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Abstract. Euclidean optimization problems such as TSP and mini-
mum-length matching admit fast partitioning algorithms that compute
near-optimal solutions on typical instances.
We develop a general framework for the application of smoothed analy-
sis to partitioning algorithms for Euclidean optimization problems. Our
framework can be used to analyze both the running-time and the ap-
proximation ratio of such algorithms. We apply our framework to obtain
smoothed analyses of Dyer and Frieze’s partitioning algorithm for Eu-
clidean matching, Karp’s partitioning scheme for the TSP, a heuristic
for Steiner trees, and a heuristic for degree-bounded minimum-length
spanning trees.

1 Introduction

Euclidean optimization problems are a natural class of combinatorial optimiza-
tion problems. In a Euclidean optimization problem, we are given a set X of
points in R

2. The topology used is the complete graph of all points, where the
Euclidean distance ‖x − y‖ is the length of the edge connecting the two points
x, y ∈ X.

Many such problems, like the Euclidean traveling salesman problem [18] or
the Euclidean Steiner tree problem [11], are NP-hard. For others, like minimum-
length perfect matching, there exist polynomial-time algorithms. But still these
polynomial-time algorithms are sometimes too slow to solve large instances.
Thus, fast heuristics to find near-optimal solutions for Euclidean optimization
problems are needed.

A generic approach to design heuristics for Euclidean optimization problems
are partitioning algorithms: They divide the Euclidean plane into a number of
cells such that each cell contains only a small number of points. This allows us
to quickly find an optimum solution for our optimization problem for the points
within each cell. Finally, the solutions of all cells are joined in order to obtain a
solution to the whole set of points. This joining should be done quickly to obtain
a fast algorithm.

Although this is a rather simple ad-hoc approach, it works surprisingly well
and fast in practice [13, 20]. This is at stark contrast to the worst-case per-
formance of partitioning algorithms: They can both be very slow and output



solutions that are far from the optimal solutions. Thus, as is often the case,
worst-case analysis is far too pessimistic to explain the performance of parti-
tioning algorithms. The reason for this is that worst-case analysis is dominated
by artificially constructed pathological instances that often do not resemble prac-
tical instances.

Both to explain the performance of partitioning algorithms and to gain prob-
abilistic insights into the structure and value of optimal solutions of Euclidean
optimization problems, the average-case performance of partitioning algorithms
has been studied a lot. In particular, Steele [27] proved complete convergence of
Karp’s partitioning algorithm [15] for Euclidean TSP. Also strong central limit
theorems for a wide range of optimization problems are known. We refer to
Steele [28] and Yukich [31] for comprehensive surveys.

However, also average-case analysis has its drawback: Random instances usu-
ally have very specific properties with overwhelming probability. This is often
exploited in average-case analysis: One shows that the algorithm at hand per-
forms very well if the input has some of these properties. But this does not mean
that typical instances share these properties. Thus, although a good average-case
performance can be an indicator that an algorithm performs well, it often fails
to explain the performance convincingly.

In order to explain the performance of partitioning schemes for Euclidean
optimization problems, we provide a smoothed analysis. Smoothed analysis has
been introduced by Spielman and Teng [23] in order to explain the performance
of the simplex method for linear programming. It is a hybrid of worst-case and
average-case analysis: An adversary specifies an instance, and this instance is
then slightly randomly perturbed. The perturbation can, for instance, model
noise from measurement. Since its invention in 2001, smoothed analysis has been
applied in a variety of contexts [3, 4, 9, 22]. We refer to Spielman and Teng [24]
for a survey.

We develop a general framework for smoothed analysis of partitioning algo-
rithms for optimization problems in the Euclidean plane (Section 3). We con-
sider the most general model where the adversary specifies n density functions
f1, . . . , fn : [0, 1]2 → [0, φ]. The parameter φ controls the adversary’s power: The
larger φ, the more powerful the adversary. (See Section 2.2 for a formal expla-
nation of the model.) We analyze the expected running-time and approximation
performance of a generic partitioning algorithm under this model. The smoothed
analysis of the running-time for partitioning algorithms depends crucially on the
convexity of the worst-case bound of the running-time of the problem under con-
sideration. The main tool for the analysis of the expected approximation ratio
is Rhee’s isoperimetric inequality [21].

