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Abstract

The class of polynomials computable by polynomial size arithmetic log depth cir-
cuits (VNC1) is known to have equivalent constant width polynomial degree circuits
(VsSC0), but the converse containment is unknown. In a partial answer to this question,
we show that syntactic multilinear circuits of constant width and polynomial degree
can be depth-reduced i.e. sm-VsSC0 ⊆ sm-VNC1. Further, we give a width-efficient
simulation for constant width syntactic multilinear circuits by constant width syntactic
multilinear algebraic branching programs i.e. sm-VsSC0 ⊆ sm-VBWBP.

We then focus on polynomial-size syntactic multilinear circuits, and study relation-
ships between classes of functions obtained by imposing various resource (width, depth,
degree) restrictions on these circuits. Along the way we also observe a characteriza-
tion of the class NC1 in terms of a restricted class of planar branching programs of
polynomial size.

Finally, in sharp contrast to the general case, we report closure and stability of
coefficient functions for the syntactic multilinear classes studied in the paper.

∗The results in this paper were announced in MFCS 2008 and CSR 2009, in [MR08, JR09].
†This work was done when this author was employed at Aarhus University.
‡This work was done when this author was at the Institute of Mathematical Sciences, Chennai.
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Figure 1: Boolean complexity classes around NC1. Arrow (→) indicates containment.

1 Introduction

The class NC1 of Boolean functions computed by logarithmic depth polynomial size cir-
cuits has several equivalent characterisations, in the form of polynomial size bounded width
branching programs (BWBP), polynomial size formulas (F), and bounded width circuits of
polynomial size (SC0) i.e. NC1 = BWBP = F = SC0. Its subclass AC0, consisting of Boolean
functions computed by polynomial size constant depth unbounded fan-in circuits, has also
been characterised via restricted branching programs (BWrGP). See Figure 1. However,
the counting and arithmetic versions of those classes which are equivalent to NC1 seem to
represent different classes of functions. In [CMTV98], it was shown that if inputs take the
values from {0, 1} , then the class of functions represented as the total weights of paths in
a constant width branching program with edge weights from {x1, . . . , xn,−1, 0, 1} coincide
with the class functions computable by polynomial size and log-depth arithmetic circuits
over {+,×,−1, 0, 1, x1, . . . , xn}, i.e. GapBWBP = GapNC1. In [LMR10], this study was ex-
tended to bounded width circuits of small (polynomial) degree and size, i.e. sSC0, showing
that GapNC1 ⊆ GapsSC0, but it is not known whether this containment is strict or not.

The question GapsSC0
?

⊆ GapNC1 can be seen as a depth reduction problem for bounded
width circuits. In the algebraic model introduced by Valiant (see [Val82, Bür00]), where
arbitrary constants from the underlying field are allowed, this question can be re-stated as: is
the class of constant width polynomial size arithmetic circuits of polynomial syntactic degree
(VsSC0) contained in the class of polynomial size arithmetic formulas? i.e. is VsSC0 ⊆ VNC1?
(We use the prefix V to denote Valiant’s model.) An ideal result would be a bounded width
version of the depth reduction given in [VSBR83], i.e. the resulting circuit needs to have
+ fan-in bounded by a function of the width of the original circuit. But it is not clear how
this can be achieved. So, one of the natural ways to proceed is to look for restrictions on
the circuits where this can be achieved. The main focus of this paper is the restriction of
syntactic multilinearity on the arithmetic circuits and branching programs. We show that
the classes VsSC0, VNC1 and VBWBP behave very differently in the syntactic multilinear
world.

In a multilinear arithmetic is circuit every gate computes a multilinear polynomial. Syn-
tactic multilinearity (sm for short) is further a restriction on the syntactic structure of a
multilinear arithmetic circuit, it was introduced by Ran Raz in [Raz04a]. In a syntactic
multilinear circuit, every multiplication gate operates on disjoint sets of variables. (A formal
definition is given in Section 2.) In [Raz04a], Ran Raz proved super polynomial lower bounds
for multilinear arithmetic formula computing the permanent or determinant. The argument
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in [Raz04a] is against syntactic multilinear arithmetic formula and then uses the equivalence
of the two notions for arithmetic formulas. Later in [Raz04b], it was shown that the multi-
linear versions of the classes VNC1 and VNC2 are different. In [RY08a], the depth reduction
technique of [VSBR83] was shown to be preserving the property of syntactic multilinearity.
In [RSY08] an explicit polynomial is shown to require a size of Ω(n4/1/ log2 n) for any syn-
tactic multilinear arithmetic circuit computing it. In [RY08b], explicit lower bounds against
noise-resistant, non-cancelling and orthogonal syntactic multilinear arithmetic circuits were
given.

Motivated by the above series of papers, we explore the question VsSC0
?

⊆ VNC1 through
the lens of syntactic multilinearity.

Firstly, we give a depth reduction for constant width syntactic multilinear arithmetic
circuits. We show that a syntactic multilinear circuit of constant width and polynomial size
has an equivalent syntactic multilinear formula of logarithmic depth and polynomial size
(Theorem 3 and Corollary 4). Thus, if restricted to be syntactic multilinear, then the class
VNC1 is at least as powerful as VsSC0. (Note that log depth formulas give exactly VNC1

even in the syntactic multilinear world.). But ironically, the containment VNC1 ⊆ VsSC0

does not seem to translate into the syntactic multilinear world. This is mainly because the
only known translation ([BC92]) from a log-depth formula into a constant width branching
program (and hence an sSC0 circuit) does not preserve syntactic multilinearity.

Now the scenario is : sm-VBWBP ⊆ sm-VsSC0 ⊆ sm-VNC1. (The sm- prefix denotes the
restriction to syntactic multilinear circuits.) Looking to tighten this relationship, we obtain
a somewhat surprising result: syntactic multilinear algebraic branching programs of constant
width and polynomial size are as powerful as syntactic multilinear circuits of constant width
and polynomial size (Theorem 9). Thus the restriction of syntactic multilinearity pulls
VsSC0 down to VBWBP. In order to establish this, we use the equivalence of skew circuits
and branching programs, and the notions of weakly skew circuits, first studied in the context
of Boolean circuits in [Tod92], and multiplicatively disjoint circuits, introduced in [MP08].

The two results described above give a reversal in the relationships among the three
classes VBWBP, VNC1 and VsSC0: In the general world, VsSC0 is the strongest class and
the other two are equal and contained in VsSC0, i.e. VBWBP = VNC1 ⊆ VsSC0. In
the syntactic multilinear world, sm-VNC1 turns out to be the strongest class, whereas the
other two are equal and contained in it, i.e. sm-VBWBP = sm-VsSC0 ⊆ sm-VNC1. This
indicates that standard simulations may fail in the syntactic multilinear world, and need to
be examined afresh. We do this next, showing that the classic depth-reduction of [Bre73]
works in this setting (Theorem 20), as also the divide-and-conquer technique of Savitch
converting branching programs to circuits (Lemma 21), and the folklore staggering (see
[IZ94]) of a small-depth to a small-width circuit (Lemma 22). A more recent characterisation
of arithmetic AC0 via restricted planar branching programs, [AAB+99], also carries through
(Corollary 26). In fact, examining this more closely, we obtain a characterisation of Boolean
NC1 as well as VNC1 via polynomial size branching programs of log width or unbounded
width, with the same restricted planarity condition (Corollary 27).

Another context in which we study the effect of syntactic multilinearity is the complex-
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ity of coefficient functions, first studied in a systematic way in [Mal07]. In general, these
functions can be quite hard to compute. However for most syntactic multilinear classes,
we show that the coefficient functions are also computable within the same class. Further,
exponential sums are also computable within the respective classes. (Theorems 28,30)

The rest of the paper is organized as follows: In section 2 we give formal definitions of
syntactic multilinear circuits. Section 3 contains a depth reduction for syntactic multilinear
constant-width circuits. In section 4 we give a width preserving simulation of constant
width syntactic multilinear circuits by syntactic multilinear algebraic branching programs.
In Section 5 we discuss the relationships among syntactic multilinear classes. In Section 6
we discuss the coefficient functions for syntactical multilinear classes.

2 Preliminaries

2.1 Arithmetic Circuits and Algebraic Branching Programs

Let K be a fixed ring or a field. Let X = {x1, . . . , xn} be variables that take values from
K. An arithmetic circuit (or a straight line program) over K is a directed acyclic multi-
graph C, where nodes of zero in-degree are called input gates and are labeled from the set
K∪{x1, . . . , xn}. The nodes of zero out-degree are called output gates. The remaining nodes
of C are labeled from {+,×}. Whenever not stated explicitly, we assume that in-degree of
every node is bounded by 2. A gate f computes a polynomial pf in K[X] which can be defined
inductively in a natural way: an input gate computes a polynomial that is a constant or a
single-variable monomial; if f = g × h, then pf = pg × ph, where pg and ph are polynomials
computed by g and h respectively (available by induction); and if f = g+h, then pf = pg+ph.
The set of polynomials computed at its output gates constitute the polynomials computed
by a circuit. In what follows, we may use the same symbol f for representing both the gate
and the polynomial represented by it. A polynomial family (fn)n≥0 is said to be computed
by a circuit family (Cn)n≥0 if ∀n ≥ 0, fn is computed by Cn.

