
Smoothed Analysis of Partitioning Algorithms
for Euclidean Functionals?

Markus Bläser1, Bodo Manthey2, and B. V. Raghavendra Rao1

1 Saarland University, Department of Computer Science
mblaeser/bvrr@cs.uni-saarland.de

2 University of Twente, Department of Applied Mathematics
b.manthey@utwente.nl

Abstract. Euclidean optimization problems such as TSP and mini-
mum-length matching admit fast partitioning algorithms that compute
near-optimal solutions on typical instances.
In order to explain this performance, we develop a general framework
for the application of smoothed analysis to partitioning algorithms for
Euclidean optimization problems. Our framework can be used to analyze
both the running-time and the approximation ratio of such algorithms.
We apply our framework to obtain smoothed analyses of Dyer and Frie-
ze’s partitioning algorithm for Euclidean matching, Karp’s partitioning
scheme for the TSP, a heuristic for Steiner trees, and a heuristic for
degree-bounded minimum-length spanning trees.

1 Introduction

Euclidean optimization problems are a natural class of combinatorial optimiza-
tion problems. In a Euclidean optimization problem, we are given a set X of
points in R2. The topology used is the complete graph of all points, where the
Euclidean distance ‖x − y‖ is the length of the edge connecting the two points
x, y ∈ X.

Many such problems, like the Euclidean traveling salesman problem [22] or
the Euclidean Steiner tree problem [14], are NP-hard. For others, like minimum-
length perfect matching, there exist polynomial-time algorithms. However, these
polynomial-time algorithms are sometimes too slow to solve large instances.
Thus, fast heuristics to find near-optimal solutions for Euclidean optimization
problems are needed.

A generic approach to design heuristics for Euclidean optimization problems
are partitioning algorithms: They divide the Euclidean plane into a number of
cells such that each cell contains only a small number of points. This allows us to
compute quickly an optimal solution for our optimization problem for the points
within each cell. Finally, the solutions of all cells are joined in order to obtain a
solution to the whole set of points.

? A preliminary version has been presented at the 12th Algorithms and Data Struc-
tures Symposium (WADS 2011) [5]. Supported by DFG grant BL 511/7-1.

1

Although this is a rather simple ad-hoc approach, it works surprisingly well
and fast in practice [16, 24]. This is at stark contrast to the worst-case perfor-
mance of partitioning algorithms: They can both be very slow and output solu-
tions that are far from being optimal. Thus, as it is often the case, worst-case
analysis is too pessimistic to explain the performance of partitioning algorithms.
The reason for this is that worst-case analysis is dominated by artificially con-
structed instances that often do not resemble practical instances.

Both to explain the performance of partitioning algorithms and to gain prob-
abilistic insights into the structure and value of optimal solutions of Euclidean
optimization problems, the average-case performance of partitioning algorithms
has been studied a lot. In particular, Steele [31] proved complete convergence of
Karp’s partitioning algorithm [18] for Euclidean TSP. Also strong central limit
theorems for a wide range of optimization problems are known. We refer to
Steele [32] and Yukich [35] for comprehensive surveys.

However, also average-case analysis has its drawback: Random instances usu-
ally have very specific properties with overwhelming probability. This is often
exploited in average-case analysis: One shows that the algorithm at hand per-
forms very well if the input has some of these properties. But this does not mean
that typical instances share these properties. Thus, although a good average-case
performance can be an indicator that an algorithm performs well, it often fails
to explain the performance convincingly.

In order to explain the performance of partitioning schemes for Euclidean
optimization problems, we provide a smoothed analysis. Smoothed analysis has
been introduced by Spielman and Teng [27] in order to explain the performance
of the simplex method for linear programming. It is a hybrid of worst-case and
average-case analysis: An adversary specifies an instance, and this instance is
then slightly randomly perturbed. The perturbation can, for instance, model
noise from measurement. Since its invention in 2001, smoothed analysis has
been applied in a variety of contexts [3, 4, 6, 12, 26]. We refer to two recent
surveys [20,28] for a broader picture.

We develop a general framework for smoothed analysis of partitioning algo-
rithms for optimization problems in the Euclidean plane (Section 3). We consider
a very general probabilistic model where the adversary specifies n density func-
tions f1, . . . , fn : [0, 1]2 → [0, φ], one for each point. Then the actual point set
is obtained by drawing xi independently from the others according to fi. The
parameter φ controls the adversary’s power: The larger φ, the more powerful the
adversary. (See Section 2.2 for a formal explanation of the model.) We analyze
the expected running-time and approximation performance of a generic parti-
tioning algorithm under this model. The smoothed analysis of the running-time
for partitioning algorithms depends crucially on the convexity of the worst-case
bound of the running-time of the problem under consideration. The main tool
for the analysis of the expected approximation ratio is Rhee’s isoperimetric in-
equality [25]. Let us note that, even in the average case, convergence to the
optimal value for large n does not imply a bound on the expected approxima-
tion ratio. The reason is that if we compute a very bad solution with very small

2

problem running-time approximation ratio reference

matching [10] O(nφ2 log4 n) 1 +O(
√
φ/ logn) Corollaries 4.2 & 4.5

TSP [18] poly(n) 1 +O(
√
φ/ logn) Corollary 5.2

Steiner tree [17] poly(n) 1 +O(
√
φ/ logn) Corollary 6.2

degree-bounded MST poly(n) 1 +O(
√
φ log logn/ logn) Corollary 7.2

Table 1. Smoothed bounds for some Euclidean optimization problems.

probability, then this allows convergence results but it deteriorates the expected
approximation ratio.

We apply the general framework to obtain smoothed analyses of partition-
ing algorithms for Euclidean matching (Section 4), Karp’s partitioning scheme
for the TSP (Section 5), Steiner trees (Section 6), and degree-bounded minimum
spanning trees (Section 7) in the Euclidean plane. Table 1 shows an overview. To

summarize, for φ ≤ logO(1) n, Dyer and Frieze’s partitioning algorithm for com-
puting matchings [10] has an almost linear running-time, namely O(n logO(1) n).
For φ ∈ o(log2 n), its expected approximation ratio tends to 1 as n increases. The
approximation ratios of the partitioning algorithms for TSP and Steiner trees
tend to 1 for φ ∈ o(log n). For degree-bounded spanning trees, this is the case
for φ ∈ o(log n/ log log n). Our general framework is applicable to many other
partitioning algorithms as well, but we focus on the aforementioned problems in
this work.

2 Preliminaries

For n ∈ N, let [n] = {1, 2, . . . , n}. We denote probabilities by P and expected
values by E.

2.1 Euclidean Functionals

A Euclidean functional is a function F : ([0, 1]2)? → R that maps a finite point
set X ⊆ [0, 1]2 to a real number F(X). The following are examples of Euclidean
functionals:

– MM maps a point set to the length of its minimum-length perfect matching
(length means Euclidean distance, one point is left out if the cardinality of
the point set is odd).

– TSP maps a point set to the length of its shortest Hamiltonian cycle, i.e., to
the length of its optimal traveling salesman tour.

– MST maps a point set to the length of its minimum-length spanning tree.
– ST maps a point set to the length of its shortest Steiner tree.
– dbMST maps a point set to the length of its minimum-length spanning tree,

restricted to trees of maximum degree at most b for some given bound b.

