
On-Line/Off-Line Leakage Resilient Secure Computation Protocols

Chaya Ganesh∗ Vipul Goyal† Satya Lokam‡

Abstract

We study the question of designing leakage-resilient secure computation protocols. Our model is that of only
computation leaks information with a leak-free input encoding phase. In more detail, we assume an offline phase
called the input encoding phase in which each party encodes its input in a specified format. This phase is assumed
to be free of any leakage and may or may not depend upon the function that needs to be jointly computed by the
parties. Then finally, we have a secure computation phase in which the parties exchange messages with each
other. In this phase, the adversary gets access to a leakage oracle which allows it to download a function of the
computation transcript produced by an honest party to compute the next outgoing message.

We present two main constructions of secure computation protocols in the above model. Our first construction
is based only on the existence of (semi-honest) oblivious transfer. This construction employs an encoding phase
which is dependent of the function to be computed (and the size of the encoded input is dependent on the size of
the circuit of the function to be computed). Our second construction has an input encoding phase independent of
the function to be computed. Hence in this construction, the parties can simple encode their input and store it as
soon as it is received and then later on run secure computation for any function of their choice. Both of the above
constructions, tolerate complete leakage in the secure computation phase.

Our second construction (with a function independent input encoding phase) makes use of a fully homomor-
phic encryption scheme. A natural question that arises is “can a leakage-resilient secure computation protocol
with function independent input encoding be based on simpler and weaker primitives?”. Towards that end, we
show that any such construction would imply a secure two-party computation protocol with sub-linear communi-
cation complexity (in fact, communication complexity independent of the size of the function being computed).

Finally, we also show how to extend our constructions for the continual leakage case where there is: a one
time leak-free input encoding phase, a leaky secure computation phase which could be run multiple times for
different functionalities (but the same input vector), and, a leaky refresh phase after each secure computation
phase where the input is “re-encoded”.

∗IIT Madras, chaya.ganesh@gmail.com. Work done in part while visiting Microsoft Research, India.
†Microsoft Research, India, vipul@microsoft.com.
‡Microsoft Research, India, satya@microsoft.com.

0

1 Introduction
Secure multi-party computation allows a set of n parties to compute a joint function of their inputs while keeping
their inputs private. The first general solutions for the problem of secure computation were presented by Yao
[Yao86] for the two-party case (with security against semi-honest adversaries) and Goldreich, Micali and Wigderson
[GMW87] for the multi-party case (with security against malicious adversaries). These (and subsequent) protocols
for secure computation were designed under the assumption that the local computations done by each of the parties
on their private data are opaque.

In recent years, a vibrant area of research dealing with “leakage on the local computations” has emerged. This
is a well motivated direction since sometimes, the local computations are not fully opaque and real world adver-
saries can exploit leakage from side channel attacks. There has been rapid progress on developing cryptographic
primitives resilient against leakage of internal state in various models. There have been proposals of leakage re-
silient pseudorandom generators, public key encryption scheme, signature scheme, identity based encryption, etc
(see [DP08, FKPR10, NS09] and the references therein). While significant progress has been made on designing
cryptographic primitives secure in the presence of leakage, to our knowledge, there has not been any work on de-
signing cryptographic protocols which tries to relax the assumption that the honest party machines are black-boxes
with all internal computation hidden from the adversary.1 In particular, while the protocol is running, what if the
adversary manages to obtain a side channel allowing it to peek inside the honest party machines (in addition to
completely corrupting some of the parties)? Can one still design secure computation protocols in this setting?

Our Results. We study the question of designing leakage-resilient secure computation protocols in this work. Our
model is that of only computation leaks information with a leak-free input encoding phase. In more detail, our model
has the following two phases.

We first assume an offline phase called the input encoding phase. This phase can be run in isolation and the
parties need not be connected to the network. Hence, this phase is assumed to be free of any leakage. In this phase,
each party encodes its input in a specified format. The encoding may or may not depend upon the function that
needs to be jointly computed by the parties later on.

Then finally, we have a secure computation phase in which the parties exchange messages with each other. In
this phase, the adversary gets access to a leakage oracle which allows it to download a function of the computation
transcript produced by an honest party to compute the next outgoing message (this is, of course in addition to be
able to completely corrupt a subset of the parties). If in any given round, the computation transcript “touches” only
a subset of the bits of the encoded input (stored as a result of the input encoding phase), the leakage can depend only
on that subset of the bits (i.e., only computation leaks information [MR04]).

Note that to hope to be able to have secure computation protocols, an input encoding phase is indeed necessary.
This is because the security is violated even if a single bit of the initial input of an honest party is leaked to the
adversary. Furthermore, if the adversary can later download a function of the entire encoded input, it can at least
download a single bit of the initial input. Hence the assumption “only computation leaks information” also appears
to be necessary. We emphasize that the security guarantees our protocols should satisfy correspond the standard
ideal world (with no leakage allowed in the ideal world).

We present two main constructions of secure computation protocols in the above model. Our first construction
is based only on the existence of (semi-honest) oblivious transfer. This construction employs an encoding phase
which is dependent of the function to be computed (and the size of the encoded input is dependent on the size of the
circuit of the function to be computed). Our second construction has an input encoding phase independent of the
function to be computed. Hence in this construction, the parties can simple encode their input and store it as soon
as it is received and then later on run secure computation for any function of their choice.

Both of the above constructions, somewhat surprisingly, tolerate complete leakage in the secure computation
phase. That is, the adversary can fully observe the entire computation transcripts of the honest parties in the secure
computation phase (including the bits of the encoded input that were used in running the protocol).

Our second construction (with function independent input encoding) makes use of a fully homomorphic encryp-
tion (FHE) scheme [Gen09] (see also [vDGHV10, Gen10]). A natural question that arises is “can a leakage-resilient

1Please see the end of this section for a discussion of the concurrent independent work.

1

secure computation protocol with function independent input encoding phase be based on simpler and weaker prim-
itives?”. In fact, can we even have a leakage-resilient secure computation protocol (based on weaker primitives)
where the size of the encoded input is independent of the size of the circuit of the function to be computed? Towards
that end, we show that any such construction would imply a secure two-party computation protocol with sub-linear
communication complexity (in fact, communication complexity independent of the size of the function being com-
puted). Note that constructing such a protocol was a central open problem in the field of secure computation (until
a construction for FHE was proposed by Gentry [Gen09]). Currently, the only known way to construct a sub-linear
communication complexity secure computation protocol is to rely on a FHE scheme.

