
Arithmetizing classes around NC1 and L

Nutan Limaye, Meena Mahajan, and B. V. Raghavendra Rao

The Institute of Mathematical Sciences, Chennai 600 113, India. {nutan,meena,bvrr}@imsc.res.in

Abstract. The parallel complexity class NC1 has many equivalent models such as polynomial size for-
mulae and bounded width branching programs. Caussinus et al. [CMTV98] considered arithmetizations
of two of these classes, #NC1 and #BWBP. We further this study to include arithmetization of other
classes. In particular, we show that counting paths in branching programs over visibly pushdown au-
tomata is in FLogDCFL, while counting proof-trees in logarithmic width formulae has the same power
as #NC1. We also consider polynomial-degree restrictions of SCi, denoted sSCi, and show that the
Boolean class sSC1 is sandwiched between NC1 and L, whereas sSC0 equals NC1. On the other hand,
the arithmetic class #sSC0 contains #BWBP and is contained in FL, and #sSC1 contains #NC1 and
is in SC2. We also investigate some closure properties of the newly defined arithmetic classes.

1 Introduction

The parallel complexity class NC1, comprising of languages accepted by logarithmic depth,
polynomial size, bounded fan in Boolean circuits, is of fundamental interest in circuit com-
plexity. NC1 is known to be contained within logarithmic space L. The classes NC1 and L have
many equivalent characterizations, notably in terms of branching programs and small-width
circuits. Bounded width branching programs BWBP, as well as bounded width circuits SC0,
(both of polynomial size), were shown by Barrington [Bar89] to be equivalent to NC1, while
it is folklore that polynomial size O(log n) width circuits SC1 equals L.

However, arithmetizations of these classes are not necessarily equivalent. In [CMTV98],
Caussinus et al. proposed three arithmetizations of NC1: (1) counting proof-trees in an NC1

circuit, (2) computation by a polynomial size log depth circuit over + and ×, and (3) count-
ing paths in a nondeterministic bounded width branching program. It is straightforward
to see that the first two definitions of function classes, over N, coincide (see for instance
[Vin91,Vol99]); and this class is denoted #NC1. It is shown in [CMTV98] that the third
class, #BWBP, is contained in #NC1, though the converse inclusion is still open. (However,
the arithmetizations over Z are shown to coincide.) Also, using the programs over monoids
framework, [CMTV98] observe that #BWBP equals #BP-NFA, the class of functions that
count the number of accepting paths in a nondeterministic finite-state automaton NFA when
run on the output of a deterministic branching program. It is known (see e.g. [All04,Vol99])
that #NC1 has Boolean polynomial size circuits of depth O(log n log∗ n) and is thus very
close to NC1. It follows from more recent results [CDL01] that #NC1 is contained in FL; see
e.g. [All04].

We continue this study here (and also extend it to L) by arithmetizing other Boolean
classes also known to be equivalent to NC1. The first generalization we consider is from NFA

to VPA. If we generalize NFA all the way to arbitrary pushdown automata PDA, we get the
well-studied Boolean and arithmetic classes LogCFL and #LogCFL respectively (languages

logspace many-one reducible to some context free language), containing the Boolean and
arithmetic analogues of nondeterministic logspace NL and #L. A non-trivial restriction of
PDA is the class of languages accepted by visibly pushdown automata VPA. These are PDA

with no ǫ-moves, whose stack behaviour (push/pop/no change) is dictated solely by the
input letter under consideration. They are also referred to as input-driven PDA, and have
been studied in [Meh80,BV83,Dym88,AM04,AKMV05]. In [Dym88], languages accepted by
such PDA are shown to be in NC1, while in [AM04] it is shown that such PDA can be
determinized. Thus they lie properly between regular languages and deterministic context-
free languages, and membership is complete for NC1. The arithmetic version we consider is
#BP-VPA, counting the number of accepting paths in a VPA, when run on the output of a
deterministic branching program. It is clear that this contains #BP-NFA. We had claimed in
a preliminary version of this paper [LMR07] that in fact the two are equal, and thus adding a
stack to an NFA but restricting usage of the stack to a visible or input-driven nature adds no
power to the closure of the class under projections. Unfortunately, the proof in [LMR07] is
incorrect, and we do not know an alternative proof. What we do show here is that functions
in #BP-VPA can be evaluated in the deterministic analogue of LogCFL, FLogDCFL.

The next class we consider is arithmetic formulae. It is known that formulae F (circuits
with fanout 1 for each gate) and even logarithmic width formulae LWF have the same power
as NC1 [IZ94]. Applying either of definition (1) or (2) above to formulae gives the function
classes #F and #LWF. It is known [BCGR92] that #LWF ⊆ #F = #NC1. We show that this
is in fact an equality. Thus even in the arithmetic setting, LWF have the full power of NC1.

Next we consider bounded width circuits. SC is the class of polynomial size poly-logarithmic
width (width O(logi n) for SCi) circuits, and corresponds in the uniform setting to a simul-
taneous time-space bound. (SC stands for Steve’s Classes, named after Stephen Cook who
proved the first non-trivial result about polynomial time log-squared space PLoSS, i.e. SC2,
in [Coo79]. See for instance [Joh90].) It is known that SC0 equals NC1 [Bar89].

However, this equality provably does not carry over to the arithmetic setting, since it
is easy to see that even SC0 over N can compute values that are infeasible (needing super-
polynomially long representation). So we consider the restriction to polynomial degree, de-
noted by sSC0, before arithmetizing to get #sSC0. We observe that in the Boolean setting,
this is not a restriction at all; sSC0 equals NC1 as well. However, the arithmetization does
not appear to collapse to either of the existing classes. We show that #sSC0 lies between
#BWBP and FL.

The polynomial-degree restriction of SC0 immediately suggests a similar restriction on all
the SCi classes. We thus explore the power of sSCi and sSC, the polynomial-degree restrictions
of SCi and SC respectively, and their corresponding arithmetic versions #sSCi and #sSC.
This restriction automatically places the corresponding classes in LogCFL and #LogCFL,
since LogCFL is known to equal languages accepted by polynomial size polynomial degree
circuits [Sud78,Ruz80], and since the arithmetic analogue also holds [Vin91,NR95]. Thus
we have a hierarchy of circuit classes between NC1 and LogCFL. Other hierarchies sitting
in this region are (1) polynomial size branching programs of polylog width, limited by NL

in LogCFL, and (2) polynomial size log depth circuits with AND fan in 2 and OR fan in

2

sSC0 //

��

sSC1 // . . . // sSCi // sSC

((RRRRRRRRRRRRRR

NC1 = BWBP //

OO

��

BPwidth O(log) //

OO

��

. . . //

OO

��

BPwidth O(logi) //

OO

��

NL // LogCFL = SAC1

SAC1(1) //

OO

SAC1(log n) // . . . // SAC1(logi n) // SAC1(polylog)

66mmmmmmmmmmmmm

Fig. 1. Hierarchies of classes between NC1 and LogCFL

polylog, limited by SAC1 which equals LogCFL [Ven91]; see [Vin96]. We denote the i-th level
of the latter hierarchy, i.e. poly size, log depth circuits with AND fan in 2 and OR fan in
O(logi n), by SAC1(logi n). In both of these hierarchies, [Vin96] establishes closure under
complementation. For sSCi, we have a weaker result: co-sSCi is contained in sSC2i. Figure 1
shows these hierarchies and their relationships.

It is not clear what power the Boolean class sSC1 possesses: is it strong enough to
equal SC1, or is the polynomial degree restriction crippling enough to bring it down to
SC0=NC1? We show that all of #NC1 is captured by #sSC1, which is contained in Boolean
SC2. Note that the maximal fragments of NC hitherto known to be in SC were LogDCFL

[Coo71,DC89,FLR96] and randomized logspace RL [Nis94]; we do not know how this frag-
ment compares with them. In fact, turning the question around, studying sSC is an attempt
to understand fragments of SC that lie within NC.

BWBP = BP-NFA

= BP-VPA

= NC1 = LWF

= sSC0 = SC0

// sSC1 // L = SC1 //

##FFFFFFFFFFFF
NL // LogCFL // NC2

LogDCFL

<<xxxxxxxxxxxx

// SC2

#BP-VPA

))RRRRRRRRRRRRRRRRR
#L

%%JJJJJJJJJJJJ

FNC1 // #BWBP=
#BP-NFA

//

99ttttttttt

%%JJJJJJJJJ

#NC1=
#LWF

))RRRRRRRRRRRRRRRRRRR

// FL //

<<xxxxxxxxxx

FLogDCFL //

$$JJJJJJJJJJJJ
#LogCFL // NC2

#sSC0

<<xxxxxxxxxx

// #sSC1 //

::ttttttttttt

SC2

Fig. 2. Boolean classes and their arithmetizations

3

Our main results can be summarized in Figure 2. It shows that corresponding to Boolean
NC1, there are four naturally defined arithmetizations, while the correct arithmetization of
L is still not clear. We also show that three of the arithmetizations of NC1 coincide under
modulo tests, for any fixed modulus; see Figure 3. For the fourth arithmetization, #BP-VPA,
we show that a modulus test for any fixed modulus is in L.