3

The Euclidean functionals that we consider in this paper are all associated
with an underlying combinatorial optimization problem. Thus, the function value
F(X) is associated with an optimal solution (minimum-length perfect matching,
optimal TSP tour, . . .) to the underlying combinatorial optimization problem.
In this sense, we can design approximation algorithms for F: Compute a (near-
optimal) solution (where it depends on the functional what a solution actually is;
for instance, a perfect matching), and compare the objective value (for instance,
the sum of the lengths of its edges) to the function value.

We follow the notation of Frieze and Yukich [13,35]. A Euclidean functional
F is called smooth [25, 35] if there is a constant c such that∣∣F(X ∪ Y)− F(X)

∣∣ ≤ c√|Y |
for all finite X,Y ⊆ [0, 1]2. The constant c may depend on the function F, but
not on the sets X and Y or their cardinality.

Let C1, . . . , Cs be a partition of [0, 1]2 into rectangles. We call each C` a cell.
Note that the cells are not necessarily of the same size. For a finite set X ⊆ [0, 1]2

of n points, let X` = X ∩C` be the points of X in cell C`. Let n` = |X`| be the
number of points of X in cell C`. Let diameter(C`) be the diameter of cell C`.

We call F sub-additive if

F(X) ≤
s∑
`=1

(
F(X`) + diameter(C`)

)
for all finite X ⊆ [0, 1]2 and all partitioning of the square. F is called super-
additive if

F(X) ≥
s∑
`=1

F(X`)

for all finite X ⊆ [0, 1]2 and all partitioning of the square. A combination of
sub-additivity and super-additivity for a Euclidean functional F is a sufficient
(but not a necessary) condition for the existence of a partitioning heuristic for
approximating F. We will present such a generic partitioning heuristic in Sec-
tion 3.

Following Frieze and Yukich [13], we define a slightly weaker additivity con-
dition that is sufficient for the performance analysis of partitioning algorithms.
Frieze and Yukich [13] call a Euclidean function F near-additive if, for all parti-
tions C1, . . . , Cs of [0, 1]2 into cells and for all finite X ⊆ [0, 1]2, we have∣∣∣∣∣F(X)−

s∑
`=1

F(X`)

∣∣∣∣∣ = O

(
s∑
`=1

diameter(C`)

)
.

If F is sub-additive and super-additive, then F is also near-additive.
Unfortunately, the Euclidean functionals TSP, MM and MST are smooth and

sub-additive but not super-additive [31, 32, 35]. However, these functionals can
be approximated by their corresponding canonical boundary functionals, which

4

are super-additive [13, 35]. We obtain the canonical boundary functional of a
Euclidean functional by considering the boundary of the domain as a single
point [35]. This means that two points can either be connected directly or via a
detour along the boundary. In the latter case, only the lengths of the two edges
connecting the two points to the boundary count, walking along the boundary
is free of charge. Yukich [35] has shown that this is a sufficient condition for a
Euclidean functional to be near-additive.

Proposition 2.1 (Yukich [35, Lemma 5.7]). Let F be a sub-additive Euclid-
ean functional. Let FB be a super-additive functional that well-approximates F.
(This means that |F(X) − FB(X)| = O(1) for all finite X ⊆ [0, 1]2.) Then F is
near-additive.

The functionals MM, TSP, MST, ST, and dbMST are near-additive.
Limit theorems are a powerful tool for the analysis of Euclidean functionals.

Rhee [25] proved the following limit theorem for smooth Euclidean functionals
over [0, 1]2. We will mainly use it to bound the probability that F assumes a too
small function value.

Theorem 2.2 (Rhee [25]). Let X be a set of n points drawn independently
according to identical distributions from [0, 1]2. Let F be a smooth Euclidean
functional. Then there exist constants c and c′ such that for all t > 0, we have

P
[∣∣F(X)− E[F(X)]

∣∣ > t
]
≤ c′ · exp

(
−ct

4

n

)
.

Remark 2.3. Rhee proved Theorem 2.2 for the case that x1, . . . , xn are identi-
cally distributed. However, as pointed out by Rhee herself [25], the proof carries
over to the case when x1, . . . , xn are drawn independently but their distributions
are not necessarily identical.

2.2 Smoothed Analysis

In the classical model of smoothed analysis [27], an adversary specifies a point set
X̄, and then this point set is perturbed by independent identically distributed
random variables in order to obtain the input set X. A different view-point is
that the adversary specifies the means of the probability distributions according
to which the point set is drawn. This model has been generalized as follows [4]:
Instead of only specifying the mean, the adversary can specify a density function
for each point, and then we draw the points independently according to their
density functions. In order to limit the power of the adversary, we have an
upper bound φ for the densities: The adversary is allowed to specify any density
function [0, 1]2 → [0, φ]. If φ = 1, then this boils down to the uniform distribution
on the unit square [0, 1]2. If φ gets larger, the adversary becomes more powerful
and can specify the location of the points more and more precisely. The role of
φ is the same as the role of 1/σ in classical smoothed analysis, where σ is the
standard deviation of the perturbation. We summarize this model formally in
the following assumption.

5

Assumption 2.4. Let φ ≥ 1. An adversary specifies n probability density func-
tions f1, . . . , fn : [0, 1]2 → [0, φ]. We write f = (f1, . . . , fn) for short. Let
x1, . . . , xn ∈ [0, 1]2 be n random vectors where xi is drawn according to fi, inde-
pendently from the other points. Let X = {x1, . . . , xn}.

If the actual density functions f matter and are not clear from the context, we
write X ∼ f to denote that X is drawn as described above. If we have a perfor-
mance measure P for an algorithm (P will be either running-time or approxima-
tion ratio in this paper), then the smoothed performance is maxf

(
EX∼f [P (X)]

)
.

Note that the smoothed performance is a function of the number n of points and
the parameter φ.

Let F be a Euclidean functional. For the rest of this paper, let µF(n, φ)
be a lower bound for the expected value of F if X is drawn according to the
probabilistic model described above. More precisely, µF is some function that
fulfills µF(n, φ) ≤ minf

(
EX∼f [F(X)]

)
. The function µF comes into play when we

have to bound the objective value of an optimal solution, i.e., F(X), from below
in order to analyze the approximation ratio.

3 Framework

In this section, we present our framework for the performance analysis of par-
titioning heuristics for Euclidean functionals. Let Aopt be an optimal algorithm
for some smooth and near-additive Euclidean functional F, and let Ajoin be an
algorithm that combines solutions for each cell into a global solution. We assume
that Ajoin runs in time linear in the number of cells. Then we obtain the following
algorithm, which we call A.

Algorithm 3.1 (generic algorithm A). Input: set X ⊆ [0, 1]2 of n points.

1. Divide [0, 1]2 into s cells C1, . . . , Cs.
2. Compute optimal solutions for each cell using Aopt.
3. Join the s partial solutions to a solution for X using Ajoin.

The cells in the first step of Algorithm 3.1 are rectangles. They are not
necessarily of the same size (in this paper, only the algorithm for matching
divides the unique square into cells of exactly the same size, the other algorithms
choose the division into squares depending on the actual point set). We use the
following assumptions in our analysis and mention explicitly whenever they are
used.