We apply the general framework to obtain smoothed analyses of partitioning
algorithms for Euclidean matching, Karp’s partitioning scheme for the TSP,
Steiner trees, and degree-bounded minimum spanning trees in the Euclidean
plane. Table 1 shows an overview. To summarize, for φ ≤ logO(1) n, Dyer and
Frieze’s partitioning algorithm [7] has an almost linear running-time, namely

O(n logO(1) n). For φ ∈ o(log2 n), its expected approximation ratio tends to 1



problem running-time approximation ratio reference

matching [7] O(nφ2 log4 n) 1 + O(
√

φ/ log n) Corollary 4.2

TSP [15] poly(n) 1 + O(
p

φ/ log n) Corollary 5.1

Steiner tree [14] poly(n) 1 + O(
p

φ/ log n) Corollary 6.1

degree-bounded MST poly(n) 1 + O(
p

φ log log n/ log n) Corollary 7.1

Table 1. Smoothed bounds for some Euclidean optimization problems.

as n increases. The approximation ratios of the partitioning algorithms for TSP
and Steiner trees tend to 1 for φ ∈ o(log n). For degree-bounded spanning trees,
this is the case for φ ∈ o(log n/ log log n). Our general framework is applicable
to many other partitioning algorithms as well.

Due to space limitations, many proofs are omitted and will appear in the full
version of the paper.

2 Preliminaries

2.1 Euclidean Functionals

A Euclidean functional is a function F : ([0, 1]2)⋆ → R that maps a finite point
set X ⊆ [0, 1]2 to a real number F(X). The following are examples of Euclidean
functionals:

– MM maps a point set to the length of its minimum-length perfect matching
(length means Euclidean distance, one point is left out if the cardinality of
the point set is odd).

– TSP maps a point set to the length of its shortest Hamiltonian cycle, i.e., to
the length of its optimum traveling salesman tour.

– MST maps a point sets to the length of its minimum-length spanning-tree.
– ST maps a point set to the length of its shortest Steiner tree.
– dbMST maps a point set to the length of its minimum-length spanning tree,

restricted to trees of maximum degree at most b for some given bound b.

The Euclidean functionals that we consider in this paper are all associated
with an underlying combinatorial optimization problem. Thus, the function value
F(X) is associated with an optimum solution (minimum-length perfect matching,
optimal TSP tour, . . . ) to the underlying combinatorial optimization problem.
In this sense, we can design approximation algorithms for F: Compute a (near-
optimal) solution (where it depends on the functional what a solution actually is;
for instance, a perfect matching), and compare the objective value (for instance,
the sum of the lengths of its edges) to the function value.

We follow the notation of Frieze and Yukich [10,31]. A Euclidean functional
F is called smooth [21,31] if there is a constant C such that

∣

∣F(X ∪Y )−F(X)
∣

∣ ≤
C
√

|Y | for all finite X,Y ⊆ [0, 1]2.



Let C1, . . . , Cs be a partition of [0, 1]2 into rectangles. We call each Cℓ a cell.
Note that the cells are not necessarily of the same size. For a finite set X ⊆ [0, 1]2

of n points, let Xℓ = X ∩Cℓ be the points of X in cell Cℓ. Let nℓ = |Xℓ| be the
number of points of X in cell Cℓ. Let diameter(Cℓ) be the diameter of cell Cℓ.

We call F sub-additive if

F(X) ≤
s
∑

ℓ=1

(

F(Xℓ) + diameter(Cℓ)
)

.

F is called super-additive if

F(X) ≥
s
∑

ℓ=1

F(Xℓ).

The Euclidean functions TSP, MM and MST are smooth and sub-additive [27,
28,31].