Finally, we also show how to extend our constructions for the continual leakage case where there is: a one time
leak-free input encoding phase, a leaky secure computation phase which could be run multiple times for different
functionalities (but the same input vector), and, a leaky refresh phase after each secure computation phase where
the input is “re-encoded”. As before, the secure computation phase can tolerate complete leakage. However in the
refresh phase, the leakage is bounded by a parameter t (which can be any apriori chosen polynomial in the security
parameter).

Our Techniques. Our primary tool is to construct and store a number of garbled circuits in the input encoding
phase and use them later on in the secure computation phase. For simplicity, we focus on the two-party case; similar
ideas are applicable to the multi-party setting as well. The idea of our first construction is as follows. We compile
any given (semi-honest) secure computation protocol Π into a leakage-resilient one as follows. In the input encoding
phase, every party creates and stores a number of garbled circuits corresponding to the next message function of the
underlying protocol. In the secure computation phase, the outgoing message of a party is computed as an output of
one of the these garbled circuits. To evaluate such a garbled circuit, only the appropriate wire keys are “read” from
the encoded input (one for each input wire of the garbled circuit). Now the computation transcript of the secure
computation phase consists primarily of the transcript of evaluation of such garbled circuits (one for each round).
However such evaluation transcripts can be simulated and hence the only valuable information that is revealed from
leakage is the output of such a garbled circuit, which is just the next output message in the underlying protocol Π
(there are caveats like a party needs to keep secret state between the rounds which can be dealt with using standard
ideas). This idea is similar in spirit to the ones used to construct one-time programs [?]. In one-time programs, the
security is based on the fact that only the appropriate wire keys are read from the given hardware tokens. Hence,
one-time programs enable secure evaluation computation of a (non-interactive) function in the only-computation
leaks information model.

The above idea “almost works” except for the following (rather subtle) problem. The real adversaryA (given to
us) expects to see the leakage along with every message it receives and then may adaptively decide the next outgoing
message.

• To use the simulator SΠ, we need to construct an adversary A′ for the protocol Π on which SΠ can be run.

• One natural high level idea is to construct another adversaryA′ for Π using the real adversaryA. To useA, the
new adversary A′ will produce all the leakage to be given to A internally by constructing a simulated garbled
circuit for each round. Hence now it seems SΠ can be simply run on A′ (which is now a new adversary for
the same protocol Π).

• The simulator SΠ of the underlying protocol Π may work by rewinding A′. However once A′ is rewound
by SΠ in any given round, for that round, A′ ends up giving to A multiple evaluation transcripts of the same
simulated garbled circuit (on different inputs). However since we know how to prove the indistinguishability
of a simulated garbled circuit from a real one only if the garbled circuit is evaluated once, our hybrid arguments
completely break down. In more detail, once our simulator starts rewinding in the hybrid experiments, we can
no longer rely on the indistinguishability of the real garbled circuit execution from a simulated one.2

2The problem of additional leakage while a simulator rewinds the adversary has also been observed in the context of leakage-resilient
zero-knowledge [GS11]. In [GS11], such leakage in fact translated to additional leakage in the ideal world. For a comparison of our work to
[GS11], please see the end of this Section.

2

• An initial idea to solve this problem is to have A′ generate the simulated garbled circuit from scratch (to be
given to A) every time the protocol in rewound in a given round. However now since the machine A′ needs
to be aware of when it is being rewound and be allowed to change its random tape every time it is rewound,
the success of the simulator SΠ is no longer guaranteed.

Our final idea to solve this problem continues to be to generate the simulated garbled circuit from scratch every
time the protocol in rewound in a given round. However, this does not allow us to have a direct reduction to the
security of the protocol Π (and might not work with a general rewinding strategy that SΠ may employ). Instead,
we add a preamble to the protocol Π and push all the rewinding to performed to that preamble while the remaining
simulation will be done in an straight-line manner.

For our second construction, we first use FHE for the evaluation of the next message function and hence end
up with the next message to be sent in an encrypted form. We then use a garbled circuit (constructed in the input
encoding phase) to get this next message decrypted. This is as opposed to directly using a garbled circuit to perform
the entire computation. Hence the garbled circuit generated in the input encoding phase need only be able to decrypt
ciphertexts of size dependent only the size of the messages in the protocol Π (and independent of the complexity
of the next message function in particular). Finally, our underlying protocol Π has communication complexity (i.e.,
message sizes) independent of circuit size of the function to be computed (and dependent only the security parameter
and the size of the input). Such a construction for Π can be obtained again by using FHE and Kilian’s efficient PCP
based zero-knowledge arguments [Kil95]. This construction also suffers from similar caveats relating to adversary
choosing the next outgoing message adaptively on the leakage (and the solutions to these problems make use of the
same ideas as in the previous construction).

Finally, we prove that any leakage-resilient secure computation protocol CΠ with function independent input
encoding implies a secure two-party computation protocol Σ with computation complexity independent of the size
of the circuit being computed. The main idea we use to construct such a low communication complexity protocol
is for the protocol participant of Σ to internally emulate the parties of CΠ but partition the load of emulating such
parties in a highly “unbalanced” way. In more detail, the second party in Σ does much of the work of emulating
both parties of the protocol CΠ. This leads to the second party knowing about the internal state of both parties in the
protocol CΠ; however here we can rely on the leakage-resilience of CΠ to argue security. The only communication
is when the second party needs to read some bits of the encoded input of the first party in CΠ.

Concurrent Independent Work. Independent of our work, leakage resilient secure computation protocols have
been proposed in the “plain” model where there is no leakage-free offline phase and the adversary may ask for
leakage on the entire memory [GS11, DHP11, BCH11].3 These works necessarily relax the security definition by
allowing leakage on the input in the ideal world and hence are incomparable to ours.

2 Preliminaries and Model
2.1 Definition - Leakage Resilient Secure Computation
We model the leakage during the computation, by giving the adversary access to a leakage oracle.

