
Communication Complexity of Efficient Two-Party Computation

Protocols

Abstract

We study the communication complexity of secure two party computation protocols. In
cut-and-choose protocols for two party computation, we analyze the optimal parameters to keep
the probability of undetected cheating minimum. We first study this for a constant number
of circuits, and then generalize it to the case of constant bandwidth. More generally, the
communication cost of opening a circuit is different from retaining the circuit for evaluation and
we analyze the optimal parameters in this case, by fixing the total bits of communication. We
then minimize the communication complexity while still keeping the security guarantees, that
is, the cheating probability negligible. We achieve a concrete improvement in communication
complexity by using optimal parameters in existing cut-and-choose protocols.
Keywords: secure computation, malicious adversaries, cheating probability, communication
complexity.

1 Introduction

Secure two party computation. In the setting of two-party computation, two parties with re-
spective private inputs x and y, wish to jointly compute a functionality f(x, y) = (f1(x, y), f2(x, y)),
such that the first party receives f1(x, y) and the second party receives f2(x, y). The security re-
quirements are that nothing is learned from the protocol other than the output (privacy), and
that the output is distributed according to the prescribed functionality (correctness). The actual
definition follows the simulation paradigm and blends the two requirements. Security must be
guaranteed even when one of the parties is adversarial. Such an adversary may be semi-honest,
in which case it correctly follows the protocol specification, yet attempts to learn additional in-
formation by analyzing the transcript of messages received during the execution. In contrast, the
adversary may be malicious, in which case it can arbitrarily deviate from the specifications of the
protocol. The first general solutions for the problem of secure computation were presented by Yao
[Yao86] for the two-party case with security against semi-honest adversaries and Goldreich, Micali
and Wigderson [GMW87] for the multi-party case with security even against malicious adversaries.
The results of [GMW87] constitute important and powerful feasibility results for secure two-party
and multi-party computation.

Yao’s Protocol. Yao presented a constant-round protocol for securely computing any function-
ality in the presence of semi-honest adversaries. Let f be the functionality that the two parties wish
to compute, and let x,y be their respective inputs. (for simplicity, assume that both parties wish
to receive f(x, y)). Yao’s protocol works by having one of the parties, say party P1 first generate a
“garbled” (or encrypted) circuit computing f(x, ·) and then send it to P2. The circuit is such that

1

it reveals nothing in its encrypted form and therefore P2 learns nothing from this stage. However,
P2 can obtain the output f(x, y) by “decrypting” the circuit. In order to ensure that P2 learns
nothing more than the output itself, this decryption must be partial and must reveal f(x, y) only.
That is, P2 should learn the value on the circuit output wire without learning the values on any of
the internal wires. This is accomplished by P2 obtaining a series of keys corresponding to its input
y, such that given these keys and the circuit, the output value f(x, y), and only this value, may
be obtained. Now, P2 must somehow receive these keys without revealing anything about y to P1.
This is accomplished by running secure 1-out-of-2 Oblivious Transfer protocol [Rab81]. A detailed
description of Yao’s protocol, and a proof of security can be found in [LP04]. Yao’s generic protocol
is highly efficient, and even practical, for functionalities that have relatively small circuits.

Malicious behavior and cut-and-choose. The compiler of GMW [GMW87] converts any
protocol that is secure for semi-honest adversaries into one that is secure for malicious adversaries,
and as such is a powerful tool for demonstrating feasibility. However, it is based on reducing the
statement that needs to be proved (the honesty of the parties’ behavior in this case) to an NP-
complete problem, and using generic zero-knowledge proofs to prove this statement. The resulting
secure protocol therefore runs in polynomial time but is rather inefficient. Lindell and Pinkas gave
an efficient protocol secure against malicious adversaries, based on cut-and-choose methodology in
[LP07]. P1 first constructs many garbled circuits and sends them to P2. Then, P2 asks P1 to “open”
half of them (namely, reveal the decryption keys corresponding to these circuits). P1 opens the
requested half, and P2 checks that they were constructed correctly. If they were, then P2 evaluates
the rest of the circuits and derives the output from them. The idea behind this methodology is that
if a malicious P1 constructs the circuits incorrectly, then P2 will detect this with high probability.
Clearly, this solution solves the problem of P1 constructing the circuit incorrectly. In [LP07], the
authors give a cut-and-choose based solution, and a simulation based proof of security.