NC1= ⊕NC1 = ⊕BWBP =
⊕BP-NFA = ⊕sSC0 = ⊕SC0=
⊕LWF

((RRRRRRRRRRRR

// ⊕sSC1 // ⊕SC1= L = SC1

⊕BP-VPA

99rrrrrrrrrrrrr

Fig. 3. Parity Classes around NC1

A key to understanding function classes better is to investigate their closure properties.
We present some such results concerning #sSCi.

This paper is organized as follows. Definitions and notation are presented in Section 2.
Sections 3 and 4 present the bounds on #BP-VPA and #LWF, respectively. Section 5 intro-
duces and presents bounds involving sSCi and #sSCi. Some closure properties of these classes
are presented in Section 6, where the collapse of the modulus test classes: NC1= ⊕NC1 =
⊕BWBP = ⊕sSC0 is also presented (as shown in Figure 3).

2 Preliminaries

Machine classes: L and NL denote the classes of languages accepted by deterministic and
nondeterministic logspace-bounded machines. LogCFL denotes the class of languages logspace
many-one reducible to some context-free language CFL, and is equivalently characterised as
the class of languages accepted by AuxPDA(poly), nondeterministic logspace machines when
augmented with a pushdown stack but restricted to halt within polynomial time. Determin-
istic counterparts of LogCFL and AuxPDA(poly), namely LogDCFL and DAuxPDA(poly), are
similarly defined and are also known to be computationally equivalent.

Boolean circuit classes: By NC1 we denote the class of languages which can be accepted by
a family {Cn}n≥0 of polynomial size O(log n) depth bounded circuits, with each gate having
a constant fanin. A branching program is a layered acyclic graph G with edges labeled by
constants or literals, and with two special vertices s and t. It accepts an input x if it has
an s ; t path where each edge is labeled by a true literal or the constant 1; we call such a
path a valid path on input x. BWBP denotes the class of languages that can be accepted by
families of polynomial size bounded width branching programs {Gn}n≥0, where the graph
Gn considers n variables. BWC is the class of languages which can be accepted by a family

4

{Cn}n≥0 of constant width, polynomial size circuits, where width of a circuit is the maximum
number of gates at any level of the circuit. Here the circuit is assumed to be layered: a gate
at layer i can receive as input either a constant, or a circuit input, or the output of a gate
at layer i − 1. A branching program can be equivalently viewed as a skew circuit, i.e., a
circuit in which each AND gate has at most one input wire that is the output of another
gate of the circuit rather than a circuit input (either an input variable or its negation or a
constant); hence BWBP is in BWC. SCi is the class of languages which can be accepted by
a family {Cn}n≥0 of polynomial size circuits of width O(logi n). Thus we have by definition,
BWC = SC0. For the class SCi we assume, without loss of generality, that every gate has fan-
in O(1) (fan-in f = O(logi n) is replaced by a width O(1), depth O(f) circuit). In the uniform
setting, the class SCi is equivalent to the class of languages accepted by deterministic Turing
machines which use O(logi n) space and run in polynomial time (see [Coo79] and [Joh90]).
LWF is the class of languages which can be accepted by a family {Fn}n≥0 of polynomial size
formulae with width bounded by O(log n). Without the width bound, denote the family of
polynomial size formula by F. By TC0 we denote the class of languages which can be accepted
by a family {Cn}n≥0 of polynomial size O(1) depth bounded circuits, with unbounded fanin
AND, OR and Majority gates.

Visibly pushdown automata: A visibly pushdown automaton (VPA) is a PDA M =
(Q,Qin, ∆, Γ, δ,QF) working over an input alphabet ∆ that is partitioned as (∆c, ∆r, ∆int).
Q is a finite set of states, Qin, QF ⊆ Q are the sets of initial and final states respectively, Γ is
the stack alphabet containing a special bottom-of-stack marker ⊥, and acceptance is by final
state. The transition function δ is constrained so that if a ∈ ∆c, then δ(p, a) = (q, γ) (push
move, independent of top-of-stack). If a ∈ ∆r, then δ(p, a, γ) = q (pop), δ(p, a,⊥) = q
(pop on empty stack). If a ∈ ∆int, then δ(p, a) = q (internal move independent of the
top-of-stack).

The input letter completely dictates the stack movement. Also the pushdown automata
is assumed to be ǫ-move-free, while δ is allowed to be non-deterministic.

Programs over automata: For defining branching programs over automata, we follow the
notation from [CMTV98]. A nondeterministic automaton is a tuple of the form (Q,∆, q0, δ, F),
where Q is the finite set of states, ∆ is the input alphabet, q0 ∈ Q is the initial state, F ⊆ Q
is the set of accepting states and δ : Q × ∆ → P(Q).

A projection P = (Σ,∆, S,B,E) over ∆ is a family P = (Pn)n∈N of n-projections over
∆, where an n-projection over ∆ is a finite sequence of pairs (i, f) with 1 ≤ i ≤ n and
f : Σ → ∆. The length of the sequence is denoted by Sn, its j-th instruction is denoted
by (Bn(j), En(j)) where S : N → N, B : N × N → N, E : N × N → ∆Σ. B pulls out a
letter xB|x|(j) ∈ Σ from the input x and E projects it to a letter in the alphabet ∆. Thus
the string x ∈ Σ∗ is projected to a string P (x) ∈ ∆∗. P is said to be FDLOGTIME uniform
if on input 〈x, j〉, the jth letter of P (x) can be computed in determinsitic logarithmic time;
see [CMTV98] for a more detailed definition.

A branching program over a nondeterministic automaton N = (Q,∆, q0, δ, F) is a pro-
jection P = (Σ,∆, S,B,E). It accepts x ∈ Σ∗ if N accepts the projection of x. BP-NFA

5

is the class of all languages recognized by uniform polynomial length programs over a non-
deterministic automaton1. Analogously, BP-VPA is the class of all languages recognized by
uniform polynomial length programs over a VPA.

Arithmetic classes: We now define the corresponding arithmetic classes.

#NC1 =

{

f : {0, 1}∗ → N |
f can be computed by a polynomial size O(log n)
depth bounded fanin circuit over {+,×, 1, 0, xi, xi}.

}

#BP-NFA =

{

f : {0, 1}∗ → N |
f(x) = #accept(P|x|, x) for some uniform
polynomial length BP P over an NFA N

}

Here, #accept(P, x) denotes the number of distinct accepting paths of N on the projection
of x, P (x).

#BWBP =

{

f : {0, 1}∗ → N |
∃P ∈ BWBP, ∀x ∈ {0, 1}∗

f(x) = number of valid paths on x in P

}

For each of these counting classes, the corresponding Diff classes are defined by taking the
difference of two # functions, while the Gap classes are defined by taking closure of the class
under subtraction (equivalently, by allowing the constant −1 in the circuit). For reasonable
classes (in particular, for the classes we consider), Diff and Gap coincide, see [Vol99].

Definition 1. For any function class #C, ModpC denotes the class of languages L such that
there is an f ∈ #C satisfying

∀x ∈ {0, 1}∗ : x ∈ L ⇐⇒ f(x) ≡ 0 mod p

C=C denotes the class of languages L such that there is a g ∈ GapC satisfying

∀x ∈ {0, 1}∗, x ∈ L ⇐⇒ g(x) = 0

Known results: In [Bar89], Barrington showed that NC1= BWBP= BWC. As observed in
[CMTV98], BWBP coincides with BP-NFA; thus NC1= BP-NFA. Later on, Istrail and Zivkovic
showed in [IZ94] that NC1= LWF. In [Dym88], Dymond showed that acceptance by VPAs
can be checked in NC1, and hence BP-VPA= NC1. Thus

Lemma 1 ([Bar89,CMTV98,IZ94,Dym88]).

NC1 = BWBP = SC0 = LWF = BP-NFA = BP-VPA

Though the above classes are all equal in the Boolean setting, in the arithmetic setting
the equivalences are not established, and strict containments are also not known. The best
known relationships among these classes are as below.

Lemma 2 ([CMTV98]).