Without loss of generality, we assume that a circuit is layered, i.e. there is partition
V1, . . . , Vℓ of the non-input gates in the circuits so that all in-coming edges of Vi are either
from input-gates or from Vi−1, 1 < i ≤ ℓ. The measures of size, depth, width and syntactic
degree of a circuit is defined in the same way as in the case of Boolean circuits: size is the
number of gates, depth is the length of the longest path from a leaf gate to an output gate,
width is the maximum number of gates per layer in a layered circuit where all edges are from
a layer to the next, and the syntactic degree d(f) of a gate f is inductively defined to be 1
at an input gate, max{d(g), d(h)} if f = g + h, and d(g) + d(h) if f = g × h.

A formula is a circuit where out-degree of every gate is bounded by 1. A skew arithmetic
circuit is a circuit in which for every gate f = g×h, either g ∈ K∪X or h ∈ K∪X or both.

An algebraic branching program (ABP) over a field K is a layered directed acyclic graph
G with two designated nodes s (of zero in-degree) and t (of zero out-degree), in which the
edges are labeled from K∪X, where X = {x1, . . . , xn}. For any s-t path P in G, weight(P )
is defined to be the product of the labels of edges that appear in P . The polynomial fG
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c
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Figure 2: The possible patterns between two layers of rGPs. Edges without any label are of
weight 1 and c ∈ X ∪ K

computed by G is defined as
∑

P weight(P ), where P ranges over all s-t paths in G. The
size of an ABP is the number of nodes in it. Width is the maximum number of nodes at
any layer. Length of an ABP is the total number of layers in it. In this paper, we assume
(without loss of generality) that the in and out-degrees of every node in the ABP is bounded
by a constant.

As in the case of Boolean and counting circuits, a skew arithmetic circuit can be trans-
formed into an algebraic branching program and vice versa. (See [Nis91].) In fact this
transformation increases the width and size by only a constant factor.

G-graphs are graphs that have planar embeddings where vertices are embedded on a
rectangular grid, and all edges are between adjacent columns from left to right. In these
graphs, the node s is fixed as the leftmost bottom node and t is the rightmost top node. In
[AAB+99], a restriction of G-graphs is considered where the width of the grid is a constant,
and only certain kinds of connections are allowed between any two layers. Namely, for width
2k + 2, the connecting pattern at any layer is represented by one of the graphs Gk,i (see
figure 2) for 0 ≤ i ≤ 2k + 2. An rGP (short for restricted grid branching program) is
an algebraic branching program where the underlying graph is a restricted G-graph of the
aforementioned form.
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2.2 Valiant’s Classes

In Valiant’s model, a complexity class is a set of families of polynomials f = (fn)n≥0, where
fn ∈ K[X1, . . . Xn] . In this paper, the prefix V denotes an algebraic class in this model. We
now define the different complexity classes that are studied in this model. For all the classes,
we assume that polynomials have degree bounded by poly(n).

Definition 1

VP =

{

f = (fn)n≥0 |
fn can be computed by a polynomial size arith-
metic circuit, and deg(fn) ≤ poly(n).

}

VNP =







f = (fn)n≥0 |
∃ a polynomial family g = (gm)m≥0 ∈ VP

such that fn(X) =
∑

e∈{0,1}m′ gm′+n(X, e), where

m′, deg(fn) ≤ poly(n).







VF = VPe =

{

f = (fn)n≥0 |
f ∈ VP; and fn can be computed by a polynomial
size arithmetic formula.

}

VPskew =
{

f = (fn)n≥0 | f ∈ VP; and fn can be computed by a polynomial
size skew arithmetic circuit.

}

VBP =

{

f = (fn)n≥0 |
f ∈ VP; and fn can be computed by a polynomial
size algebraic branching program

}

VBP[w] =

{

f = (fn)n≥0 |
fn can be computed by a polynomial size algebraic
branching program of width O(w)

}

VLWBP = VBP[log n] ; VBWBP = VBP[1]

VNCi =

{

f = (fn)n≥0 |
f ∈ VP; and fn can be computed by polynomial
size O(logi n) depth arithmetic circuits of con-
stant fan-in

}

VAC0 =

{

f = (fn)n≥0 |
f ∈ VP; and fn can be computed by polynomial
size and constant depth arithmetic circuits with
unbounded fan-in gates

}

VSACi =











f = (fn)n≥0 |

f ∈ VP; and fn can be computed by polynomial
size O(logi n) depth arithmetic circuits with con-
stant fan-in for × gates and unbounded fan-in
for + gates











VLWF =

{

f = (fn)n≥0 |
f ∈ VP; and fn can be computed by a polynomial
size arithmetic formula of O(log n) width

}

VrGP =

{

f = (fn)n≥0 |
f ∈ VP; and fn can be computed by polynomial
size restricted grid algebraic branching program

}
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Figure 3: Relationships among complexity classes in Valiant’s model

VBWrGP =

{

f = (fn)n≥0 |
f ∈ VP; and fn can be computed by polynomial
size restricted grid algebraic branching program
of constant width

}

VsSCi =







f = (fn)n≥0 |
fn can be computed by an arithmetic circuit of
polynomial size and polynomial syntactic degree,
and width O(logi n).







VSCi =

{

f = (fn)n≥0 |
fn can be computed by a polynomial size circuit of
width O(logi n), and deg(fn) ≤ poly(n)

}

Figure 3 shows the known relationships among some of the classes defined above.

2.3 Syntactic Multilinear Circuits

We now define multilinear and syntactic multilinear circuits, following notation from [Raz04a].
We call a polynomial p multilinear, if for any monomial of p the individual degree of ev-
ery variable is bounded by one. Let C be an arithmetic circuit over the ring K, and let
X = {x1, . . . , xn} be its input variables. For a gate g in C, let pg ∈ K[X] be the polynomial
computed at g. Let Xg ⊆ X denote the set of variables that occur in the sub-circuit rooted
at g. C is called multilinear if for every gate g ∈ C, pg is a multilinear polynomial. C is said
to be syntactic multilinear if for every multiplication gate g = h × f in C, Xh ∩ Xf = ∅.

In the case of formulas, the notion of multilinearity and syntactic multilinearity are (non-
uniformly) equivalent ([RY08a]).

In the case of algebraic branching programs, the notion of syntactic multilinearity coin-
cides with the read-once property, where no variable appears more than once on any path.
(See [BRS93] for more about Boolean read once branching programs). Namely, we say an
algebraic branching program P is multilinear if for every node v in P , the polynomial pv

(sum of weights of all s-v paths ) is multilinear. Furthermore, P is defined to be syntactic
multilinear if in every path of the program (not just s-to-t paths), no variable appears more
than once; i.e. the algebraic branching program is syntactic read-once.

For any algebraic complexity class VC, we denote by m-VC and sm-VC respectively the
functions computed by multilinear and syntactic multilinear versions of VC.

In [RY08a] it is shown that the depth reduction of [VSBR83] preserves syntactic multi-
linearity; thus
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Proposition 2 ([RY08a]) Any function computed by a syntactic multilinear polynomial
size polynomial degree arithmetic circuit is in sm-VSAC1.

3 Depth Reduction in Small Width sm-Circuits

This entire section is devoted to a proof of Theorem 3 below, which says that a circuit width
bound can be translated to a circuit depth bound, provided the given small-width circuit is
syntactic multilinear.

Theorem 3 Let C be a syntactic multilinear arithmetic circuit of depth l and width w and
syntactic degree d, with X = {x1, . . . , xn} as the input variables, and constants from the
ring K. Then, there is a syntactic multilinear circuit E of depth O(w2 log l + log d) and size
O(2w2

l25w2

+ 4lwd) computing the same polynomial as C.

An immediate corollary is,

Corollary 4 sm-VsSC0 ⊆ sm-VNC1.

It can also be seen that if we apply Theorem 3 to a syntactic multilinear arithmetic circuit of
poly-logarithmic width and quasi-polynomial size and degree, then we get a poly-logarithmic
depth circuit of quasi-polynomial size. Thus

Corollary 5

sm-Size, Width, Deg(2poly(log), poly(log), 2poly(log))

⊆ sm-Size, Width, Depth(2poly(log), poly, poly(log))

where sm-Size, Width, Deg(s, w, d) is the class of polynomials computable by syntactic multi-
linear circuit of size s, width w and depth d.

We first give a brief outline of the technique used. We actually show something stronger:
not only can we evaluate the polynomials computed at the output level, but also, if we express
these polynomials as polynomials exclusively in the variables at the lowest level, then we can
evaluate all coefficients of the new polynomials in small depth. Note that the coefficients
may not be ring elements but are themselves polynomials in the remaining variables.