Definition 1. Leakage Oracle: Given a computation s (we assume s is given by a Boolean circuit) and λ, 0 ≤ λ ≤ 1,
a leakage oracle Oλs is defined as follows. For an input w, oracle Oλs (w) evaluates the queried PPT function on
the transcript of the computation of s on w. Specifically, let τ(s, w) denote the transcript of computation of s on w,
i.e., it consists of the input, output, and all the intermediate values in the circuit during the computation. Let h be
any PPT leakage function whose output length is at most a λ-fraction of its input length. Now, on query h, Oλs (w)
responds with h(τ(s, w)). We call Oλs = {Oλs (w)}w the λ-bounded leakage oracle for s, where w ranges over all
possible inputs to circuit s.

When λ = 1, we call this the complete leakage oracle for s and omit the superscript.

We now give a formal definition of security against malicious adversaries in the presence of leakage in the
ideal/real simulation paradigm. The execution in the ideal and real world are as follows:

3The paper [GS11] as well as an earlier draft of our work were both submitted to Crypto 2011 where [GS11] was accepted while our
work was rejected.

3

Execution in the Ideal Model
Inputs: Each party obtains an input; the ith party’s input is denoted by xi; we assume that the inputs are of the same
length n. The adversary A receives an auxiliary-input z.
Send inputs to trusted party: The honest party Pj sends its received input xj to the trusted party. A malicious
party may depending on its input (as well as on its coin tosses and the auxiliary input) either abort or send some
other input of the same length to the trusted party.
Trusted party answers the first party: In case the trusted party received the input pair, (u1, u2), the trusted party
first replies to the first party with f(u1, u2).
Trusted party answers the second party: In case the first party is malicious, it may depending on its input and
the trusted party’s answer, decide to abort the trusted party. In this case, the trusted party sends abort to the second
party. Otherwise, the trusted party sends f(u1, u2) to the second party.
Outputs: An honest party always outputs the message it obtained from the trusted party. A malicious party may out-
put any arbitrary (probabilistic polynomial-time computable) function of the initial input and the message obtained
from the trusted party.

Definition 2. The output of honest party and the adversary in an execution of the above model is denoted by
IDEALf,A(z)(x1, x2).

Execution in the Real Model
Let P1 and P2 be two parties trying to securely compute functionality f : ({0, 1}∗)2 → ({0, 1}∗)2. W.l.o.g., let

P1 be the corrupt party (P2 is honest). We want to model leakage from the honest party P2. Note that we only need
to consider leakage from honest parties. LetA be a PPT adversary controlling malicious party P1. The adversaryA
can deviate from the protocol in an arbitrary way. In particular, A can access leakage from P2 via its leakage oracle
throughout the execution of the protocol. In addition, A’s behavior may depend on some auxiliary input z. More
details follow.

Our real world execution proceeds in two phases: a leakage-free Encoding phase and a Secure Computation
Phase in which leakage may occur. In the Encoding phase, each party Pi, locally computes an encoding of its input
and any other auxiliary information. The adversary has no access to the leakage oracle during the encoding phase.
In the Secure Computation phase, the parties begin to interact, and the adversary gets access to the leakage from the
local computation of P2. Specifically, let s2 be a circuit describing the internal computation of P2. The circuit s2

takes as input the history of protocol execution of the secure computation phase so far, and some specified bits of
the encoded input, and outputs the next message from P2 and the new internal state of P2. Thus, by Definition 1,
the leakage is accessible to the adversary via the oracle Os2 , which we abbreviate by O2. Thus, at the end of round
j of the protocol, A can queryO2 for any PPT function hj applied on the transcript of the jth round computation of
the honest party P2. We denote this leakage information by lj2.

We consider two variants of the above model: one in which the Encoding phase can depend on the function to
be computed, and another stronger model in which the leakage-free Encoding phase is independent of the function.

Definition 3. We define REALO
λ

π,A(z)(x1, x2, κ) to be the output pair of the honest party and the adversary A from
the real execution of π as defined above on inputs (x1, x2), auxiliary input z to A, with oracle access to Oλ2 , and
security parameter κ.

Definition of Security
Definition 4. Let f, π, be as described above. Protocol π is said to securely compute f in the presence of λ−
leakage if for every non-uniform probabilistic polynomial-time pair of algorithms A = (A1, A2) for the real model,
there exists a non-uniform probabilistic polynomial-time pair S = (S1, S2) for the ideal model such that

IDEALf,S(z)(x1, x2)
c≡ REALOλπ,A(z)(x1, x2, κ)

where x1, x2, z ∈ {0, 1}∗, such that |x1| = |x2| and |z| = poly(|x1|). When λ = 1, protocol π is said to securely
compute f in the presence of complete leakage.

The model for the multi-party setting is analogous to one given above for the two-party case. For lack of space,
the details are provided in the Appendix A.

4

3 The Basic Construction
We give a compiler that transforms any semi-honest secure multiparty protocol into a leakage resilient multiparty
protocol secure against malicious parties and resilient against complete leakage (λ = 1) from honest parties. For
simplicity, we describe our results for the two party case. They can be naturally extended to the multiparty case
using known techniques. We sketch such an extension in Section C.2.

The high level idea of the compiler is to garble the “Next Message” functions of a semi-honest two party
computation protocol in a leakage-free preprocessing phase. The internal states of the parties are maintained in
an encrypted form using a semantically secure public key encryption scheme. The private input of each party is
included as part of that party’s initial (encrypted) state. All updates to the internal states are also performed on the
corresponding ciphertexts. The garbled circuit of the Next Message function of a party acts on its encrypted internal
state and the message from the other party to produce its new (encrypted) state and the message to be sent to the
other party.

We start with any protocol Π secure against semi-honest adversaries, which is converted into an intermediate
protocol ΠINT, and then compiled by the compiler C. The compiled protocol CΠ is secure against malicious
adversaries in the presence of complete leakage.

