
Small space analogues of Valiant’s classes and the limitations of

skew formulas∗

Meena Mahajan
The Institute of Mathematical Sciences,

Chennai, India

meena@imsc.res.in

B. V. Raghavendra Rao†

Universität des Saarlandes, Informatik

66041 Saarbrücken, Germany

bvrr@cs.uni-sb.de

May 6, 2011

Abstract

In the uniform circuit model of computation, the width of a boolean circuit exactly char-
acterizes the “space” complexity of the computed function. Looking for a similar relationship
in Valiant’s algebraic model of computation, we propose width of an arithmetic circuit as a
possible measure of space. In the uniform setting, we show that our definition coincides with
that of VPSPACE at polynomial width. We introduce the class VL as an algebraic variant of
deterministic log-space L; VL is a subclass of VP.

Further, to define algebraic variants of non-deterministic space-bounded classes, we introduce
the notion of “read-once” certificates for arithmetic circuits. We show that polynomial-size
algebraic branching programs (an algebraic analogue of NL) can be expressed as read-once
exponential sums over polynomials in VL, i.e. VBP ∈ ΣR · VL. Thus read-once exponential
sums can be viewed as a reasonable way of capturing space-bounded non-determinism. We also
show that ΣR · VBP = VBP, i.e. VBPs are stable under read-once exponential sums.

Though the best upper bound we have for ΣR · VL itself is VNP, we can obtain better
upper bounds for width-bounded multiplicatively disjoint (md-) circuits. Without the width
restriction, md- arithmetic circuits are known to capture all of VP. We show that read-once
exponential sums over md- constant-width arithmetic circuits are within VP, and that read-once
exponential sums over md- polylog-width arithmetic circuits are within VQP.

We also show that exponential sums of a skew formula cannot represent the determinant
polynomial.

1 Introduction

Valiant introduced the classes VP and VNP in algebraic complexity theory to capture the complexity
of algebraic computation of polynomial families [Val79a, Val82] (see also [Bür00]). Over Boolean
computation these classes correspond roughly to P and NP; over arithmetic computation with
Boolean inputs they correspond roughly to #LogCFL ([Vin91]) and #P ([Val79b]). Given the rich
structure within P and LogCFL([Coo71]), it is natural to ask for a complexity theory that can
describe algebraic computation at this level. In particular, there are two well-known hierarchies

∗The results in this paper were announced in FCT 2009, in [MR09].
†This work was done when this author was at the Institute of Mathematical Sciences

1

within polynomial-size Boolean circuit families: the NC hierarchy based on depth, modeling parallel
time on a parallel computer ([Bor77], see also [GHR95]), and the SC hierarchy based on width,
modeling simultaneous time-space complexity of P machines (see [Joh90, Coo79, Pip79]). It is
straightforward to adapt Valiant’s definition of VP to classes like AC0 and NC1. But an adaptation
capturing a space-bound is more tricky, especially when dealing with sub-linear space.

The main obstacle in this direction is defining a “right” measure for space. Two obvious choices
are: 1) the number of arithmetic “cells” or registers used during the course of computation (i.e., the
unit-space model), and 2) the size of a succinct description of the polynomials computed at each
cell. A third choice is the complexity of computing the coefficient function for polynomials in the
family. All three of these space measures have been studied in the literature, [Val76, NW95, Mic89,
dN06, KP09b, KP09a], with varying degrees of success. As the brief overview in Section 3.1 shows,
the models of [Mic89, KP09b, KP09a] when adapted to logarithmic space are too powerful to give
meaningful insights into small-space classes, whereas the model of [dN06] as defined for log-space
is too weak.

The main purpose of this paper is to propose yet another model for describing space-bounded
computations of families of polynomials. Our model is based on the width of arithmetic circuits
(see [LMR10, AJS10, JS10] for more on width-bounded arithmetic circuits), and captures both
succinctness of coefficients and ease of evaluating the polynomials. We show that our notion of
space VSPACE(s) coincides with that of [KP09b, KP09a] at polynomial space with uniformity
(Theorem 4), and so far avoids the pitfalls of being too powerful or too weak at logarithmic space
VL (see Lemma 11).

Continuing along this approach, we propose a way of describing non-deterministic space-bounded
computation in this context. Valiant’s framework captures non-determinism by defining VNP as
Σ ·VP. However, for non-deterministic log-space NL, there is a well-known model that directly car-
ries over to the arithmetic setting, namely polynomial-size branching programs BP. (See Section 2.1
for formal definitions.) Thus, treating VBP as VNL, we would like an analogous characterization
of the form (VNL =) VBP = Σ · VL. However, this does not quite work, since Σ · VL equals all of
VNP. (This follows from the facts that VNP = Σ ·VNC1, see [Bür00], and that VNC1 ⊆ VL.) Hence
we use another model for non-determinism based on read-once certificates; this also provides the
correct description of NL in terms of L in the Boolean world in the sense that NL = ∃R · L. We
show that the algebraization of this model, ΣR · VL, does contain arithmetic branching programs
VBP (Theorem 16).

Surprisingly, we are unable to show the converse. In fact, we are unable to show any good
(non-trivial) upper bound on the complexity of read-once certified log-space polynomial families.
This raises the question: Is the read-once certification procedure inherently too powerful? We show
that this is not always the case; for branching programs, read-once certification adds no power at
all (Theorem 19). Further, if the circuit is multiplicatively disjoint and of constant width, then
read-once certification does not take us beyond VP (Theorem 21).

We also study the class of polynomial size skew formulas, denoted SkewF. The motivation
for this study arises from Valiant’s characterizations of the classes VP and VNP (see [Val79b]).
Valiant proved that every polynomial p(X) ∈ VNP, and in particular every polynomial in VP, can
be written as p(X) =

∑

e∈{0,1}m φ(X, e), where the polynomial φ has an arithmetic formula, or
expression, of polynomial size. We know that the family of Permanent polynomials is complete
for VNP (see e.g.[Bür00]). It is also known [Tod91] that the family of Determinant polynomials is
complete for the class of polynomials computed by skew circuits of polynomial size. The question

2

we ask is: can we prove a similar equivalence in the case of skew circuits? That is, can we write
polynomials computed by skew circuits as an exponential sum of polynomials computed by skew
formulas? We show that this is not possible, by showing that any polynomial which is expressible
as an exponential sum of a skew formula can again be represented by a skew formula.

The rest of the paper is organized as follows: Section 3 gives a detailed account of existing
notions of space for algebraic computation and introduces circuit width as a possible measure of
space. In section 4 we introduce the notion of read-once certificates and read-once exponential
sums. Section 5 contains upper bounds for read-once exponential sums of some restricted circuit
classes. In section 6 we present the limitations of skew formulas.

2 Preliminaries

We use standard definitions for complexity classes such as polynomial space PSPACE, logarithmic
space L, non-deterministic log-space NL (see e.g. [Vol99],[AB09]).

2.1 Circuit classes

A Boolean circuit is a directed acyclic graph C, where nodes with non-zero in-degree are labeled
from {∨,∧,¬}, and nodes of zero-in-degree (called leaf nodes) are labeled from X ∪ {0, 1}, where
X = {x1 . . . , xn} is the set of variable inputs to the circuit. An output node of C is a node of zero
out-degree, and it computes a function f : {0, 1}n −→ {0, 1}. Without loss of generality, we can
assume that negations appear only at the leaves.

An arithmetic circuit over a ring K = 〈K, +,×, 0, 1〉 is similarly a directed acyclic graph C,
where nodes with non-zero in-degree are labeled from {+,×}, and nodes of zero-in-degree (called
leaf nodes) are labeled from X ∪ K. An output node of C computes a polynomial in K[X]. (A
circuit can have more than one output node, thus computing a set of polynomials.)

The following definitions apply to both arithmetic and boolean circuits, hence we simply use
the term circuit. The depth of a circuit is the length of a longest path from a leaf node to an
output node, and its size is the number of nodes and edges in it. The circuit is said to be layered
if the vertices can be partitioned into sets V0, V1, . . . , Vd such for every edge e there is an i such
that e is directed from Vi to Vi+1. The sets V0, V1, . . . , Vd are the layers of the circuit. If a circuit
is layered, its width is the maximum number of nodes at any particular layer. We assume that all
output nodes appear at the last layer. Every circuit has an equivalent layered circuit obtained by
subdividing some edges (using a g ∨ 0 or g + 0 node at a sub-division point g).