FNC1 ⊆ #BWBP = #BP-NFA ⊆ #NC1 ⊆ GapBWBP = GapNC1 ⊆ L

1 In [CMTV98], this class is called BP. We introduce this new notation to better motivate the next definition, of
BP-VPA.

6

The Chinese Remaindering Technique: We will frequently use the folklore Chinese
Remainder Theorem CRT, and its algorithmic version ([CDL01], see also [All01]).

Lemma 3. 1. The jth smallest prime pj is bounded by O(j log j); hence pj can be computed

and represented in space O(log j). Let Pk =
∏k

i=1 pk; then Pk is at least 2k.
2. Every integer a ∈ [0, Pk) is uniquely defined by the residues ai = a mod pi where i ∈ [k].
3. Given a1, . . . , ak, where ai ∈ [0, pi), the unique a such that a ≡ ai mod pi for each i ∈ [k]

can be found in space O(log k).
4. Let f : {0, 1}∗ → N, with f(x) ∈ [0, 2q(|x|)) where q is a polynomial. If the bits of f(x) mod

pi can be computed in deterministic space s, for i = 1, . . . , q(|x|), then f can be computed
in deterministic space O(log q(|x|) + s).

3 Counting accepting runs in visibly pushdown automata

Visibly pushdown automata (VPA) were defined by Alur and Madhusudan ([AM04]) as a
restriction of pushdown automata where the stack movement is dictated by the input letter.
Languages accepted by VPA are called visibly pushdown languages (VPL). In [AM04,AKMV05],
many closure properties and decidability of many properties on VPL were proved. Previ-
ously, Mehlhorn ([Meh80]) had defined input driven languages (IDL). It is easy to see that
IDL and VPL coincide. In [Meh80], it was shown that recognition problem for IDL is in
DSPACE(log n log log n). This was improved to L in [BV83] and further to NC1 in [Dym88].
The last result non-trivially used Buss’ result for the Boolean formula value problem [Bus87].
Regular languages by definition are contained in VPL and the class REG is complete for NC1.
Thus, the NC1 upper bound is tight for VPL under reasonable reductions.

We introduce a natural arithmetization of BP-VPA, by counting the number of accepting
paths in a VPA rather than in an NFA. The definition mimics that of BP-NFA.

Given a uniform polynomial length branching program P over a VPA M , the number of
distinct accepting paths of M on the projection of x is denoted by #accept(P, x).

Definition 2.

#BP-VPA =

{

f : {0, 1}∗ → N |
f(x) = #accept(P|x|, x) for some uniform
polynomial length BP P over a VPA M

}

The main result of this section is that functions in #BP-VPA can be evaluated in
FLogDCFL. In an earlier version of this paper ([LMR07]), we had claimed that in fact
#BP-VPA equals #BP-NFA. While this may well be true, the construction we gave there
is erroneous, and we do not have an alternative proof.

A secondary result is that functions in #BP-VPA can be evaluated, modulo any fixed
number, in FL.

Theorem 1. #BP-NFA⊆ #BP-VPA⊆ FLogDCFL.
For each fixed k, ModkBP-VPA ⊆ L.

7

The first containment follows from definitions, since a VPA can simulate a NFA for any
partition of the input. The rest of this section is devoted to proving the second and third
containments. To see these, we consider the approach used by Braunmühl and Verbeek in
[BV83]. They show that deciding membership in a fixed VPL is in L by first describing a
O(log2 n) space, O(n log n) time procedure and then modifying it to lower the space bound
to O(log n) (at the cost of time going up to O(n2 log n)).

The essence of our proofs is captured in the following outline:

1. Algorithm 1 of [BV83] can be implemented in LogDCFL.
2. Arithmetizing Algorithm 1 to carry number of accepting paths rather than a Boolean bit

indicating (non)-existence of accepting paths requires more than logarithmic auxiliary
space. However, if the arithmetic values need O(log n) bits each, then the algorithm can
still be implemented in LogDCFL. Now, using Chinese remaindering (Lemma 3), we can
compute the actual function value in FLogDCFL.

3. Arithmetizing Algorithm 2 of [BV83] requires O(log2 n) space, even if used in conjunction
with Lemma 3. However, if the arithmetic values need O(1) bits each, then the algorithm
can be implemented in L. So for any fixed modulus k, counting the number of accepting
paths modulo k can be done in L.

We now describe the individual steps. The algorithms of [BV83] assumed that VPAs
accept only well-matched strings (strings such that every prefix of the string has at least as
many push letters as pop letters, and the total number of push letters in the string equals
the total number of pop letters). We first show that this is not a restriction.

Lemma 4. For every VPA M over alphabet ∆, there is a corresponding VPA M ′ over an
alphabet ∆′ and a TC0 many-one reduction g such that for every x ∈ ∆∗,

1. #accM(x) = #accM ′(g(x)), and
2. g(x) is well-matched.

Proof. Let M = (Q,∆,Qin, Γ, δ,QF). The VPA M ′ = (Q′, ∆′, Q′
in, Γ ′, δ′, Q′

F) is essentially
the same as M . It has two new input symbols A,B, and a new stack symbol X. A is a push
symbol on which X is pushed, and B is a pop symbol on which X is expected and popped.
M ′ has a new state q′ that is the only initial state. M ′ expects an input from A∗∆∗B∗. On
the prefix of A’s it pushes X’s. When it sees the first letter from ∆, it starts behaving like
M . The only exception is when M performs a pop move on ⊥, M ′ can perform the same
move on ⊥ or on X. On the trailing suffix of B’s it pops X’s. It is straightforward to design
δ′ from δ.

Let |x| = n. The TC0 circuit does the following. It counts the difference d between the
number of push and pop symbols in Anx. It then outputs y = AnxBd. By the way M ′ is
constructed, it should be clear that #accM(x) = #accM ′(y) and that M ′, on y, never pops
on an empty stack. In fact y is well-matched. ⊓⊔

We now give an overview of the first algorithm from [BV83], stating it as a LogDCFL

procedure. We use the characterization of LogDCFL as languages accepted by polynomial-
time DAuxPDA.

8

Lemma 5 (Algorithm 1 of [BV83]). Let M = (Q,∆,Qin, Γ, δ,QF) be a VPA accepting
well-matched strings. Given an input string x, checking if x ∈ L(M) can be done in LogDCFL.

Proof. Let xij = xi+1..xj be a well-matched substring of the string x. (Define xii = ǫ, the
empty string.) Define a (|Q||Γ | × |Q||Γ |) matrix over 0, 1, where each row and column is in-
dexed by a state-stacktop pair (surface configuration). The entry indexed by [(q,X), (q′, X ′)]
is 1 if and only if X = X ′ and M goes from surface configuration (q,X) to (q′, X ′) while
processing the string xij. We will call such a matrix the table Tij corresponding to the string
xij. M has an accepting run on the string x if and only if the [(q0,⊥), (q,⊥)]-th entry is 1 for
some q ∈ QF in the table corresponding to x0n. Thus, it is sufficient to compute this table.
However, in order to do so, we may have to compute many/all such tables.

We say that an interval r = [i, j] is valid if i ≤ j and xr, the string represented by the
interval, is well-matched; otherwise it is said to be invalid. A fragment is a pair (r, Λ) where
Λ is a pair (r′, T ′), r and r′ are valid intervals, T ′ is a table. The fragments that arise in the
algorithm satisfy the properties: (1) the interval r′ is nested inside the interval r, and (2) T ′

is the table corresponding to the string xr′ , that is, T ′ = Tr′ . For r = (i, j), Λ = (r′, T ′) is
trivial if r′ = [l, l] where l = ⌈(i + 2j)/3⌉ (this is the value of l used in [BV83] to obtain
balanced cuts), xr′ = ǫ, and T ′ is the identity table Id. The recursive procedure T takes a
fragment (r, Λ) as an input and computes the table Tr, assuming that T ′ = T ′

r′ where r′ is a
valid interval nested inside r. The main call made to the procedure is ([0, n], Λ) with trivial
Λ.