3.1 Protocol ΠINT

Let P1 and P2 be two parties with private inputs x1 and x2, respectively, where xi ∈ {0, 1}n. κ is the security
parameter. Let Π be a given semi-honest secure protocol. The protocol ΠINT proceeds in two phases:

Phase I. In this phase, each party Pi commits to its input and randomness. Each party also engages in a
challenge-response step with the other party.
• P1 does the the following:

1. Let X1 = (x1, r1), where r1 is P1’s randomness to be used for executing the underlying protocol Π.
P1 breaks the string X1 into k pairs of 2-out-of-2 secret shares (v0

1, v
1
1), . . . , (v0

k, v
1
k), where v0

i ⊕ v1
i = X1,

and k is poly(κ).
P1 creates commitments to all k pairs of strings using a (non-interactive)4 statistically binding commitment
scheme COM and sends them to P2.

2. P1 and P2 now engage in a challenge-response interaction in which P1 opens one commitment in each pair as
per the challenge string:
P2 sends a random k bit challenge e = (e1, . . . , ek).
P1 opens the commitments to ve11 . . . vekk .

3. P2 checks if the openings are valid. If cheating is detected, P2 aborts.

4. P2 acts symmetrically. That is, it commits to, and engages in a challenge-response interaction with P1 for its
input and randomness X2 = (x2, r2);

5. P1 picks a random string R1, where |R1| = |X2|. P1 now also commits to R1 in an extractable manner as
above. That is, by breaking R1 into k pairs of secret shares, receiving a challenge string from P2 and opening
the commitments for the shares demanded by the challenge string. P2 acts symmetrically by committing to a
random string R2 in an extractable manner.

At the end of this phase, party Pi is committed to its input and randomness Xi, and the random string Ri.

Phase II. In this phase an execution of the semi-honest protocol Π is run. First, a coin flipping protocol is run
to force the randomness to be unbiased, and then Π is compiled using witness indistinguishable arguments (WI) to
enforce honest behaviour on the parties.

4We use a non-interactive commitment scheme only for simplicity of presentation, our construction can also be instantiated with an
interactive statistically binding commitment scheme.

5

1. Coin tossing: P1 and P2 execute a coin flipping protocol.

(a) P1 chooses a uniformly random string ρ2, and sends it to P2.

(b) P2 chooses a uniformly random string ρ1, and sends it to P1.

(c) P1 defines r′′1 = r1 ⊕ ρ1, and P2 defines r′′2 = r2 ⊕ ρ2. r′′1 and r′′2 are the random coins that P1 and P2

will use in the execution of protocol Π.

2. Run Protocol Π: Let T ji denote the transcript (history of communication and internal computation) of mes-
sages of protocol Π before Pi is supposed to send its message M j

i in round j. Each message sent by Party Pi
in Π is compiled into a message block in ΠINT.

• P1 sends the next message M j
1 as per protocol Π. Now, P1 and P2 engage in the execution of a WI-

argument, where P1 proves the following statement:

EITHER (a) (i) there exists X1 = (x1, r1), such that the shares committed to in phase 1 can be decommitted
to shares of X1, and (ii) the sent message M j

1 is consistent with input x1 and randomness r′′1 , that
is, M j

1 = Π(T j1 , x1, r
′′
1),

OR (b) the shares of the random string R1 committed to in step (4) of phase 1, are shares of X2.

P1 uses the witness corresponding to the part (a) of the statement above.

• P2 acts symmetrically.

The protocol ΠINT contains several instances of WI-arguments. The proof statement for each WI instance
consists of two parts. In an actual execution of the protocol, the parties use the witness to the first part of the proof
statement.

3.2 The Compiler
• Input: P1 has input x1 ∈ {0, 1}n and P2 has input x2 ∈ {0, 1}n.

• Encoding phase: This is done in a leakage-free setting. For concreteness, we assume that in the original
protocol Π, P1 sends the first message. We use the notation mj

i to denote the jth message sent by party i.
Thus jth message from party P1 followed by jth message from party P2 constitutes the jth round.

Party P1 does the following:

1. Initialize the secret state st01 with the private input x1 and private random tape for the protocol ΠINT.

2. Choose a public key and secret key pair (pk1, sk1) of an Encryption scheme E.
(pk1, sk1)← KeyGen(1κ)

3. Encrypt the initial secret state st01 under pk1.
E[st01]← Encrypt(pk1, st

0
1)

4. Let mj
1 ← NextMsgj1(mj−1

2 , stj−1
1) be the Next Message function of ΠINT to compute the jth mes-

sage mj
1 that is to be sent to P2. Let NextMsgCj1 be the circuit with the following functionality. It

has the keys pk1 and sk1 hardcoded and takes as input mj−1
2 , E[stj−1

1]. It decrypts E[stj−1
1], executes

NextMsgj1(mj−1
2 , stj−1

1), and hence computes the next message of P1 as mj
1. It outputs this next mes-

sage and the new encrypted state (E[stj1],mj
1) and halts.

E[stj1],mj
1 ← NextMsgCj1(mj−1

2 , E[stj−1
1]).

5. For every round j, using the garbled circuit construction of Yao, garble the circuitNextMsgCj1(mj−1
2 , E[stj−1

1])

to get the garbled circuit NextMsgGCj
1.

P2 acts symmetrically.

6

• Secure Computation phase: This runs the leakage resilient protocol CΠ(x1, x2) defined below.

The parties emulate the underlying protocol ΠINT, by replacing every call to the Next Message function by
an invocation of the corresponding garbled circuit computed during the preprocessing phase.

Party P1 does the following:

1. In round j, evaluate the garbled circuit NextMsgGCj
1 under the wire keys corresponding to the in-

put mj−1
2 , E[stj−1

1]. That is, from the encoded input, only the wire keys corresponding to the input
mj−1

2 , E[stj−1
1] are “touched”.

E[stj1],mj
1 ← NextMsgGCj

1(mj−1
2 , E[stj−1

1])

2. Send mj
1 to the other party.

3. Update the secret state with E[stj1] and wait for the next message from P2 if it exists; otherwise halt.

P2 acts symmetrically.

4 Proof of Security
Theorem 1. Assuming Π securely computes f in the semi-honest model, the protocol CΠ securely computes f as in
Definition 4 for λ = 1.

The proof constructs a simulator (ideal world adversary) whose output is computationally indistinguishable
from the view of the real world adversary in an actual run of the protocol. The simulator will access the real world
adversary and a trusted party.

4.1 Description of the Simulator
W.l.o.g., we assume P1 is corrupt. Let A be the adversary controlling the corrupt party. We describe the simulator
S.