Let C be a complexity class defined in terms of Turing machines. A circuit family (Bn)n≥0 is
said to be C-uniform, if the direct connection language for Bn can be decided in C (see [Vol99]).

It is known that languages accepted by Turing machines with a simultaneous space bound S(n)
and time bound T (n) can be decided by uniform circuits of depth O(T (n)) and width O(S(n))
(using the standard tableau construction, see for instance the proof of Theorem 2.10 in [AB09]).

Polynomial size poly-log depth Boolean circuits of bounded fan-in (every non-leaf node other
than a negation node has degree 2) form the class NC. Its subclass of log-depth circuits is called
NC1, which, with the additional constraint of DLOGTIME uniformity or even log-space uniformity,
is known to be contained in L. Polynomial size poly-log width Boolean circuits of bounded fan-
in form the class SC; SC0 is the subclass of constant-width circuits and SC1 is the subclass of
log-width circuits. It is known that SC0 equals NC1 ([Bar89]) and uniform SC1 equals L(via the

3

tableau method). Polynomial size poly-log depth Boolean circuits with unbounded fan-in form the
class AC; its subclass of constant depth circuits is the class AC0 which is known to be contained in
NC1. Polynomial size poly-log depth Boolean circuits with semi-unbounded fan-in (∨ gates have
unbounded fan-in, but ∧ gates have fan-in 2) form the class SAC; in particular, if the depth is
O(logi n), then the class is SACi.

An arithmetic (resp. Boolean) circuit C is said to be skew if for every multiplication gate
f = g × h (resp. ∧ gate f = g ∧ h), either h or g is a leaf node. C is said to be weakly skew if for
every f = g × h, either the edge (g, f) or the edge (h, f) is a bridge in the circuit, i.e removing the
edge disconnects its end-points in the resulting circuit. Poly-size Boolean skew circuits and weakly
skew-circuits are known to characterize NL ([Ven92, Tod92]).

An algebraic branching program (BP for short) over a ring K is a layered directed acyclic graph,
where edges are labeled from {x1, . . . , xn} ∪ K. There are two designated nodes, s and t, where s
has zero in-degree and t has zero out-degree. The size of a BP is the number of nodes and edges in
it, and the width is the maximum number of nodes at any layer. The length of a BP is the length
of a longest directed path in it. The polynomial P computed by a BP B is the sum of the weights
of all s− t paths in B, where the weight of a path is the product of all edge labels in the path. We
will also consider multi-output BPs, where the above is generalized in the obvious way to several
nodes t1, t2, . . . , tm at the last level. Note that BPs can be simulated by skew circuits and vice
versa with a constant blow up in the width (see, e.g. , [Tod92, LMR10]).

2.2 Polynomial families

VP denotes the class of families of polynomials (fn)n≥0 such that ∀n ≥ 0

• fn ∈ K[x1, . . . , xu(n)], where u ≤ poly(n)

• deg(fn) ≤ poly(n)

• fn can be computed by a polynomial size arithmetic circuit.

VPe is the sub-class of VP corresponding to poly-size arithmetic formulas (i.e. circuits with out-
degree at most 1, also called expressions). VNC1 is the sub-class of VP containing polynomial
families computed by polynomial size, log-depth arithmetic circuits of bounded fan-in. For i ≥ 0,
VSCi denotes the sub-class of VP, containing polynomial families computed by arithmetic circuits
of polynomial size and logi n width. It is known that VPe is the same as VNC1 (see [Bür00]). If the
circuits computing fn have quasi polynomial size 2logc n, we say that {fn} is in the class VQP.

Exponential sums of polynomial families are defined as follows.

Definition 1 For g ∈ K[X, Y] with X = {x1, . . . , xn} and Y = {y1, . . . , ym}, EY (g) denotes the
exponential sum of g(X, Y) over all Boolean settings of Y . That is,

EY (g)(X) =
∑

e⊆{0,1}m

g(X, e)

Definition 2 Let C be an algebraic complexity class in Valiants’ model. Σ · C is the set of families
of polynomials (fn)n≥0 such that there exists a polynomial family (gm)m≥0 in C with

fn(X) = EY (gn+m′)(X) =
∑

e∈{0,1}m′

gn+m′(X, e) where m′ ≤ poly(n).

4

The class VNP is defined to be VNP = Σ · VP.
We denote by VBP and VBWBP the classes of families of polynomials computed by polynomial

size algebraic branching programs of polynomial and constant width, respectively. Without loss of
generality, we can treat these classes as polynomial size skew circuits of polynomial and constant
width respectively ([MP08]).

3 Notion of space for arithmetic computations?

In the case of boolean computations, the notion of “width” of a circuit captures the notion of space
in the Turing machine model (under certain uniformity assumptions; see [Pip79]). In the case of
arithmetic computations, defining a notion of “space bounded computation” seems to be a hard
task.

3.1 Previously studied notions

Number of Registers

One possible measure for space is the number of arithmetic “cells” or registers used in the course of
computation (i.e., the unit-space model). This measure of space was considered by Valiant [Val76]
way back in 1976. Later it was again considered by Nisan and Wigderson ([NW95]) in the context of
time-space trade-offs for arithmetic straight-line programs. Subsequently, Michaux [Mic89] showed
that with this notion of space, any language that is decided by a machine in the Blum-Shub-Smale
(BSS) model of computation (a general model for algebraic computation capturing the idea of
computation over reals, [BCSS97]; see also [Bür00]) can also be computed using O(1) registers.
Hence there is no space-hierarchy theorem under this measure of space. However, Michaux’s result
exploits the order relation available in the BSS model of real computation; such a relation is not
available in Valiant’s algebraic model. See the appendix for a (very) brief description of the BSS
model and Michaux’s result.

Succinct descriptions of polynomials, and weak space

Another possible measure is the size of a succinct description of the polynomials computed at each
cell. In [dN06], de Naurois introduced a notion of weak space in the Blum-Shub-Smale model, and
introduced the corresponding log space classes LOGSPACEW and PSPACEW . This in fact is a way of
measuring the complexity of succinctly describing the polynomials computed by or represented at
each “real” cell. Though this is a very natural notion of “succinctness” of describing a polynomial,
this definition has a few drawbacks:

1. Over R, it is not known whether NC1 is contained in LOGSPACEW . This is in contrast to the
situation in the Boolean world.

2. The polynomials representable at every cell have to be “sparse”, i.e., the number of monomials
with non-zero coefficients should be bounded by some polynomial in the number of variables.

The second condition above makes the notion of weak space very restrictive if we adapt the definition
to Valiant’s algebraic computation model. This is because the corresponding log-space class in this
model will be computing only sparse polynomials, but in the non-uniform setting sparse polynomials

5

are known to be contained in a highly restrictive class called skew formulas (see Section 6), which,
as we show in Corollary 26, is in fact a proper subclass of constant depth arithmetic circuits (i.e.,
VAC0).

The Koiran,Perifel model and VPSPACE

Koiran and Perifel ([KP09b, KP09a]) suggested another notion of polynomial space for Valiant’s
classes. The main purpose of their definition was to prove a transfer theorem over R and C. Under
their definition, Uniform-VPSPACE is defined as the set of families (fn) of multivariate polynomials
fn ∈ F [x1, . . . , xu(n)] with integer coefficients such that

• u(n) is bounded by a polynomial in n.

• The degree of fn is bounded by 2poly(n).

• Each coefficient of fn can be represented using 2poly(n) bits.

• Every bit of the coefficient function of fn is computable in PSPACE.

(The non-uniform counterpart can be defined similarly, allowing the PSPACE algorithm for com-
puting coefficients to use polynomially many bits of non-uniform advice.)

In [KP09b], it was observed that the class VPSPACE is equivalent to the class of polynomi-
als computed by uniform arithmetic circuits of polynomial depth and exponential size. Uniform
Boolean circuits of polynomial depth and exponential size compute exactly PSPACE, hence the
name VPSPACE. Thus one approach to get reasonable smaller space complexity classes is to gen-
eralize this definition. We can consider VSPACE(s(n)) to consist of families (fn)n≥1 of polynomials
satisfying the following:

• f ∈ Z[x1, . . . , xu(n)], where u(n), the number of variables in fn, is bounded by some polynomial
in n.

• The degree of fn is bounded by 2s(n).

• The number of bits required to represent each of the coefficients of fn is bounded by 2s(n),
i.e. the coefficients of fn are in the range [−22s(n)

, 22s(n)
].

• Given n in unary, an index i ∈ [1, 2s(n)], and a monomial M , the ith bit of the coefficient of
M in fn is computable in DSPACE(s(n)).