The procedure T does the following: If the size of r − r′ is at most 2, then it computes
the table Tr immediately from δ and T ′. If the size of r − r′ is more than 2, then it breaks r
into three valid intervals r1, r2, r − (r1 ∪ r2), where (1) the size of each of r1, r2, r − (r1 ∪ r2)
is small (in two stages, each subinterval generated will be at most three-fourths the size of
r − r′), (2) one of r1, r2 completely contains r′, (3) r1, r2 are contiguous with r1 preceding
r2. It then creates fragments (r1, Λ1) and (r2, Λ2) where Λ1 = Λ and Λ2 is trivial if r1

contains r′, and Λ2 = Λ and Λ1 is trivial if r2 contains r′. Now it evaluates these fragments
recursively to obtain the tables T (r1, Λ1) = Tr1

, T (r2, Λ2) = Tr2
, and obtains the table

Tr3
= Tr1

× Tr2
, where r3 = r1 ∪ r2 and the × represents Boolean matrix product. Setting

Λ3 = (r3, Tr3
), it finally makes the recursive call T (r, Λ3) to compute Tr. In [BV83], it is

shown that such fragments can always be defined and can be found deterministically and
uniquely. (We will discuss the complexity of finding such fragments shortly.) It is also shown
that the tables computed by above recursion procedure have the following property: for the
table T corresponding to the interval r = [i, j], the [(q,X), (q′, X ′)]-th entry is 1 exactly
when the machine has at least 1 path from (q,X) to (q′, X ′) on string xij. This proof is by
induction on the length of the intervals.

Note that the above procedure yields a O(log n) depth recursion tree, with each internal
node having three children corresponding to the three recursive calls made. The leaves of this
recursion tree are disjoint effective intervals (for fragment (r, (r′, T ′)), the effective interval
is r − r′). As the main call is made to the fragment ([0, n], Λ) with trivial Λ, the size of such
a tree will be O(n). Also note that the depth-first traversal of the recursion tree generated
by the above procedure can be performed in LogDCFL. This is because the deterministic

9

AuxPDA will stack one fragment (say (r1, Λ1)) and process the other fragment (r2, Λ2) on
the logspace work-tape. Once it finishes processing both these fragments, it will then have
Λ3 on its work-tape and hence can start processing (r, Λ3). This amounts to a depth-first
traversal of the recursion tree. As the size of the tree is of O(n), the DAuxPDA will run in
time p(n) for some polynomial p, provided the selection of the subintervals r1, r2 from (r, Λ)
can be done on a logspace work-tape.

Now we describe a deterministic log space procedure to compute intervals r1 and r2.
Let r = [i, j] and r′ = [i′, j′] be such that i ≤ i′ ≤ j′ ≤ j and (r − r′) > 2. Consider the
larger of the two subintervals [i, i′] and [j′, j]. Break it into two equal size parts. Consider
the part closer to r′. In this, find an index t such that the height of the stack of M just after
reading xt (denoted as h(t)) is the lowest in that part. Now find two more points b, a such
that h(b) = h(t) = h(a), and the interval [b, a] is the maximal valid subinterval containing
t and within [i, j]. Let r1 = [b, t], r2 = [t, a]. Observe that r1 and r2 are contiguous with r1

preceding r2. Also, r′ is fully contained inside either r1 or r2. (Why? Consider the case when
t ≤ i′ ≤ j′. t was the lowest in the part preceding r′, thus h(t) ≤ h(i′). If a < j′, then by
maximimality of [a, b], h(a + 1) < h(a) = h(t) ≤ h(i′), and a + 1 ∈ [t + 1, j′]. By choice of
t, a + 1 > i′. Thus a + 1 ∈ r′, and h(a + 1) < h(i′) = h(j′), contradicting the fact that r′ is
a valid interval. Hence it must be the case that t ≤ i′ ≤ j′ ≤ a, and so r2 contains r′. The
case when i′ ≤ j′ ≤ t is similar.)

It is easy to see that r − r3 is of size at most three-fourths the size of r − r′, and so is
the interval that does not contain r′ (either r1 or r2). The same may not be true of the third
part; the subinterval which contains r′, say rb, can be as large as r − r′. But it is easy to
observe that at next step, this part will get tri-partitioned into intervals with sizes at most
two-thirds the size of rb each.

Once r1, r2 are fixed, the three fragments can be found as described above. Thus, finding
the three fragments essentially boils down to finding b, t, a. This can be done in TC0 for the
input string x over pushdown alphabet ∆, and hence in L. ⊓⊔

Adaptation to arithmetic setting: To adapt this algorithm to the arithmetic setting,
we now consider the tables that we defined in the proof of Lemma 5, and lift them over to
N. Consider the fragment (r, Λ), where Λ = (r′, T ′). The interval r′ is a sub-interval of the
interval r. Let u, v ∈ ∆∗ be such that xr = uxr′v (note that one of u, v, xr′ can possibly be
ǫ). The modifications to procedure T are as follows.

If |xr| ≤ 2 (in this case Λ will be trivial), then the table Tr can be filled as follows: the
[(q,X), (q′, X ′)]-th entry will be set to k if X = X ′ and the machine M can start from surface
configuration (q,X), read xr, and reach configuration (q′, X ′) in exactly k ways. This can be
filled by simply looking up the transition function δ′. Thus at the base case, we can fill the
tables.

If |xr| > 2 but |uv| ≤ 2 (so Λ is not trivial), then assume that inductively, we have the
table T ′

r′ computed correctly. Then set the [(q,X), (q′, X)]-th entry of the table Tr as follows:

10

If u and v are well-matched, then

T [(q,X),(q′,X)]
r =

∑

q1,q2∈Q

#[(q,X) ;u (q1, X)] . T
[(q1,X),(q2,X)]
r′ . #[(q2, X) ;v (q′, X)] (1)

Here, the notation #[α ;w β] denotes the number of ways of going from surface configuration
α to surface configuration β while reading input w.

Otherwise it must be that u is a push letter and v is a pop letter. In this case,

T [(q,X),(q′,X)]
r =

∑

q1,q2∈Q,Y ∈Γ

#[(q,X) ;u (q1, Y)] . T
[(q1,Y),(q2,Y)]
r′ . #[(q2, Y) ;v (q′, X)] (2)

Both these cases can be combined into the following single equation:

T
[(q,X),(q′,X)]
r =

∑

s1,s2∈Q×Γ

#[(q,X) ;u s1] . T
[s1,s2,]
r′ . #[s2 ;v (q′, X)]

T
[(q,X),(q′,X′)]
r = 0 if X 6= X ′

(3)

Since T ′
r′ is available through recursive computation, and since the other terms in these

equations can be found from δ, T can compute Tr.
For handling the case when |uv| > 2, we just redefine the ×-operator as matrix multipli-

cations over N. Let Tb denote the table corresponding to interval rb, for b = 1, 2, where r1

and r2 are contiguous with r1 preceding r2. Then the table T3 for r3 = r1 ∪ r2 is given by
T3 = T1 × T2; that is,

T
[(q,X),(q′,X′)]
3 =

∑

p,Y ∈Q×Γ

T
[(q,X),(p,Y)]
1 . T

[(p,Y),(q′,X′)]
2 (4)

(Inductively, this sets an entry to be 0 if X 6= X ′.)
Under this semantics for tables and × operator, we can establish the following:

Claim. For every interval r = [i, j] arising in the recursion tree on input ([0, n], ([2n/3, 2n/3], Id)),
the [(q,X), (q′, X ′)]-th entry of the table Tr computed by T equals the number of distinct
paths of M from (q,X) to (q′, X) on string xij.

Proof. (of claim) The procedure T processes intervals as fragments. The correctness proof
proceeds by induction on the effective size of the interval; that is, for a recursive call on
input (r, (r′, T ′)), we show by induction on the size of r − r′ that if T ′ is correct for r′, then
T returns the correct table for r.

The base case is when r − r′ is an interval of size 2 or less. If |r′| = 0, then T computes
Tr directly from δ and so is correct. If r′ 6= 0, then correctness follows from Equation 3.