To show this stronger claim, we cut the circuit C at length ⌈ l
2
⌉, to obtain circuits A (the

upper part) and B (the lower part). Let M = {g1, . . . , gw} be the gates of C at level ⌈ l
2
⌉. A

is obtained from C by replacing the gates in M by a set Z = {z1, . . . , zw} of new variables.
Each gate g of A (or B) represents a polynomial pg ∈ K[X,Z], and can also be viewed as
a polynomial in K[Z], where K = K[X]. Since A and B are circuits of length bounded by
⌈ l

2
⌉, we use induction on each of them. Now we need additional circuitry to patch together

the coefficients so computed and obtain the coefficients corresponding to C. See Figure 4.
For this approach to work, we need to eliminate constants, since they may violate syntac-

tic multilinearity if replaced by variables at the slice layer. We say that a gate syntactically
computes a constant if each leaf descendant of the gate is labelled by a constant. Without
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⌉
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h1 hw. . .
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A pf as polynomials in K[Z]

Coefficients [pf , S] of

Figure 4: Breaking up circuit C into A and B
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loss of generality, we can assume that in the circuit C, no gate syntactically computes a
constant. If there is such a gate, simply replace it by a leaf with the computed constant.
This is a non-uniform step. Alternatively, to preserve uniformity, identify the gates that
syntactically compute constants, label all outgoing wires of these gates by new variables
from a set Y , and proceed with this new circuit. It is easy to see that the new circuit is
syntactic multilinear in X ∪ Y .

To simplify the following construction, we explicitly relabel each leaf labeled by a constant
with a new variable from a set Y .

We now show, in Lemma 6, how to achieve depth reduction for syntactic multilinear
bounded width circuits which have no constants. This completes the proof of Theorem 3 as
well; all we need to do is to explicitly plug in the constants corresponding to the variables
in Y

Lemma 6 Let C ′ be a width w, length l syntactic multilinear arithmetic circuit with leaves
labeled from X ∪ Y (no constants). Then there is an equivalent syntactic multilinear arith-
metic formula C ′′ of size O(2w2

l25w2

) and depth O(w2 log l) which computes the same poly-
nomial as C ′.

To establish lemma 6, we use the intuitive idea sketched earlier; slice the circuit horizon-
tally, introduce dummy variables along the slice, and proceed inductively on each part. Now
the top part has three types of variables: circuit inputs X, variables representing constants
Y , and variables along the slice Z. The variables Z appear only at the lowest level of the
upper half of the circuit. Note that this circuit for the top part is syntactic multilinear in Z
as well.

To complete an inductive proof for Lemma 6, we need to show depth-reduction for such
circuits. We use Lemma 7 below, which tells us that viewing each gate as computing a poly-
nomial in Z, with coefficients from K = K[X,Y ], there are small-depth circuits representing
each of the coefficients. We then combine these circuits to evaluate the original circuit.

More formally, let D be a width w, depth l, syntactic multilinear circuit, with all leaves
labeled from X ∪ Y ∪ Z (no constants), where variables from Z = {z1, . . . zw} appear only
at the lowest level of the circuit. Let h1, . . . , hw be the set of output gates of D i.e. gates at
level l. Let phi

∈ K[X,Y, Z] denote the multilinear polynomial computed at hi. Note that
phi

can also be viewed as a polynomial in K[Z], i.e. a multilinear polynomial with variables
from Z and polynomials from K[X,Y ] as its coefficients; we use this viewpoint below. For
T ⊆ {1, . . . , w}, let [phi

, T ] ∈ K[X,Y ] denote the coefficient of the monomial mT =
∏

j∈T zj

in phi
. The following lemma tells us how to evaluate these coefficients [phi

, T ].

Lemma 7 With circuit D as above, ∀h ∈ {h1, . . . , hw} and T ⊆ {1, . . . , w}, there is a
bounded fan-in syntactic multilinear arithmetic formula Dh,T of size bounded by 2w2

l25w2

and
depth O(w2 log l), with leaves labeled from X ∪ Y ∪ {0, 1}, such that the value computed at
its output gate is exactly the coefficient [ph, T ].

Proof: We proceed by induction on the depth l of the circuit.
Basis : l = 1. Different possibilities are as follows.
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h = zizj: [ph, T ] = 1 for T = {i, j} and 0 otherwise.
h = azi: [ph, T ] = a for T = {i} and 0 otherwise.

h = a: [ph, T ] = a for T = ∅ and 0 otherwise.
h = zi + zj: [ph, T ] = 1 for T = {i} or T = {j} and 0 otherwise.
h = a + zi: [ph, ∅] = a, [ph, {i}] = 1, and [ph, T ] = 0 otherwise.

Where a ∈ X ∪ Y ∪ K.
Hypothesis: Assume that the lemma holds for all circuits D′ of depth l′ < l and width

w.
Induction Step: Let D be the given circuit of depth l, syntactic multilinear in X ∪Y ∪Z,

where variables from Z appear only at the lowest level of D. Let {h1, . . . , hw} be the output
gates of D. Let {g1, . . . , gw} be the gates of D at level l′ = ⌈ l

2
⌉. Denote by A the circuit

resulting from replacing gates gi with new variables z′i for 1 ≤ i ≤ w, and removing all the
gates below level l′, and denote by B the circuit with {g1, . . . , gw} as output gates, i.e.
gates above the gi’s are removed. We rename the output gates of A as {f1, . . . , fw}. Let
Z ′ = {z′1, . . . , z

′
w}. Both A and B are syntactic multilinear circuits of depth bounded by l′

and width w, and of a form where the inductive hypothesis is applicable. For i ∈ {1, . . . , w},
pfi

is a polynomial in K[Z ′] and pgi
is a polynomial in K[Z], where K = K[X,Y ].

Applying induction on A and B, for all S,Q ⊆ {1, . . . , w}, [pfi
, S] and [pgi

, Q] have
syntactic multilinear arithmetic circuits Afi,S and Bgi,Q respectively of size 2w2

(⌈l/2⌉)25w2

and
depth w2 log(⌈l/2⌉). Note that phi

(Z) = pfi
(pg1

(Z), . . . , pgw
(Z)). But due to multilinearity,

pfi
(Z ′) =

∑

S⊆[w]

(

[pfi
, S]
∏

s∈S

z′s

)

pgj
(Z) =

∑

Q⊆[w]

(

[pgj
, Q]

∏

q∈Q

zq

)

Using this expression for pfi
in the formulation for phi

, we have

phi
(Z) =

∑

S⊆[w]

(

[pfi
, S]
∏

s∈S

pgs
(Z)

)

Hence, we can extract coefficients of phi
as follows. For any T ⊆ [w], the coefficient of the

monomial mT in phi
is given by

[phi
, T ] =

∑

S⊆[w]

[pfi
, S]
(

coefficient of mT in
∏

s∈S pgs
(Z)

)

If S has t elements, then the monomial mT is built up in t disjoint parts (not necessarily non-
empty), where the kth part is contributed by the kth polynomial pg in the above expression.
So the coefficient of mT is the product of the corresponding coefficients. Hence

[phi
, T ] =

∑

S={s1,...,st}⊆[w]















[pfi
, S]

∑

Q1, . . . , Qt :
partition of T

t
∏

k=1

[pgsk
, Qk]















(1)
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We use this expression to compute [phi
, T ]. We first compute [pfi

, S] and [pgj
, Q] for

all i, j ∈ [w] and all S,Q ⊆ [w] using the inductively constructed sub-circuits. Then a
circuit on top of these does the required combination. Since the number of partitions of T is
bounded by ww, while the number of sets S is 2w, this additional circuitry has size at most
w22www ≤ 2w2

(for w ≥ 2 ) and depth w log w + w + log w = O(w2).

Preserving Syntactic Multilinearity: Clearly, the circuit obtained above need not be
syntactic multilinear. To achieve this, we do the following modifications:

• Unwind the expression for each [phi
, T ] into a formula, by creating necessary copies of

[pfi
, S] and [pgj

, Q] for all S, T,Q ⊆ {1, . . . , w}.

• Consider a term [pfi
, S][pg1

, Q1] · · · [pgt
, Qt] which violates syntactic multilinearity. There

are two cases:

– For some a 6= b, [pga
, Qa] and [pgb

, Qb] share a variable. If the corresponding term
[pfi

, S][pg1
, Q1] · · · [pgt

, Qt] does not have any contribution to [phi
, T ], otherwise the

original syntactic multilinear circuit C will have a ×-gate v such that the gates ga

and gb are reachable via two differant input gates of v, hence violating the syntactic
multilinearity property. So this particular term [pfi

, S][pg1
, Q1] · · · [pgt

, Qt] can be
replaced by 0 without changing the output.

– For some a ∈ S, sub-formulas [pga
, Qa] and [pfi

, S] share a variable, say x. At least
one of the polynomials [pga

, Qa] and [pfi
, S] does not depend on x, since otherwise

there is a gate v reachable from ga in C violating the assumption of syntactic
multilinearity of C. Now replace x with 0 in the corresponding sub-formula that
does not depend on x.

Note that in the above process, we need to unwind the resulting circuit into a formula.
By equation 1 we need to make at most 2w2

copies of each [pgk
, Qk] for k ∈ [w]. Hence, the

size of the resulting formula will blow up by a factor of 2w2w2w2

≤ 22w2

at every induction
step.