It is easy to see that with this definition, even the permanent function PERMn is in VSPACE(log n).
Thus VSPACE(log n) would be too big a class to be an arithmetic version of log-space. The reason
here is that this definition, unlike that of [dN06], goes to the other extreme of considering only the
complexity of coefficient functions and ignores the resource needed to compute and add the mono-
mials with non-zero coefficients. The relationship between the complexity of coefficient functions
and the polynomials themselves is explored more thoroughly in [Mal07].

6

3.2 Defining VPSPACE in terms of circuit width

In this section we propose width of a (layered) circuit, with additional conditions on the number
of variables, the degree and the coefficient size, as a possible measure of space for arithmetic com-
putations. Note that treating width as space is essentially the register model, with manipulations
of register contents allowed using only the ring operations.

Definition 3 For any S : N −→ N such that S(n) ≥ n for all n, VWIDTH(S) is the class of
polynomial families (fn)n≥0 ∈ Z[X] (with integer coefficients) with the following properties:

• fn ∈ Z[x1, . . . , xu(n)], where u(n), the number of variables in fn, is bounded by poly(n).

• deg(f) ≤ max{2S(n), poly(n)}.

• The coefficients of fn are representable using max{2S(n), poly(n)} many bits.

• fn is computable by an arithmetic circuit of width S(n) and size max{2S(n), poly(n)}.

Further, if the arithmetic circuits in the last condition are DSPACE(S)-uniform, we call the class
Uniform-VWIDTH(S).

We show now that at polynomial space, this definition is equivalent to that of [KP09b].

Theorem 4 The class Uniform-VPSPACE as defined in [KP09b] coincides with Uniform-VWIDTH(poly).

We use the following easy fact:

Fact 5 A degree d polynomial over t variables has at most
(

d+t
t

)

monomials.

Now, Theorem 4 follows from the two lemmas below.

Lemma 6 Uniform-VPSPACE ⊆ Uniform-VWIDTH(poly).

Proof: Let (fn)n≥0 be a family of polynomials in VPSPACE. Then by definition, the bits of the
coefficients of fn can be computed in PSPACE and hence by exponential size Boolean circuits of
polynomial width. The (exponentially many) bits can be put together with appropriate weights
to obtain an arithmetic circuit computing the coefficient itself. The exponential-degree monomials
can each be computed by an exponential-size constant-width circuit. Thus we can use the naive
method of computing fn: expand fn into individual monomials, compute each coefficient and each
monomial, and add them up sequentially. By Fact 5, there are only exponentially many distinct
monomials. Thus we get a polynomial width exponential-size circuit computing fn.

The converse direction is a little more tedious, but essentially follows from the Lagrange inter-
polation formula for multivariate polynomials.

Lemma 7 Uniform-VWIDTH(poly) ⊆ Uniform-VPSPACE.

7

Proof: Let (fn)n≥0 be a family of polynomials in VWIDTH(poly(n)). Let N = u(n) be the
number of variables in fn, and let q(n) be a polynomial such that 2q(n) is an upper bound on both
d = deg(fn) and on the number of bits required to represent each coefficient. Let w(n) = poly(n)
and s(n) ∈ 2O(nc) respectively be the width and size of a witnessing arithmetic circuit C that
computes fn.

To show that fn ∈ VPSPACE, we need to give a PSPACE algorithm which, given 1n and
〈i1, . . . , iN 〉 as input, computes the coefficient of the monomial

∏N
k=1 xik

k .
We use the following notation: S = {0, 1, . . . , d}, T = SN , x̃ = 〈x1, . . . , xN 〉, and for ĩ =

〈i1, . . . , iN 〉 ∈ T , the monomial m(̃i) =
∏N

k=1 xik
k is denoted x̃ĩ. We drop the subscript n in fn for

convenience.
Using Lagrangian interpolation for multivariate polynomials we have

f(x̃) =
∑

ĩ∈T

f (̃i)Equal(x̃, ĩ) =
∑

ĩ∈T

f (̃i)
N
∏

k=1

Equal(xk, ik)

where Equal(x, i) =
∏

a∈S\{i}

(

x − a

i − a

)

=

∏

a∈S\{i}(x − a)

i!(d − i)!(−1)d−i

Thus for any t̃ ∈ T , the coefficient of the monomial m(t̃) is given by

coeff(m(t̃)) =
∑

ĩ∈T

f (̃i)

N
∏

k=1

coeff of xtk
k in

∏

a∈S\{ik}
(xk − a)

ik!(d − ik)!(−1)d−ik

But we have a nice form for the inner numerator:

coeff of xtk
k in

∏

a∈S\{ik}
(xk − a) equals (−1)d−tkSd,d−tk(0, 1, . . . , ik − 1, ik + 1, . . . , d)

where Sd,j denotes the elementary symmetric polynomial of degree j in d variables.
To compute the desired coefficient in PSPACE, we use the Chinese Remaindering technique;

See [CDL01] for more details. Since symmetric polynomials are easy to compute (e.g. [SW02]
or Th 2.5.4 in [Tza08]), and since f (̃i) is computable by a polynomial-width arithmetic circuit by
assumption, a PSPACE algorithm can compute the coefficient modulo a prime p, for any prime p
that has an O(d) bit representation. (The algorithm will require O(w(n) log p + log s(n)) space to
evaluate f (̃i) mod p). Reconstructing the coefficient from its residues modulo all such primes can
also be performed in PSPACE. (see [CDL01].)

Remark 8 It is straightforward to see that Lemma 6 holds without the uniformity condition, i.e
VPSPACE ⊆ VWIDTH(poly). However it is not clear if the same is true for Lemma 7. If a poly-
nomial family is computed by non-uniform arithmetic circuits of polynomial width and exponential
size, then we do not how to compute coefficient functions in PSPACE using only polynomially many
bits of advice. (The advice is not long enough to encode the circuit.)

8

3.3 VWIDTH(S) for sub-linear S

Motivated by the equivalence in Theorem 4, we now consider using Definition 3 for sub-linear
functions, specifically, for poly-logarithmic space. We immediately run into a problem; for i ≥ 2,
VWIDTH(logi n) and VSCi, though close, are different for the following reasons:

• Polynomials in VWIDTH(logi n) can have degree O(2logi n), whereas degree of polynomials in
VSCi is bounded by poly(n).
Since we are concerned with polynomials in VNP, we can simply change the degree constraint
in VWIDTH to a polynomial upper bound. But then Theorem 4 will not go through. With
the current definition, however, this is not a problem for VSC0 and VSC1.

• The coefficients of polynomials in VWIDTH(logi n) are integers and their size is bounded by

O(2logi n), whereas polynomials in VSCi can have arbitrary coefficients from the underlying
ring.
This is not a problem if we consider VSC circuits where leaf labels are from the set X ∪
{0, 1} or X ∪ Z. However, the main reason for the integer coefficients with polynomial bit
size in Definition 3 and in [KP09b] is to allow a simulation by uniform PSPACE machines.
Since we are not directly concerned with such a simulation here, we can alternatively change
the coefficient constraint in Definition 3 to allow arbitrary ring elements. In this case the
constraint on coefficient size should also be dropped.

We thus consider the following definition for sub-linear functions:

Definition 9 For a sub-linear function S : N −→ N, VWIDTH(S) is the class of polynomial
families (fn)n≥0 with the following properties:

• The number of variables u(n) in fn is bounded by poly(n).

• deg(fn) ≤ max{2O(S(n)), poly(n)}.

• (fn) is computable by a family of arithmetic circuits of size max{2O(S(n)), poly(n)} and width
O(S(n)).

Then we have VWIDTH(log0 n) = VSC0 and VWIDTH(log n) = VSC1.
We now define the following algebraic complexity classes:

Definition 10 VSPACE(S(n))
∆
= VWIDTH(S(n))

Uniform-VSPACE(S(n))
∆
= Uniform-VWIDTH(S(n))

We denote the log-space class by VL; thus VL = VWIDTH(log n) = VSC1.
The following containments and equalities follow directly from known results (see for instance

[CMTV98, LMR10, FL10]) about width-constrained arithmetic circuits.

Lemma 11 VBWBP = VNC1 = VPe ⊆ VSPACE(O(1)) = VSC0 ⊆ VL = VSC1 ⊆ VP

Thus VL according to this definition is in VP and avoids the trivially “too-powerful” trap; also,
it contains VNC1 and thus avoids the “too weak” trap.

The following closure property is easy to see.