Our Results. We study the communication efficiency of protocols for two party computation
against malicious adversaries. We analyze the optimal parameters to achieve minimum cheating
probability and minimum communication complexity of cut-and-choose protocols. Our analysis
yields parameters which can be used in any of the existing cut-and-choose protocols and get an
improvement in the communication complexity. We first study the optimal fraction of the total
number of circuits that should be check circuits, so as to minimize the undetected probability of
cheating by P1. We then generalize this to the case when a constant bandwidth is allowed (as
opposed to constant number of total circuits). In this case, the communication cost of a check
circuit is cheaper than the cost of an evaluation circuit [GMS08]. We show the optimal number
of check circuits to minimize the cheating probability in this setting. Further, we improve the
communication complexity of existing protocols, while still keeping the probability of undetected
cheating by P1 negligible. The parameters we obtain from our analysis can be used to improve the
number of communication bits in existing cut-and-choose protocols.

2

2 Preliminaries

2.1 Cut-and-choose protocol

Lindell and Pinkas gave an efficient two party protocol secure against malicious adversaries [LP07].
Their construction is based on applying cut-and-choose techniques to the original Yao’s circuit and
inputs. Security is proved in the ideal/real simulation paradigm.

A malicious P1 is forced to construct the garbled circuit correctly so that it indeed computes the
desired function. According to the cut-and-choose methodology, P1 constructs many independent
copies of the garbled circuit and sends them to P2. Party P2 randomly chooses half of them,
and asks P1 to open the chosen circuits. Now, P2 checks that the opened circuits are constructed
correctly. If they are, then P2 is convinced that most of the remaining garbled circuits are also
constructed correctly. If there are many circuits that are incorrectly constructed, then with high
probability, one of those circuits will be in the set that P2 asks to open. The parties then evaluate
the remaining circuits as in the original protocol for semi-honest adversaries, and take the majority
output. The protocol also has to make sure that both P1 and P2 use the same inputs in each circuit.
Such consistency checks are important since if the parties were able to provide different inputs to
different copies of the circuit, then they can learn information that is more than just the desired
output of the function. This is ensured by having P1 commit to the garbled circuits and also to
the garbled values corresponding to the input wires of the circuits. We give a high-level overview
of the protocol here.

Parties P1 and P2 have respective inputs x and y, and wish to compute f(x, y).

• The parties decide on a circuit computing f . They then change the circuit by replacing each
input wire of P2 by a gate whose input consists of s new input wires of P2 and whose output
is the exclusive-or of these wires (such an s-bit exclusive-or gate can be implemented using
s− 1 two-bit exclusive-or gates). Consequently, the number of input wires of P2 increases by
a factor of s.

• P1 commits to s different garbled circuits computing f , where s is a statistical security
parameter. P1 also generates additional commitments to the garbled values corresponding to
the input wires of the circuits. These commitments are constructed in a special way in order
to enable consistency checks.

• For every input bit of P2, parties P1 and P2 run a 1-out-of-2 oblivious transfer protocol in
which P2 learns the garbled values of input wires corresponding to its input.

• P1 sends all the commitments to P2.

• P1 and P2 run a coin-tossing protocol in order to choose a random string that defines which
commitments and garbled circuits will be opened.

• P1 opens the garbled circuits and commitments chosen in the previous step. P2 verifies the
correctness and runs the consistency checks based on decommitted input values.

• P1 sends the garbled values corresponding to P1’s input wires in the unopened garbled circuits,
P2 runs consistency checks on these values.

• If all the checks pass, P2 evaluates the unopened circuits, and takes the majority value as
output.