Let s(l, w) and d(l, w) denote the size and depth of the new circuit Dph,T . Then from the
construction above, we have the recurrences

s(l, w) ≤ 22w2

s(l′, w) + 2w2

≤ 23w2

s(⌈l/2⌉, w)

d(l, w) ≤ d(⌈l/2⌉, w) + O(w2)

Note that l′ = ⌈l/2⌉ satisfies l′ ≤ 3l/4. Suppose that by induction, s(l′, w) ≤ 2w2

(l′)cw2

for
some constant c to be chosen later. So

s(l, w) ≤ 23w2

2w2

(l′)cw2

≤ 24w2

(3l/4)cw2

= 2w2

lcw
2
[

23w2

(3/4)cw2
]

≤ 2w2

lcw
2

where the last inequality holds whenever 8(3/4)c ≤ 1, say c ≥ 25.
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Similarly, solving the recurrence for d(l, w) gives d(l, w) = O(w2 log l).

Proof:[of lemma 6] We first relabel all the nodes at the lowest level by new variables
z1, . . . , zw. Then, applying Lemma 7, we obtain circuits for [pg, T ], where g is an out-
put gate of C ′ and T ⊆ {1, . . . , w}. Now, to compute pg, we sum over all T the values
[pg, T ] ×

∏

j∈T val(zj), where val(zj) denotes the original variable for which zj was substi-
tuted. This adds O(w) to the overall depth of the circuit, thus resulting an overall depth of
O((w + w2 log l)) = O(w2 log l). The resulting circuit size is bounded by O(s2w), where s is
an upper bound on the size of the circuits constructed in Lemma 7, and hence is bounded
by O(2w2

l25w2

)

Remark 8 If the constant-width circuit C we start with is multilinear but not syntactic
multilinear, then the circuits A as in Lemma 7 need not be multilinear in the slice variables
Z. This is the place where the above construction crucially uses syntactic multilinearity, and
does not generalize to multilinear circuits. See Figure 5 for an example.

4 Making a Circuit Skew

The purpose of this section is to give a direct simulation of width bounded syntactic multi-
linear circuits by syntactic multilinear ABPs, yielding the following theorem.

Theorem 9 sm-VsSC0 ⊆ sm-VBWBP

As sm-VBWBP ⊆ sm-VsSC0 is trivially true, this, along with Theorem 3 from the previous
section, gives the following relations:

Theorem 10 sm-VBWBP = sm-VsSC0 ⊆ sm-VNC1.

To establish Theorem 9, we proceed as follows. If we use the standard series-parallel
construction on a circuit which is not a formula, the size of the resulting ABP can blow
up exponentially in the depth of the original circuit (irrespective of its width). But in the
case of a syntactic multilinear circuit, one can assume by Proposition 11 that the circuit is
multiplicatively disjoint (we will define this soon). Along with this, if we have a width bound
of w then for every multiplication gate, one of its sub-circuits is of width at most w− 1. We
exploit this fact to give, in Theorem 16, a simulation of constant width syntactic multilinear
circuits by syntactic multilinear ABPs of constant width, with only a polynomial blow up
in the size. Thereom 9 thus follows from Proposition 11 and Theorem 16. As a warm-up to
establishing Theorem 16, we first show in Theorem 12 such a depth-reducing simulation for
weakly-skew syntactically multilinear circuits of small width.

The rest of this section is organized as follows: Section 4.1 introduces the notion of multi-
plicatively disjoint circuits and weakly skew circuits. In section 4.2, we give a width efficient
simulation of weakly skew circuits by ABPs. Section 4.3 gives width efficient simulation of
MD circuits by ABPs which preserves syntactic multilinearity.
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Figure 5: A is not multilinear in the slice variable z2.

14



4.1 Multiplicatively Disjointness and Weakly Skewness

Multiplicatively Disjoint Circuits: Let C be an arithmetic circuit. C is said to be
multiplicatively disjoint (MD for short) if every multiplication gate in C operates on disjoint
sub-circuits. i.e. if f = g × h is a gate in C, then the sub-circuits rooted at g and h do
not share any node (except the input nodes) between them (see [MP08]). We denote the
multiplicatively disjoint restriction of a class by the prefix md-. e.g. md-VSCi denotes the class
of family of polynomials computed by polynomial size multiplicatively disjoint arithmetic
circuits of width O(logi n). It is not hard to see that syntactic degree of a multiplicatively
disjoint circuit is bounded by its size, hence we have md-VsSCi = md-VSCi.

An arithmetic circuit that computes polynomials of polynomial degree can be converted
into an equivalent MD-circuit without significant blow up in size ([MP08]). Thus the three
restrictions of MD, small syntactic degree and small degree of the output polynomial all
coincide at polynomial size and hence are equal to the class VP. However, when the width
of the circuit is bounded by poly(log), all these restrictions are seemingly different, with MD
circuits being the weakest among them, i.e. md-VsSCi = md-VSCi ⊆ VsSCi ⊆ VSCi.

A multiplicatively disjoint circuit need not be syntactic multilinear. On the other hand,
a syntactic multilinear circuit is already almost multiplicatively disjoint. At any × gate
f = g × h, no variable can appear under both g and h, and so the sub-circuits under g
and h can only share constants. As long as the constants are inputs, this does not violate
multiplicative disjointness. If a shared constant appears internally, then some gate must be
syntactically computing the constant. However, this is redundant in a non-uniform setting.
Consider any syntactic multilinear circuit C. Replace all the gates in C that syntactically
compute constants (that is, they are reachable only from leaves labeled by values from
K) by the values they represent, to obtain a circuit C ′. Now, it is easy to see that C ′

is multiplicatively disjoint and syntactic multilinear, and computes the same polynomial.
Thus we can assume without loss of generality that a syntactic multilinear circuit is also
multiplicatively disjoint. In particular, we have

Proposition 11 sm-VsSC0 ⊆ md-sm-VsSC0.

Also, note that if the circuit C is multilinear but not syntactic multilinear, then C ′ will not
be multiplicatively disjoint.

Weakly Skew Circuits: An arithmetic circuit C is said to be weakly skew if for every
multiplication gate f = g × h in C, either the edge (g, f) or the edge (h, f) is a bridge 1 in
the underlying graph. By definition, weakly skew arithmetic circuits are also multiplicatively
disjoint. We denote this restriction on a class by the prefix weaklyskew-.

In [Tod92], Toda has shown that weakly skew circuits have equivalent skew circuits, i.e.
weaklyskew-VP = VBP. Jansen, in [Jan08] extended this result and showed that weakly
skew circuits are equivalent to skew circuits in the syntactic multilinear world too, i.e.

1 A bridge in a circuit is an edge by removing which the underlying undericted graph becomes discon-
nected.
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sm-weaklyskew-VP = sm-VBP. However, the simulation in [Jan08] is not width efficient. In
the next section, we present a width efficient version of the simulation in [Jan08].

4.2 Weakly Skew to Skew

In this section we give a simulation of weakly skew syntactic multilinear constant width
arithmetic circuits by syntactic multilinear ABPs of constant width. This construction serves
as a simpler case of the simulation given in the next section. We include it here since we
achieve a slightly better size bound, which allows us to translate the result to higher width
(see Corollary 15).

We briefly outline the overall idea: Essentially, we do the series-parallel construction.
Let C be the given weakly skew circuit of width w. All the + gates in C are left untouched.
For a multiplication gate f = g × h, let Ch, the sub-circuit rooted at h, be not connected
to rest of the circuit. If width(Ch) ≤ w − 1, then we are in good shape, since by placing the
ABP [h] (available by induction on the structure of C) in series with (and after) [g] (again
available by induction) we can obtain a width bound of O(w2). If width(Ch) = w, then we
have width(Cg) ≤ w − 1. In this case, we make a copy of [g] and place it in series with (and
after) [h] and again can obtain a width bound of O(w2), but the size can blow up. Using a
careful analysis we argue that size of the new ABP can be bounded by O(2ws), where s is
the size of C. Now we state the main theorem:

Theorem 12 Bounded-width weakly skew circuits can be made skew.

weaklyskew-VsSC0 = VBWBP.

weaklyskew-sm-VsSC0 = sm-VBWBP.

Proof: We use the following normal form for circuits:

Lemma 13 Let C be an arithmetic circuit of width w and size s. Then there is an equivalent
arithmetic circuit C ′ of width O(w) and size poly(s) such that fan-in and fan-out of every
gate is bounded by two, and every layer has at most one × gate. Moreover, C ′ preserves any
of the properties of syntactic multilinearity, weakly skewness and multiplicatively disjointness.

Proof: Let k be a bound on maximum fan-in and fan-out of C. First we can reduce the
fan-in to two by staggering the circuit and keeping copies of the gates as and when needed.
This blows up the width to 2w and size to wks. Now in a similar manner we can ensure that
the fan-out of a gate is bounded by two and the size blow up will now be w2k2s and width
will be 4w. To ensure the second condition we need to push the gates (using staggering and
dummy + gates) up by at most 4w levels, thus making the total width 8w and size 2w2k2s.
Since k ≤ w + n and w ≤ s we have size bounded by poly(s, n).