Lemma 12 For every S(n) ≥ log n, the classes VSPACE(S(n)) are closed under polynomially
bounded summations and products.

9

4 Read-Once certificates

In general, non-deterministic complexity classes can be defined via existential quantifiers. e.g. ,
NP = ∃ · P. In the algebraic setting, we know that the class VNP (algebraic counterpart of NP) is
defined as an “exponential” sum of values of a polynomial size arithmetic circuit. i.e. , VNP = Σ·P.
It is also known that VNP = Σ · VPe = Σ · VNC1 (see [Bür00]).

If we consider smaller classes, NL is the natural non-deterministic version of L. However to
capture it via existential quantifiers, we need to restrict the use of the certificate, since otherwise
∃ · L = NP. It is known that with the notion of “read-once” certificates (see, e.g. , [AB09], Chapter
4) one can express NL as an existential quantification over L. Analogously, we propose a notion of
“read-once” certificates in the context of arithmetic circuits so that we can get meaningful classes
by taking exponential sums over classes that are below VP.

Definition 13 Let C be a layered arithmetic circuit with ℓ layers. Let X = {x1, . . . , xn} and
Y = {y1, . . . , ym} be the input variables of C. C is said to be “read-once certified” in Y if the
layers of C can be partitioned into m blocks, such that each block reads exactly one variable from
Y . That is, there is a fixed permutation π ∈ Sm, and indices 0 = i1 ≤ . . . ≤ im ≤ im+1 = ℓ, such
that for each 1 ≤ j ≤ m, all occurrences of the variable yπ(j) are at gates appearing in layers ij + 1
to ij+1.

Without loss of generality, we henceforth assume that π is the identity permutation.
Now, analogous to Definitions 1, 2, we define the exponential sum over read-once certified

circuits.

Definition 14 Let C be any arithmetic circuit complexity class. A polynomial family (fn)n≥0 is said
to be in the class ΣR ·C, if there is a family (gm(n))n≥0 such that m(n) = n+m′(n), m′(n) ≤ poly(n),
fn(X) = EY (gm(n)) and gm(n) can be computed by a circuit of type C that is read-once certified in
Y .

We also use the term “read-once exponential sum over C” to denote ΣR · C.
For circuits of width polynomial or more, the restriction to read-once certification is immaterial:

the circuit can read a variable once and carry its value forward to any desired layer via internal gates.
This is equivalent to saying that for a P machine, read-once input is the same as two-way-readable
input. Thus

Proposition 15 ΣR · VP = Σ · VP = VNP

Having seen that the read-once certificate definition is general enough for the case of large width
circuits, we turn our focus on circuits of smaller width. Once the width of the circuit is substantially
smaller than the number of bits in the certificate, the read-once property becomes a real restriction.
If this restriction correctly captures non-determinism, we would expect that in analogy to BP =
NL = ∃R · L, we should be able to show that VBP equals ΣR · VL. In a partial answer, we show
in the following theorem in one direction: read-once exponential sums over VL are indeed powerful
enough to contain VBP.

Theorem 16 VBP ⊆ ΣR · VL.

In order to prove the above theorem, we consider a problem that is complete for VBP. We need
the following definition:

10

Definition 17 A polynomial f ∈ K[X1, . . . , Xn] is called a projection of g (denoted f ≤ g) if
f(X1, . . . , Xn) is identically equal to g(a1, . . . , am), where each ai is a ring element or a variable,
that is, each ai ∈ K ∪ {X1, . . . , Xn}.

Let f = (fn)n≥0 and g = (gm)m≥0 be two polynomial families. f is said to be projection reducible
to g if

∃n0 : ∀n ≥ n0, fn ≤ gm(n) where m(n) ≤ poly(n)

Let (Gn) = (Vn, En) be a family of directed acyclic graphs defined as follows:

1. Gn is a layered graph with n + 1 layers. For 1 ≤ i ≤ n + 1, the ith layer contains n vertices,
denoted vi

1, . . . v
i
n. (So totally there are n(n + 1) vertices.)

2. For 1 ≤ i, j, k ≤ n, there is a directed edge (vi
j , v

i+1
k), labeled by the variable xi,j,k.

For a directed path P in Gn, let w(P) denote the monomial obtained by taking the product of the
labels of the edges in P . Let s = v1

1 and t = vn+1
1 . We define the polynomial family PATH as

follows:
PATHn =

∑

P : P is a directed s − t path in Gn

w(P)

Note that PATHn is a polynomial in n3 variables. It is easy to see the following:

Proposition 18 (folklore) PATH is complete for VBP under projections.

We prove Theorem 16 by showing that PATH ∈ ΣR · VL.
Proof:[of Theorem 16] Here onwards we drop the index n from Gn.

We define function hG(Z) : {0, 1}n3
→ {0, 1} as follows. We can think of the variables in

Z = {Z1,1,1, . . . , Zn,n,n} as picking a subset of the edges of G. The function hG(Z) evaluates to 1
if and only if this subset is exactly a directed s-t path in G. Note that s-t paths P in G are in
one-to-one correspondence with assignments to Z such that hG(Z) = 1. Hence

PATHn =
∑

P : P is a

directed s − t path

w(P) =
∑

z∈{0,1}n3

hG(z) [weight of edges picked by Z]

=
∑

z∈{0,1}n3

hG(z)
∏

i,j,k

[xi,j,kzi,j,k + (1 − zi,j,k)] (1)

Provided that the bits of z are given in the correct order (proceeding layer by layer), hG(z) can
be computed in deterministic log-space, with z given on a read-once input tape, as follows.

1. Input 1n, z ∈ {0, 1}n3
.

2. Initialize current := 1 (because s is the first node in its layer).

3. For i = 1 to n repeat steps 4 and 5.

4. Find a j such that zi,current,j = 1.
If there is no such j or more than one such j then REJECT.

11

5. Set current := j.

6. If current = 1 then ACCEPT (because s is the first node in its layer)
otherwise REJECT.

The algorithm A above is deterministic and uses a total of O(log n) bits of work-space. For a fixed
n, let C be the O(log n) width boolean circuit corresponding to A . (Without loss of generality,
assume that all negation gates in C are at the leaves. If this is not already the case, transforming
C to ensure this only doubles the width, and does not destroy the read-once property.) Let D
be the natural arithmetization of C. Since Z is on a read-once input tape, C, and hence D, are
read-once certified in the variables from Z. We can attach, parallel to D, constant-width circuitry
that collects factors of the product

∏

i,j (xi,j,kzi,j,k + (1 − zi,j,k)) as and when the zi,j,k variables
are read, and finally multiplies this with the computed value hG(Z). The resulting circuit remains
O(log n)-width, and remains read-once certified on Z. From Equation (1), it follows that the
read-once exponential sum of D over bit assignments for Z computes the polynomial PATHn.

Not only are we unable to show the converse, we are also unable to show a reasonable upper
bound on ΣR · VL. It is not even clear if ΣR · VL is contained in VP. One possible interpretation
is that the ΣR operator is too powerful and can lift up small classes unreasonably. We show that
this is not the case in general; in particular, it does not lift up VBP and VBWBP.

Theorem 19 1. ΣR · VBP = VBP

2. ΣR · VBWBP = VBWBP

To prove this theorem, we first state and prove Lemma 20 below.

Lemma 20 Let C be a layered skew arithmetic circuit on variables X∪Y that is read-once certified
in Y . Let w = width(C), s = size(C) and m = |Y |. Let f1, . . . , fw denote the output gates (also the
polynomials computed by them) of C. There exists a weakly skew circuit C ′, of size 56mw3s and
width 7w, that computes all the exponential sums EY (f1), . . . , EY (fw).

Proof: We proceed by induction on m = |Y |. In the base case when m = 1, EY (fj)(X) =
fj(X, 0) + fj(X, 1). Putting two copies of C next to each other, one with y = 0 and the other with
y = 1 hardwired, and adding the corresponding outputs, we get a circuit C ′ which computes the
required function. Clearly width(C ′) ≤ 2w and size(C ′) ≤ 2s + 1.

Assume now that the lemma is true for all skew circuits with m′ = |Y | < m. Let C be a
given circuit where |Y | = m. Let Y ′ denote Y \ {ym} = {y1, . . . , ym−1}. As per definition 13,
the layers of C can be partitioned into m blocks, with the kth block reading only yk from Y . Let
0 = i1 ≤ i2 ≤ . . . ≤ im ≤ im+1 = ℓ be the layer indices such that yk is read between layers ik + 1
and ik+1. Let f1, . . . , fw be the output gates of C.