For the inductive case, consider a fragment where |r − r′| > 2. T computes fragments
(r1, Λ1) and (r2, λ2) and makes recursive calls. Assume that {b, c} = {1, 2} and that rc

contains r′. As argued in [BV83], the effective interval in fragment (rc, Λc) is strictly smaller
than |r−r′|, and so by induction, T correctly computes Trc

. rb has a trivial pair attached and
may not be smaller. Assume for now that it is smaller, so by induction, T correctly computes

11

Trb
as well. Now Tr3

is computed by Equation 4 which correctly combines paths over xr1
and

xr2
. Finally, T is invoked with (r, (r3, T3)), and by induction, this call terminates with the

correct value of Tr.
Suppose now that rb is not smaller than r − r′. (This can happen, for instance, if rc

contains just r′ and rb is all the rest of r.) But then T , while processing (rb, Λb), makes
calls with inputs (rbl, Λbl) where l ∈ {1, 2}, and each call has a smaller effective interval
length. So Trb1

and Trb2
are computed correctly by induction, and T ′′ = Trb1∪rb2

is obtained
via Equation 4 which correctly combines paths. Then T is invoked with (rb, (rb1 ∪ rb2, T

′′)).
By induction, this call terminates with the correct value of Tr2

. ⊓⊔

The modified recursive procedure for computing the newly defined tables over N cannot
directly be implemented in LogDCFL, because each entry of a table may need polynomially
many bits. (The number of paths of a VPA on any string cannot exceed 2O(n), so polynomially
many bits suffice.) However, if we were to perform all the operations modulo small primes,
each needing logarithmically many bits, then analogous to Lemma 5, the modified procedure
can be implemented2 in FLogDCFL. The fragments that get pushed on to the stack and
processed on the work tape will have O(log n)-bit representations owing to not only the
indices of the intervals but also the tables. (In the previous case, the tables were of size
O(1).) This can be handled by an AuxPDA. If we do the above implementation for sufficiently
many primes, then by Chinese Remaindering (Lemma 3) we will be able to recover the exact
number in FL. Overall, we have that counting number of accepting paths in machine M over

input x can be performed in FLFLogDCFL = FLogDCFL. In conjunction with Lemma 4, this
shows the second containment of Theorem 1, namely #BP-VPA ⊆ FLogDCFL.

Counting modulo k, for fixed k: Now we come to the third containment of our theorem,
namely, ModkBP-VPA ⊆ L for each fixed k. We appeal to the second algorithm of [BV83],
that yields the following.

Lemma 6 (Algorithm 2 of [BV83]). Let M be a VPA accepting well-matched strings over
an alphabet ∆. Given an input string x, checking if x ∈ L(M) can be done in L.

Instead of describing this algorithm and the modification required for our result, we directly
describe the modified version.

It suffices to compute the table operations, as defined in Equations 1,2, and 4, modulo
k. Hence, the tables will be of size O(|Q|2|Γ |2k) = O(1). Thus the table size does not cause
an increased space requirement.

Further, note that all the fragments need not be carried along explicitly. Just remembering
the path in the recursion tree, and the tables for all nodes on the path, suffices. Say the
recursion tree is labelled as follows: The three children of a node are called l, r, o to mean
‘left’, ‘right’ and ‘other’, for the recursive calls T (r1, Λ1), T (r2, Λ2), and T (r, Λ3) respectively.
Label a node by a string w ∈ {l, r, o}∗ to denote the position of the node in the tree. (e.g
label the leftmost leaf by ld where d is depth of that leaf, label the root of the tree by ǫ.) It

2 Note that if a prime p is bounded in value by O(q(n)), then for a, b ∈ [0, p), the brute force algorithm for computing
(a × b) mod p and (a + b) mod p can be implemented in deterministic space O(log q(n)).

12

is easy to see (and this was used in [BV83] to prove correctness of their algorithm) that if
one knows the label for a node, then reconstructing the intervals r, r′ at this node from this
label is possible in L. They also observed that computing the next label from the current
node label can be done in L (in fact, it is easy to note that this can be done in TC0.) Thus
at any stage our algorithm needs to remember the label of the current node being processed,
and appropriate tables. We already saw that the table size is O(1). Our procedure needs to
know at most one table (the table in the Λ part of the fragment) per node along the current
path. As the depth of the recursion is bounded by O(log n), the depth of any node is also
bounded O(log n). Thus, the label size, and the number of tables that need to be stored, are
both at most O(log n) for any node. Hence the procedure does not need to remember more
than O(log n) bits at any stage of the recursion.

4 Counting proof trees in log width formulas

We show that the result of [IZ94], asserting that log width formulas capture NC1, holds in the
arithmetized setting as well. This result is crucial to obtain a connection between #NC1and
#sSC1(refer Theorem 4).

Definition 3.

#F =

{

f : {0, 1}∗ → N |
f can be computed by a polynomial size formula
over {+,×, 1, 0, xi, xi}.

}

#LWF =

{

f : {0, 1}∗ → N |
f can be computed by a polynomial size O(log n)
width formula over {+,×, 1, 0, xi, xi}.

}

Theorem 2. #LWF = #F = #NC1

Proof. Clearly, #LWF ⊆ #F. It follows from [BCGR92] (see also [All04]) that #F is in #NC1.
So we only need to show that #NC1 is in #LWF.

Lemma 2 in [IZ94] establishes that NC1 ⊆ LWF. Essentially, it starts with a O(log n)
depth formula (any NC1 circuit can be expanded into a formula of polynomial size and
O(log n) depth), and staggers the computations at each level of the formula. In the process,
the size blows up by a factor exponential in the original depth; this is still a polynomial.
We observe that since no other structural changes are done, the reduction preserves proof
trees. ⊓⊔

5 Polynomial degree small-width circuits and their
arithmetization

We now consider arithmetization of SCi circuits.
A straightforward arithmetization of any Boolean circuit class over (∧,∨, xi, xi, 0, 1) is to

replace each ∨ gate by a + gate and each ∧ gate by a × gate. In the case of SC0 (SCi in
general), this enables the circuit to compute infeasible values (i.e exponential sized values),

13

which makes the class uninteresting. Hence we propose bounded degree versions of these
classes and then arithmetize them.

The degree of a circuit is the maximum degree of any gate in it, where the degree of a
leaf is 1, the degree of an ∨ or + gate is the maximum of the degrees of its children, and the
degree of a ∧ or × gate is the sum of the degrees of its children.

Definition 4. sSCi is the class of languages accepted by Boolean circuits of polynomial size,
O(logi n) width and polynomial degree.

#sSCi is the class of functions computed by arithmetic circuits of polynomial size, O(logi n)
width and polynomial degree. Equivalently, it is the class of functions counting the number
of proof trees in an sSCi circuit.

sSC =
⋃

i≥0

sSCi #sSC =
⋃

i≥0

#sSCi

Note that SC circuits can have internal NOT gates as well; moving the negations to the
leaves only doubles the width. However, when we restrict degree as in sSC, we explicitly
disallow internal negations. The circuits have only AND and OR gates, and constants and
literals appear at leaves.

It is known that polynomial-size circuits of polynomial degree, irrespective of width or
depth, characterize LogCFL, which is equivalent to semi-unbounded log depth circuits SAC1,
and hence is contained in NC2 [Sud78,Ruz80,Ven91]. This equivalence also holds in the
arithmetic settings for # and for Gap, see [Vin91,NR95,AJMV98]. Thus

Proposition 1. For all i ≥ 0,

1. sSCi ⊆ LogCFL

2. #sSCi ⊆ #LogCFL

3. GapsSCi ⊆ GapLogCFL

Any branching program can be viewed as a skew circuit. A skew circuit’s degree is
bounded by its size. Thus BWBP is contained in sSC0. But SC0 = BWBP = NC1. Thus

Proposition 2. sSC0 = SC0 = NC1.

We do not know whether such an equality (sSCi = SCi) holds at any other level. If it
holds for any i ≥ 2, it would bring a larger chunk of SC into the NC hierarchy.

We now show that the individual bits of each #sSCi function can be computed in polyno-
mial time using O(logi+1 n) space. However, the Boolean circuits constructed may not have
polynomial degree.

Theorem 3. For all i ≥ 0, #sSCi ⊆ GapsSCi ⊆ SCi+1

Proof. We show how to compute #sSCi in SCi+1. The result for Diff and hence Gap follows
since subtraction can be performed in SC0.

Let f ∈ #sSCi. Let d be the degree bound for f . Then the value of f can be represented by
at most d ∈ nO(1) many bits. By the Chinese Remainder Theorem, f can be computed exactly

14

from its residues modulo the first O(dO(1)) primes, each of which has O(log d) = O(log n)
bits. These primes are small enough that they can be found in logspace. Further, due to
[CDL01], the computation of f from its residues can also be performed in L= SC1; see also
[All01]. If the residues can be computed in SCk, then the overall computation will also be
in SCk because we can think of composing the computations in a sequential machine with a
simultaneous time-space bound.

It thus remains to compute f mod p where p is a small prime. Consider a bottom-up
evaluation of the #sSCi circuit, where we keep track of the values of all intermediate nodes
modulo p. The space needed is log p times the width of the circuit, that is, O(logi+1 n) space,
while the time is clearly polynomial. Thus we have an SCi+1 computation. ⊓⊔

In particular, bits of an #sSC0 function can be computed in SC1, which equals L. On the
other hand, by an argument similar to the discussion preceding Proposition 2, we know that
#BWBP is contained in #sSC0. Thus

Corollary 1. FNC1 ⊆ #BWBP ⊆ #sSC0 ⊆ FL.
GapNC1 = GapBWBP ⊆ GapsSC0 ⊆ FL.