3

2.2 Efficient two party computation protocols

In [GMS08], the authors design an efficient multi party computation protocol in the covert adver-
sary model. The techniques used in the two party case generalize to improve the communication
efficiency of two party computation protocols secure against standard malicious adversaries. To
achieve an improvement in communication complexity, they take a different approach to construct-
ing the garbled circuit. In order to construct a garbled circuit and the commitments for input
keys, party P1 generates a short random seed and feeds it to a pseudorandom generator in order to
generate the necessary randomness. He then uses the randomness to construct the garbled circuit
and the necessary commitments. When the protocol starts, party P1 sends to P2 only a hash of each
garbled circuit using a collision-resistant hash function. P2 chooses half of the circuits at random.
In order to expose the secrets of each circuit, P1 sends the seeds corresponding to the circuit, and
not the whole opened circuit. Once the checks go through, P1 sends the remaining circuits, called
the evaluation circuits to P2.

We briefly give the garbling procedure of [GMS08]. Let G be the description of a pseudoran-
dom generator, seed a seed of suitable length, C be the description of the circuit to be garbled.
Garble(G, seed, C, 1s) denotes the garbling procedure where s is the security parameter. The ran-
domness required for constructing the garbled circuits includes, the random keys corresponding
to the wires, the random permutation chosen for each gate, and the random string chosen for en-
cryption. A random string of length O(s|C|) is sufficient for garbling. A pseudorandom generator
G : {0, 1}n1 → {0, 1}n2 , where n1 is polynomial in s and n2 = O(s|C|) is used. The algorithm
Garble runs G on seed to generate the randomness required for the circuit, and then computes the
garbled circuit for C as described in [LP04]. The details of [GMS08] is given in Appendix A.1.

3 Optimal number of check circuits

In the cut-and-choose protocol described in 2.1, we have the flexibility of choosing the number
of check circuits. This is the subject of this section; we study what is the optimal number of
circuits that should be check circuits to minimize the probability of undetected cheating by Party
P1. In section 3.1, we keep the total number of garbled circuits a constant, and minimize the
cheating probability. In the next subsection, we generalize this to the case when a constant amount
of communication bits is allowed, (and the total number of circuits is not fixed). We minimize
the cheating probability in these settings by choosing the optimal number of check circuits, c.
In [ShS11], the authors show the optimal number of check circuits, but our techniques to get an
approximation for the expression of cheating probability makes the analysis extendible to the more
general case of cheaper check circuits. We discuss both the cases, of same cost circuits and cheaper
check circuits as the latter is an extension of the computations done for the former case.

3.1 Constant number of total circuits

Let n be the number of garbled circuits constructed by P1, and let c be the number of circuits
checked.
Assume that i out of n circuits are constructed incorrectly by a cheating P1. P1’s cheating is not
caught if all the check circuits are constructed correctly, and P2 does not abort after evaluation of
the remaining circuits.
Now, the probability of P1’s cheating not caught is given by,

4

(
n−i
c

)(
n
c

)
If i <

n− c
2

, then the majority output is correct, and if i > n − c, corrupt P1 is caught in one of

the check circuits.

Therefore, the cheating probability is,

P = max
i

(
n−i
c

)(
n
c

)
=

1(
n
c

) max
i

(
n− i
c

)

The above is maximum for i =
n− c

2
. Thus,

P =

(n+c
2
c

)(
n
c

)
=

(
n+c
2

)
!

c!
(
n−c
2

)
!

(n− c)!c!
n!

=

(
n+c
2

)
!(

n−c
2

)
!

(n− c)!
n!

By Stirling’s approximation,

n! ≈
√

2πn
(n
e

)n
P =

(n+ c)
n+c+1

2 (n− c)
n−c
2

2c nn+
1
2

(1)

To minimize P for a given n, we differentiate partially with respect to c and set the resulting
expression to 0.

Taking logarithm of (1), we get,

logP =

(
n+ c+ 1

2

)
log(n+ c) +

n− c
2

log(n− c)− c log 2−
(
n+

1

2

)
log n

Now differentiating,
dP

dc
=
P

2

(
log

n+ c

4(n− c)
− n− c
n− c

+
n+ c+ 1

n+ c

)
We now have,

dP

dc
= 0

5

log
n+ c

4(n− c)
− n− c
n− c

+
n+ c+ 1

n+ c
= 0

n+c+1
n+c ≈ 1 and cancels out n−c

n−c . Therefore, we have,

log
n+ c

4(n− c)
= 0

n+ c

4(n− c)
= 1

⇒ n+ c = 4(n− c)

This yields,

c =
3n

5

Therefore, for a given number of total circuits, n, minimum cheating probability is achieved when
the number of check circuits is 3/5th of n.