We slice C into two parts: the bottom m − 1 blocks of the partition together form the circuit
D, and the top block forms the circuit Cm. Let g1, . . . , gw be the output gates of D. These are
also the inputs to Cm; we symbolically relabel the non-leaf inputs at level 0 of Cm as z1, . . . zw and
the outputs of Cm as h1, . . . , hw. Clearly, Cm and D are both skew circuits of width w. Further,
each hj depends on X, ym and Z = {z1, . . . , zw}; that is, h1, . . . , hw ∈ R[Z] where R = K[X, ym].
Similarly, each gj depends on X and Y ′; g1, . . . , gw ∈ K[X, Y ′]. The values computed by C can be
expressed as fj(X, Y) = hj (X, ym, g1(X, Y ′), . . . , gw(X, Y ′)).

12

Since C and Cm are skew circuits, and since the variables zj represent non-leaf gates of C, Cm

is linear in these variables. Hence each hj can be written as hj(X, ym, Z) = cj +
∑w

k=1 cj,kzk, where
the coefficients cj , cj,k ∈ K[X, ym]. Combining this with the expression for fj , we have

fj(X, Y) = hj

(

X, ym, g1(X, Y ′), . . . , gw(X, Y ′)
)

= cj(X, ym) +
w

∑

k=1

cj,k(X, ym)gk(X, Y ′).

Hence
∑

e∈{0,1}m

fj(X, e) =
∑

e=(e′,em)∈{0,1}m

[

cj(X, em) +
w

∑

k=1

cj,k(X, em)gk(X, e′)

]

= 2m−1
1

∑

em=0

cj(X, em) +

w
∑

k=1

∑

(e′,em)∈{0,1}m

cj,k(X, em)gk(X, e′)

= 2m−1
1

∑

em=0

cj(X, em) +

w
∑

k=1

∑

em∈{0,1}

cj,k(X, em)

∑

e′∈{0,1}m−1

gk(X, e′)

Thus EY (fj)(X) = 2m−1Eym(cj)(X) +
w

∑

k=1

Eym(cj,k)(X)EY ′(gk)(X)

By induction, we know that there is a weakly skew circuit D′ of width 7w and size 56(m−1)w3s
computing EY ′(gk)(X) for all k simultaneously.

To compute Eym(cj)(X), note that a copy of Cm with all leaves labeled from Z replaced by
0 computes exactly cj(X, ym). So the sum Eym(cj)(X) can be computed as in the base case, in
width 2w. Since we need only one sum as opposed to w simultaneous sums, the size bound is
2size(Cm) + 1. Multiplying this by 2m−1 adds nothing to width and 1 to size, so the overall width
of this skew circuit is 2w and the size is at most 2s + 2 ≤ 3s.

To compute Eym(cj,k)(X), we modify Cm as follows: replace leaves labeled zk by the constant
1, replace leaves labeled zk′ for k′ 6= k by 0, leave the rest of the circuit unchanged, and let hj be
the output gate. This circuit computes cj(X, ym)+cj,k(X, ym). Subtracting cj(X, ym) re-computed
as above from this gives cj,k(X, ym), computed in width 2w and size 2s+2. (The subtraction needs
two gates: a × − 1 and a +.) Now, again the sum Eym(cj,k)(X) can be computed as in the base
case; we use two copies of the difference circuit with ym = 0 and ym = 1 hardwired, and add their
outputs. This gives a skew circuit of width 4w and size 2(2s + 2) + 1 ≤ 5s.

We now use these skew circuits, and the weakly skew circuit D′ available by induction, to
construct the desired circuit. Since we use fresh copies of C for each of the circuits for cj and cj,k,
the resulting circuit is weakly skew.

Putting together these circuits naively may increase width too much. So we position D′ at the
bottom, and carry w wires upwards from it corresponding to its w outputs. Alongside these wires,
we position circuitry to accumulate the terms for each fj and to carry forward already-computed
fk’s. The width in this part is w for the wires carrying the outputs of D′, w for wires carrying

13

Eym
(cj,w)

×

...

· · ·

EY ′(g1)EY ′(g2) EY ′(gw)

+

D′

Eym
(cj,1)

×

Figure 1: Computation of EY (fj) in a width-efficient manner

the values EY (fj), 4w for computing the terms in the sum above (they are computed sequentially
so the width does not add up), and 1 for carrying the partial sum in this process, overall at
most 6w + 1 ≤ 7w. Thus the resulting circuit, which is the desired circuit D, has width at most
max{width(D′), 7w} = 7w. Figure 1 shows how this is done for one of the sums EY (fj).

To bound the size of the circuit, we bound its depth in the part above D′ by d; then size is at
most size(D′) + width × d. The circuit has w modules, one each to compute each of the EY (fj)s.
The depth of each module can be bounded by the depth needed to compute Eym(cj), plus w times
the depth to compute any one Eym(cj,k), that is, at most 3s+w× 5s. So d ≤ w(3s+5sw) ≤ 8w2s.
Hence

size(D) ≤ size(D′) + (width above D′) × (depth above D′)

≤ 56(m − 1)w3s + 7w(8w2s)

≤ 56mw3s

Now we prove Theorem 19:
Proof:We start with the VBP or VBWBP for which we want to compute the read-once exponential
sum. We treat it as a read-once skew circuit and apply Lemma 20 to get a weakly skew circuit for
the sum.

1. From [Jan08, KK08], we know that weakly skew circuits can be transformed into skew circuits
and hence branching programs with a constant blowup in the size. This gives the desired
equivalence.

14

2. From [JR09], we know that when the width of the weakly skew circuit is a constant, it can
be transformed into a skew circuit whose width is again a constant, and the size blowup is
polynomial. This gives the desired equivalence in this case.

5 Read-Once exponential sums of multiplicatively disjoint circuits

In this section, we explore how far the result of Theorem 19 can be pushed to larger classes within
VP. In effect, we ask whether the technique of Lemma 20 is applicable to larger classes of circuits.
Such a question is relevant because we do not have any upper bound (better than VNP) even for
ΣR · VSC0 and ΣR · VL.

The generalization we consider is multiplicative disjointness. An arithmetic circuit C is said
to be multiplicatively disjoint (md-) if every multiplication gate operates on sub-circuits which are
not connected to each other. This is a relaxation of the weakly skew condition, since the sub-
circuits are allowed to have multiple connections to gates above the concerned multiplication gate.
This restriction was first considered in [MP08], where it is shown that multiplicatively disjoint
polynomial size circuits characterize VP.

Examining the proof of Lemma 20, we see that the main barrier in extending it to the larger
class of md--circuits is that when we slice C into D and Cm, Cm may not be linear in the “slice
variables” Z. However, for md-circuits, Cm is multilinear in Z. As far as computing the coefficients
cj,α goes, where α describes a multilinear monomial, this is not a problem; it can be shown that
for such circuits the coefficient function can be computed efficiently. There is a cost to pay in
size because the number of multilinear monomials is much larger. To handle this, we modify the
inductive step, slicing C not at the last block but at a level that halves the number of Y variables
read above and below it. This works out fine for constant-width, but results in quasi-polynomial
blow-up in size for larger widths.

We show the following:

Theorem 21 1. ΣR · md-VSC0 ⊆ VP.

2. ΣR · md-VSC ⊆ VQP.

The high-level strategy for proving Theorem 21 is as follows.

1. Break the circuit by a horizontal cut into two parts A and B, so that each part contains
approximately m/2 variables from Y i.e YA, YB ≤ ⌈m/2⌉ and YA ∪YB = Y , YA ∩YB = ∅. Let
A be the upper part.

2. Now express the polynomials in A as sums of monomials where the variables stand for the
output gates of B and the coefficients come from K[X, YA].

3. Inductively compute the EY ’s for the coefficients of A and the monomials in terms of the
output gates of B.

4. Apply Equation 2 (from Observation 22 below) to obtain the required EY (fj)s.

15

This strategy is spelt out in detail in Lemma 23. Theorem 21 follows directly from it.
We need the following observation (which is already used implicitly in the proof of Lemma 20):

Observation 22 1. If f = g + h, then EY (f) = EY (g) + EY (h).

2. If f = g × h, and if the variables of Y can be partitioned into Yg and Yh such that g depends
only on X ∪ Yg and h depends only on X ∪ Yh, then

EY (f) = EYg(g) × EYh
(h) (2)

Lemma 23 Let C be a layered multiplicatively disjoint circuit of width w and size s on variables
X ∪ Y , and let m = |Y |. Let ℓ be the number of layers in C. Suppose C is read-once certified
in Y . Let f1 . . . , fw be the output gates of C. Then, there is an arithmetic circuit C ′ of size
T (w, m, s) ≤ 3smcw which computes EY (f1), . . . , EY (fw), where c is an absolute constant. (Any
c ≥ 5

3−log 7 suffices.)