A combination of sub-additivity and super-additivity for a Euclidean func-
tional F is a sufficient (but not a necessary) condition for the existence of a
partitioning heuristic for approximating F. We will present such a generic par-
titioning heuristic in Section 3. Following Frieze and Yukich [10], we define a
slightly weaker additivity condition that is sufficient for the performance analy-
sis of partitioning algorithms.

Frieze and Yukich [10] call a Euclidean function F near-additive if, for all
partitions C1, . . . , Cs of [0, 1]2 into cells and for all finite X ⊆ [0, 1]2, we have

∣

∣F(X) −∑s
ℓ=1 F(Xℓ)

∣

∣ ≤ O
(
∑s

ℓ=1 diameter(Cℓ)
)

. (1)

It is not hard to see that, if F is sub-additive and super-additive, then F is also
near-additive. Euclidean functionals such as TSP, MM, and MST are sub-additive
but not super-additive. However, these functionals can be approximated by their
corresponding canonical boundary functionals, which are super-additive [10,31].
Yukich [31] has shown that this is a sufficient condition for a Euclidean functional
to be near-additive.

Proposition 2.1 (Yukich [31, Lemma 5.7]). Let F be a sub-additive Eu-
clidean functional. Let FB be a super-additive functional that well-approximates
F. (This means that |F(X) − FB(X)| = O(1) for all finite X ⊆ [0, 1]2.) Then F

is near-additive.

The functionals MM, TSP, MST, ST, and dbMST are near-additive.
Limit theorems are a useful tool for the analysis of Euclidean functionals.

Rhee [21] proved the following limit theorem for smooth Euclidean functionals
over [0, 1]2. We will mainly use it to bound the probability that F assumes a too
small function value.

Theorem 2.2 (Rhee [21]). Let X be a set of n points drawn independently
according to identical distributions from [0, 1]2. Let F be a smooth Euclidean
functional. Then there exist constants C and C ′ such that for all t > 0, we have

P
[∣

∣F(X) − E
[

F(X)
]∣

∣ > t
]

≤ C · exp
(

−C ′t4/n
)

.



Remark 2.3. Rhee proved Theorem 2.2 for the case that x1, . . . , xn are identi-
cally distributed. However, as pointed out by Rhee herself [21], the proof carries
over to the case when x1, . . . , xn are drawn independently but their distributions
are not necessarily identical.

2.2 Smoothed Analysis

In the classical model of smoothed analysis [23], an adversary specifies a point set
X̄, and then this point set is perturbed by independent identically distributed
random variables in order to obtain the input set X. A different view-point is
that the adversary specifies the means of the probability distributions according
to which the point set is drawn. This model has been generalized as follows [4]:
Instead of only specifying the mean, the adversary can specify a density function
for each point, and then we draw the points independently according to their
density functions. In order to limit the power of the adversary, we have an
upper bound φ for the densities: The adversary is allowed to specify any density
function [0, 1]2 → [0, φ]. If φ = 1, then this boils down to the uniform distribution
on the unit square [0, 1]2. If φ gets larger, the adversary becomes more powerful
and can specify the location of the points more and more precisely. The role of
φ is the same as the role of 1/σ in classical smoothed analysis, where σ is the
standard deviation of the perturbation. We summarize this model formally in
the following assumption.

Assumption 2.4. Let φ ≥ 1. An adversary specifies n probability density func-
tions f1, . . . , fn : [0, 1]2 → [0, φ]. We write f = (f1, . . . , fn) for short. Let
x1, . . . , xn ∈ [0, 1]2 be n random variables where xi is drawn according to fi,
independently from the other points. Let X = {x1, . . . , xn}.

If the actual density functions f matter and are not clear from the context, we
write X ∼ f to denote that X is drawn as described above. If we have a perfor-
mance measure P for an algorithm (P will be either running-time or approxima-
tion ratio in this paper), then the smoothed performance is maxf

(

EX∼f [P (X)]
)

.
Note that the smoothed performance is a function of the number n of points and
the parameter φ.