Theorem 1. For a given total number of garbled circuits n, sent by P1 in the cut-and-choose

protocol, P2 should ask
3

5
th of them to be opened, to minimize the probability of cheating by P1.

The above result is also obtained in [ShS11], by counting the number of bad circuits that
optimizes the cheating probability. They do not derive an explicit expression for the cheating
probability as we do above, which we use in the generalization to cheaper check circuits which is
the subject of the next section.

3.2 Cheaper check circuits

In this section, we fix the amount of communication bits allowed. A given number of communica-
tion bits does not fix the total number of circuits when the costs of a check circuit and an evaluation
circuit are different. Consider the protocol of [GMS08], i.e applying the ideas of [GMS08] to the
protocol of the previous section. In this protocol, P1 uses a short seed and a pseudorandom gener-
ator to generate the required randomness for construction of the garbled circuits. A hash of the n
garbled circuits are sent to P2. P2 asks for a random half of them to be opened, and P1 sends only
the short seeds of the selected half. P2 verifies that they are constructed correctly. The evaluation
circuits are now sent by P1. The cost of a check circuit is therefore, less than the cost of an evalua-
tion circuit; once the hashes of all n circuits are sent, only a short seed is communicated in case of a
check circuit, whereas the whole garbled circuit is the communication cost for an evaluation circuit.
In this case, we analyze the optimal number of check circuits for minimum cheating probability. In
the previous case when the costs of a check circuit and an evaluation circuit are the same, fixing
the communication bits k, also fixes the total number of circuits n. We now study the general
case, for a given amount of communication bits when a check circuit is cheaper than an evalua-
tion circuit. Given a constant amount of communication bits, we minimize the cheating probability.

Let k be the number of bits of communication allowed. Let c be the number of check circuits,
e the number of evaluation circuits and n the total number of circuits.

6

Then,

c · Costcheck + e · Costeval = k

Let q be the ratio of the cost of check circuits to the cost of evaluation circuits.

cq + e = s

where,

q =
Costcheck
Costeval

and,

s =
k

Costeval

Using n = c+ e and e = s− cq in the cheating probability, we have,

P =
(n+ c)

n+c+1
2 (n− c)

n−c
2

2c nn+
1
2

=
(2c+ e)

2c+e+1
2 e

e
2

2c (e+ c)e+c+
1
2

=
(2c+ s− cq)

2c+s−cq+1
2 (s− cq)

s−cq
2

2c (s− cq + c)s−cq+c+
1
2

(2)

We now differentiate with respect to c and equate the resulting expression to zero.

Taking logarithm of (2) we get,

logP =
(2− q)c+ s+ 1

2
log ((2− q)c+ s)+

s− cq
2

log (s− cq)−c log 2−
(
c(1− q) + s+

1

2

)
log (c(1− q) + s)

Differentiating with respect to c we have,

1

P

dP

dc
=

2− q
2

log ((2− q)c+ s)− q

2
log(s− qc)− log 2− (1− q) log ((1− q)c+ s)

Now setting the derivative to zero,

dP

dc
= 0

log

(
((2− q)c+ s)

2−q
2

2(s− qc)
q
2 ((1− q)c+ s)1−q

)
= 0

7

((2− q)c+ s)
2−q
2

2(s− qc)
q
2 ((1− q)c+ s)1−q

= 1

This implies,

((2− q)c+ s)
2−q
2 = 2(s− qc)

q
2 ((1− q)c+ s)1−q (3)

(2c+ e)1−
q
2 = 2 e

q
2 (c+ e)1−q

(n+ c)1−
q
2 = 2 (n− c)

q
2 n1−q(

1 +
c

n

)2−q
= 4

(
1− c

n

)q
(4)

Let r be the fraction of the circuits which are check circuits. i.e

r =
c

n

Using this in (4) yields,

(1 + r)2−q = 4 (1− r)q

(1 + r)2 = 4
(
1− r2

)q
(5)

Given q, the ratio of costs, we can solve the above equation for r.