Proof: The proof is by induction on m = |Y |.
In the base case when m = 1, C ′ has two copies of C with y1 = 0 and y1 = 1 hard-wired, and

one + gate for each output. The resulting size is 2s + w ≤ 3s, since w ≤ s.
Assume the induction hypothesis: For any arithmetic circuit D on variables X ∪ Y ′ of size s′

and width w′, with |Y ′| = m′ < m, there is an arithmetic circuit D′ of size T (w′, m′, s′) computing
EY (f ′

1), . . . , EY (f ′
w′), where f ′

1, . . . , f
′
w′ are the output gates of D.

Let 0 = i1 ≤ i2 ≤ . . . ≤ im ≤ im+1 = ℓ be the level indices of C as guaranteed by definition 13.
Consider level ℓ′ = i⌈m/2⌉+1. Let g1, . . . , gw be the gates at level ℓ′.

We slice C at level ℓ′; the circuit above this level is A and the circuit below it is called B. In
particular, A is obtained from C by re-labeling the gates g1, . . . , gw with new variables z1, . . . , zw

and removing all gates below level ℓ′. Let h1, . . . , hw denote the output gates of A. (Note that these
are just relabellings of f1, . . . , fw.) Similarly, B is obtained from C by removing all nodes above
layer ℓ′ and making g1, . . . , gw the output gates. Let sA and sB respectively denote their sizes. Let
YA ⊆ Y (resp. YB) be the set of variables from Y that appear in A (resp. B). The circuits A and
B have the following properties:

1. A and B are multiplicatively disjoint and are of width w.

2. A is syntactically multilinear in the variables Z = {z1, . . . , zw}: at every × gate f = g × h,
each variable in Z has a path to g or to h or to neither, but not to both.

3. YA ∩ YB = ∅, YA ∪ YB = Y , |YA| = ⌊m/2⌋ and |YB| = ⌈m/2⌉.

4. For 1 ≤ j ≤ w, gj ∈ K[X, YB] and hj ∈ R[Z], where R = K[X, YA].

5. Let v = v1 × v2 be a multiplication gate in A. If there is a path from zi to v1 and there is a
path from zj (i 6= j) to v2, then the sub-circuits of C (and hence of B) rooted at gi and gj

are disjoint.

Since A is syntactically multilinear in Z and C is md-, the monomials in hj ∈ R[Z] can be
described by subsets of Z, where zi and zk can belong to a subset corresponding to a monomial

16

only if the sub-circuits rooted at gi and gk are disjoint. Let S denote the subsets that can possibly
correspond to monomials:

S =

{

S′ ⊆ Z
∣

∣

∀zi, zk ∈ S′ with i 6= k, the sub-circuits rooted
at gi and gk are disjoint

}

Generally, we treat S as a set of characteristic vectors instead of actual subsets; the usage will be
understood from the context.

We can express the polynomials computed by A and C as follows:

fj = hj(g1, . . . , gw); hj =
∑

α∈S

cj,αZα

where Zα =
w

∏

i=1

zαi

i and cj,α ∈ K[X, YA]

Hence fj(X, Y) =
∑

α∈S

cj,α(X, YA)gα(X, YB) where gα(X, YB) =
∏

i

gαi

i (X, YB)

Using Observation 22, we have

EY (fj) =
∑

α∈S

EY (cj,αgα) =
∑

α∈S

EYA
(cj,α)EYB

(gα) (3)

We need the following claim:

Claim 24 For 1 ≤ j ≤ w, and for α ∈ S, the polynomial cj,α(X, YA) can be computed by a
multiplicatively disjoint circuit [cj,α] of size w · sA and width w. Moreover, [cj,α] is read-once
certified in YA.

Proof: We build an arithmetic circuit [cj,α] for cj,α(X, YA) by induction on the structure of the
circuit rooted at hj . Let α = α1α2 . . . αw, where αi ∈ {0, 1}.

1. Base case: The sub-circuit rooted at hj is a variable zi or an element a ∈ K ∪ X ∪ YA. Then
[cj,α] is set accordingly as follows:

If hj = zi, then [cj,α] =

{

1 if αi = 1, and αk = 0 ∀ i 6= k

0 otherwise

If hj = a ∈ (K ∪ X ∪ YA), then [cj,α] =

{

a if αi = 0 ∀i

0 otherwise

2. Induction step:

Case 1: hj = h1
j + h2

j . Then [cj,α] = [h1
j,α] + [h2

j,α].

Case 2: hj = h1
j × h2

j . Then [cj,α] = [h1
j,α′]× [h2

j,α′′], where α′ (respectively α′′) is α restricted
to the Z-variables that appear at the sub-circuit rooted at h1 (respectively h2). We set [cj,α]
to 0 if α′ and α′′ do not form a partition of α. Note that [h1

j,α], [h2
j,α], [h1

j,α′] and [h2
j,α′′] are

the corresponding coefficients available from the inductive hypothesis.

17

The size of [cj,α] thus obtained can blow up by a factor of at most w, and the width remains
unchanged. The circuit [cj,α] is a projection of the sub-circuit rooted at hj , obtained by replacing
variables zi by constants 0 or 1. Since the sub-circuit rooted at hj is read-once certified in YA, so
is [cj,α].

If α ∈ S, then gα can be computed by an md-circuit of width w and size sB + w. Let [gα]
denote this circuit. (It is a multiplicative circuit sitting on top of the relevant output gates of B.)

By the induction hypothesis, the polynomials EYA
(cj,α) for 1 ≤ j ≤ w and α ∈ S can be

computed by arithmetic circuits of size T (w, ⌊m/2⌋, wsA). Also, by induction, the polynomials
EYB

(gα) can be computed by arithmetic circuits of size T (w, ⌈m/2⌉, sB + w). Now, using the
expression from Equation 3, the arithmetic circuits that compute all the EYA

(cj,α) and all the
EYB

(gα) can be put together to obtain a circuit C ′ that computes EY (fj) for each 1 ≤ j ≤ w. The
size of C ′ can be bounded above as follows:

size(C ′) ≤
w

∑

j=1

∑

α∈S

size to compute EYA
(cj,α) +

∑

α∈S

size to compute EYB
(gα) +

w
∑

j=1

∑

α∈S

2

≤ w2wT
(

w,
⌊m

2

⌋

, wsA

)

+ 2wT
(

w,
⌈m

2

⌉

, sB + w
)

+ w2w+1

≤ w2w3wsA

⌊m

2

⌋cw
+ 2w3(s − sA + w)

⌈m

2

⌉cw
+ w2w+1

using induction and the fact that s = sA + sB

≤ w2w3wsA

(

7m

8

)cw

+ 2w3(s − sA)

(

7m

8

)cw

+ 2w3w

(

7m

8

)cw

+ w2w+1

since ⌈m
2 ⌉ ≤ ⌈7m

8 ⌉ for m ≥ 2

≤ 23w3s

(

7m

8

)cw

+ 23w3

(

7m

8

)cw

+ 23w

combining the first two terms and using w ≤ 2w for w ≥ 1

≤ 3smcw

[

8w

(

7

8

)cw

+ 8w

(

7

8

)cw

+ 8w

(

7

8

)cw]

≤ 3smcw provided c ≥
5

3 − log 7
≥

3w + log 3

w(3 − log 7)

6 Skew formulas

In this section we consider the expressive power of exponential sums of polynomials computed by
skew formulas.

It is well known that the complexity class NP is equivalent to ∃ · P and in fact even to ∃ · F,
where F is the class of languages decided by uniform polynomial-size formulas (circuits with out-
degree 1 at each non-leaf node). (It is known that F equals NC1.) A similar result holds in the

18

case of Valiant’s algebraic complexity classes too. Valiant has shown that VNP = Σ · VF (see
[Bür00, BCS97]), and thus the polynomial g in the expression for VNP using Definition 2 can be
assumed to be computable by a formula of polynomial size and polynomial degree.