Assumption 3.2. 1. φ ∈ O(s). This basically implies that the adversary can-
not concentrate all points in a too small number of cells.

2. φ ∈ ω(s log n/n). This provides a lower bound for the probability mass in a
“full” cell, where full is defined in Section 3.1.

3. φ ∈ o(
√
n/ log n). With this assumption, the tail bound of Theorem 2.2 be-

comes sub-polynomial.

6

These assumptions are not too restrictive: For the partitioning algorithms
we analyze here, we have s = O(n/ logO(1) n) (for matching, we could also use
smaller s while maintaining polynomial, albeit worse, running-time; for the other
problems, we even need s = O(n/ logO(1))). Ignoring poly-logarithmic terms,
the first and third assumption translate roughly to φ = O(n) and φ = o(

√
n),

respectively. The second assumption roughly says φ = ω(1). But for φ = O(1),
we can expect roughly average-case behavior because the adversary has only
little influence on the positions of the points.

3.1 Smoothed Running-Time

Many of the schemes that we analyze choose the partition in such a way that
we have a worst-case upper bound on the number of points in each cell. Other
algorithms, like the one for matching [10], have a fixed partition independent of
the input points. In the latter case, the running-time also depends on φ.

Let T (n) denote the worst-case running-time of Aopt on n points. Then the
running-time of A is bounded by

∑s
`=1 T (n`) +O(s), where n` is the number of

points in cell C`. The expected running-time of A is thus bounded by

s∑
`=1

E
[
T (n`)

]
+O(s). (1)

For the following argument, we assume that T (the running-time of Aopt) is a
monotonically increasing, convex function and that the locations of the cells are
fixed and all their volumes are equal. (The assumption about the cells is not ful-
filled for all partitioning heuristics. For instance, Karp’s partitioning scheme [18]
chooses the cells not in advance but based on the actual point set. However, in
Karp’s scheme, the cells are chosen in such a way that there is a good worst-case
upper bound for the number of points per cell, so there is no need for a smoothed
analysis.) By slightly abusing notation, let fi(C`) =

∫
C`
fi(x) dx be the cumula-

tive density of fi in the cell C`. Since fi is bounded from above by φ, we have
fi(C`) ≤ φ/s (this requires that the cells are of equal size, thus their area is 1/s).
Let f(C`) =

∑n
i=1 fi(C`). Note that fi(C`) = P[xi ∈ C`] and f(C`) = E[n`].

We call a cell C` full with respect to f if f(C`) = nφ/s. We call C` empty
if f(C`) = 0. Our bound (1) on the running-time depends only on the values
f1(C`), . . . , fn(C`), but not on where exactly within the cells the probability
mass is assumed.

The goal of the adversary is to cause the partitioning algorithm to be slow.
We will show that, in order to do this, the adversary will make as many cells as
possible full. Note that there are at most bs/φc full cells. Assume that we have
bs/φc full cells and at most one cell that is neither empty nor full. Then the
number of points in any full cell is a binomially distributed random variable B
with parameters n and φ/s. By linearity of expectation, the expected running-
time is bounded by (⌊

s

φ

⌋
+ 1

)
· E
[
T (B)

]
+O(s).

7

Since φ = O(s) by Assumption 3.2 (1), this is bounded by O
(
s
φ · E[T (B)] + s

)
.

If T is bounded by a polynomial, then this evaluates to O
(
s
φ · T (nφ/s) + s

)
by

the following Lemma 3.3. This lemma can be viewed as “Jensen’s inequality in
the other direction” with p = φ/s for φ ∈ ω(s log n/n). The latter is satisfied by
Assumption 3.2 (2).

Lemma 3.3 (inverse Jensen’s inequality). Let T be any convex, monoton-
ically increasing function that is bounded by a polynomial, and let B be a bino-
mially distributed random variable with parameters n ∈ N and p ∈ [0, 1] with
p ∈ ω(log n/n). Then E[T (B)] = Θ(T (E[B])).

Proof. We have E[B] = np. Jensen’s inequality yields E[T (B)] ≥ T (np). Thus,
what remains to be proved is E[T (B)] = O(T (np)). Chernoff’s bound [21, The-
orem 4.4] says

P
[
B > 2np

]
≤
(e

4

)np
.

This allows us to bound

E
[
T (B)

]
≤ T (2np) +

(e
4

)np
· T (n).

Since T is bounded by a polynomial, we have T (2np) = O(T (np)). Since p ∈
ω(log n/n) and T is bounded by a polynomial, we have (e/4)np · T (n) ∈ o(1).
Thus, E[T (B)] = O(T (np)), which proves the lemma. ut

What remains to be done is to show that the adversary will indeed make
as many cells as possible full. This follows essentially from the convexity of the
running-time. In the following series of three lemmas, we make the argument
rigorous.

The first lemma basically says that we maximize a convex function of a sum of
independent 0/1 random variables if we balance the probabilities of the random
variables. This is similar to a result by León and Perron [19]. But when we
apply Lemma 3.4 in the proof of Lemma 3.5, we have to deal with the additional
constraint pi ∈ [εi, 1−εi]. This makes León and Perron’s result [19] inapplicable.

Lemma 3.4. Let p ∈ (0, 1). Let X1, X2 be independent 0/1 random variables
with P[X1 = 1] = p− δ and P[X2 = 1] = p+ δ. Let X = X1 +X2. Let f be any
convex function, and let g(δ) = E[f(X)].

Then g is monotonically decreasing in δ for δ > 0 and monotonically increas-
ing for δ < 0 and has a global maximum at δ = 0.

Proof. A short calculation shows that

E
[
f(X)

]
= (1− 2p+ p2 − δ2) · f(0) + (2p− 2p2 + 2δ2) · f(1) + (p2 − δ2) · f(2).

Abbreviating all terms that do not involve δ by z yields

g(δ) = z +
(
−δ2f(0) + 2δ2f(1)− δ2f(2)

)
.

The lemma follows now by the convexity of f . ut

8

With Lemma 3.4 above, we can show the following lemma: If we maximize a
convex function of n 0/1 random variables and this function is symmetric around
n/2, then we should make all probabilities as small as possible (or all as large
as possible) in order to maximize the function.

Lemma 3.5. Let f be an arbitrary convex function. Let X1, X2, . . . , Xn be in-
dependent 0/1 random variables with P[Xi = 1] = pi ∈ [εi, 1 − εi], and let
X =

∑n
i=1Xi. Let g(p1, . . . , pn) = E[f(X) + f(n − X)]. Then g has a global

maximum at (ε1, . . . , εn).

Proof. In the following, let X ′ =
∑n−1
i=1 Xi. Without loss of generality, we can

assume that
∑n
i=1 pi ≤ n/2. Otherwise, we replace pi by 1− pi, which does not

change the function value of g by symmetry.
First, we want to eliminate pi with pi > 1/2. If there is a pi > 1/2, then

there must be a pi′ < 1/2 since
∑n
i=1 pi ≤ n/2. Let i = n and i′ = n− 1 without

loss of generality. Our goal is to shift “probability mass” from Xn to Xn−1. To
do this, let q = (pn−1 + pn)/2. We consider two new functions g̃ and h. The
function g̃ is defined by

g̃(Xn−1, Xn) = EX1,...,Xn−2

[
f

(
n∑
i=1

Xi

)]
,

where the expected value is taken only over X1, . . . , Xn−2. The function h is
defined by

h(δ) = g(p1, . . . , pn−2, q − δ, q + δ) = EXn−1,Xn

[
g̃(Xn+1, Xn)

]
.