We cannot establish any direct connection between #sSC0 and #NC1. Thus this is po-
tentially a fourth arithmetization of the Boolean class NC1, the other three being #BWBP,
#NC1, and #BP-VPA.

We also do not know whether sSC1 properly restricts SC1=L. Even if it does, it cannot
fall below NC1, since NC1 = sSC0(Proposition 2). We note that this holds in the arithmetic
setting as well:

Theorem 4. #NC1 ⊆ #sSC1.

Proof. From Theorem 2, we know that #NC1 equals #LWF. But an LWF has log width and
has polynomial degree since it is a formula; hence #LWF is in #sSC1. ⊓⊔

Since the levels of sSC are sandwiched between NC1 and LogCFL, both of which are closed
under complementation, it is natural to ask whether the levels of sSC are also closed under
complement. While we are as yet unable to show this, we show that for each i, co-sSCi is
contained in sSC2i; thus sSC as a whole is closed under complement.

Theorem 5. For each i ≥ 1, co-sSCi is contained in sSC2i.

Proof. Consider the proof of closure under complement for LogCFL, from [BCD+89]. This is
shown by considering the characterization of LogCFL as semi-unbounded log depth circuits,
and applying an inductive counting technique to such circuits. Our approach for complement-
ing sSCi is similar: use inductive counting as applied by [BCD+89]. However, one problem is
that the construction of [BCD+89] uses monotone NC1 circuits for threshold internally, and if
we use these directly, the degree may blow up. So for the thresholds, we use the construction
from [Vin96]. A careful analysis of the parameters then yields the result.

Let Cn be a Boolean circuit of length l, width w = O(logi n) and degree p. Without
loss of generality, assume that Cn has only ∨ gates at odd levels and ∧ gates at even levels.

15

Also assume that all gates have fan in 2 or less. We construct a Boolean circuit C ′
n, which

computes C̄n. C ′
n contains a copy of Cn. Besides, for each level k of Cn, C ′

n contains the gates
cc(g|c) where g is a gate at level k of Cn and 0 ≤ c ≤ w. These represent the conditional
complement of g assuming the count at the previous level is c, and are defined as follows:

cc(g|c) =

{

cc(a1|c) ∨ cc(a2|c), if g = a1 ∧ a2

Thc(b1, · · · , bj), if g = a1 ∨ a2

where b1, · · · , bj range over all gates at the previous level except a1 and a2.

C ′
n also contains, for each level k of Cn and 0 ≤ c ≤ w, the gates count(c, k). These gates

verify that the count at level k is c, and are defined as follows:

count(c, k) =

Th1(c, k) ∧
∨w

d=0 [count(d, k − 1) ∧ Th0(c, k, d)] if k > 0

1 if k = 0, c = # of inputs with value 1 at level 0

0 otherwise

Thc is the c-threshold value of its inputs , Th1(c, k) = Thc of all original gates (gates from
Cn) at level k, Th0(c, k, d) is ThZ−c of all cc(g|d) at level k where Z is the number of gates in
Cn at level k. Finally, the output gate of C ′

n is comp(g) =
∨w

c=0 Count(c, l−1)∧cc(g|c), where
g is the output gate of Cn, at level l. Correctness follows from the analysis in [BCD+89].

A crucial observation, used also in [BCD+89], is that any root-to-leaf path goes through
at most two threshold blocks.

To achieve small width and small degree, we have to be careful about how we implement
the thresholds. Since the inputs to the threshold blocks are computed in the circuit, we need
monotone constructions. We do not know whether monotone NC1 is in monotone sSC0, for
instance. But for our purpose, the following is sufficient: Lemma 4.3 of [Vin96] says that
any threshold on K bits can be computed by a monotone branching program (hence small
degree) of width O(K) and size O(K2). This branching program has degree O(K). Note that
the thresholds we use have K = O(w). The threshold blocks can be staggered so that the
O(w) extra width appears as an additive rather than multiplicative factor. Hence the width
of C ′

n is O(w2). (The conditional complement gates cause the increase in width; there are
O(w2) of them at each level.)

Let q be the degree of a threshold block; q = O(K) = O(w). If the inputs to a threshold
block come from computations of degree p, then the overall degree is pq. Since a cc(g|c) gate
is a threshold block applied to gates of Cn at the previous level, and since these gates all
have degree at most p, the cc(g|c) gate has degree at most pq.

Also, the degree of a count(c, k) gate is bounded by the sum of (1) the degree of a
count(c, k − 1) gate, (2) the degree of a threshold block applied to gates of Cn, and (3) the
degree of a threshold block applied to cc(g|c) gates. Hence it is bounded by pO(1)wO(1)l, where
l is the depth of Cn. Thus, the entire circuit has polynomial degree. ⊓⊔

16

6 Extensions and Closure Properties

In this section, we show that some closure properties that hold for #NC1 and #BWBP

also hold for #sSC0. The simplest closures are under addition and multiplication, and it is
straightforward to see that #sSC0 is closed under these. The next are weak sum and weak
product: add (or multiply) the value of a two-argument function over a polynomially large
range of values for the second argument. (See [CMTV98,Vol99] for formal definitions.) A
simple staggering of computations yields:

Lemma 7. For each i ≥ 0, #sSCi is closed under weak sum and weak product.

#NC1 and #BWBP are known to be closed under decrement f ⊖ 1 = max{f − 1, 0} and
under division by a constant ⌊ f

m
⌋. ([AAD00] credits Barrington with this observation for

#NC1. See the appendix for detailed constructions.) We show that these closures hold for
#sSC0 as well. The following property will be useful.

Proposition 3. For any f in #sSC0 or #SC0 or #NC1, and for any constant m, the value
f mod m is computable in FNC1. Further, the boolean predicates [f > 0] and [f = 0] are
computable in #sSC0.

Proof. Consider f ∈#NC1. Note that, for a constant m, if a, b ∈ {0, . . . ,m − 1}, then the
values [(a + b) mod m] and [(ab) mod m] can be computed by an NC0 circuit. Thus by
induction on depth of f , [f mod m] can be computed in FNC1. Now consider f ∈#sSC0.
We will argue by induction on the depth of a circuit for f , that [f mod m] ∈ sSC0. The
base case is obvious. If f = g +h, then by the induction hypothesis, g mod m, h mod m ∈
sSC0 = NC1. Thus, (g mod m + h mod m) mod m ∈ NC1 = sSC0. The case when f = gh
is similar. Thus f mod m ∈FNC1.

Clearly [f > 0] ∈ NC1. Since NC1 is closed under complementation, [f = 0] ∈ NC1.
Since NC1 circuits have deterministic branching programs of constant width, and branching
programs are nothing but skew circuits, we obtain constant width arithmetic circuits for
[f > 0] and [f = 0]. ⊓⊔

Lemma 8. #sSC0 is closed under decrement and under division by a constant m.

Proof. Consider f ∈ #sSC0, witnessed by an arithmetic circuit Cn of width w, length l and
degree p. Also for a fixed m, (f mod m) can be computed in FNC1 (see Proposition 3).
If g, h are in #sSC0, then the functions t1, t2 defined below can be computed in FNC1 and
#sSC0.

t1 =

⌊

g mod m + h mod m

m

⌋

t2 =

⌊

(g mod m)(h mod m)

m

⌋

f at level l is either g + h or gh. Let op ∈ {⊖1, div m}. The circuit for op(f) takes
values of g and h from level (l− 1) of Cn, and values of op(g) and op(h) that are inductively
available at level (l − 1). Appropriate circuits (#sSC0 circuits computing the predicates
[f > 0] and [f = 0], or #sSC0 circuits computing (g mod m), (h mod m), t1, t2) for each

17

gate at level l − 1 are explicitly substituted, contributing a multiplicative factor for width
O(w) and length O(l) to the constructed circuit.

When op = ⊖, we have

(g + h) ⊖ 1 = (g ⊖ 1 + h) × [g > 0] + (h ⊖ 1) × [g = 0]

gh ⊖ 1 = [(g ⊖ 1) × h + h ⊖ 1] × [g > 0] × [h > 0]

When op = div m, we have
⌊

g+h

m

⌋

=
⌊

g

m

⌋

+
⌊

h
m

⌋

+ t1
⌊

gh

m

⌋

=
⌊

g

m

⌋

× h +
⌊

h
m

⌋

× (g mod m) + t2

The constructed arithmetic circuit for op(f) has width O(w2) and length O(l2). Let
p = deg(Cn), q1 = max{deg([f > 0]), deg([f = 0])}, and q2 = max{deg(g mod m), deg(h
mod m), deg(t1), deg(t2)}. Then the circuit for f ⊖ 1 has degree at most p + lq1, while that
for ⌊ f

m
⌋ has degree at most p + lq2.