Noting that VNP is the class of polynomials which are projections of the permanent polynomial
family, a natural question arises about the polynomials which are equivalent to the determinant
polynomial. Since the determinant exactly characterizes the class of polynomials which are com-
putable by skew arithmetic circuits ([Tod91]), the question one could ask is: can the determinant
be written as an exponential sum of partial instantiations of a polynomial that can be computed
by skew formulas of poly size, VSkewF? Recall that a circuit is said to be skew if every × (or
∧ in the boolean case) gate has at most one child that is not a circuit input. Skew circuits are
essentially equivalent to branching programs. Thus one could ask the related question: since
VP ⊆ Σ · VP = Σ · VF, can we show that VPskew ⊆ Σ · VSkewF?

We show in Theorem 29 that this is not possible. We first give an equivalent characterization
of VSkewF in terms of “sparse polynomials” (Lemma 25) placing it inside VAC0 (Corollary 26),
and then use it to show that Σ · VSkewF is in fact equal to VSkewF (Theorem 28). Recall that
VAC0 denotes the class of polynomial families computed by arithmetic circuits of polynomial size,
unbounded fan-in, and constant depth.

Lemma 25 1. Let f ∈ K[X] be computed by a skew formula Φ of size s. Then the degree and
number of monomials in f are bounded by s.

2. Conversely, if f ∈ K[X] is a degree d polynomial, where at most t monomials have non-zero
coefficients, then f can be computed by a skew formula Φ of size O(td).

Proof: Let F be a skew formula of size s. Consider a sub-tree T of F such that root of F is in
T and for any gate g in T , if g is a + gate then exactly one child of g is in T and if g is a ×
gate then both children of g are present in T . We call such a subtree T a “proving subtree” of F .
Since F is skew, T looks like a path, with edges hanging out at nodes labeled ×. But in a tree, the
number of root to leaf paths is bounded by the number of leaves in the tree. Thus the number of
distinct proving subtrees of F is upper bounded by s. Let pF ∈ K[X] be the polynomial computed
by the formula F , where X is the set of input variables of F . It is easy to see that a proving
subtree in F corresponds to a monomial in pF (monomial with some value from K as coefficient).
Thus the number of non-zero monomials in pF is bounded by s. Since the degree of the monomial
contributed by such a path is at most the length of the path, the degree of pF is at most s.

On the other hand, if a polynomial p ∈ K[X] has t non-zero monomials m1, . . . , mt, then we
can explicitly multiply variables to get each monomial mi and finally get the sum

∑

i cimi, where
ci ∈ K is the coefficient of mi in p. This formula computes p in size O(td).

Note that the above translation from a degree d polynomial to a constant-depth circuit requires
× gates with fan-in d. Thus, unless d ∈ O(1), the circuit is not an SAC0 circuit. Here, SAC denotes
semi-unbounded circuits, where the ∨ or + gates are allowed unbounded fan-in but the ∧ or ×
gates are restricted to have constant fan-in.

Corollary 26 VSAC0 ⊂ VSkewF ⊂ VAC0.

Proof: Polynomials computed by a VSAC0 circuit have O(1) degree. Thus they have at most
polynomially many distinct monomials, and hence from Lemma 25.(2) they are in VSkewF. From

19

Lemma 25.(1), polynomials in VSkewF have poly(n) monomials of poly(n) degree, so they can be
computed by a circuit of depth 2 and size O(s2), that is, in VAC0.

To see why the containments are proper: (1) The monomial
∏n

i=1 xi is in VSkewF, but its degree
is not O(1), and so it is not in VSAC0. (2) The function

∏n
i=1(xi +yi) is in VAC0 but not in VSkewF

because it has too many monomials.

Remark 27 The constructions in Lemma 25 work even in the multilinear world and allow us
to construct equivalent syntactically multilinear skew formulas. Since the functions

∏n
i=1 xi and

∏n
i=1(xi +yi) have syntactically multilinear VSkewF formulas and VAC0 circuits respectively, Corol-

lary 26 also holds if each of the classes referred to there is further restricted to be syntactically
multilinear: sm-SAC0 ⊂ sm-VSkewF ⊂ sm-AC0.

Theorem 28 Σ · VSkewF = VSkewF.

Proof: The containment VSkewF ⊆ Σ · VSkewF is obvious.
To show the converse, let f ∈ K[X] be expressible as f(X) =

∑

e∈{0,1}m φ(X, e), where φ has a
poly size skew formula and m ≤ poly(n). We need to show f ∈ VSkewF.

Since φ(X, Y) (where X = x1, . . . , xn and Y = y1, . . . , ym) has a poly size skew formula, by
Lemma 25 we know that the number of non-zero monomials in φ is bounded by some polynomial
q(n, m), or equivalently, by some other polynomial p(n). Hence the number of non-zero monomials
in φ(X, Y)|X (i.e. , monomials in X with coefficients from K[Y]) is also bounded by p(n). Summing
these coefficient polynomials over all Boolean settings to Y yields the coefficients of f . Thus f has
no more than p(n) monomials. The result now follows from Lemma 25.

Since the number of monomials in the determinant polynomial is exponential, using Lemma 25
and Theorem 28 we obtain

Theorem 29 The family of determinant polynomials is not in the class Σ · VSkewF.

Conclusion and Open questions

Summary of results:

1. We proposed a notion of “small space” for algebraic computations in terms of circuit width. VL

was defined as the class of polynomials computed by log-width circuits with certain degree and
constraints on the coefficients. However it is easy to see that our definition of VWIDTH(S(n))
can be extended to polynomials with arbitrary coefficients from K.

Since VBP is a natural arithmetic version of NL, a good validation of our thesis that width
defines space would be a proof that VL ⊆ VBP. Unfortunately, we were unable to show any
upper bound for VL better than the obvious bound VP.

2. We introduced the notion of read-once certificates and read-once exponential sums of arith-
metic circuits. It is shown that with this definition, some classes behave on the expected
lines: 1) ABPs are closed under taking read-once exponential sums. 2) Applying read-once
exponential sum to VP yields exactly the class VNP.

20

For the case of ΣR ·VL the best upper bound we can see is only VNP which is obvious from the
definition itself. However, we believe that VL is indeed the analogue of log-space, and that
read-once exponential sums over it does yield the analogue of non-deterministic log-space.
That is, we conjecture the following.

Conjecture 30 ΣR · VL = VBP.

Open questions We conclude with the following questions:

• Is VL contained in VBP? i.e. do the class of all log width poly degree and size circuits have
equivalent poly size algebraic branching programs?

• Is ΣR · VL ⊆ VP? Even in the case of VSC0, it will be interesting to see an upper bound of
VP, i.e, is ΣR · VSC0 ⊆ VP?

• Circuits corresponding to VSC families compute an output polynomial of polynomial degree,
but intermediate nodes could compute polynomials of higher degree, with the high degree
terms eventually canceling out. Such cancellations cannot always be made explicit without
increasing the circuit width a lot; see [LMR10] for a treatment of this. Therefore we can define
a further subclass of VP as polynomial families in VSC where the witnessing SC circuits have
polynomial syntactic degree. (Syntactic degree is defined as follows: The syntactic degree of a
leaf is 1, that of a + or ∨ node is the maximum of the syntactic degrees of its children, and and
that of a × or ∧ node is the sum of the syntactic degrees of its children. The syntactic degree
of a circuit is the syntactic degree of its output node, and is an upper bound on the degree of
the computed polynomial.) sSC, or small SC, denotes polynomial-size poly-log width circuits
with polynomial syntactic degree, and VsSC denotes families of polynomials computed by
arithmetic circuits of this form.

Branching programs obey the syntactic small degree restriction. Thus VBWBP ⊆ VSC0.
Since VNC1 = VBWBP, VNC1 is contained in VsSC0. Is this containment proper? Are VNC1

and VsSC0 separate?

Can the study of read-once exponential sums throw some light on this question?

Since we do not have a nice definition of read-once certificates for depth bounded circuits,
we use the equivalence VBWBP = VNC1 for this purpose. From Theorem 19, we have ΣR ·
VBWBP = VBWBP; hence we can say that ΣR · VNC1 = VNC1. On the other hand, we do
not know any upper bound for ΣR · VsSC0 better than ΣR · VL ⊆ VNP. (In [MR09] it was
erroneously claimed that ΣR · VsSC ⊆ VQP.)

• Is there any natural family of polynomials complete for VL?

Acknowledgments

The authors are indebted to the anonymous reviewers for very detailed comments, which helped
to significantly improve the presentation of the results, and for pointing out a flaw in an earlier
version.

21

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, New York, NY, USA, 2009.

[AJS10] Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan. On lower bounds for
constant width arithmetic circuits. In Yingfei Dong, Ding-Zhu Du, and Oscar Ibarra,
editors, ISAAC, Lecture Notes in Computer Science, pages 637–646. Springer Berlin /
Heidelberg, 2010.