We need some more definitions and notations. For an ABP B of depth d with a single
source s, we say B is endowed with a mainline, if there exist nodes v1, v2, . . . , vd−1 reachable
only along the path s, v1, v2, . . . , vd−1, and if the labels on this path are all set to the field
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(a) A BP with a mainline

(b) Piping two mainlines

s

v1

v2

vd−1

...

Figure 6: BPs with mainlines

constant 1. See Figure 6(a). For ABPs B1 and B2, piping the mainline of B1 into the
mainline of B2 is the operation of removing the edge from the source of B2 to the first node
v of the mainline of B2, and adding an edge from the last node w of the mainline of B1 to
v. See Figure 6(b).

The following lemma now gives the theorem 12:

Lemma 14 Let C be a weakly skew arithmetic circuit of width w > 1 and size s > 1 in the
normal form as given by Lemma 13. Let f1, . . . , fw be the output gates of C. Then there is
an equivalent ABP [C] of width w2 + 1, depth 2ws and size (w2 + 1)2ws. [C] has a single
start node b and terminal nodes [f1], . . . , [fw], v and will be endowed with a mainline ending
in v. Moreover, if C is syntactically multilinear then so is [C].

Proof: We proceed by induction on s+w. If s = 2, the lemma holds trivially. If w = 2, then
C is a skew-circuit and can be seen as an ABP of width 3 (We also need to add a mainline;
hence, width is 3).

Let s > 2 and w > 2 be given, and assume that C has at least 2 layers. By the induction
hypothesis, the lemma holds for all circuits of size s′ and w′, where either s′ < s and w′ ≤ w
or s′ ≤ s and w′ < w.

Without loss of generality, assume that f1 is a × gate and f2, . . . , fw are + gates. Let
C ′ be the circuit obtained by removing the output gates of C. Let g1, . . . , gw be the output
gates of C ′. Assume that (without loss of generality) f1 = g1 × g2, and also that the edge
(g1, f1) is a bridge in the circuit. We define the sub-circuits D and E of C ′ as follows: D
is obtained from C ′ by deleting the sub-circuit rooted at g1, E is the sub-circuit rooted at
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g1. See Figure 7(a). Let s′ = size(C ′), w′ = width(C ′), sJ = size(J) and wJ = width(J) for
J ∈ {D,E}. Note that s = s′ + w, and sJ < s for J ∈ {D,E}.

By the induction hypothesis, we have branching programs [D] and [E], both endowed
with a mainline. Let [g1], v

′ denote the output of [E] and [g2], . . . , [gw], v′′ denote the output
nodes of [D], where v′ and v′′ are the last nodes on the mainlines. Let [F ] be the subprogram
of [D], which consists of all paths from the source of [D] to [g2] and v′′. Construct the program
[C] with output nodes [f1], . . . , [fw], v as follows:
case 1: wE ≤ w − 1.

We compose the ABPs [D] followed by [E] as described below. (See Figure 7(b).)

1. For i, j ≥ 2, [gj] has an edge to [fi] if and only if gj is an input to fi.

2. For input gates fi, draw an edge from v′′ to [fi] with the appropriate label.

3. Identify [g2] with the start node of [E] and relabel the output node of [E] as [f1]. Pipe
the mainline of [D] into the mainline of [E].

4. Stagger the nodes [f2], . . . , [fw] until the last level of the new program.

Size and width analysis: By the induction hypothesis, we have

width([E]) ≤ (wE)2 + 1 ≤ (w − 1)2 + 1

width([D]) ≤ w2 + 1

length([E]) ≤ 2w−1size(E)

length([D]) ≤ 2wsize(D)

Hence width([C]) = max{width([D]), width([E]) + w − 1} ≤ w2 + 1 and

length([C]) = length([D]) + length([E)]

≤ 2wDsD + 2wEsE

≤ 2wsD + 2w−1sE ≤ 2ws (as s = sD + sE + w).

case 2: wE = w, and hence wF ≤ w − 1 and wD ≤ w − 1.
We compose ABPs [E], [F ] and [D] as follows. (See Figure 7(c).)

1. Identify [g1] with the source of [F ], and pipe the mainline of [E] into the mainline of
[F ].

2. Add an edge from v′ (last node of mainline of [F ]) to the source of [D],

3. Pipe the mainline of [F ] into the mainline of [D].

4. Alongside [D] stagger the output of [F ] (which now equals [f1]).
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(a) The weakly−skew circuit

(b) Case 1: width(E) < width(C)

[D]

[E]

DE

[D]

[F]

(c) Case 2: width(E) = width(C)

[E]

[F]

[fw][f1] [f2]

g1

fw(+)f1(×)f2(+)

[fw][f1] [f2]

[g1]

[g2] [gw]

[g1]

gwg2

[g2] [gw]

Figure 7: Weakly skew circuits to skew circuits
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5. For i, j ≥ 2, [gj] has an edge to [fi] if and only if gj is an input to fi.

6. Finally, for input gates fi, draw an edge (v′′, [fi]) with the appropriate label.

Size and width analysis: By induction hypothesis,

width([E]) ≤ w2 + 1

width([D]) ≤ (w − 1)2 + 1

width([F ]) ≤ (w − 1)2 + 1

Observe that

width([C]) ≤ max(width([E]), width([F ]), width([D]) + 1)

≤ w2 + 1

Further, length([C]) = length([E]) + length([F ]) + length([D]) + 1

≤ 2wsE + 2w−1sF + 2w−1sD + 1

≤ 2w(sD + sE) + 1 ≤ 2ws.

Since the size of a layered ABP is length×width, we have the required size bound. If C was
syntactic multilinear to start with, then it is easy to see that so is [C].

This completes the proof of Theorem 12.

By the parameters in the Lemma 14, it is not hard to see that if we start with a syntactic
multilinear weakly skew circuit of width O(log n), we get a syntactic multilinear ABP of
width O(log2 n), i.e.

Corollary 15 weaklyskew-sm-VsSC1 ⊆ sm-VBP[width = log2 n].

4.3 Multiplicatively Disjoint to Skew

We extend the simulation in Lemma 14, and hence Theorem 12, to multiplicatively disjoint
circuits.

Theorem 16 Bounded-width multiplicatively disjoint circuits can be made skew.

md-VsSC0 = VBWBP.

md-sm-VsSC0 = sm-VBWBP.

The theorem follows directly from the lemma stated below. The idea is same as that used
in Lemma 14, but with a weaker bound on the size of the resulting ABP: O(sw) instead of
O(2ws).
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Lemma 17 C be a multiplicatively disjoint arithmetic circuit of width w and size s in the
normal form as given by Lemma 13. Let f1, . . . , fw be the output gates of C. Then there
exists an equivalent arithmetic branching program [C] of width O(w2), length O(sw), and size
O(w2sw). [C] has a single start node b and terminal nodes [f1], . . . , [fw], v, and is endowed
with a mainline ending in v. Moreover, if C is syntactic multilinear, then so is [C].

Proof: We proceed by induction on s + w. If s = 2, the lemma holds trivially. If w = 2, C
is a weakly skew circuit, and hence can be seen as a BP of width 5.

Let s > 2 and w > 2 be given, and assume that C has at least 2 layers. Suppose, by
induction hypothesis that the lemma holds for all circuits of size s′ and w′, where either
s′ < s and w′ ≤ w or s′ ≤ s and w′ < w.

Let C ′ be the sub-circuit obtained by deleting f1, . . . , fw. Let G = {g1, . . . , gw} be the
output gates of C ′. Without loss of generality, let f1 = g1 × g2 be the only multiplication
gate at the output layer of C. Let D denote the sub-circuit rooted at g1 and E be the sub-
circuit rooted at g2. Since C is multiplicatively disjoint, we have either width(D) ≤ w− 1 or
width(E) ≤ w − 1. Without loss of generality, assume that width(D) ≤ w − 1.

Let s′ = size(C ′), sD = size(D), w′ = width(C ′), and wD = width(D). By induction
hypothesis, we obtain ABPs [C ′] and [D]. [C ′] has w+1 output nodes, namely [g1], . . . , [gw], v.
[D] has two output nodes [g′

1] and v′.
Now construct the ABP [C] with output nodes [f1], . . . , [fw], v by composing [C ′] followed

by [D] as follows: For all i ≥ 2, connect [gj]s to [fi]s according to the edges in the circuit
C, i.e edge ([gj], [fi]) is in [C] if and only if gj is an input for fi. In case fi is an input gate,
draw an appropriately labeled edge from v. Put an edge from [g2] to [f1]. Now identify the
start node of [D] with [f1] and re-label the terminal node of [D] as [f1]. Do the necessary
staggerings to carry on the values f2, . . . , fw to the last layer. We also pipe the mainline of
[C ′] into the mainline of [D].

Analysis: As s′ = s − w and w′ ≤ w, using the induction hypothesis we have

length([C ′]) ≤ s′w
′

≤ (s − w)w.