The total number of circuits to be sent n is then given by,

n =
k

(1− r)Costeval + r Costcheck

Given that we are allowed a constant k bits of communication, the total number of circuits, and the
number of check circuits can be set as in the above analysis to minimize the cheating probability
by P1. If the cost of check circuit is the same as the cost of the evaluation circuit,
i.e when,

Costcheck = Costeval, q = 1

Setting q = 1 in equation (5) yields,

r =
3

5

and this agrees with our earlier conclusion when the costs are same.

Theorem 2. Let q be the ratio of the communication cost of a check circuit to the cost of an
evaluation circuit in a two party cut-and-choose protocol, and k, a constant amount of communi-
cation bits allowed. Then, probability of cheating by P1 is minimized if the ratio of the number of
check circuits to the number of evaluation circuits, r is as given by, (1 + r)2 = 4

(
1− r2

)q
, and the

number of circuits, n =
k

(1− r)Costeval + r Costcheck
.

8

4 Communication Complexity

In this section, we minimize the number of communication bits for a given cheating probability. We
show that, for our choice of parameters, the communication complexity of existing cut-and-choose
protocols can be improved. The communication complexity of existing protocols are stated in the
following theorems.

Theorem 3. ([Woo07]) Let n be the number of circuits, and g the number of gates in the circuit.
The protocol of [Woo07] is secure in the malicious model with inverse exponential (in n) probability
of undetected cheating. The communication complexity is O(ng).

Theorem 4. ([MF06]) The equality-checker protocol of [MF06] is secure in the malicious model
with probability of undetected cheating ε. If g is the number of gates the circuit, and I the number
of input bits, the communication complexity of the scheme is O(ln

(
1
ε

)
g + ln

(
1
ε

)2
I).

4.1 Minimize Communication Complexity

We now formulate the problem as minimizing the communication complexity which is a function
of two variables, given a cheating probability. Given a cheating probability p, for what relation
between the check circuits and the total number of circuits, is p achieved in minimum number of
communication bits? Minimize the function,

f(c, n) = c · Costcheck + (n− c) · Costeval
That is, minimize,

k = c+ (n− c)Q

subject to the constraint that,

p =
1

2c
(n+ c)

n+c+1
2 (n− c)

n−c
2

nn+
1
2

where,

Q =
Costeval
Costcheck

Since the constraint equation is exponential, we go back to the expression of cheating probability
and try to get a more friendly approximation.

p ≈
(n+c

2
c

)(
n
c

)
We know that, (

x

y

)
≥
(
x

y

)y
(
x

y

)
≤ xy

y!
≤ xy

2y−1

Therefore,

p ≥
(n+c2c)c

nc

2c−1

=

(
n+ c

cn

)c 2c−1

2c

9

p ≥ 1

2

(
1

c
+

1

n

)c
(2p)

1
c ≥ 1

c
+

1

n

1

n
≤ (2p)

1
c − 1

c

n ≥ c

c (2p)
1
c − 1

Since we do not get a closed form for c in terms of n and p, we investigate, of what order c should
be in, so that k is minimized while keeping p negligible.

Let n− c = nε, and, ε =
log log n

log n
For this value of ε, nε = log n, and n− nε = c = n− log n.

The communication bits, k ≈ nεQ, and it is easy to verify that for the above value of c, p is
still negligible. We now show that the cheating probability p is negligible when c = n− log n.

p =
1

2c
(n+ c)

n+c+1
2 (n− c)

n−c
2

nn+
1
2

For c = n− log n,

p =
1

2n−logn

(2n− log n)
2n−logn+1

2 (log n)
logn
2

nn+
1
2

For large n, and c = n− nε, p is still negligible. That is, p ≈ 1

n
1
2
+nε

2

.

We observe that, the cheating probability p remains negligible, for ε =
log∗ n

log n
, giving communication

bits, k = O(nεQ). Therefore, we achieve minimum communication complexity, keeping the cheating

probability negligible, by choosing the number of check circuits to be, c = n− nε, for ε =
log∗ n

log n
.

Thus, the communication cost of existing cut-and-choose protocols can be improved, while still
retaining the security guarantees, i.e. keeping the cheating probability negligible. The commu-
nication complexity and the cheating probability achieved by the above optimal parameters in a
cut-and-choose protocol are stated in the following theorem.