[Bar89] David.A.Mix Barrington. Bounded-width polynomial-size branching programs rec-
ognize exactly those languages in NC1. Journal of Computer and System Sciences,
38(1):150–164, 1989.

[BCS97] P Bürgisser, M. Clausen, and M.A. Shokrollahi. Algebraic Complexity Theory. Springer-
Verlag, 1997.

[BCSS97] Lenore Blum, Felipe Cucker, Mike Shub, and Steve Smale. Complexity and Real Com-
putation. Springer, 1997.

[Bor77] Allan Borodin. On relating time and space to size and depth. SIAM J. Comput.,
6(4):733–744, 1977.

[Bür00] Peter Bürgisser. Completeness and Reduction in Algebraic Complexity Theory. Algo-
rithms and Computation in Mathematics. Springer-Verlag, 2000.

[CDL01] A Chiu, G Davida, and B Litow. Division in logspace-uniform NC1. RAIRO Theoretical
Informatics and Applications, 35:259–276, 2001.

[CMTV98] Hervé Caussinus, Pierre McKenzie, Denis Thérien, and Heribert Vollmer. Nondeter-
ministic NC1 computation. Journal of Computer and System Sciences, 57:200–212,
1998.

[Coo71] S. Cook. Characterizations of pushdown machines in terms of time-bounded computers.
Journal of Association for Computing Machinery, 18:4–18, 1971.

[Coo79] Stephen A. Cook. Deterministic CFL’s are accepted simultaneously in polynomial time
and log squared space. In Proceedings of the ACM Symposium on Theory of Computing
STOC, pages 338–345, 1979.

[dN06] Paulin Jacobé de Naurois. A Measure of Space for Computing over the Reals. In CiE,
pages 231–240, 2006.

[FL10] Uffe Flarup and Laurent Lyaudet. On the expressive power of permanents and per-
fect matchings of matrices of bounded pathwidth/cliquewidth. Theory Comput. Syst.,
46(4):761–791, 2010.

[GHR95] Raymond Greenlaw, James Hoover, and Walter Ruzzo. Limits To Parallel computation:
P-Completeness Theory. Oxford University Press, 1995.

22

[Jan08] Maurice J. Jansen. Lower bounds for syntactically multilinear algebraic branching
programs. In MFCS, pages 407–418, 2008.

[Joh90] David S. Johnson. A catalog of complexity classes. In Jan van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume A: Algorithms and Complexity (A),
pages 67–161. Elsevier and MIT Press, 1990.

[JR09] Maurice J. Jansen and B. V. Raghavendra Rao. Simulation of arithmetical circuits by
branching programs with preservation of constant width and syntactic multilinearity.
In CSR, pages 179–190, 2009.

[JS10] Maurice Jansen and Jayalal M. N. Sarma. Balancing bounded treewidth circuits. In
CSR, volume 6072 of Lecture Notes in Computer Science, pages 228–239, 2010.

[KK08] Erich Kaltofen and Pascal Koiran. Expressing a fraction of two determinants as a
determinant. In ISSAC, pages 141–146, 2008.

[KP09a] Pascal Koiran and Sylvain Perifel. VPSPACE and a transfer theorem over the complex
field. Theor. Comput. Sci., 410(50):5244–5251, 2009.

[KP09b] Pascal Koiran and Sylvain Perifel. VPSPACE and a transfer theorem over the reals.
Computational Complexity, 18(4):551–575, 2009.

[LMR10] Nutan Limaye, Meena Mahajan, and B. V. Raghavendra Rao. Arithmetizing classes

around NC1 and L. Theory of Computing Systems, 46(3):499–522, 2010. Preliminary
version in STACS 2007, LNCS vol. 4393 pp. 477–488.

[Mal07] Guillaume Malod. The complexity of polynomials and their coefficient functions. In
IEEE Conference on Computational Complexity, pages 193–204, 2007.

[Mic89] Christian Michaux. Une remarque à propos des machines sur R introduites par Blum,
Shub et Smale. Comptes Rendus de l’Académie des Sciences de Paris, 309(7):435–437,
1989.

[MP08] Guillaume Malod and Natacha Portier. Characterizing Valiant’s algebraic complexity
classes. J. Complexity, 24(1):16–38, 2008.

[MR09] Meena Mahajan and B. V. Raghavendra Rao. Small-space analogues of valiant’s classes.
In 17th International Symposium on Fundamentals of Computation Theory, FCT, pages
250–261, 2009.

[NW95] Noam Nisan and Avi Wigderson. On the complexity of bilinear forms. In STOC ’95:
Proceedings of the twenty-seventh annual ACM symposium on Theory of computing,
pages 723–732, New York, NY, USA, 1995. ACM.

[Pip79] Nicholas Pippenger. On simultaneous resource bounds. In 20th Annual Symposium on
Foundations of Computer Science FOCS, pages 307–311, 1979.

[SW02] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of character-
istic zero. Computational Complexity, 10:1–27, January 2002.

23

[Tod91] Seinosuke Toda. Counting problems computationally equivalent to the determinant.
Technical Report CSIM 91-07, Dept. Comp. Sci. and Inf. Math., Univ. of Electro-
Communications, Tokyo, 1991.

[Tod92] Seinosuke Toda. Classes of arithmetic circuits capturing the complexity of computing
the determinant. IEICE Transactions on Informations and Systems, E75-D:116–124,
1992.

[Tza08] Iddo Tzamaret. Studies in Algebraic and Propositional Proof Complexity. PhD thesis,
Tel Aviv University, 2008.

[Val76] Leslie G. Valiant. Graph-theoretic properties in computational complexity. Journal of
Computer and System Sciences, 13:278–285, 1976.

[Val79a] L. G. Valiant. Completeness classes in algebra. In STOC ’79: Proceedings of the
eleventh annual ACM symposium on Theory of computing, pages 249–261, New York,
NY, USA, 1979. ACM.

[Val79b] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,
8:189–201, 1979.

[Val82] Leslie G. Valiant. Reducibility by algebraic projections. Logic and Algorithmic: an
International Symposium held in honour of Ernst Specker, 30:365–380, 1982.

[Ven92] H. Venkateswaran. Circuit definitions of nondeterministic complexity classes. SIAM
Journal on Computing, 21:655–670, 1992.

[Vin91] V Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic cir-
cuits. In Proceedings of 6th Structure in Complexity Theory Conference, pages 270–284,
1991.

[Vol99] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag
New York Inc., 1999.

7 Appendix

7.1 Blum Shub Smale (BSS) model of computation

In this section we briefly describe the model of computation over reals proposed by Blum, Shub and
Smale. For more details reader is referred to [BCSS97]. The BSS model is defined for computation
over the field R of real numbers. We present the version used in [dN06].

A BSS machine M has an input tape output tape and a work tape, where each cell stores a
value from R and a set of parameters A = {A1, . . . , Ak}, where Ai ∈ R. In a single step, M can
perform one of the following operations:

• Input: reads a value from the input tape into its work tape.

• Computation: Performs an arithmetic operation over values in the work tape (The number
of operands is some fixed constant).

24

• Output: Writes a value on the output tape.

• Constant: Writes a constant Ai ∈ R.

• Branch: Compares two real values and branches accordingly

Naturally we can associate a function φM : R
∗ → R with M . We say that a real set L ⊆ R

∗

is decided by M if the characteristic function of L, χL equals φM . We can make the machine M
above non-deterministic by allowing non-deterministic choices at every step. PR is the set of all
languages from R

∗ that are decidable by polynomial time bounded BSS machines. Also, NPR is
the class of languages that are computable by non-deterministic polynomial time bounded BSS
machines.

In the unit space model, we count the number of work tape cells used by the machine as the
space used. Michaux ([Mic89]) showed that any language that can be decided by a machine in the
BSS model can in fact be decided using O(1) space; that is,

Proposition 31 ([Mic89]) Let L ⊆ R be a language computed by a machine M . Then there is
machine M ′ and a constant k such that M ′ computes L using space k.

25

	Introduction
	Preliminaries
	Circuit classes
	Polynomial families

	Notion of space for arithmetic computations?
	Previously studied notions
	Defining VPSPACE in terms of circuit width
	VWIDTH(S) for sub-linear S

	Read-Once certificates
	Read-Once exponential sums of multiplicatively disjoint circuits
	Skew formulas
	Appendix
	Blum Shub Smale (BSS) model of computation