By definition, we have h
(pn−pn−1

2

)
= g(p1, . . . , pn). The function h is convex

and we can apply Lemma 3.4: We should choose |δ| as small as possible in order
to maximize it. We decrease δ from (pn − pn−1)/2 > 0 until q − δ or q + δ
becomes 1/2. Then we set pn−1 and pn accordingly. In this way, we guarantee
that pn−1 ∈ [εn−1, 1− εn−1] and pn ∈ [εn, 1− εn]. We iterate this process until
we have pi ≤ 1/2 for all i ∈ [n]. This only increases F .

Now we can assume that p1, . . . , pn ≤ 1/2. We finish the proof by showing
that decreasing any pi as much as possible only increases g(p1, . . . , pn). Let
∆(x) = f(x + 1) − f(x). Since f is convex, ∆ is non-decreasing. By symmetry,
it suffices to consider pn. We have

g(p1, . . . , pn) = pn ·E
[
f(X ′ + 1) + f(n−X ′ − 1)

]
+ (1− pn) ·E

[
f(X ′) + f(n−X ′)

]
= pn ·E

[
f(X ′) +∆(X ′) + f(n−X ′ − 1)

]
+ (1− pn) ·E

[
f(X ′) + f(n−X ′ − 1) +∆(n−X ′ − 1)

]
= E

[
f(X ′) + f(n−X ′ − 1)

]
+ E

[
pn ·∆(X ′) + (1− pn) ·∆(n−X ′ − 1)

]
= E

[
f(X ′) + f(n−X ′ − 1)

]
+ pn · E

[
∆(X ′)

]
+ (1− pn) · E

[
∆(n−X ′ − 1)

]
.

9

Only the term in the last line depends on pn. Since pi ≤ 1/2 for all i ∈ [n− 1],
X ′ is stochastically dominated by n − X ′ − 1. Since ∆ is non-decreasing, this
yields

E
[
∆(n−X ′ − 1)

]
≥ E

[
∆(X ′)

]
.

Hence, decreasing pn will never decrease the value of g. ut

Lemma 3.5 above is the main ingredient for the proof that the adversary
wants as many full cells as possible. Lemma 3.6 below makes this rigorous.

Lemma 3.6. Let C`′ and C`′′ be any two cells. Let f1, . . . , fn : [0, 1]2 → [0, φ]
be any density functions. Let f̃1, . . . , f̃n : [0, 1]2 → [0, φ] be density functions with
the following properties for all i ∈ [n]:

1. f̃i(C`′) = min
(
φ/s, fi(C`′) + fi(C`′′)

)
.

2. f̃i(C`′′) =
(
fi(C`′) + fi(C`′′)

)
− f̃i(C`′).

(Note that there are densities f̃1, . . . , f̃n with these properties: First, all f̃i are
non-negative and, second,

∫
[0,1]2

f̃i(x) dx = 1. Furthermore, f̃1, . . . , f̃n can be

chosen such that they are bounded by φ since we have fi(C`′), fi(C`′′) ≤ φ/s by
construction.) Let n` be the (random) number of points in X` with respect to
f = (f1, . . . , fn), and let ñ` be the (random) number of points in X` with respect
to f̃ = (f̃1, . . . , f̃n). Then

s∑
`=1

E
[
T (n`)

]
≤

s∑
`=1

E
[
T (ñ`)

]
.

Proof. First, we note that E[T (n`)] = E[T (ñ`)] for ` 6= `′, `′′. Without loss of
generality, let `′ = 1 and `′′ = 2. Thus, we have to prove

E
[
T (n1)

]
+ E

[
T (n2)

]
≤ E

[
T (ñ1)

]
+ E

[
T (ñ2)

]
.

Let M = {i | xi ∈ C1 ∪ C2} be the (random) set of indices of points in the two
cells. To prove this, we prove the inequality

E
[
T (n1) + T (n2) |M = I

]
≤ E

[
T (ñ1) + T (ñ2) |M = I

]
for any set I ⊆ [n]. This is equivalent to

E
[
T (n1) + T (|M | − n1) |M = I

]
≤ E

[
T (ñ1) + T (|M | − ñ1) |M = I

]
.

Without loss of generality, we restrict ourselves to the case I = [n]. This gives us
the following setting: Any point xi is either in C1 or in C2. Under this condition,

the probability that xi is in C1 is pi = fi(C1)
fi(C1∪C2)

, and the probability that xi

is in C2 is 1 − pi = fi(C2)
fi(C1∪C2)

. We can choose pi arbitrarily such that pi ≤
min

{
1, φ/s

fi(C1)+fi(C2)

}
= 1 − εi and pi ≥ max

{
0, 1 − φ/s

fi(C1)+fi(C2)

}
= εi. This is

precisely the setting that we need to apply Lemma 3.5. ut

10

Let f1, . . . , fn : [0, 1]2 → [0, φ] be the given distributions. By applying
Lemma 3.6 repeatedly for pairs of non-full, non-empty cells C`′ and C`′′ , we
obtain distributions f̃1, . . . , f̃n with the following properties:

1. f̃1, . . . , f̃n have bs/φc full cells and at most one cell that is neither full nor
empty.

2. The expected value of T on X sampled according to f̃1, . . . f̃n is not smaller
than the expected value of T on X sampled according to f1, . . . , fn.

This shows that the adversary, in order to slow down our algorithm, will con-
centrate the probability in as few cells as possible. Thus, we obtain the following
theorem.

Theorem 3.7. Assume that the running-time of Aopt can be bounded from above
by a convex function T that is bounded by a polynomial. Then, under Assump-
tions 2.4, 3.2 (1), and 3.2 (2), the expected running-time of A on input X is
bounded from above by

O

(
s

φ
· T
(
nφ

s

)
+ s

)
.

Proof. The expected running-time is maximized if we have bs/φc cells that are
full plus possibly one cell containing all the remaining probability mass. The ex-
pected running-time for each such cell is O(T (nφ/s)) by Lemma 3.3 and because
of Assumption 3.2 (2). Thus, the expected running-time of A is bounded from
above by

d s
φ
e ·O

(
T

(
nφ

s

))
+O(s).

The theorem follows as φ = O(s) by Assumption 3.2 (1). ut

3.2 Smoothed Approximation Ratio

The value computed by A can be bounded from above by

A(X) ≤
s∑
`=1

F(X`) + J ′,

where J ′ is an upper bound for the cost incurred by joining the solution for the
cells. Since F is a near-additive Euclidean functional, we have A(X) ≤ F(X) + J
for J = J ′ +O

(∑s
`=1 diameter(C`)

)
. Dividing by F(X) yields

A(X)

F(X)
≤ 1 +O

(
J

F(X)

)
. (2)

Together with E[F(X)] ≥ µF(n, φ), we obtain a generic upper bound of

E[A(X)]

E[F(X)]
≤ 1 +O

(
J

µF(n, φ)

)

11

for the ratio of expected output of A and expected function value of F. While this
provides some guarantee on the approximation performance, it does not provide
a bound on the expected approximation ratio, which is in fact our goal.