Furthermore, as sD ≤ s − w and wD ≤ w − 1, we have

width([C ′]) ≤ w′2 + 1 ≤ w2 + 1

length([D]) ≤ swD

D ≤ (s − w)w−1

width([D]) ≤ (w − 1)2 + 1

Now, by the construction,

width([C]) = max{width([C ′]), width([D]) + w − 1}

≤ max{w2 + 1, (w − 1)2 + w − 1} ≤ w2 + 1

Also,

length([C]) = length([C ′]) + length([D])

≤ (s − w)w + (s − w)w−1 ≤ sw
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Figure 8: Multiplicatively disjoint to skew

for w > 2 and w < s. Thus, size([C]) = (w2 + 1)sw. It is easy to see that this construction
preserves the syntactic multilinearity property.

Note that Lemma 17 works for all multiplicatively disjoint circuits. Consequently, the
class md-VSC0 becomes the “largest” fragment of VsSC0 known to us, that is still equivalent
to VNC1 = VBWBP. Recall that md-VsSC0 = md-VSC0. We summarize the situation as
follows:

Corollary 18 weaklyskew-VSC0 = md-VSC0 = VNC1 = VBWBP

Remark 19 The simulation in the case of weakly skew circuits from Lemma 14 does carry
over to multilinear circuits. However as a multilinear circuit need not be multiplicatively
disjoint (see Section 4.1), Lemma 17 does not work for multilinear circuits which are not
syntactic multilinear.

5 An Overview of Syntactic Multilinear Classes

Now we turn our attention to the overall picture of the algebraic classes around VNC1 in
the syntactic multilinear world. In other words, we attempt to redraw the Figure 3 when all
the classes are restricted to be syntactic multilinear. We consider and compare the classes
sm-VPe, sm-VNC1, sm-VsSC0, sm-VBWBP, and sm-VrGP.

A classical result from [Bre73] shows that for every arithmetic formula F of size s, there
is an equivalent arithmetic formula F ′ which has depth O(log s) and size poly(s). A careful
observation of this proof shows that if we start with a syntactic multilinear formula F , then
the depth-reduced formula F ′ is also syntactic multilinear.
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Theorem 20 Every syntactic multilinear formula with n leaves has an equivalent syntactic
multilinear circuit of depth O(log n) and size O(n).
In particular, sm-VPe ⊆ sm-VNC1.

Proof: By simultaneous induction on the number of leaves in the formula, we can prove
the following statements. This is exactly the construction of [Bre73], analyzed carefully for
syntactic multilinearity. For a formula F , let |F | denote the number of leaves in F . We
inductively argue the following statements:

(i) If F is a syntactic multilinear formula with n leaves, then there is an equivalent syn-
tactic multilinear circuit F ′ of depth ⌈4 log n⌉ and size 2n.

(ii) If x is any leaf in F , then we can express F as F ′ = Ax + B, where A,B are syntactic
multilinear circuits that do not depend on x and are of depth ⌈4 log |A|⌉ and ⌈4 log |B|⌉
respectively.

In the base case, there is either a single variable or a constant, and the claim holds
trivially.

Let X be a tree separator2 for F , with children L,R, so that X = L op R. Replace
the whole subtree under X by a new variable x. By inductive statement (ii), we have
F ′ = Ax + B where A,B are as above ( i.e. they are both syntactic multilinear and do
not depend on X). Also by inductive statement (i), we have syntactic multilinear formulas
L′, R′ equivalent to L,R of small depth. Thus we have F ′ = A × (L′ op R′) + B. Since A
does not depend on any variable below X, F ′ is syntactic multilinear. Now, depth(F ′) =
max{depth(A) + 2, depth(L′) + 3, depth(R′) + 3, depth(B) + 1} ≤ ⌈4 log n⌉.

To prove the second half of the statement above, let x be any leaf in F . Now find a tree
separator X = L op R such that the subtree at one of its children, say L, contains x as a
leaf and is of size < n/2. Then, by inductive statement (ii) applied to L, L′ = Ax + B,
where A,B are independent of x, syntactic multilinear and of small depth. Now replace the
subtree at X by a new variable y. Applying inductive statement (ii), we have F ′ = Cy + D,
where C,D are syntactic multilinear small depth formulas which do not depend on y ( i.e.
L op R). Applying inductive statement (i) to R, we have an equivalent small-depth R′.

Case 1: op = +. Then F ′ = C((Ax + B) + R′) + D = CAx + (CB + CR′ + D). This is
again syntactic multilinear since C does not depend on y, i.e. Ax + B + R.

Case 2: op = ×. Then F ′ = C(Ax + B)R′ + D = CAR′x + (CBR′ + D). Here again F ′

is syntactic multilinear since C does not depend on A,B,R′, and also because A and
B do not share any variables with R′.

Since we are constructing a circuit and not a formula, we don’t need to replicate the circuits
for C and R′. For details about the size/depth, see the analysis in [Bre73].

It is easy to see that the path-preserving simulation of a constant width branching pro-
gram by a log depth circuit preserves syntactic multilinearity:

2 A tree separator of F is a gate X in F so that the sub formulas FX and F \ FX are of size at most
3/4|F |), where FX is the sub-formula rooted at X and |F | is the number of leaves in F .
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Lemma 21 For any syntactic multilinear branching program P of width w and size s over
ring K, there is an equivalent syntactic multilinear circuit C of depth O(log s) and size O(s)
with fan-in of + gate bounded by w (or alternatively, depth O(log w log s) and bounded fan-
in).
In particular, sm-VBWBP ⊆ sm-VNC1 and sm-VBP ⊆ sm-VSAC1.

Proof: Let l be the length of P (s = lw), and let ps,t denote the weighted sum of the directed
paths between nodes s and t. Let v1, . . . vw denote the nodes at the level l′ = ⌈l/2⌉ of P .
Then ps,t =

∑w
i=1 ps,vi

× pvi,t. Thus the depth and size of the inductively constructed circuit
satisfy the recurrences d(l) = 2 + d(l′) and s(l) = (3w)s(l′), giving the desired bounds. It is
clear that the circuit so constructed is syntactic multilinear; if it were not, the offending ×
gate would pinpoint a path in P that reads some variable twice.

It is also straightforward to see that the construction of [IZ94], staggering a small-depth
formula into a small-width one, preserves syntactic multilinearity. Thus

Lemma 22 Let Φ be any sm-formula with depth d and size s. Then there is an equivalent
syntactic multilinear formula Φ′ of length 2s and width d.
In particular, sm-VNC1 ⊆ sm-VLWF.

Proof: For completeness we give a detailed proof here. The construction is by induction on
the structure of the formula Φ. The base case is when Φ is a single variable or a constant,
in which case the lemma holds trivially.

Suppose the lemma holds for any formula of depth at most d − 1. Consider the root
gate f of a formula Φ of depth d. Suppose f =

∑k
i=1 gi (respectively f =

∏k
i=1 gi). As the

depth of each formula gi is bounded by d − 1, by induction we have formulas g′
i of width

d − 1 and length bounded by si (the size of gi), computing the same function as gis. Place
the node corresponding to f with two children. At one child, place the formula g′

1; at the
other, place a series of no-op ( i.e. ×1 or +0 ) gates till the last level of g′

1. Then give
the last no-op gate two children, place g′

2 at one child, and so on. The width of the new
formula Φ′ thus obtained is bounded by maxi width(g′

i) + 1, and its length is bounded by
∑

i length(g′
i)+1 ≤

∑

i si +1 ≤ s. Note that in this process, for any gate g in Φ the variables
it operates on are not changed in the new formula Φ′, that is, the only new gates which are
introduced in Φ′ are the no-op gates which are used for staggering, which only multiply by
the constant 1. Thus if Φ is syntactic multilinear then so is Φ.

From Lemma 22 and Theorem 20, we have the following equivalence.

Corollary 23 Over any ring K,
sm-VPe = sm-VLWF= sm-VNC1 = sm-Formula-Depth,Size(log, poly).

In [AAB+99] a characterisation for bounded depth arithmetic circuits in terms of counting
number of paths in a restricted version of bounded width grid graphs is presented. We note
that the characterisation given in [AAB+99] works for bounded depth arithmetic circuits
over arbitrary rings, showing that VBWrGP = VAC0. By closely examining the parameters
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in [AAB+99], we obtain a characterisation for VNC1 in terms of the restricted version of log
width grid branching programs. We also note that these constructions preserve syntactic
multilinearity. In the statement and proof below, we use the notion of alternation-depth:
a circuit C of unbounded fan-in has alternation depth a if on every leaf-to-root path, the
number of maximal segments of gates of the same type is at most a. Also, for an rGP (and
in fact any branching program) P , we denote by Var(P ) the set of variables that appear on
some s-to-t path in P . For a formula F , Var(F ) denotes the variables appearing anywhere
in the formula F ; if h is the root of F , then without loss of generality Var(F ) = Xh.

Lemma 24 Let Φ be an unbounded fan-in arithmetic formula of size s ( i.e. number of
wires) and alternation-depth 2d over K and with input variables X ∈ K

n. Then there is
a restricted grid program P of length s2 + 2s ( i.e. the number of edge layers) and width
max{2, 2d}, where the edges are labelled from Var(Φ) ∪ K, such that the weighted sum of
s-to-t paths in P is equal to the function computed by Φ.
Further, if Φ is syntactic multilinear, then so is P .