Let F be a Euclidean functional. For the rest of this paper, let µF(n, φ)
be a lower bound for the expected value of F if X is drawn according to the
probabilistic model described above. More precisely, µF is some function that
fulfills µF(n, φ) ≤ minf

(

EX∼f [F(X)]
)

. The function µF comes into play when we
have to bound F (or: the objective value of an optimum solution) from below in
order to analyze the approximation ratio.

3 Framework

In this section, we present our framework for the performance analysis of par-
titioning heuristics for Euclidean functionals. Let Aopt be an optimal algorithm
for some smooth and near-additive Euclidean functional F, and let Ajoin be an



algorithm that combines solutions for each cell into a global solution. We assume
that Ajoin runs in time linear in the number of cells. Then we obtain the following
algorithm, which we call A.

Algorithm 3.1 (generic algorithm A). Input: set X ⊆ [0, 1]2 of n points.

1. Divide [0, 1]2 into s cells C1, . . . , Cs.
2. Compute optimal solutions for each cell using Aopt.
3. Join the s partial solutions to a solution for X using Ajoin.

We use the following assumptions in our analysis and mention explicitly
whenever they are used.

Assumption 3.2. 1. φ ∈ O(s). This basically implies that the adversary can-
not concentrate all points in a too small number of cells.

2. φ ∈ ω(s log n/n). This provides a lower bound for the probability mass in a
“full” cell, where full is defined in Section 3.1.

3. φ ∈ o(
√

n/ log n). With this assumption, the tail bound of Theorem 2.2 be-
comes sub-polynomial.

These assumptions are not too restrictive: For the partitioning algorithms
we analyze here, we have s = O(n/ logO(1) n). Ignoring poly-logarithmic terms,
the first and third assumption translate roughly to φ = O(n) and φ = o(

√
n),

respectively. But φ = Θ(
√

n) suffices for the adversary to specify an individual
small square for each point, thus we can expect to approach almost worst-case
behavior for φ = Ω(

√
n). The second assumption roughly says φ = ω(1). But

for φ = O(1), we can expect (almost) average-case behavior.

3.1 Smoothed Running-Time

Many of the schemes that we analyze choose the partition in such a way that
we have a worst-case upper bound on the number of points in each cell. Other
algorithms, like the one for matching, have a fixed partition independent of the
input points. In the latter case, the running-time also depends on φ.

Let T (n) denote the worst-case running-time of Aopt on n points. Then the
running-time of A is bounded by

∑s
ℓ=1 T (nℓ)+O(s). The expected running-time

of A is thus
∑s

ℓ=1 E[T (nℓ)] + O(s). (2)

For the following argument, we assume that T (the running-time of Aopt) is a
monotonically increasing, convex function, and that the locations of the cells are
fixed and all their volumes are equal. (The assumption about the cells is not ful-
filled for all partitioning heuristics. For instance, Karp’s partitioning scheme [15]
chooses the cells not in advance but based on the actual point set. However, in
Karp’s scheme, the cells are chosen in such a way that there is a good worst-
case upper bound for the number of points per cell, so there is no need for a
smoothed analysis.) By abusing notation a bit, let fi(Cℓ) =

∫

Cℓ

fi(x) dx be the
cumulative density of fi in the cell Cℓ. Since fi is bounded from above by φ, we



have fi(Cℓ) ≤ φ/s. Let f(Cℓ) =
∑n

i=1 fi(Cℓ). Note that fi(Cℓ) = P(xi ∈ Cℓ)
and f(Cℓ) = E[nℓ].

We call a cell Cℓ full with respect to f if f(Cℓ) = nφ/s. We call Cℓ empty
if f(Cℓ) = 0. Our bound (2) on the running-time depends only on the values
f1(Cℓ), . . . , fn(Cℓ), but not on where exactly within the cells the probability
mass is assumed.

Our goal is now to show that the adversary, in order to make our algorithm
as slow as possible, will make as many cells as possible full. Note that there
are at most ⌊s/φ⌋ full cells. Assume that we have ⌊s/φ⌋ full cells and at most
one cell that is neither empty nor full. Then the number of points in any full
cell is a binomially distributed random variable B with parameters n and φ/s.