Theorem 5. Let ε =
log log n

log n
, and Q be the ratio of the cost of an evaluation circuit to the cost

of a check circuit. For the total number of circuits n, and number of check circuits c = n− nε, we
achieve a communication cost of O(nεQ). The cheating probability p ≈ 1

n
1
2
+nε

2

, remains negligible

for the above choice of ε.

10

The improvement by using the above parameters in the setting of [GMS08], is discussed in
the following section. Using the above choice of parameters for ε, the number of check circuits c
and the technique of [GMS08] as applied to cut-and-choose protocol for general secure two party
computation, we get an improvement in the communication complexity in concrete terms compared
to the protocols of [MF06], [Woo07], [LP11].

4.2 Comparison of communication bits

In the previous section, we analyzed in detail the parameter values such as the number of circuits
to be challenged and arrived at optimal values to achieve minimum communication complexity. We
now show how the use of these optimal parameters in existing protocols significantly improve the
communication complexity. In particular, we sketch how our optimal parameters along with the
technique of [GMS08], improve the efficiency of existing cut-and-choose constructions. Informally,
in the setting of [GMS08], P1 sends only a hash of the check circuits, and the entire garbled circuit
is sent only for an evaluation circuit. Check circuits are therefore cheaper than evaluation circuits.
Let the total number of circuits be n. From the analysis of section 4.1, we choose the number of
evaluation circuits to be log n. We summarize our results below.

Let the size of a garbled circuit be, |GC| = 4g|E|, where |E| is the size of the ciphertext of the
encryption scheme, g the number of gates in the circuit and I the input size. Let |E| also be the
output size of the commitment scheme. If t is the number of garbled circuits in [MF06], the number
of bits communicated is t|GC| + t2I|E| = 4tg|E| + t2I|E| (Theorem 4). The same protocol, by
using the parameters of our analysis communicates, roughly, 4g|E| log n+ (log n)2I|E| bits, where
n is the total number of circuits (Theorem 5). Consider a circuit with 32 gates and input wires,
g = I = 32. The cheating probabilty and the communication complexity achieved by [MF06] and
by incorporating the optimal choice from our analysis in [MF06] is shown in the table below.

Table 1:
Scheme Communication Complexity Cheating Probability

[MF06] 128t|E|+ 32t2|E| 2. (1/2)t/4

This paper 128|E| log n+ 32(log n)2|E| 1/n
1
2
+ logn

2

For the purpose of our comparison, we fix the cheating probability. Setting the number of
circuits t and n, in the two variants such that, the cheating probability is the same, say, 2−50, we
get t = 196 and log n = 10. Substituting the values of t and n in the number of communication
bits shown above, we see that the communication bits using our optimal parameters is around 250
times less than the communication bits of [MF06]. It is also important to note that this factor of
improvement increases as the number of gates and input wires in the circuit increase.

We now consider the protocol of [Woo07]. If t is the number of garbled circuits in [Woo07],
the number of bits communicated is roughly 4tg|E| + 2tI|E| + tg + tI|E|. The number of bits
communicated by using our techniques is, roughly, 4g|E| log n+ 3 log nI|E| (Theorem 5), where n
is the total number of circuits. If we consider a circuit with 32 gates and input wires, g = I = 32,

and set the parameters t and n such that the cheating probability is the same, t =
log n

2
+

(log n)2

2
.

Now, for a cheating probability of 2−50, we get t = 50 and log n = 10. Substituting the values of
t and n in the number of communication bits shown above, we see that the communication bits
using our optimal parameters is a factor of 9 less than the scheme of [Woo07].

11

More recently, in [LP11], Lindell and Pinkas presented a protocol using the cut-and-choose
methodology relying on DDH assumption, and significantly improved the efficiency. We briefly
compare the communication bits of our techniques with that in [LP11]. The communication com-
plexity of [LP11] is the exchange of 5tI + 14I + 7t+ 5 group elements and t copies of the garbled

circuit. The cheating probability is
1

2t/4
. The communication cost is dominated by the garbled

circuits. Using the techniques in this paper, the communication cost of sending the garbled circuits

is 4 log ng|E|, for a cheating probability of
1

n
1
2
+ logn

2

.