Phase I.

• In this phase, the simulator S plays honest receiver, and obtains fromA a transcript τ of the commit-challenge-
response phase for the adversary’s input and randomness.

• If τ is not an accepting transcript, then S outputs ⊥, and aborts. If the transcript is accepting with challenge
string e, then S rewinds A to the point where A expects a challenge string, i.e., step (2) of Phase I. It keeps
rewinding until another accepting transcript is received, with another challenge e′. If e = e′, S outputs ⊥,
and aborts. Otherwise, from the responses of A to two distinct challenges e, e′, the appropriate shares are
combined and the adversary’s input and randomness X ′1 is recovered.

• S now plays honest committer and commits to a random string X ′2 and responds to the challenge honestly.

• S receives commitments to a random string R′1. S now sends commitments to random shares of the extracted
X ′1 to A (instead of random string R′2 of the honest party), and honestly responds to the challenge.

Phase II.

• Let SΠ be the simulator for the semi-honest protocol Π. S runs the simulator SΠ on the adversary’s input X ′1
that S extracted in phase I. SΠ outputs a transcript T = (M1

1 ,M
1
2 , . . . ,M

r
1 ,M

r
2) of the execution of Π, and

an associated random string rA.

• Now, S computes a random string, r = rA ⊕ r′1. where r′1 is the randomness S extracted from A in phase I
(as part of X ′1). S now forces A to use the randomness rA in the execution of Π. To do this, during the coin
flipping phase, S sends r to A.

7

• Now, simulator S forces the transcript T on A during the execution of Π. In round j, S sends the message
M j

2 to A, instead of a message according to the input and randomness it committed to in phase I. In the
associated WI, S uses the witness corresponding to the second part of the statement, that is the shares of the
random string it committed to in phase 1, are shares of X ′1. The reply of A must be M j+1

1 , that is it must be
according to the transcript T , except with negligible probability. If the reply of A is not according to T and
yet A succeeds in the associated WI, then S outputs ⊥ and aborts.

• The simulator now picks a key pair (pk1, sk1) of the Encryption scheme E. Let E[M] denote the encryption
of a message M under pk1.

• Throughout, with every message M j
2 that S sends to the adversary, it also sends the associated leakage lj2

which S computes in the following way: In round j, S picks a random string randj . It then constructs a fake
garbled circuit of the Next Message function of ΠINT that always outputs M j

2 and E[randj]. S evaluates
this fake garbled circuit under the wire keys corresponding to inputs M j−1

1 and E[randj−1], and sets lj2 to
the transcript of this evaluation. The evaluation transcript consists of garbled gate tables of every gate in the
circuit, output decryption table, and a single garbled value for every wire in the circuit. Whenever S rewinds
A (S rewindsA only in phase I) and is required to give leakage for the same round again, it constructs a
fresh fake garbled circuit as opposed to giving the evaluation transcript of the same one on a different input.

Running time of S: It is easy to see that S either aborts (with negligible probability) or rewinds an expected
constant number of times. It follows that S runs in expected polynomial time.

We prove the indistinguishability of the views going from the real protocol to the simulated one through a series
of hybrids. We prove that the real protocol view is indistinguishable from that in the simulated execution by proving
indistinguishability between every pair of successive hybrids. The detailed proof appears in Appendix C.1.

An extension to the multi-party case can be found in Appendix C.2.

5 Construction with Function Independent Encoding
We now give a construction of another compiler such that the input encoding phase is independent of the function f
to be computed. To do this, we start with a generic protocol Π with round complexity and communication complexity
independent of the function to be computed. We then use a compiler C in a similar way as before to transform Π
into a protocol CΠ that is secure against a malicious adversary in the presence of complete leakage. Recall that the
secure computation phase is subject to complete leakage, i.e., all the data and internal states of local computations
in the online phase are completely visible to the adversary, whereas the input encoding phase is leakage-free.

5.1 The Generic Protocol Π
Our generic two party computation protocol Π, which is secure against semi-honest adversaries, is constructed based
on a Fully Homomorphic Encryption (FHE) scheme E.

1. Input: P1 has input x1 ∈ {0, 1}n and P2 has input x2 ∈ {0, 1}n

2. P1 generates a key pair for FHE scheme E and sends the public key to P2.
(pk, sk)← KeyGen(1κ)

3. P1 encrypts her input and sends the ciphertext to P2.
E[x1]← Encrypt(x1, pk)

4. P2 encrypts his input and evaluates the circuit C homomorphically.
E[f(x1, x2)]← Eval(C, E[x1], E[x2], pk)
P2 sends E[f(x1, x2)] to P1.

5. P1 decrypts to obtain f(x1, x2). She sends f(x1, x2) to P2.

It is clear that the communication complexity of the above protocol Π depends only on the size of the input n
and the security parameter κ and is independent of the function f (in particular, independent of the size of the circuit
C).

8

5.2 The Intermediate Protocol ΠINT

The protocol Π above is converted into an intermediate protocol ΠINT, along similar lines as described in Sec-
tion 3.1, except that we use efficient WI arguments based on PCP in step (2) of Phase II. The communication
complexity of PCP based WI-arguments is a polynomial only in the security parameter [Kil95]. Therefore the com-
munication complexity of ΠINT is also independent of f and the round complexity is a constant. Note, however,
that the Next Message function of ΠINT depends on the circuit C computing f .

5.3 Compiler C

Our compiler starts with the protocol ΠINT described above and produces the compiled protocol CΠ.

• Input Encoding phase: This phase is independent of the function to be computed.

1. Party i chooses a key pair (pki, ski) of an FHE E = (KeyGen,Encrypt,Decrypt, Eval).

(pki, ski)← KeyGen(1κ)

2. The initial internal state st0i of Party i is initialized with the private input and randomness of Pi for the
execution of ΠINT. It is then encrypted under the chosen key pki.

E[st0i]← Encrypt(pki, st
0
i)

3. Let Decrypt(ski, c) be the decryption circuit of the FHE scheme for Party i. Using the Garbled circuit
construction of Yao, garble the decryption circuit to get DecGCi. Let t be the number of rounds in the
protocol ΠINT. Construct t independent garbled circuits of Decrypt(ski, c). Let DecGCji denote the
garbled decryption circuit of Party i to be used in round j. The length of the ciphertext that the garbled
circuit should handle as the input is the length of the messages in ΠINT. Thus it is polynomial in the
security parameter and the input size and independent of f .