By linearity of expectation, the expected running-time is bounded by
(

⌊

s
φ

⌋

+

1
)

· E
[

T (B)
]

+ O(s). Since φ = O(s) by Assumption 3.2 (1), this is bounded

by O
(

s
φ · E[T (B)] + s

)

. If T is bounded by a polynomial, then this evaluates to

O
(

s
φ · T (nφ/s) + s

)

by the following Lemma 3.3. This lemma can be viewed as

“Jensen’s inequality in the other direction” with p = φ/s for φ ∈ ω(s log n/n).
The latter is satisfied by Assumption 3.2 (2).

Lemma 3.3 (inverse Jensen’s inequality). Let T be any convex, monoton-
ically increasing function that is bounded by a polynomial, and let B be a bino-
mially distributed random variable with parameters n ∈ N and p ∈ [0, 1] with
p ∈ ω(log n/n). Then E[T (B)] = Θ(T (E[B])).

What remains to be done is to show that the adversary will indeed make
as many cells as possible full. This follows essentially from the convexity of the
running-time. Thus, we obtain the following theorem.

Theorem 3.4. Assume that the running-time of Aopt can be bounded from above
by a convex function T that is bounded by a polynomial. Then, under Assump-
tion 2.4 as well as Assumptions 3.2 (1) and (2), the expected running-time of A

on input X is bounded by O
(

s
φ · T (nφ/s) + s

)

.

3.2 Smoothed Approximation Ratio

The value computed by A can be bounded from above by A(X) ≤
∑s

ℓ=1 F(Xℓ)+
J ′, where J ′ is an upper bound for the cost incurred by joining the solu-
tion for the cells. Since F is near-additive, A(X) ≤ F(X) + J for J = J ′ +
O(
∑s

ℓ=1 diameter(Cℓ)). Dividing by F(X) yields

A(X)
F(X) ≤ 1 + O

(

J
F(X)

)

. (3)

For estimating the expected approximation ratio E[A(X)/F(X)] for some al-
gorithm A, the main challenge is that F(X) stands in the denominator. Thus,
even if we know A(X) precisely, we are basically left with the problem of es-
timating E[1/F(X)]. Jensen’s inequality yields 1/ E[F(X)] ≤ E[1/F(X)]. But
this does not help, as we need upper bounds for E[1/F(X)]. Unfortunately, such



upper bounds cannot be derived easily from 1/ E[F(X)]. The problem is that
we need strong upper bounds for the probability that F(X) is close to 0. Theo-
rem 2.2 is too weak for this. This problem of bounding the expected value of the
inverse of the optimum objective value arises frequently in bounding expected
approximation ratios [8, 9].

There are two ways to attack this problem: The first and easiest way is if A

comes with a worst-case guarantee α(n) on its approximation ratio for instances
of n points. Then we can apply Theorem 2.2 to bound F(X) from below. If
F(X) ≥ µF(n, φ)/2, then we can use (3) to obtain a ratio of 1 + O

(

J
µF(n,φ)

)

.

Otherwise, we obtain a ratio of α(n). If α(n) is not too large compared to the
tail bound obtained from Theorem 2.2, then this contributes only little to the
expected approximation ratio. The following theorem formalizes this.

Theorem 3.5. Assume that A has a worst-case approximation ratio of α(n)
for instance consisting of n points. Then, under Assumption 2.4, the expected
approximation ratio of A is

E

[

A(X)

F(X)

]

≤ 1 + O

(

J

µF(n, φ)

)

+ α(n) · exp

(

−µF(n, φ)4

Cn

)

.

Now we turn to the case that the worst-case approximation ratio of A cannot
be bounded by some α(n). In order to be able to bound the expected approx-
imation ratio, we need an upper bound on E[1/F(X)]. This upper bound is
formalized in the following theorem.