Proof: The construction here is exactly the same as in [AAB+99]; it is included here
for completeness in arguing, over more general parameters, that syntactic multilinearity
is preserved. Without loss of generality, assume that the formula Φ is such that all nodes
in a particular layer represent the same type of gate and two successive layers have different
kind of gates. Also, assume that Φ is height balanced, i.e. any root to leaf path in Φ is of
length exactly 2d. Further assume that the root is a × gate. If these conditions do not hold,
then ensuring them will blow up the size of Φ to at most s2, and increase the depth by at
most 2. We assume that s and a are the size and alternation depth of a formula already in
this normal form.

We proceed by induction on the depth of the formula Φ. The base case is when d ≤ 1.
If the depth is 0, then Φ is either a variable or a constant in the underlying ring. In this
case the graph is G0,1(c) where Φ = c. If d = 1, then Φ is a product of linear factors, and a
suitable composition of G0,1(c) graphs and G0,2 represents it.

Suppose that for any (syntactic multilinear) formula F with alternation depth 2d′ < 2d
and size s′ (in the normal form described above), there is a (syntactic multilinear) restricted
grid program P of width 2d′ and length s′2 + 2s′, where P uses variables from Var(F ).

Now let Φ be a normal form formula with alternation depth 2d. Consider the root gate
g of Φ. Let g1, . . . , gk be the children of g, where gi =

∑ti
j=1 gij . Let sij and 2dij = 2d − 2

respectively denote the size and alternation depth of the sub-formula rooted at gij . Note
that s = k +

∑

i(ti +
∑

j sij). Applying induction on the sub-formula rooted at each gij ,
let Qij denote the resulting restricted grid program for the formula at gij . Now place the
Q′

ij
s (1 ≤ j ≤ ti) as in Figure 10 to get the program Pi, and connect the Pi’s as shown in

Figure 9 to get the desired program P . By the inductive hypothesis, length(Qij) ≤ s2
ij

+ 2sij

and width(Qij) ≤ 2dij . From the construction as above, we have length(Pi) = ti + 1 +
∑

j length(Qij) ≤ ti + 1 +
∑

j(s
2
ij

+ 2sij) and hence length(P ) = k − 1 +
∑

i length(Pi) ≤

k − 1 +
∑

i((ti + 1) +
∑

j(s
2
ij

+ 2sij)) ≤ s2 + 2s. Note that the construction in Figure 10
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Figure 9: Multiplication of rGP’s
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Figure 10: Addition of rGP’s

adds 2 to the width and the construction in Figure 9 does not change the width. Hence the
width of P is bounded by 2 maxi,j dij + 2 = 2d.

If Φ is syntactic multilinear, then the formulas rooted at gij are all syntactic multilinear,
and for i 6= i′, Var(gi)∩Var(gi′) = ∅. Thus, by the inductive hypothesis, the programs Qij are
syntactic multilinear, and only use variables from Var(gij), and hence the programs Pi (for
each i) only use variables from Var(gi). Thus for every i 6= i′, Var(Pi) ∩ Var(Pi′) = ∅. Since
each path in the final program goes through exactly one Qij for each i, it follows that P is
syntactic read-once.

We now establish the converse to Lemma 24. The proof of the converse as in [AAB+99] is
uniform and it produces a circuit rather than a formula. If we do not insist on uniformity of
the circuit, then we actually get a formula. Thus it can be shown that functions computed
by width 2w + 2, length l restricted grid programs can be computed (non uniformly) by
formulas of depth 2w + 2 and size O(l).

Lemma 25 Let P be an arithmetic rGP of length l (number of edge layers) and of width
2w + 2 with variables from X ∈ K. Then there exists an equivalent arithmetic formula
Φ over K, with alternation depth at most 2w + 2, size (number of wires) at most 2l, and
Var(Φ) = Var(P ).
Further, if P is syntactic multilinear, then so is Φ.

Proof: Again, this construction is the same as in [AAB+99]; it is presented here with the
induction unfolded to allow arguing, over more general parameters, that syntactic multilin-
earity is preserved.

For a program B, let f(B) denote the function computed by B. We proceed by induction
on w. The base case is when w = 0, i.e. we have a rGP P of width 2. Then f(P ) can
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be computed by a depth 2 formula with one × gate as root and a number of + gates as its
inputs, where the + gates get input from X ∪K. The total fan-in of the + gates is bounded
by the number of layers which contain the graph G0,1(c), for some c. The fan-in of the × gate
is one more than the number of layers which have the graph G0,2. (The layers having G0,0

do not contribute to the formula.) Thus the total number of wires is bounded by l + 1 ≤ 2l,
and depth is 2. If P is syntactic multilinear, no path reads the same variable twice, and
so the inner blocks separated by G0,2 have disjoint sets of variables. Hence the top × gate
operates on disjoint sets of variables.

Suppose that for any w′ < w the claim holds, i.e. for a (syntactic multilinear) rGP P ′

of width 2w′ + 2 and length l′, there is an equivalent (syntactic multilinear) formula Φ′ of
depth 2w′ + 2 and size 2l′ and using only variables from Var(P ′).

Now P is the given rGP of width 2w + 2, length l. Let P be composed as g1, . . . , gl. Let
i1 < i2 < . . . < im be the (uniquely defined) set of all indices where gi1 , . . . , gim are the graph
Gw,2w+2. Define i0 = 0, im+1 = l + 1.

For each 0 ≤ j ≤ m, let Pj denote the program gij+1, . . . , gij+1−1 sandwiched between the
jth and (j + 1)th incidence of Gw,2w+2.

The nodes sj and tj for each Pj are defined accordingly. Let lj denote the length of Pj;
then l = m +

∑

lj. Note that these Pjs do not have Gw,2w+2 at any layer, and f(P ) =
∏

j f(Pj).
Consider Pj for some j. Let hj1 , . . . hjrj

denote the layers of Pj which are the connecting
graph Gw,2w+1. Let Qj,k denote the part of the program between hjk

and hjk+1
, and Qj,0

denote the part between gij and hj1 and Qj,rj
denote the part between hjr

and gij+1
. Let Q′

j,k

denote the graph obtained from Qj,k be removing the top-most and bottom-most lines and
the edges connecting them. Then width(Q′

j,k) = width(Qj,k) − 2 = 2w. Let lj,k denote the

length of Q′
j,k; so lj ≤ rj +

∑rj−1
k=1 ll,k. The nodes s′j,k and t′j,k for Q′

j,k are defined accordingly.

Now f(Pj) =
∑rj−1

k=1 f(Q′
j,k). (Note that Qj,0 and Qj,rj

, even if non-trivial, play no role in
f(Pj) because there is no connection from sj to these blocks.)

By induction, for each Q′
j,k we obtain an equivalent (syntactic multilinear) formula Φj,k

with variables from Var(Q′
j,k), size(Φj,k) = sj,k = 2lj,k and depth(Φj,k) = dj,k = 2w. Now

define Φ =
∏

j

∑rj−1
k=1 Φj,k. Then size(Φ) = s = m +

∑

j(rj − 1 +
∑

k 2lj,k) ≤ 2l and
depth(Φ) = 2w + 2 as desired. Clearly Var(Φ) = Var(P ).

If P is syntactic multilinear, then inductively we have Φj =
∑rj

k=1 Φj,k operating on
Var(Pj), and each Φj,k is syntactic multilinear. Consider the root gate of Φ. If it is not
syntactic multilinear, then for some j < j′, and for some k, k′, Φj,k and Φj′,k′ use the same
variable x. Thus, by induction, Pj has an sj-to-tj path using x, and Pj′ also has an sj′-to-tj′
path using x. Combining these paths with (1) the s-to-sj path along the bottom-line, (2) the
tj-to-sj′ path using gij+1 and then the bottom line, and (3) the tj′-to-t path along the top
line, gives a path in P that reads x twice, contradicting the read-once property of P .

As an immediate consequence of the above two lemmas, we have:

Corollary 26 1. sm-VAC0 = sm-VBWrGP;
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Figure 11: Relationship among syntactic multilinear classes

2. VNC1 = VrGP = VLWrGP.

3. sm-VNC1 = sm-VrGP = sm-VLWrGP;

Proof: (1) follows from Lemmas 24 and 25. For (2), note that VrGP ⊆ VPe from Lemma 25
and VPe ⊆ VrGP using Lemma 25. As VPe = VNC1, (2) follows. As sm-VPe = sm-VNC1 by
Theorem 20, we have the equivalence in (3).

Further, noting that the constructions do not introduce constants other than 0 and 1, we
see that they hold in the Boolean setting as well. Thus.

Corollary 27 NC1 = rGP = LWrGP.

We summarize these relationships in Figure 11.