• Secure Computation phase:
P1 does the following:

1. Encryption: Let mj−1
2 be the message received. Party P1 encrypts the received message under its own

public key.
E[mj−1

2]← Encrypt(pk1,m
j−1
2)

2. Homomorphic evaluation: Let NextMsgj1 be the circuit description of the next message function used
by Party P1 in round j in protocol ΠINT. This circuit is evaluated homomorphically to get an encryption
of mj

1 in round j.

(E[mj
1], E[stj1])← Eval(E[stj−1

1], E[mj−1
2], NextMsgj1)

3. Garbled circuit evaluation: Party 1 decrypts E[mj
1] by evaluating the Garbled circuit DecGCj1 under

the wire keys corresponding to input E[mj
1].

mj
1 ← DecGCj1(sk1, E[mj

1])

4. Party P1 sends mj
1 to P2.

5. Party P1 updates the secret state to E[stj1].

Party P2 acts symmetrically.

The security guarantees of the protocol CΠ are stated in the following theorem.

Theorem 2. The protocol CΠ is secure against complete leakage, as in Definition 4, with an encoding phase
independent of the function to be computed.

The proof of this theorem follows from ideas similar to that in theorem 1 and can be found in appendix 2.

9

5.4 Extension to Multiparty case
We now sketch an extension of CΠ to the multi-party case. The underlying semi-honest secure protocol Π which
we compile is as follows.

• The parties run a multi-party protocol for the following functionality: The functionality takes as input, the
vector of inputs of all the parties. It generates the key pair for a fully homomorphic encryption scheme E.
The functionality encrypts the input of each party and generates n-out-of-n secret shares of the decryption
key. Each party gets as output, encryption of the inputs of all parties, the public key, and a share each of the
secret key.

• The first party now evaluates the circuit homomorphically to get the encrypted output.

E[C(x1, . . . , xn)]← Eval(E[x1], . . . , E[xn], C)

• The parties now run a multi-party protocol for the following functionality. The functionality takes as input the
secret shares of the decryption key of each party, and outputs the decrypted output.

The above protocol is compiled as in Section 3.1 to get a two phase protocol ΠINT with WI arguments to enforce
honest behavior. Protocol ΠINT is compiled with compilerC as discussed in 5.3 to get a leakage resilient multi-party
protocol CΠ.

6 Is FHE Necessary for a Construction with Function Independent Encoding?
Our protocol CΠ in the previous section uses Fully Homomorphic Encryption as a component to realize function-
independent encoding. In this section, we address the question if this is necessary. We show that leakage resilience
with function independent encoding implies two-party secure computation with a communication complexity that
is independent of the function to be computed. In particular, given a leakage resilient protocol CΠ that securely
computes f in the presence of complete leakage and uses a function-independent encoding, we construct a secure
two party computation protocol Σ whose communication complexity is independent of f . Realizing the latter task
was a major open question and is currently known to be possible only if one uses FHE. Thus, being able to avoid
FHE in building a leakage resilient protocol with function-independent encoding would have an alternative solution
to this open question that does not rely on FHE.

In what follows, we denote by P1 and P2 the players in the leakage resilient protocol CΠ and by p1 and p2

the players in the communication-efficient protocol Σ. Given CΠ we show how to build Σ. The protocol Σ is
secure against semi-honest adversaries which do not deviate from the protocol, but they may only try to get more
information than they are authorized to. This can be extended to the malicious case by compiling Σ using PCP-based
efficient zero knowledge arguments to prove honest behavior ([GMW87], [Kil95]). (The communication complexity
of Kilian’s argument system is independent of the complexity of verifying the statement in question.)

Protocol Σ: Parties p1 and p2 with respective inputs x1 and x2 wish to jointly compute f(x1, x2).

• Input Encoding phase: The parties encode their input (and random tape) locally exactly as per the instructions
of the protocol CΠ (see encoding phase of section 5.3). Let m be the size of the encoded input.

• Secure Computation Phase: Party p2 runs the programs of both parties P1 and P2 in protocol CΠ. That is, p2

internally runs the parties P1 and P2 of CΠ. Whenever party p2 needs to read a bit of the encoded input of
Party 1, it queries p1 with the index, and gets the encoded input bit. Party p2 computes the output f(x1, x2),
and sends the output to party p1.

Security of Σ: Here we only provide a proof sketch of the security of the protocol Σ. The details are straightfor-
ward.

Party p1 is corrupt: We first consider the case when p1 is corrupt. All p1 learns in the execution of Σ is the
indices queried by p2. We observe that a dishonest P1 learns this and the leakage in the protocol CΠ. Thus, the view
of dishonest p1 in Σ is a strict subset of the view of dishonest P1 in CΠ. By the security of CΠ, protocol Σ is secure.

10

Party p2 is corrupt: In the case when p2 is dishonest, the view of p2 consists of the entire view of P2 in CΠ

and the view of P1 in CΠ in the secure computation phase. This is exactly the same as the view of a dishonest P2 in
the presence of the leakage oracle. By the leakage resilience of CΠ, protocol Σ is secure when p2 is dishonest.

Thus, we conclude that Σ is secure two-party computation protocol.

Communication complexity of Σ: The communication complexity is the maximum number of queries from p2

to p1. If the size of the encoded input ism, then the communication complexity of the protocol Σ isO(m logm), in-
dependent of the size of the circuit being evaluated for f . Even the protocol secure against malicious adversaries has
communication complexity independent of f , due to Kilian’s PCP based construction of zero knowledge argument.
Thus, we have

Theorem 3. For two party computation, if there exists a leakage-resilient secure protocol with function-independent
encoding, then there exists a secure protocol (against malicious adversaries) with communication complexity inde-
pendent of the function being computed.

7 Continual Leakage Resilient Protocol
We now construct a protocol which runs the input encoding phase just once, and runs the computation phase of the
protocol more than once without having to run the leak-free phase again.