Theorem 3.6. Assume that there exists a β ≤ J and a function hn such that
P(F (X) ≤ x) ≤ hn(x) for all x ∈ [0, β]. Then, under Assumption 2.4, the
expected approximation ratio of A is

E

[

A(X)

F(X)

]

≤ 1 + O

(

J ·
(

1

µF(n, φ)
+

exp
(

−µF(n,φ)4

Cn

)

β
+

∫ ∞

1/β

hn

(

1

x

)

dx

))

.

4 Matching

As a first example, we apply our framework to the matching functional MM

defined by the Euclidean minimum-length perfect matching problem. A parti-
tioning algorithm, which we call DF, for approximating MM was proposed by
Dyer and Frieze [7]. This algorithm divides [0, 1]2 into k2 equal-sized sub-squares,
computes an optimum matching within these cells and combines the solutions
using the so-called strip heuristic.

Let DF(X) be the cost of the matching computed by the algorithm above on
input X = {x1, . . . , xn}, and let MM(X) be the cost of a perfect matching of
minimum total length. Dyer and Frieze showed that DF(X) converges to MM(X)
with probability 1 if the points in X are drawn according to uniform distributions
on [0, 1]2 (this corresponds to Assumption 2.4 with φ = 1) and n goes to infinity.
We extend this to the case when X is drawn as described in Assumption 2.4.



4.1 Smoothed Running-Time

A minimum-length perfect matching can be found in time O(n3) [1]. By Theo-
rem 3.4, we get the following corollary.

Corollary 4.1. Under Assumption 2.4 as well as Assumption 3.2 (1) and (2),

the expected running-time of DF on input X is at most O
(

n3φ2

k4 +k2
)

. If we plug

in k =
√

n/ log n, we obtain an expected running-time of at most O(nφ2 log4 n).

4.2 Smoothed Approximation Ratio

To estimate the approximation performance, we have to specify the function
µMM(n, φ). To obtain a lower bound for µMM(n, φ), let NN(X) denote the total
edge length of the nearest-neighbor graph for the point set X ⊆ [0, 1]2. This
means that

NN(X) =
∑

x∈X miny∈X:y 6=x ‖x − y‖.
We have MM(X) ≥ NN(X)/2. We will use E[NN(X)] to bound E[MM(X)]. Next,
one shows the tail bound P

(

MM(X) ≤ c
)

≤ (2φπc)n/2. This allows us to apply
Theorem 3.6

Corollary 4.2. Under Assumption 2.4 and 3.2 (3), the expected approximation

ratio of DF is 1 + O
(

√
φ

log n

)

.

Remark 4.3. 1. There exist other partitioning schemes for Euclidean match-
ing [2], which can be analyzed in a similar way.

2. Instead of a standard cubic-time algorithm, we can use Varadarajan’s match-
ing algorithm [30], which has a running-time of O(m1.5 log5 m) for m points,
for computing the optimal matchings within each cell. This improves the
running-time bound to O(n

√
φ log(n) log5(φ log n)).

5 Karp’s Partitioning Scheme for Euclidean TSP

Karp’s partitioning scheme [15] is a well-known heuristic for Euclidean TSP.
For a point set X ⊆ [0, 1]2, let KP(X) denote the cost of the tour through
X computed by Karp’s scheme. Steele [27] has proved complete convergence
of KP(X) to TSP(X) with probability 1, if the points are chosen uniformly
and independently. Using our framework developed in Section 3, we extend the
analysis of KP to the case of non-uniform and non-identical distributions.

Since Karp’s scheme chooses the cells adaptively, based on the point set X,
our framework for the analysis of the running-time cannot be applied. However,
the total running-time of the algorithm is T (n) = 2O(n/k2) poly(n/k2) + O(k2),
which is, independent of the randomness, polynomial in n for k2 = n/ log n.

The nice thing about the TSP is that every tour has a worst-case approxi-
mation guarantee of at most n

2 · TSP(X). Thus, we can use Theorem 3.5 with
α(n) = n/2.