6 Coefficient Functions

Let f be a polynomial over variables X = {x1, x2, . . . , xn}; we denote this by Var(f) = X.
For a monomial m in variables from X, the partial coefficient function coef(f,m) is defined
to be the unique polynomial g such that f can be written as f = mg + h, where h is a
polynomial with none of its monomials divisible by m.

Malod studies the complexity of computing coefficient functions computed by class of
arithmetic circuits [Mal07]. From an old observation by Hammon, it can be seen that the
permanent polynomial equals coef(f, y1y2 . . . yn), where f is given by the depth-3 formula
f =

∏

i∈[n]

∑

j∈[n] xijyj. In [Mal07] it is shown that the Hamiltonian polynomial can be
represented as a coefficient of a polynomial g computed by polynomial size arithmetic circuits.
A closer inspection shows that this polynomial g is actually in VBP. Thus arithmetic circuit
classes which are only as powerful as VAC0 or VBP can generate VNP-complete polynomials
as coefficient functions, and hence the coefficient functions are hard in general.
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In the case of polynomials computed by syntactic multilinear circuits we will prove that
the situation is markedly different compared to the general case. For a multilinear polynomial
f over variables x1, x2, . . . , xn, we define the coefficient function mcoef(f, ·) as follows:

for each a = a1a2 . . . an ∈ {0, 1}n, mcoef(f, a) = coef(f, xa1

1 xa2

2 . . . xan

n ).

Corresponding to mcoef(f, ·), there is a unique multilinear polynomial g(x, e) in variables
from X and E, such that for all a ∈ {0, 1}n, g(x, a) = mcoef(f, a) defined by

g(x, e) =
∑

b∈{0,1}n

mcoef(f, b)
n
∏

i=1

(eibi + (1 − ei)(1 − bi))

. With some abuse of notation we will denote this polynomial g by mcoef(f, e).

6.1 Closure Property

A syntactically multilinear complexity class sm-C is said to be closed under taking coefficients,
if for any polynomial f ∈ sm-C, the polynomial mcoef(f, e) is also in sm-C. We have the
following identities:

For any polynomials f and g,

mcoef(f + g, e) = mcoef(f, e) + mcoef(g, e) (2)

As the partial coefficient of xa1

1 · · ·xan
n in f + g is the sum of the coefficient of xa1

1 · · ·xan
n in

f and g, for all a1, . . . , an ∈ {0, 1}.
Let f and g be multilinear polynomials in K[x1, . . . , xn] with Var(f) ∩ Var(g) = ∅. For

a1, . . . , an ∈ {0, 1}, if there is an i such that ai = 1 and xi /∈ Varf ∪ Var(g) then the partial
coefficient of xa1

1 · · ·xan
n is zero. As Var(f) ∩ Var(g) = ∅, the monomial xa1

1 · · ·xan
n factors

across f and g in a unique way, i.e.

mcoef(fg, e) = mcoef(f, ef ) · mcoef(g, eg) ·





∏

xi /∈Var(f)∪Var(g)

(1 − ei)



 (3)

where ef and eg are the projection of e to Var(f) and Var(g) ( i.e. ef
i = 0 for xi 6∈ Var(f),

ef
i = ei for xi ∈ Var(f); similarly for eg ).

For individual variables xi and constants µ we have

mcoef(xi, e) = (xi(1 − ei) + ei)





∏

j∈[n],j 6=i

(1 − ej)



 (4)

mcoef(µ, e) = µ





∏

j∈[n]

(1 − ej)



 (5)
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Theorem 28 Each of the following syntactically multilinear classes is closed under taking
coefficients: sm-VP, sm-VBP, sm-VNC1, sm-VSCi, sm-VBWBP, and sm-VACi, for all i ≥ 0.

Proof:
Let C be a syntactic multilinear circuit computing the polynomial f . Construct a circuit

C ′ on variables X = {x1, . . . , xn} ∪ e = {e1 . . . , en} = inductively as follows:

Base Case – C = a ∈ K, then C ′ = a(µ
(

∏

j∈[n](1 − ej)
)

)

– C = xi for 1 ≤ i ≤ n, then C ′ = (xi(1 − ei) + ei)
(

∏

j∈[n],j 6=i(1 − ej)
)

.

Induction – C = C1 + C2 and suppose C ′
1 and C ′

2 are circuits obtained from induction. Then
C ′(X, e) = C ′

1(X, e) + C ′
2(X, e).

– C = C1×C2, let C ′
1 and C ′

2 be availabe by induction. Then C ′(X, e) = C ′
1(X, e′)×

C ′
2(X, e′′) ×

(

∏

xi /∈Var(C1)∪Var(C2)
(1 − ei)

)

. Where e′ = {ei | xi ∈ Var(C1)} and

e′′ = {ej | xj ∈ Var(C2)}.

We first argue that C ′ is syntactic multilinear. The construction for the base case is trivially
syntactic multilinear. When C = C1 + C2, by induction hypothesis C ′

1 and C ′
2 aresyntactic

multilinear, so C ′ = C ′
1 + C ′

2 is also syntactic multilinear. For C = C1 × C2, as Var(C1) ∩
Var(C2) = emptyset, we have e′∩e′′ = ∅. So, by definition Var(C ′

1(X, e′)∩Var(C ′
2(X, e′′)) = ∅.

As the eis that appear in the product
∏

xi /∈Var(C1)∪Var(C2)
(1 − ei) do not appear in either

C ′
1(X, e′) or C ′

2(X, e′′), we have C ′ is syntactic multilinear.
From equations 4,5,2, and3 we have C ′(X, e) = mcoef(f, e). As there is an additional

product at every ×, size(C ′) ≤ nsize(C). Only additional depth required for C ′ is that of
the products of the type

∏

xi /∈Var(C1)∪Var(C2)
(1 − ei) at various multiplication gates. If C is

a bounded fan-in circuit, then this adds O(log n) to the depth. width(C ′) ≤ width(C) + 1.
Moreover, if C is a formula to begin with, then so is C ′.

Consequently, it follows from [Raz04a] that we have no analogue of Hammon’s observation
for the permanent with f ∈ sm-VNC1.

Corollary 29 The Permanent and the Determinant polynomials cannot be expressed as a
coefficient of some monomial of a polynomial computed by a syntactically multilinear arith-
metic formula of polynomial size.

6.2 Stability

Following [Mal07], we say a complexity class sm-C is stable for coefficient functions if it
satisfies the following two conditions:

1. sm-C is closed under taking coefficients, and

30



2. Whenever mcoef(f, e) ∈ sm-C, then f ∈ sm-C.

For a multilinear polynomial f(x, e), let Σ(E) f denote
∑

b∈{0,1}m f(x, b). We say a com-

plexity class sm-C is closed under taking exponential sums, if whenever f(x, e) ∈ sm-C, then
Σ(E)f ∈ sm-C. One can obtain the permanent as Σ(E) f , for f ∈ VNC1 [Val82], cf. [Bür00].
But the situation is contrary for the syntactic multilinear case, because of the following
theorem.

Theorem 30 The following syntactic multilinear classes are closed under exponential sums,
and hence are stable for coefficient functions: sm-VP, sm-VBP, sm-VNC1, sm-VSCi, sm-VBWBP,
and sm-VACi, for all i ≥ 0.

The theorem is an easy consequence of the following straightforward proposition, by
patching a given circuit at gates with constant multiplications of appropriate powers of two.

Proposition 31 Let f and g be multilinear polynomials over X and E. Then

Σ(E) (f + g) = 2aΣ(Var(f) ∩ E) f + 2bΣ(Var(g) ∩ E) g,

where a = |E−Var(f)| and b = |E−Var(g)|. Furthermore, if f and g are defined on disjoint
variables sets, then

Σ(E) fg = 2c
[

Σ(Var(f) ∩ E) f
]

·
[

Σ(Var(g) ∩ E) g
]

where c = |E| − |Var(f) ∪ Var(g)|.

7 Conclusion and Open Questions

We have studied the relationships among syntactic multilinear arithmetic circuit classes. In
the syntactic multilinear world the relationship, VBWBP = VNC1 ⊆ VsSC0 gets reversed,
i.e. sm-VBWBP = sm-VsSC0 ⊆ sm-VNC1. Except the simulation from arithmetic formulas
to constant width branching programs ([BC92]), all known equivalences translate into the
multilinear world.

We have that sm-VsSC0 = sm-VBWBP ⊆ sm-VNC1 ⊆ sm-VLWBP ⊆ sm-VBP. Can any
one of these containments be shown to be strict? To separate sm-VNC1 from sm-VBP, it
would be sufficient to show that the full rank polynomial of [RY08a] can be computed by
syntactic multilinear ABPs. The separation of sm-VBWBP from sm-VBP would also be
interesting, though this will be slightly weaker than separating sm-VNC1 from sm-VBP. One
reason why the separation of sm-VBWBP from sm-VBP would be interesting and possible
is that they are defined over the same model, algebraic branching programs. The result of
[Raz04b, RY08a] can be seen as separation of constant + fan-in circuits from polynomial fan-
in circuits at logarithmic depth and polynomial size. Analogously, separating sm-VBWBP

from sm-VBP can be viewed as separating constant width from polynomial width in ABPs
of polynomial size.
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