For estimating the expected approximation ratio E[A(X)/F(X)] for some
algorithm A, the main challenge is that F(X) stands in the denominator. Thus,
even if we have a good (deterministic) upper bound for A(X) that we can plug
into the expected ratio in order to get an upper bound for the ratio that only
depends on F(X), we are basically left with the problem of estimating E[1/F(X)].
Jensen’s inequality yields E[1/F(X)] ≥ 1/E[F(X)]. But this does not help, as we
need upper bounds for E[1/F(X)]. Unfortunately, such upper bounds cannot be
derived easily from 1/E[F(X)]. The problem is that we need strong upper bounds
for the probability that F(X) is close to 0. Theorem 2.2 is too weak for this. This
problem of bounding the expected value of the inverse of the optimal objective
value arises frequently in bounding expected approximation ratios [11,12].

There are two ways to attack this problem: The first and easiest way is if A
comes with a worst-case guarantee α(n) on its approximation ratio for instances
of n points. Then we can apply Theorem 2.2 to bound F(X) from below. If
F(X) ≥ µF(n, φ)/2, then we can use (2) to obtain a ratio of 1 + O

(
J

µF(n,φ)

)
.

Otherwise, we obtain a ratio of α(n). If α(n) is not too large compared to the
tail bound obtained from Theorem 2.2, then this contributes only little to the
expected approximation ratio. The following theorem formalizes this.

Theorem 3.8. Assume that A has a worst-case approximation ratio of α(n) for
any instance consisting of n points. Then, under Assumption 2.4, the expected
approximation ratio of A is

E
[
A(X)

F(X)

]
≤ 1 +O

(
J

µF(n, φ)
+ α(n) · exp

(
−cµF(n, φ)4

n

))
for some positive constant c > 0.

Proof. We have
A(X)

F(X)
≤ min

{
1 +O

(
J

F(X)

)
, α(n)

}
. (3)

By Theorem 2.2 and Remark 2.3, we have

P
[
F(X) <

µF(n, φ)

2

]
≤ c′ exp

(
−cµF(n, φ)4

n

)
for some constants c, c′ > 0. Together with (3), this allows us to bound the
expected approximation ratio as

E
[
A(X)

F(X)

]
≤ 1 +O

(
J

µF(n, φ)
+ α(n) · exp

(
−cµF(n, φ)4

n

))
,

which completes the proof. ut

12

Now we turn to the case that the worst-case approximation ratio of A cannot
be bounded by some α(n). In order to be able to bound the expected approxima-
tion ratio, we need an upper bound on E[1/F(X)]. Note that we do not explicitly
provide an upper bound for E[1/F(X)], but only a sufficiently strong tail bound
hn for 1/F(X).

Theorem 3.9. Assume that there exists a β ≤ J and a function hn such that
P[F(X) ≤ x] ≤ hn(x) for all x ∈ [0, β]. Then, under Assumption 2.4, the expected
approximation ratio of A is

E
[
A(X)

F(X)

]
≤ 1 +O

(
J ·

(
1

µF(n, φ)
+

exp
(
− cµF(n,φ)

4

n

)
β

+

∫ ∞
1/β

hn

(
1

x

)
dx

))
.

Proof. If F(X) ≥ µF(n, φ)/2, then the approximation ratio is

1 +O

(
J

µF(n, φ)

)
,

which is good. By Theorem 2.2, the probability that this does not hold is bounded

from above by exp
(
−µF(n,φ)

4

Cn

)
for some constant C > 0. If we still have F(X) ≥ β,

then we can bound the ratio from above by

1 +O

(
J

β

)
.

This contributes

exp

(
−µF(n, φ)4

Cn

)
·
(

1 +O

(
J

β

))
≤ exp

(
−µF(n, φ)4

Cn

)
·O
(
J

β

)
to the expected value, where the inequality follows from β ≤ J . We are left with
the case that F(X) ≤ β. This case contributes

J ·
∫ ∞
1/β

P
[

1

F(X)
≥ x

]
dx.

to the expected value. By definition, we have

P
[

1

F(X)
≥ x

]
= P

[
F(X) ≤ 1

x

]
≤ hn

(
1

x

)
,

which completes the proof. ut

4 Matching

As a first example, we apply our framework to the matching functional MM
defined by the Euclidean minimum-length perfect matching problem. A parti-
tioning algorithm for approximating MM was proposed by Dyer and Frieze [10].
For completeness, let us describe their algorithm.

13

Algorithm 4.1 (DF; Dyer, Frieze [10]). Input: set X ⊆ [0, 1]2 of n points,
n is even.

1. Partition [0, 1]2 into s = k2 equal-sized sub-squares C1, . . . , Ck2 , each of side

length 1/k, where k =
√
n

logn .

2. Compute minimum-length perfect matchings for X` for each ` ∈ [k2].
3. Compute a matching for the unmatched points from the previous step using

the strip heuristic [33].

Let DF(X) be the cost of the matching computed by the algorithm above
on input X = {x1, . . . , xn}, and let MM(X) be the cost of a perfect matching
of minimum total length. Dyer and Frieze showed that DF(X) converges to
MM(X) with probability 1 if the points in X are drawn according to the uniform
distribution on [0, 1]2 (this corresponds to Assumption 2.4 with φ = 1). We
extend this to the case when X is drawn as described in Assumption 2.4.

4.1 Smoothed Running-Time

A minimum-length perfect matching can be found in time O(n3) [1]. By Theo-
rem 3.7, we get the following corollary.

Corollary 4.2. Under Assumptions 2.4, 3.2 (1), and 3.2 (2), the expected run-
ning-time of DF on input X is at most

O

(
n3φ2

k4
+ k2

)
.

If we plug in k =
√
n/ log n, we obtain an expected running-time of at most

O
(
nφ2 log4 n

)
.

4.2 Smoothed Approximation Ratio

To estimate the approximation performance, we have to specify the function
µMM(n, φ). To obtain a lower bound for µMM(n, φ), let NN(X) denote the total
edge length of the nearest-neighbor graph for the point set X ⊆ [0, 1]2. This
means that

NN(X) =
∑
x∈X

min
y∈X:y 6=x

‖x− y‖.

We use NN to bound MM from below: First, we have MM(X) ≥ NN(X)/2.
Second, E

[
NN(X)

]
is easier to analyze than E

[
MM(X)

]
. Thus, according to the

following lemma, we can choose µMM(n, φ) = Ω
(√

n/φ
)
.

Lemma 4.3. Under Assumption 2.4, we have

E
[
NN(X)

]
= Ω

(√
n

φ

)
.

