(n). Analogous
classes sSCi in the Boolean and counting worlds have been studied in [10].

Examining the proof of Lemma 6, we see that the main barrier in extending
it to these larger classes is that when we slice C into D and Cm, Cm is no longer
linear in the “slice variables” Z. However, for md-circuits, Cm is multilinear in
Z. As far as computing the coefficients cj,α goes, where α describes a multilinear
monomial, this is not a problem; in [7], it is shown that for such circuits the
coefficient function can be computed efficiently. There is a cost to pay in size
because the number of multilinear monomials is much larger. To handle this,
we modify the inductive step, slicing C not at the last block but at a level that
halves the number of Y variables read above and below it. This works out fine for
constant-width, but results in quasipolynomial blow-up in size for larger widths.

Formally, we show the following:

Lemma 7. Let C be a layered multiplicatively disjoint circuit of width w and
size s on variables X ∪ Y . Let ℓ be the number of layers in C. Suppose C is
read-once certified in Y . Let f1 . . . , fw be the output gates of C. Then, there is
an arithmetic circuit C′ of size smO(w) which computes EY (f1), . . . , EY (fw).

For VsSC circuits, the “upper half” circuit is not even multilinear. So we need
to explicitly account for each monomial up to the overall degree, and compute the
coefficient of each. We show that this is possible, if a quasipolynomial blow-up
in size is allowed. Formally,

Lemma 8. Let C be a layered arithmetic circuit size of s on the variables X ∪
Y ∪Z. Let d be the syntactic degree bound on C and w be its width. Let f ∈ R[Z]
be a polynomial computed by C, where R = K[X,Y]. Let t = 〈t1, . . . , tw〉 be a
degree sequence for variables from Z. Then coefff (Z

t) can be computed by a
circuit of width w + 2 and size O((d + 1)2w), where Zt =

∏w

k=1 Z
tk .

As a consequence of Lemmas 7, 8, we have the following:

Theorem 4. – ΣR ·md-VSC0 ⊆ VP.
– ΣR ·md-VSC ⊆ VQP.
– For all i ≥ 0, ΣR · VsSCi ⊆ VQP.

References

1. S. Arora and B. Barak. Complexity Theory: A Modern Approach. To be published,
2009.

2. D. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. Journal of Computer and System Sciences,
38(1):150–164, 1989.

3. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.
Springer, 1997.

4. P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory. Algo-
rithms and Computation in Mathematics. Springer-Verlag, 2000.

5. H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1

computation. Journal of Computer and System Sciences, 57:200–212, 1998.
6. P. J. de Naurois. A Measure of Space for Computing over the Reals. In CiE, pages

231–240, 2006.
7. M. Jansen and B. V. R. Rao. Simulation of arithmetical circuits by branching

programs preserving constant width and syntactic multilinearity. In CSR, 2009.
To Appear.

8. P. Koiran and S. Perifel. VPSPACE and a Transfer Theorem over the Complex
Field. In MFCS, pages 359–370, 2007.

9. P. Koiran and S. Perifel. VPSPACE and a Transfer Theorem over the Reals. In
STACS, pages 417–428, 2007.

10. N. Limaye, M. Mahajan, and B. V. R. Rao. Arithmetizing classes around NC1

and L. In STACS, pages 477–488, 2007. full version in ECCC TR07-087.
11. M. Mahajan and B. V. R. Rao. Arithmetic circuits, syntactic multilinearity and

skew formulae. In MFCS, LNCS vol. 5162, pages 455–466, 2008. full version in
ECCC TR08-048.

12. G. Malod. The complexity of polynomials and their coefficient functions. In IEEE

Conference on Computational Complexity, pages 193–204, 2007.
13. G. Malod and N. Portier. Characterizing Valiant’s algebraic complexity classes.

In MFCS, pages 704–716, 2006.
14. C. Michaux. Une remarque à propos des machines sur R introduites par Blum,

Shub et Smale. Comptes Rendus de l’Académie des Sciences de Paris, 309(7):435–
437, 1989.

15. L. G. Valiant. Completeness classes in algebra. In Symposium on Theory of Com-

puting STOC, pages 249–261, 1979.
16. H. Venkateswaran. Circuit definitions of nondeterministic complexity classes.

SIAM J. Comput., 21(4):655–670, 1992.
17. H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-

Verlag New York Inc., 1999.