Thus we have op(f) ∈#sSC0. ⊓⊔

Another consequence of Proposition 3 can be seen as follows. We have three competing
arithmetizations of the Boolean class NC1: #BWBP, #NC1 and #sSC0. (Until we can show
that #BP-VPA is at least in FL, #BP-VPA cannot really be considered a natural arithme-
tization of NC1.) The most natural one is #NC1, defined by arithmetic circuits. It contains
#BWBP, which is contained in #sSC0, though we do not know the relationship between
#NC1 and #sSC0. Applying a “> 0?” test to any yields the same class, Boolean NC1. We
show here that applying a “≡ 0 mod p?” test to any of these arithmetic classes also yields
the same language class, namely NC1.

Theorem 6. For any fixed p, ModpBWBP = ModpsSC0 = ModpNC1 = NC1.

Proof. The NC1-hardness for each of these three problems is obvious. From Proposition 3, for
f ∈ {#sSC0, #BWBP, #NC1}, and a constant m, the value [f(x) mod m] can be computed
in FNC1. Hence the predicate [f(x) ≡ 0 mod m] can be computed in NC1. ⊓⊔

There is another natural way to produce Boolean circuits from arithmetic circuits, by
allowing the circuit to perform a “test for nonzero” operation. Such circuits, known as
Arithmetic-Boolean circuits, were introduced by von zur Gathen, and have been studied
extensively in the literature see e.g. [vzGS91,vzG93,BCGR92,All04]. We extend this a little
further, by looking at bounded width restrictions.

Definition 5. Let C be any of the arithmetic circuit class studied above, then Arith-Bool
C, is defined to be the set of languages, which are accepted by circuits, with the following
additional gates,

test(f) =

{

0 if f = 0
1 otherwise

select(f0, f1, y) =

{

f0 if y = 0
f1 if y = 1

where y is either a constant or a literal.

18

Assigning deg(select(f0, f1, y)) = 1 + max{deg(f0), deg(f1)} and deg(test(f)) = deg(f), we
have the following,

Lemma 9. 1. Arith-Bool#NC1 = #NC1.[All04]
2. Arith-Bool#BWBP = #BWBP.
3. Arith-Bool#sSC0 = #sSC0

Proof. 1 and 2 are straight forward. If f ∈#sSC0then the predicate [f > 0] can be computed
by an unambiguous skew-sSC0circuit. Now, given any Arith-Bool#sSC0circuit C of length
l, starting from the bottom, replace every test(f) gate by the sSC0 circuit which computes
[f > 0], and each select(f0, f1, y) by the circuit ȳf0 + y.f1. We also stagger the resulting
circuit C ′, so that it has width 5w, and length ll′, where l′ is an upper bound on the length
of the circuit for [f > 0]. It can also be seen that deg(C ′) ≤ deg(f).q, where q is a polynomial
upper bound on the degree of [f > 0]. ⊓⊔

However, for the Gap classes, we do not have such a collapse. Analogous to the definitions
of SPP and SPL, define a class SNC1: it consists of those languages L for which there is a
GapNC1 function f satisfying

∀x :
x ∈ L ⇐⇒ f(x) = 1
x 6∈ L ⇐⇒ f(x) = 0

Then we have the following conditional result.

Lemma 10. Arith-BoolGapNC1=GapNC1if and only if SNC1=C=NC1.

Proof. If Arith-BoolGapNC1= GapNC1, then the characteristic functions of languages in
C=NC1 can be computed in GapNC1. (Put a single test operation above the circuit for the
GapNC1 function.) This implies that C=NC1 is in SNC1. Conversely, if SNC1=C=NC1, then
any test operation can be performed in GapNC1. Select can be implemented using test and
arithmetic operations anyway. ⊓⊔

7 Discussion

We have studied arithmetizations of some classes that are equivalent to NC1 in the Boolean
setting. Some interesting questions arise from our study.

1. Augmenting an NFA with a pushdown stack pushes up the class to LogCFL, which is
powerful enough to contain all of NL. If the pushdown stack is restricted to be visible,
then the Boolean complexity remains the same (NC1), but the arithmetic complexity is
not yet clear. We have shown that it is upper bounded by FLogDCFL. We believe, however,
that it is in fact within FL, and possibly coincides with either #NC1 or #BWBP; a proof
would probably need to carefully combine techniques from [Dym88] and [Bus87]. Settling
this is an interesting question. In [LMM08], some further extensions beyond VPA are
shown to coincide with VPA in both Boolean and arithmetic settings, while a significant
generalization still lies within LogDCFL.

19

2. A related question is: Is there some restriction on stack usage that will allow us to charac-
terize L in the Boolean setting, and #NC1 or FL in the arithmetic setting? Deterministic
one-turn PDA do characterize L ([HL93], see also [Lan93,Mah07]), but for arithmetizing
them we need a nondeterministic equivalent.

3. In the Boolean setting, exactly how much does the polynomial degree constraint restrict
SC1? In NC1 ⊆ sSC1 ⊆ SC1 = L, are any of the containments strict?

4. Are the levels of the sSC hierarchy closed under complement? We have only showed
co-sSCi ⊆ sSC2i.

5. In the arithmetic setting, exactly where do the classes #sSC0 and #sSC1 lie? In particular,
can we show that #sSC0 equals #NC1, or that #sSC1 is in FL? What closure properties
do these arithmetic classes possess?

6. A study of the language classes SNC1 and C=NC1 (in particular, their closure properties)
may reveal interesting connections. The exact counting and the threshold language class
analogues of the classes #sSC0 or #BWBP may lead to potentially new complexity classes
that might also turn out to be interesting.

Acknowledgments

The authors gratefully acknowledge the anonymous referees, whose comments helped improve
the readability of the paper.

References

[AAD00] M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and arithmetic circuits. Journal of Computer and
System Sciences, 60(2):395–421, 2000.

[AJMV98] E. Allender, J. Jiao, M. Mahajan, and V. Vinay. Non-commutative arithmetic circuits: depth reduction
and size lower bounds. Theoretical Computer Science, 209:47–86, 1998.

[AKMV05] R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruences for visibly pushdown languages.
In Proceedings of the 32nd International Colloquium on Automata, Languages, and Programming ICALP,
pages 1102–1114, 2005.

[All01] E. Allender. The division breakthroughs. BEATCS: Bulletin of the European Association for Theoretical
Computer Science, 74, 2001.

[All04] E. Allender. Arithmetic circuits and counting complexity classes. In Jan Krajicek, editor, Complexity of
Computations and Proofs, Quaderni di Matematica Vol. 13, pages 33–72. Seconda Universita di Napoli,
2004. An earlier version appeared in the Complexity Theory Column, SIGACT News 28, 4 (Dec. 1997)
pp. 2-15.

[AM04] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the ACM Symposium on
Theory of Computing STOC, pages 202–211, 2004.

[Bar89] D. A. M. Barrington. Bounded-width polynomial-size branching programs recognize exactly those lan-
guages in NC1. Journal of Computer and System Sciences, 38(1):150–164, 1989.

[BCD+89] A. Borodin, S. Cook, P. Dymond, W. Ruzzo, and M. Tompa. Two applications of inductive counting for
complementation problems. SIAM Journal of Computing, 18(3):559–578, 1989.

[BCGR92] S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algorithm for formula evaluation.
SIAM Journal on Computing, 21(4):755–780, 1992.

[Bus87] S. Buss. The Boolean formula value problem is in ALOGTIME. In Proceedings of the ACM Symposium
on Theory of Computing STOC, pages 123–131, 1987.

[BV83] B. von Braunmühl and R. Verbeek. Input-driven languages are recognized in log n space. In Proceedings
of the Fundamentals of Computation Theory Conference FCT, LNCS, pages 40–51, 1983.

20

[CDL01] A Chiu, G Davida, and B Litow. Division in logspace-uniform NC1. RAIRO Theoretical Informatics and
Applications, 35:259–276, 2001.

[CMTV98] H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1 computation. Journal
of Computer and System Sciences, 57:200–212, 1998.

[Coo71] S. Cook. Characterizations of pushdown machines in terms of time-bounded computers. Journal of
Association for Computing Machinery, 18:4–18, 1971.

[Coo79] S. Cook. Deterministic CFL’s are accepted simultaneously in polynomial time and log squared space. In
Proceedings of the ACM Symposium on Theory of Computing STOC, pages 338–345, 1979.