The Model. The ideal and the real model remain similar to the one time computation case (see Section 2). The
main difference in the ideal world is that now there are k interactions: the parties interact k times, and compute a
different functionality of the same inputs xi. That is fj(x1, x2) is the functionality computed in the jth interaction
with the trusted party. In the real model, apart from the leakage-free encoding phase and a leaky secure computation
phase, there is a refresh phase as well. The adversary is allowed bounded leakage (of up to t bits) in each refresh
phase. Between every secure computation phase, there is a refresh phase. However the leakage free encoding phase
is only one time. More details are provided in the appendix E.

Our compiler starts with the protocol ΠINT as described in section 3.1 and produces the compiled protocol CΠ.

• Input Encoding phase: This phase is independent of the function to be computed. The first three steps of
this phase remain the same as before.

1. Party i chooses a key pair (pki, ski) of an FHE E = (KeyGen,Encrypt,Decrypt, Eval).

(pki, ski)← KeyGen(1κ)

2. The initial internal state st0i of Party i is initialized with the private input and randomness of Pi for the
execution of ΠINT. It is then encrypted under the chosen key pki.

E[st0i]← Encrypt(pki, st
0
i)

3. Let Decrypt(ski, c) be the decryption circuit of the FHE scheme for Party i. Using the Garbled circuit
construction of Yao, garble the decryption circuit to get DecGCi. Let r be the number of rounds in the
protocol ΠINT. Construct r independent garbled circuits of Decrypt(ski, c). Let DecGCji denote the
garbled decryption circuit of Party i to be used in round j. The length of the ciphertext that the garbled
circuit should handle as the input is the length of the messages in ΠINT. Thus it is polynomial in the
security parameter and the input size and independent of f .

4. Virtual Player Initialization. Each party i initializes 3t+1 virtual players (where t is the leakage bound
of the refresh step). The virtual player j holds a share ski[j] of the secret key ski as input. In other words,
at this stage, the party simply divides the secret key ski into 3t+1 shares {ski[1], . . . , ski[3t+1]} (using
an additive secret sharing scheme) and stores these shares.

• Secure Computation phase:
This phase remains the same as before. P1 does the following:

11

1. Encryption: Let mj−1
2 be the message received. Party P1 encrypts the received message under its own

public key.
E[mj−1

2]← Encrypt(pk1,m
j−1
2)

2. Homomorphic evaluation: Let NextMsgj1 be the circuit description of the next message function used
by Party P1 in round j in protocol ΠINT. This circuit is evaluated homomorphically to get an encryption
of mj

1 in round j.

(E[mj
1], E[stj1])← Eval(E[stj−1

1], E[mj−1
2], NextMsgj1)

3. Garbled circuit evaluation: Party 1 decrypts E[mj
1] by evaluating the Garbled circuit DecGCj1 under

the wire keys corresponding to input E[mj
1].

mj
1 ← DecGCj1(sk1, E[mj

1])

4. Party P1 sends mj
1 to P2.

5. Party P1 updates the secret state to E[stj1].

Party P2 acts symmetrically.

• Refresh Phase:
Let F be the following 3t+ 1-party (randomized) functionality:

– It takes as input ski[j] from player j for j ∈ [3t+ 1]. It reconstructs the secret key ski.
– It computes 3t + 1 shares of ski using fresh randomness (using an additive secret sharing scheme as

before). Denote the j-th share by sk′i[j]. It gives sk′i[j] as output to the j-th player.
– It also computes, for every round, a garbled circuit for decryption of a ciphertext using ski (as con-

structed in the leakage-free encoding phase). More precisely, it constructs r independent garbled circuits
for Decrypt(ski, c) and outputs that to each player.

Party P1 does the following. It internally runs the BGW protocol (guaranteing security for semi-honest
players) [BOGW88] among the 3t + 1 players. The players hold inputs ski[1], . . . , ski[3t + 1] and run
the BGW protocol for the functionality F . The internal computation of each player is modeled as a separate
sub-computation. Hence, the adversary is allowed to ask for leakage individually on each of the 3t + 1
subcomputation as well as on the protocol transcript generated by the (virtual) interaction.

Note that The j virtual players started with shares ski[1], . . . , ski[3t+1] and ended with new shares sk′i[1], . . . , sk′i[3t+
1] using which the refresh phase can be run again. Furthermore, at the end of Refresh phase, P1 has r in-
dependent garbled circuits of Decrypt(ski, c) (obtained as output by each player), and hence the Secure
Computation phase can be run again.

Sketch of Proof of security The security guarantees of the protocol CΠ are stated in the following theorem:

Theorem 4. The protocolCΠ is secure against λ-continual leakage as in Definition 9 tolerating complete leakage in
the secure computation phase, and t bits of leakage in the refresh phase, where t can be any apriori fixed polynomial
in the security parameter κ.

We construct a simulator and prove that the output is computationally indistinguishable from the view of a real
world adversary in an actual run of the protocol. The simulator proceeds by simulating the Secure computation and
the Refresh phase of each execution.
Simulation in the Secure Computation phase: The description of the simulator in this phase is the same as described
in section 2.
Simulation during the Refresh phase: Since the adversary is restricted to t-bits of leakage, it can request leakage
from at most t of the 3t + 1 subcomputations. Invoke the BGW simulator to simulate the view of the adversary by
corrupting these (at most) t players and constructing their view.

The indistinguishability of the views follows from theorem 2 and the security of the BGW construction [BOGW88].

12

Acknowledgements. We wish to thank Yuval Ishai, Abhishek Jain, Amit Sahai and Daniel Wichs for useful
discussions.

References
[BCH11] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage tolerant interactive protocols. Cryptology ePrint

Archive, Report 2011/204, 2011.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC, pages 1–10. ACM,
1988.

[DHP11] Ivan Damgaard, Carmit Hazay, and Arpita Patra. Leakage resilient secure two-party computation.
Cryptology ePrint Archive, Report 2011/256, 2011.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In FOCS, pages 293–
302. IEEE Computer Society, 2008.

[FKPR10] Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and Guy N. Rothblum. Leakage-resilient signatures.
In Daniele Micciancio, editor, TCC, volume 5978 of Lecture Notes in Computer Science, pages 343–
360. Springer, 2010.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
STOC, pages 169–178. ACM, 2009.