Table 2:
Scheme Cheating Probability Communication Complexity

[LP11] 1/2t/4 O(tg)

This paper 1/n
1
2
+ logn

2 O(g log n)

To achieve the same cheating probability, say 2−50 we compute the number of GC’s required as

t = 200. We now set n
1
2
+ logn

2 = 2−50, and solve the quadratic equation to get log n = 10. This gives
a factor of 20 improvement in the communication cost. Thus, for the same cheating probability,
our techniques lead to a factor of 20 less communication between the parties compared to [LP11].
We also remark that the increase in computational complexity is feasible. log n = 10 implies that
the total number of GC’s the parties need, n = 210 = 1024.

References

[GMS08] Vipul Goyal, Payman Mohassel, and Adam Smith. Efficient two party and multi party
computation against covert adversaries. In EUROCRYPT 2008, pages 289–306, 2008.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a complete-
ness theorem for protocols with honest majority. In proceedings of 19th Annual ACM
Symposium on Theory of Computing, pages 218–229, 1987.

[LP04] Yehuda Lindell and Benny Pinkas. A proof of yao’s protocol for secure two-party com-
putation. Cryptology ePrint Archive, Report 2004/175, 2004.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computa-
tion in the presence of malicious adversaries. In EUROCRYPT, pages 52–78, 2007.

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose
oblivious transfer. In 8th TCC, pages 329–346, 2011.

[MF06] Payman Mohassel and Mathew Franklin. Efficiency tradeoffs for malicious two party
computation. In Public Key Cryptography Conference, pages 458–473, 2006.

[Rab81] M. Rabin. How to exhange secrets by oblivious transfer. Technical Memo, TR-81, Aiken
computation laboratory, Harvard U., 1981.

[ShS11] Abhi Shelat and Chih hao Shen. Two-output secure computation with malicious adver-
saries. In Advances in Cryptology - Eurocrypt 2011, volume 6632 of Lecture Notes in
Computer Science, pages 386–405. Springer, 2011.

12

[Woo07] David P. Woodruff. Revisiting the efficiency of malicious two party computation. In
EUROCRYPT 2007, pages 79–96, 2007.

[Yao86] A. C. Yao. How to generate and exchange secrets. In FOCS ’86: Proceedings of 27th
Annual Symposium on Foundations of Computer Science, pages 162–167, 1986.

A Appendix

A.1 Technique of [GMS08]

We give here an informal sketch of the improvements achieved by the techniques of [GMS08] over
the protocol of [MF06]. We give the relevant steps of the equality-checker protocol of [MF06], and
the modifications to the protocol using the technique of [GMS08].

Equality-Checker:

• P1 creates t garbled circuits C1, · · · , Ct. He sends Cj and commitments to the garbled values
for the input wires.

• P2 chooses a random subset S ⊂ {1, · · · , t} with |S| = t/2 and sends S to P1.

• P1 exposes the secrets of Ci for every i ∈ S, and also sends the witnesses to the decommit-
ments. P2 verifies that the garbled circuits and the commitments are correct.

• P1 sends the garbled values corresponding to its input wire for the remaining circuits. It also
sends witnesses to the commitment to the garbled values.

• P2 uses the witnesses to verify that P1’s input to all the circuits is the same.

The modifications to Equality-Checker as in [GMS08]:

• P1 generates t1 random seeds and computes GC1, · · · , GCt1 using the Garble algorithm. Let h
be a collision resistant hash function. P1 sends h(GC1), · · · , h(GCt1) to P2. P1 also generates
t21 random seeds and generates witnesses for the decommitments. P1 computes and sends a
hash of the commitment to P2.

• P1 chooses a random subset S ⊂ {1, · · · , t1} with |S| = t1 − t2 and sends S to P1.

• P1 sends the seeds that expose the secrets of Ci for every i ∈ S. He also sends the seeds
that expose the witnesses and P2 verifies that the garbled circuits and the commitments are
correct.

• P1 now sends the remaining garbled circuits, the garbled values of his input wires and the
witnesses corresponding to the garbled values of input wires.

• P2 uses the witnesses to verify that P1’s input to all the circuits is the same.

13