14

Proof. By linearity of expectation, we have E
[
NN(X)

]
= n · E

[
mini≥2 ‖x1 −

xi‖
]
. Thus, we have to prove E

[
mini≥2 ‖x1 − xi‖

]
= Ω

(
1/
√
nφ
)
. To bound this

quantity from below, we assume that x1 is fixed by an adversary and that only
x2, . . . , xn are drawn independently according to their density functions. Then
we obtain

E
[
min
i≥2
‖x1 − xi‖

]
=

∫ ∞
0

P
[
min
i≥2
‖x1 − xi‖ ≥ r

]
dr

=

∫ ∞
0

n∏
i=2

(
1− P

[
‖x1 − xi‖ ≤ r

])
dr

≥
∫ 1/

√
φπn

0

n∏
i=2

(
1− P

[
‖x1 − xi‖ ≤ r

])
dr.

The probability that ‖x1 − xi‖ ≤ r can be bounded from above by φ times the
area of a circle of radius r, which is φπr2. Thus,

E
[
min
i≥2
‖x1 − xi‖

]
≥
∫ 1/

√
φπn

0

(1− φπr2)n−1 dr

≥
∫ 1/

√
φπn

0

(
1− 1

n

)n−1
dr ≥ 1

e
√
φπn

.

The second inequality holds because 1− φπr2 ≥ 1− 1
n for r ∈ [0, 1/

√
φπn]. The

third inequality exploits
(
1− 1

n

)n−1 ≥ 1/e. ut

Since MM is near-additive and the diameter of each cell is O(1/k), we can
use

J = O

 k2∑
`=1

diameter(C`)

 = O(k) = O

(√
n

log n

)
. (4)

Unfortunately, we cannot bound the worst-case approximation ratio of Dyer
and Frieze’s partitioning algorithm. Thus, we cannot apply Theorem 3.8, but we
have to use Theorem 3.9. Thus, we first need a tail bound for 1/MM(X). The
bound in the following lemma suffices for our purposes.

Lemma 4.4. Under Assumption 2.4, we have

P
[
MM(X) ≤ c

]
≤ (2φc)n/2

for all c ≤ 1
2π .

Proof. Let us first analyze the probability that a specific fixed matching M has
a length of at most c. We let an adversary fix one end-point of each edge. Then
the probability that a specific edge of M has a length of at most c is bounded
from above by φπc2. Thus, the density of the length of a particular edge is
bounded from above by 2φπc ≤ φ as c ≤ 1

2π . Furthermore, the lengths of the

15

edges of M are independent random variables. Thus, the probability that the
sum of the edge lengths of all n/2 edges of M is bounded from above by c is at

most (φπc)n/2

(n/2)! , which can be proved by the following induction: Let m = n/2,

and let a1, . . . , am be the (random) edge lengths of the edge of M . For m = 1,
the statement follows from P[a1 ≤ c] ≤ φc. For larger m, assume that the claim
holds for m− 1, and let h be the density of am. This density is bounded by φ as
argued above. Thus,

P
[
a1 + . . .+ am ≤ c

]
≤
∫ c

0

h(am)P
[
a1 + . . .+ am−1 ≤ c− am

]
dam

≤
∫ c

0

φ · (φ(c− am))m−1

(m− 1)!
dam =

(φc)m

m!
.

The number of perfect matchings of a complete graph on n vertices is (n −
1)!! = (n− 1) · (n− 3) · (n− 5) · . . . (“!!” denotes the double factorial). A union
bound over all matchings yields

P
[
MM(X) ≤ c

]
≤ (n− 1)!! · (φc)n/2

(n/2)!
≤ n!!

(n/2)!
· (φc)n/2 = (2φc)n/2,

which completes the proof. ut

With this tail bound for 1/MM(X), we can prove the following bound on
the smoothed approximation ratio.

Corollary 4.5. Under Assumptions 2.4 and 3.2 (3), the expected approximation

ratio of DF is 1 +O
(√

φ
logn

)
.

Proof. We apply Theorem 3.9. To do this, let β = 1
2πφ (this is exactly the

value at which Lemma 4.4 becomes non-trivial). Lemma 4.4 allows us to choose
hn(x) = (2φπx)n/2 and yields∫ ∞

1/β

hn

(
1

x

)
dx =

∫ ∞
1/β

(
2φπ

x

)n/2
dx =

2(2πφ)
n
2 β

n
2−1

n− 2
=

4πφ

(n− 2)
.

Assumption 3.2 (3) with (4) yields

J · 4πφ

(n− 2)
= O

(
φ√

n · log n

)
= o

(√
φ

log n

)
by Assumption 3.2 (3).

We can choose µMM(n, φ) = Ω(
√
n/φ) as MM(X) ≥ NN(X)/2 = Ω(

√
n/φ)

by Lemma 4.3. Theorem 2.2 together with Assumption 3.2 (3) thus yields that
the probability that MM(X) < µMM(n, φ)/2 is bounded from above by

exp

(
− (µMM(n, φ))4

Cn

)
= exp

(
−Ω

(
n

φ2

))
= exp

(
−ω(log n)

)
.

16

This bound decreases faster than any polynomial in n. Thus, also by Assump-
tion 3.2 (3),

J ·
exp
(
− (µMM(n,φ))4

Cn

)
β

= O

(
φ
√
n

log n
· exp

(
− (µMM(n, φ))4

Cn

))
decreases faster than any polynomial in n.

Altogether, Theorem 3.9 yields a bound of

1 +O

(
J

µMM(n, φ)

)
+ o

(√
φ

log n

)
= 1 +O

(√
φ

log n

)
for the expected approximation ratio. ut

Remark 4.6. 1. There exist other partitioning schemes for Euclidean match-
ing [2], which can be analyzed in a similar way.

2. Instead of a standard cubic-time algorithm, we can use Varadarajan’s match-
ing algorithm [34] for computing the optimal matchings within each cell. This
algorithm has a running-time of O(m1.5 log5m) for m points, which improves
the running-time bound to O

(
n
√
φ log(n) log5(φ log n)

)
.

5 Karp’s Partitioning Scheme for Euclidean TSP

Karp’s partitioning scheme [18] is a heuristic for Euclidean TSP that computes
near-optimal solutions on average. It proceeds as follows:

Algorithm 5.1 (KP, Karp’s partitioning scheme). Input: set X ⊆ [0, 1]2

of n points.

1. Partition [0, 1]2 into k =
√
n/ log n stripes such that each stripe contains

exactly n/k =
√
n log n points.

2. Partition each stripe into k cells such that each cell contains exactly n/k2 =
log n points.

3. Compute optimal TSP tours for each cell.
4. Join the tours to obtain a TSP tour for X.

We remark that the choice of k in Karp’s partitioning scheme is optimal in
the following sense: On the one hand, more that Θ(log n) points per cell would
yield a super-polynomial running-time as the running-time is exponential in the
number of points per cell. On the other hand, less than Θ(log n) point per cell
would yield a worse approximation ratio as the approximation ratio gets worse
with increasing k.

For a point set X ⊆ [0, 1]2, let KP(X) denote the cost of the tour through
X computed by Karp’s scheme. Steele [31] has proved complete convergence
of KP(X) to TSP(X) with probability 1, if the points are chosen uniformly
and independently. Using our framework developed in Section 3, we extend the
analysis of KP to the case of non-uniform and non-identical distributions.

17

Since Karp’s scheme chooses the cells adaptively based on the point set X,
our framework for the analysis of the running-time cannot be applied. However,
the total running-time of the algorithm is T (n) = 2n/k

2

poly(n/k2) + O(k2),
which is, independent of the randomness, polynomial in n for k2 = n/ log n.