[DC89] P.W. Dymond and S. Cook. Complexity theory of parallel time and hardware. Information and Compu-
tation, 80:205–226, 1989.

[Dym88] P.W. Dymond. Input-driven languages are in log n depth. In Information Processing Letters, pages 26,
247–250, 1988.

[FLR96] H. Fernau, K.-J. Lange, and K. Reinhardt. Advocating ownership. In Proceedings of the 16th Foundations
of Software Technology and Theoretical Computer Science Conference FST&TCS, LNCS 1180, pages 286–
297, 1996.

[HL93] M. Holzer and K.-J. Lange. On the complexities of linear LL(1) and LR(1) grammars. In Proceedings of
the 9th International Symposium on Fundamentals of Computation Theory FCT, LNCS, pages 299–308,
1993.

[IZ94] S. Istrail and D. Zivkovic. Bounded width polynomial size Boolean formulas compute exactly those
functions in AC0. Information Processing Letters, 50:211–216, 1994.

[Joh90] D. S. Johnson. A catalog of complexity classes. In Jan van Leeuwen, editor, Handbook of Theoretical
Computer Science, Volume A: Algorithms and Complexity (A), pages 67–161, Elsevier and MIT Press,
1990.

[Lan93] K.-J. Lange. Complexity and structure in formal language theory. In Proceedings of the IEEE Structure
in Complexity Theory Conference, pages 224–23, 1993.

[LMM08] N. Limaye, M. Mahajan, and A. Meyer. On the complexity of membership and counting in height-
deterministic pushdown automata. In Proceedings of the 3nd International Computer Science Symposium
in Russia CSR, LNCS 5010, 2008.

[LMR07] N. Limaye, M. Mahajan, and B. V. R. Rao. Arithmetizing classes around NC1 and l. In Proceedings
of the 24th Annual Symposium on Theoretical Aspects of Computer Science STACS, LNCS 4393, pages
477–488, 2007.

[Mah07] M. Mahajan. Polynomial size log depth circuits: between NC1 and AC1. BEATCS: Bulletin of the
European Association for Theoretical Computer Science, 91, 2007.

[Meh80] K. Mehlhorn. Pebbling mountain ranges and its application to DCFL-recognition. In Proceedings of the
7th International Colloquium on Automata, Languages, and Programming ICALP, LNCS, pages 422–432,
1980.

[Nis94] N. Nisan. RL ⊆ SC. Computational Complexity, 4(11):1–11, 1994.
[NR95] R. Niedermeier and P. Rossmanith. Unambiguous auxiliary pushdown automata and semi-unbounded

fan-in circuits. Information and Computation, 118(2):227–245, 1995.
[Ruz80] W.L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System Sciences, 21:218–235, 1980.
[Sud78] I. Sudborough. On the tape complexity of deterministic context-free language. Journal of Association of

Computing Machinery, 25(3):405–414, 1978.
[Ven91] H. Venkateswaran. Properties that characterize LogCFL. Journal of Computer and System Sciences,

42:380–404, 1991.
[Vin91] V Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In Proceedings

of 6th IEEE Structure in Complexity Theory Conference, pages 270–284, 1991.
[Vin96] V Vinay. Hierarchies of circuit classes that are closed under complement. In Proceedings of the 11th

Annual IEEE Conference on Computational Complexity CCC, pages 108–117, Washington, DC, USA,
1996.

[Vol99] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag New York Inc.,
1999.

[vzG93] J. von zur Gathen. Parallel linear algebra. In J. H. Reif, editor, Synthesis of Parallel Algorithms, pages
573–617. Morgan Kaufmann, 1993.

[vzGS91] J. von zur Gathen and G. Seroussi. Boolean circuits versus arithmetic circuits. Information and Compu-
tation, 91(1):142–154, 1991.

21

Appendix

#NC1 and #BWBP are known to be closed under decrement f⊖1 = max{f−1, 0} and under
division by a constant ⌊ f

m
⌋. In [AAD00], this observation for #NC1 is credited to Barrington.

However, we have not seen a published proof, so for completeness, we give details here.
We will repeatedly use the following fact:

Proposition 4 (Barrington [Bar89], see also [CMTV98]). For any f in #BWBP or
#NC1, the predicates [f(x) = 0] and [f(x) > 0] are in #BWBP and #NC1. That is, they can
be computed by 0-1 valued arithmetic branching programs / circuits.

Proof. Start with f ∈ #NC1. By replacing + by ∨ gates and × by ∧ gates, we can see that
the predicates [f > 0] and [f = 0] are in NC1. By [Bar89], these predicates can be computed
by deterministic branching programs. The #BWBP functions computed by these programs
are thus 0-1 valued, as desired. Since #BWBP ⊆ #NC1, the predicates also have 0-1 valued
#NC1 circuits. ⊓⊔

Lemma 11. The classes #NC1 and #BWBP are closed under decrement and division by a
constant m.

Proof. Let f ∈ #NC1. First consider decrement. We show that f ⊖ 1 = max{f(x) − 1, 0} ∈
#NC1 by induction on depth of the circuit. The base case, when depth is zero, is straight-
forward: f ⊖ 1 = 0. Now consider a circuit of depth d computing f . f is either g + h or gh
for some g, h computed at depth d − 1.

(g + h) ⊖ 1 = (g ⊖ 1 + h) × [g > 0] + (h ⊖ 1) × [g = 0]

(gh) ⊖ 1 = [(g ⊖ 1) × h + h ⊖ 1] × [g > 0] × [h > 0]

By induction and using Proposition 4, it follows that f ⊖ 1 ∈ #NC1.
Next consider division: we want to show ⌊ f

m
⌋ ∈ #NC1. Note that

⌊

g + h

m

⌋

=
⌊ g

m

⌋

+

⌊

h

m

⌋

+

⌊

g mod m + h mod m

m

⌋

⌊

gh

m

⌋

=
⌊ g

m

⌋

h + (g mod m)

⌊

h

m

⌋

+

⌊

(g mod m)(h mod m)

m

⌋

Now the required result follows from Proposition 3, using induction on depth.
In the case of #BWBP, we use induction on the length of the program. Let f ∈ #BWBP.

Let w be the width and l be the length of the branching program P for f . We assume without
loss of generality that all the edges in any one layer are labeled by the same variable (or a
constant). The base case is branching programs of length one, in which case f ⊖ 1 and ⌊ f

m
⌋

are trivially 0, since f ∈ {0, 1}. Assume that for all branching programs P ′ with length at
most l − 1, #P ′ ⊖ 1 and ⌊#P ′

m
⌋ are in #BWBP. Let P be a length l branching program. Let

S = {v1, v2, . . . , vw} be the nodes at level l − 1 of P . We also denote by vi the value of the

22

#BWBP function computed at node vi. Let the edges out of this level be labeled by 1, x or x
for some variable x. Now f can be written as f =

∑

i∈S1
vi + x

∑

i∈S2
vi + x

∑

i∈S3
vi, where

nodes in S1 have an edge labeled 1 to the output node, nodes in S2 have an edge labeled
x to the output node, and nodes in S3 have an edge labeled x to the output node. Let U
denote

∑

i∈S2
vi and Y denote

∑

i∈S3
vi. Now

f⊖1 = [v1 > 0](v1⊖1+v2+· · ·+vj1+xU+xY)+[v1 = 0][v2 > 0](v2⊖1+v3+· · ·+vj1+xU+Y)+· · ·

Using Proposition 4 and induction, we see that f ⊖1 can be computed within #BWBP, with
width (3w + 5)w + 2w.
Note that, in order to achieve the above width bound, we need to stagger the programs for
each term in the above sum. The constant 5 is for computing the predicates like [vi > 0] and
[vi = 0], which follows from Barrington’s construction([Bar89]). The length of the resulting
program will be w2lq, where q is an upper bound for the length of the branching programs
which compute predicates [vi > 0] and [vi = 0].

⌊

f

m

⌋

=

j1
∑

i=1

⌊ vi

m

⌋

+ x.

j2
∑

i=1

⌊ui

m

⌋

+ x

j3
∑

i=1

⌊ yi

m

⌋

+
⌊

Pj1
i=1

vi mod m+x
Pj2

i=1
ui mod m+ x

Pj3
i=1

yi mod m

m

⌋

For each i, vi mod m,ui mod m and yi mod m can be computed in NC1. Since w is a
constant, we can compute the whole sum in FNC1 and hence in #BWBP. By our inductive
hypothesis, all vi, ui and yi’s are in #BWBP, hence ⌊ f

m
⌋ ∈ #BWBP. The width of the

resulting program is bounded by 2mw, and size by mwl. ⊓⊔

23