Corollary 5.1. Under Assumption 2.4 as well as Assumption 3.2 (3), the ex-

pected approximation ratio of KP is E
[

KP(X)
TSP(X)

]

≤ 1 + O
(
√

φ/ log n
)

.



6 Euclidean Steiner Trees

Kalpakis and Sherman [14] proposed a partitioning algorithm for the Euclidean
minimum Steiner tree problem analogous to Karp’s partitioning scheme for Eu-
clidean TSP. The worst case cost of the Steiner tree computed by the algorithm,
however, could be larger than optimal by a constant factor. Let KS(X) denote
the cost of the Steiner tree computed.

The running-time of this algorithm is polynomial for the choice of s =
n/ log n [6]. For the same reason as for Karp’s partitioning scheme, we can-
not use our framework to estimate the running-time, because the choice of cells
depends on the actual point set.

As for the traveling salesman problem, we have a worst-case approximation
ratio of α(n) = O(n). The reason is that, for any two points x, y ∈ X, we have
‖x− y‖ ≤ ST(X). Since Kalpakis and Sherman’s partitioning algorithm outputs
a tree with at most a linear number of edges, we have KS(X) ≤ O

(

n · ST(X)
)

.
This gives us a worst-case approximation ratio of O(n) and yields the following
corollary of Theorem 3.5.

Corollary 6.1. Under Assumption 2.4 as well as Assumption 3.2 (3), the ex-

pected approximation ratio of KS is E
[

KS(X)
ST(X)

]

≤ 1 + O
(
√

φ/ log n
)

.

7 Degree-Bounded Minimum Spanning Tree

A b-degree-bounded minimum spanning tree of a given set of points in [0, 1]2 is a
spanning tree in which the degree of every point is bounded by b. For 2 ≤ b ≤ 4,
this problem is NP-hard, and it is solvable in polynomial time for b ≥ 5 [19].
Let dbMST denote the Euclidean functional that maps a point set to the length
of its shortest b-degree-bounded minimum spanning tree. This is a smooth, sub-
additive, and near-additive Euclidean functional [25].

Naturally, near-additivity implies that Karp’s partitioning scheme can be
extended to the b-degree-bounded minimum spanning tree problem. Let P-bMST

be the adaptation of Karp’s partitioning algorithm to dbMST with parameter
k2 = n log log n

log n . With this choice of k, P-bMST runs in polynomial-time as a
degree-bounded minimum-length spanning tree on m nodes can be found in
time 2O(m log m) using brute-force search.

Again, we cannot use our framework for the running-time. The running-time
is guaranteed to be bounded by a polynomial. But we can use Theorem 3.5 to
obtain the following result.

Corollary 7.1. Under Assumption 2.4 as well as Assumption 3.2 (3), the ex-

pected approximation ratio is E
[

P-bMST(X)
dbMST(X)

]

≤ 1 + O
(
√

φ log log n/ log n
)

.

8 Concluding Remarks

We have provided a smoothed analysis of partitioning algorithms for Euclidean
optimization problems. The results can be extended to distributions over R

2 by



scaling down the instance so that the inputs lie inside [0, 1]2. The analysis can
also be extended to higher dimensions. However, the value of φ for which our
results are applicable will depend on the dimension d.

Even though solutions computed by most of the partitioning algorithms
achieve convergence to the corresponding optimal value with probability 1 un-
der uniform samples, in practice they have constant approximation ratios close
to 1 [13, 20]. Our results show that the expected function values computed by
partitioning algorithms approach optimality not only under uniform, identical
distributions, but also under non-uniform, non-identical distributions, provided
that the distributions are not sharply concentrated.

One prominent open problem for which our approach does not work is the
functional defined by the total edge weight of a minimum-weight triangulation in
the Euclidean plane. The two main obstacles for this problem are that, first, the
functional corresponding to minimum-weight triangulation is not smooth and,
second, the value computed by the partitioning heuristic depends on the number
of points in the convex hull of the point set [12]. Damerow and Sohler [5] provide
a bound for the smoothed number of points in the convex hull, but this bound
is not strong enough for this purpose.
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