The nearest-neighbor functional NN is a lower bound for TSP. Thus, we can
use Lemma 4.3 to obtain µTSP(n, φ) = Ω(

√
n/φ). We can use the bound [18,30]

KP(X) ≤ TSP(X) + 6k = TSP(X) + 6
√
n/ log n

to obtain J = O(
√
n/ log n).

The nice thing about the TSP is that every tour has a worst-case approxi-
mation guarantee: Consider any two points x, y ∈ X. Since any tour must visit
both x and y, its length is at least 2‖x − y‖ by the triangle inequality. Since a
tour consists of n edges, any tour has a length of at most n

2 ·TSP(X). Thus, we
can use Theorem 3.8 together with α(n) = n/2 and obtain the following result.

Corollary 5.2. Under Assumptions 2.4 and 3.2 (3), the expected approximation

ratio of KP is E
[KP(X)
TSP(X)

]
≤ 1 +O

(√
φ/ log n

)
.

Proof. We plug J = O(
√
n log n) and µTSP(n, φ) = Θ(

√
n/φ) and α(n) = n/2

into the bound of Theorem 3.8 and obtain an upper bound of

1 +O

(√
φ

log n

)
+O

(
n · exp

(
−Ω

(
n

φ2

)))
for the expected approximation ratio. By Assumption 3.2 (3), the exponential
term decreases faster than any polynomial. Thus, O(

√
φ/ log n) is an upper

bound for the last term. ut

6 Euclidean Steiner Trees

Kalpakis and Sherman [17] proposed a partitioning algorithm for the Euclidean
minimum Steiner tree problem analogous to Karp’s partitioning scheme for Eu-
clidean TSP. The solution produced by their algorithm converges to the optimal
value with probability 1 − o(1). Also, their algorithm [17] is known to produce
near-optimal solutions in practice too [24]. Let us now describe Kalpakis and
Sherman’s algorithm [17].

Algorithm 6.1 (KS, Kalpakis, Sherman [17]). Input: set X ⊆ [0, 1]2 of n
points.

1. Let s = n/ log n. Partition [0, 1]2 into Θ(s) cells such that each cell contains
at most n/s = log n points.

2. Solve the Steiner tree problem optimally within each cell.
3. Compute a minimum-length spanning tree to connect the forest thus obtained.

18

The running-time of this algorithm is polynomial for the choice of s =
n/ log n [8]. For the same reason as for Karp’s partitioning scheme, we can-
not use our framework to estimate the running-time, because the choice of cells
depends on the actual point set.

Let KS(X) denote the cost of the Steiner tree computed Kalpakis and Sher-
man’s algorithm [17]. For the analysis of the approximation performance, let
ST(X) denote the cost of a minimum Steiner tree for the point set X, and let
MST(X) denote the cost of a minimum-length spanning tree of X. Kalpakis and
Sherman [17] have shown that

KS(X) ≤ ST(X) +O
(√

n/ log n
)
.

Thus, J = O(
√
n/ log n).

Since minimum spanning trees are 2/
√

3 approximations for Euclidean Stei-

ner trees [9], we have ST(X) ≥
√
3
2 ·MST(X). Furthermore, we have MST(X) ≥

1
2 · NN(X). Thus, we can choose µST(n, φ) = Θ

(√
n/φ

)
by Lemma 4.3.

As KP for the traveling salesman problem, KS comes with a worst-case
approximation ratio of α(n) = O(n). The reason is that, for any two points
x, y ∈ X, we have ‖x − y‖ ≤ ST(X). Since Kalpakis and Sherman’s par-
titioning algorithm [17] outputs at most a linear number of edges, we have
KS(X) ≤ O

(
n · ST(X)

)
. This gives us a worst-case approximation ratio of O(n)

and yields the following corollary of Theorem 3.8.

Corollary 6.2. Under Assumptions 2.4 and 3.2 (3), the expected approximation
ratio of KS is

E
[
KS(X)

ST(X)

]
≤ 1 +O

(√
φ

log n

)
.

Proof. The proof is almost identical to the proof of Corollary 5.2. ut

7 Degree-Bounded Minimum Spanning Tree

A b-degree-bounded minimum spanning tree of a given set of points in [0, 1]2 is a
spanning tree in which the degree of every point is bounded by b. For 2 ≤ b ≤ 4,
this problem is NP-hard, and it is solvable in polynomial time for b ≥ 5 [23]. Let
dbMST denote the Euclidean functional that maps a point set to the length of
its shortest b-degree-bounded minimum spanning tree.

Proposition 7.1. dbMST is a smooth, sub-additive and near-additive Euclidean
functional.

Proof. The smoothness and sub-additivity properties have been proved by Sri-
vastav and Werth [29]. They have also defined a canonical super-additive bound-
ary functional that well-approximates dbMST [29, Lemmas 3 and 4]. This, to-
gether with Proposition 2.1 proves that dbMST is near-additive. ut

19

Naturally, near-additivity implies that Karp’s partitioning scheme can be
extended to the b-degree-bounded minimum spanning tree problem. Let P-bMST
be the adaptation of Karp’s partitioning algorithm to dbMST with parameter
k2 = n log logn

logn . With this choice of k, P-bMST runs in polynomial-time as a
degree-bounded minimum-length spanning tree on m nodes can be found in
time 2O(m logm) using brute-force search. Then, for any X, we have

P-bMST(X) ≤ dbMST(X) +O

(√
n log log n

log n

)
,

which yields J = O(
√
n log log n/ log n).

Again, we have ‖x − y‖ ≤ dbMST(X) for all X and x, y ∈ X, which im-
plies that any possible tree is at most a factor n worse than the optimal tree.
This implies in particular that the worst-case approximation ratio of P-bMST is
O(n): P-bMST(X) = O(n ·dbMST(X)). Furthermore, we can use µdbMST(n, φ) =
Ω(
√
n/φ) by Lemma 4.3 as dbMST(X) = Ω(NN(X)).

We can apply Theorem 3.8 to obtain the following result.

Corollary 7.2. Under Assumptions 2.4 and 3.2 (3), the expected approximation

ratio is E
[P-bMST(X)

dbMST(X)

]
≤ 1 +O

(√
φ log log n/ log n

)
.

Proof. The proof is almost identical to the proof of Corollary 5.2. The only
difference is we now have to use J = O(

√
n log logn/ log n), which leads to the

slightly worse bound for the approximation ratio. ut

Again, we cannot use our framework for the running-time, but the running-
time is guaranteed to be bounded by a polynomial.

8 Concluding Remarks

We have provided a smoothed analysis of partitioning algorithms for Euclidean
optimization problems. The results can be extended to distributions over R2 by
scaling down the instance so that the inputs lie inside [0, 1]2. The analysis can
also be extended to higher dimensions. However, the value of φ for which our
results are applicable will depend on the dimension d.

Even though solutions computed by most of the partitioning algorithms
achieve convergence to the corresponding optimal value with probability 1 un-
der uniform samples, in practice they have constant approximation ratios close
to 1 [16, 24]. Our results show that the expected function values computed by
partitioning algorithms approach optimality not only under uniform, identical
distributions, but also under non-uniform, non-identical distributions, provided
that the distributions are not sharply concentrated.

One prominent open problem for which our approach does not work is the
functional defined by the total edge weight of a minimum-weight triangulation
in the Euclidean plane. The main obstacles for this problem are that, first, the

20

functional corresponding to minimum-weight triangulation is not smooth and,
second, the value computed by the partitioning heuristic depends on the number
of points in the convex hull of the point set [15]. Damerow and Sohler [7] provide
a bound for the smoothed number of points in the convex hull. However, their
bound is not strong enough for analyzing triangulations.

References

1. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, 1993.

2. Birgit Anthes and Ludger Rüschendorf. On the weighted Euclidean matching
problem in Rd. Applicationes Mathematicae, 28(2):181–190, 2001.

3. David Arthur, Bodo Manthey, and Heiko Röglin. Smoothed analysis of the k-means
method. Journal of the ACM, to appear.

4. René Beier and Berthold Vöcking. Random knapsack in expected polynomial time.
Journal of Computer and System Sciences, 69(3):306–329, 2004.

5. Markus Bläser, Bodo Manthey, and B. V. Raghavendra Rao. Smoothed analysis of
partitioning algorithms for Euclidean functionals. In Frank Dehne, John Iacono,
and Jörg-Rüdiger Sack, editors, Proc. of the 12th Algorithms and Data Structures
Symposium (WADS), volume 6844 of Lecture Notes in Computer Science, pages
110–121. Springer, 2011.

6. Valentina Damerow, Bodo Manthey, Friedhelm Meyer auf der Heide, Harald Räcke,
Christian Scheideler, Christian Sohler, and Till Tantau. Smoothed analysis of left-
to-right maxima with applications. ACM Transactions on Algorithms, to appear.

7. Valentina Damerow and Christian Sohler. Extreme points under random noise.
In Susanne Albers and Tomasz Radzik, editors, Proc. of the 12th Ann. European
Symp. on Algorithms (ESA), volume 3221 of Lecture Notes in Computer Science,
pages 264–274. Springer, 2004.

8. S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks,
1(3):195–207, 1971.

9. Ding-Zhu Du and Frank K. Hwang. A proof of the Gilbert-Pollak conjecture on
the Steiner ratio. Algorithmica, 7(2&3):121–135, 1992.

10. Martin E. Dyer and Alan M. Frieze. A partitioning algorithm for minimum
weighted euclidean matching. Information Processing Letters, 18(2):59–62, 1984.

11. Christian Engels and Bodo Manthey. Average-case approximation ratio of the
2-opt algorithm for the TSP. Operations Research Letters, 37(2):83–84, 2009.

12. Matthias Englert, Heiko Röglin, and Berthold Vöcking. Worst case and prob-
abilistic analysis of the 2-Opt algorithm for the TSP. In Proc. of the 18th Ann.
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 1295–1304. SIAM, 2007.

13. Alan M. Frieze and Joseph E. Yukich. Probabilistic analysis of the traveling sales-
man problem. In Gregory Gutin and Abraham P. Punnen, editors, The Traveling
Salesman Problem and Its Variations, chapter 7, pages 257–308. Kluwer Academic
Publishers, 2002.

14. Michael R. Garey, R. L. Graham, and David S. Johnson. The complexity of com-
puting Steiner minimal trees. SIAM Journal of Applied Mathematics, 32(4):835–
859, 1977.

15. Mordecai J. Golin. Limit theorems for minimum-weight triangulations, other eu-
clidean functionals, and probabilistic recurrence relations. In Proc. of the 7th Ann.
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 252–260. SIAM, 1996.

21

16. David S. Johnson and Lyle A. McGeoch. Experimental analysis of heuristics for
the STSP. In Gregory Gutin and Abraham P. Punnen, editors, The Traveling
Salesman Problem and Its Variations, chapter 9, pages 369–443. Kluwer Academic
Publishers, 2002.

17. Konstantinos Kalpakis and Alan T. Sherman. Probabilistic analysis of an enhanced
partitioning algorithm for the Steiner tree problem in Rd. Networks, 24(3):147–159,
1994.

18. Richard M. Karp. Probabilistic analysis of partitioning algorithms for the traveling-
salesman problem in the plane. Mathematics of Operations Research, 2(3):209–224,
1977.

19. Carlos A. León and François Perron. Extremal properties of sums of Bernoulli
random variables. Statistics & Probability Letters, 62(4):345–354, 2003.

20. Bodo Manthey and Heiko Röglin. Smoothed analysis: Analysis of algorithms be-
yond worst case. it – Information Technology, 53(6):280–286, 2011.

21. Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.

22. Christos H. Papadimitriou. The Euclidean traveling salesman problem is NP-
complete. Theoretical Computer Science, 4(3):237–244, 1977.

23. Christos H. Papadimitriou and Umesh V. Vazirani. On two geometric problems
related to the traveling salesman problem. Journal of Algorithms, 5(2):231–246,
1984.

24. Sivakumar Ravada and Alan T. Sherman. Experimental evaluation of a partition-
ing algorithm for the steiner tree problem in R2 and R3. Networks, 24(8):409–415,
1994.

25. Wansoo T. Rhee. A matching problem and subadditive euclidean functionals.
Annals of Applied Probability, 3(3):794–801, 1993.

26. Heiko Röglin and Shang-Hua Teng. Smoothed analysis of multiobjective optimiza-
tion. In Proc. of the 50th Ann. IEEE Symp. on Foundations of Computer Science
(FOCS), pages 681–690. IEEE, 2009.

27. Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms:
Why the simplex algorithm usually takes polynomial time. Journal of the ACM,
51(3):385–463, 2004.

28. Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis: An attempt to
explain the behavior of algorithms in practice. Communications of the ACM,
52(10):76–84, 2009.

29. Anand Srivastav and Sören Werth. Probabilistic analysis of the degree bounded
minimum spanning tree problem. In Vikraman Arvind and Sanjiva Prasad, editors,
Proc. of the 27th Int. Conf. on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), volume 4855 of Lecture Notes in Computer Science,
pages 497–507. Springer, 2007.

30. J. Michael Steele. Complete convergence of short paths in Karp’s algorithm for
the TSP. Mathematics of Operations Research, 6:374–378, 1981.

31. J. Michael Steele. Subadditive Euclidean functionals and nonlinear growth in ge-
ometric probability. Annals of Probability, 9(3):365–376, 1981.

32. J. Michael Steele. Probability Theory and Combinatorial Optimization, volume 69
of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, 1987.

33. Kenneth J. Supowit and Edward M. Reingold. Divide and conquer heuristics for
minimum weighted euclidean matching. SIAM Journal on Computing, 12(1):118–
143, 1983.

22

34. Kasturi R. Varadarajan. A divide-and-conquer algorithm for min-cost perfect
matching in the plane. In Proc. of the 39th Ann. Symp. on Foundations of Com-
puter Science (FOCS), pages 320–331. IEEE, 1998.

35. Joseph E. Yukich. Probability Theory of Classical Euclidean Optimization Prob-
lems, volume 1675 of Lecture Notes in Mathematics. Springer, 1998.

23