[Gen10] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In Tal Rabin,
editor, CRYPTO, volume 6223 of Lecture Notes in Computer Science, pages 116–137. Springer, 2010.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem
for protocols with honest majority. In proceedings of 19th Annual ACM Symposium on Theory of
Computing, pages 218–229, 1987.

[Gol01] Oded Goldreich. Foundations of Cryptography, Volume I: Basic Techniques. Cambridge University
Press, 2001.

[GS11] Sanjam Garg, Abhishek Jain 0002, and Amit Sahai. Leakage-resilient zero knowledge. In Phillip
Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 297–315.
Springer, 2011.

[Kil95] Joe Kilian. Improved efficient arguments. In CRYPTO, volume 963 of LNCS, pages 311–324, 1995.

[LP04] Yehuda Lindell and Benny Pinkas. A proof of yao’s protocol for secure two-party computation. Cryp-
tology ePrint Archive, Report 2004/175, 2004.

[MR04] S. Micali and L. Reyzin. Physically observable cryptography. In TCC 2004, pages 278–296, 2004.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In Shai Halevi, editor,
CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages 18–35. Springer, 2009.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic en-
cryption over the integers. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of Lecture Notes in
Computer Science, pages 24–43. Springer, 2010.

[Yao86] A. C. Yao. How to generate and exchange secrets. In FOCS ’86: Proceedings of 27th Annual Sympo-
sium on Foundations of Computer Science, pages 162–167, 1986.

13

A Definition for the Multi-party Case
We now give a formal definition of security against malicious adversaries in the presence of leakage in the ideal/real
simulation paradigm for the multi-party case. The execution in the ideal and real world are as follows:
Execution in the Ideal Model .
Inputs: Each party obtains an input; the ith party’s input is denoted by xi; we assume that the inputs are of the same
length n. The adversary receives an auxiliary-input z.
Send inputs to trusted party: Any honest party Pj sends its received input xj to the trusted party. A malicious
party may depending on its input (as well as on its coin tosses and the auxiliary input) either abort or send some
other input of the same length to the trusted party. This decision is made by A and may depend on xi for i ∈ I and
the auxiliary input z. Denote the vector of inputs sent to the trusted party by w̄.
Trusted party answers adversary: The trusted party computes (f1(w̄), . . . , fm(w̄)) and sends fi(w̄) to A, for all
i ∈ I.
Trusted party answers honest parties: After receiving its outputs, the adversary sends either aborti for some
i ∈ I or continue to the trusted party. If the trusted party receives continue then it sends fi(w̄) to all honest parties
Pj(j /∈ I). Otherwise, if it receives aborti for some i ∈ I, it sends aborti to all honest parties.
Outputs: An honest party always outputs the messages it obtained from the trusted party. The corrupted parties
output nothing. The adversary A outputs any arbitrary (probabilistic polynomial-time computable) function of the
initial inputs {xi}i∈I and messages obtained from the trusted party.

The output of honest parties and the adversary in an execution of the above model is denoted by IDEALf,A(z),I(x̄, κ)
where κ is the security parameter.

Execution in the Real Model .
Let the set of parties be P1, . . . , Pn and let I ⊂ [n] denote the indices of corrupted parties, controlled by an

adversary A. We consider the real model in which a real n-party protocol π is executed (and there exist no trusted
third party). In this case, the adversary A sends all messages in place of corrupted parties, and may follow an
arbitrary polynomial-time strategy. The honest parties follow the instructions of π.

Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality where f = (f1, . . . , fn), and let π be an n-party
protocol for computing f . Let A be a probabilistic polynomial time machine and I ⊂ [n] denote the indices of
corrupted parties, controlled by an adversaryA. In addition,A gets access to a leakage oracle. Execution in the real
model proceeds in two phases: Input Encoding phase, and Secure Computation phase. In the Encoding phase, each
party Pi, locally computes an encoding of its input. The adversary has no access to the oracle during the encoding
phase. In the Secure Computation phase, the parties begin to interact, and the adversary gets access to the leakage
oracle. We abbreviate byOλi , the oracleOλsi , where si is the circuit for local computation of the ith party. At the end
of each round j of the protocol, the adversary can query the oracle Oλi with any function hj , for every honest party
Pi. The function hj is applied on the jth round computation transcript of the honest party Pi. At the end of round
j, the adversary gets to see the leakages lji = {hj(cji)}1≤i≤n,i/∈I , where cji denotes the transcript of computation in
round j of party Pi. The adversary can even query with different functions hj for every party Pi, and adaptively
decide the leakage functions based on already obtained leakages. Then the real execution of π on inputs x̄, auxiliary

input z to A, and given oracle access to Oλi ,(i /∈ I) and security parameter κ, denoted REALO
λ
i

π,A(z),I(x̄, κ), is
defined as the output vector of the honest parties and the adversary A from the real execution of π.

We can even think of a stronger variant of the above model in which, the leakage function could be a joint
function of the transcripts of all honest parties. When λ = 1, we call this the complete leakage oracle. We also
observe that, in the complete leakage case, the two variants: Joint leakage function and individual leakage function
models are equivalent.

B Building Blocks
We briefly define the cryptographic primitives that are used in our constructions.

Fully Homomorphic Encryption. We make use of a Fully Homomorphic Encryption scheme (FHE) in our pro-
tocol.

14

Definition 5. The scheme E = (KeyGen,Encrypt,Decrypt, Eval) is correct for a circuit C , if for any key
pair (pk, sk) output by KeyGen(κ), any plaintext bits m1, . . . ,mk and any ciphertext c = (c1, . . . , ck), where
ci ← Encrypt(mi, pk), the following holds:

Decrypt(Eval(c, C, pk), sk) = C(m1, . . . ,mk)

E is fully homomorphic if it is correct for all boolean circuits, and the ciphertext size and decryption time are
upper-bounded independently of C.

Witness Indistinguishable Arguments. An interactive proof for a language L ∈ NP is witness indistinguishable
if the verifier’s view of the interaction with the prover is computationally independent of the auxiliary input of the
prover [Gol01].

Definition 6. Let (P,V) be an interactive proof for a language L ∈ NP , and let RL be a witness relation for the
language L. We say (P,V) is witness-indistinguishable for RL, if for every probabilistic polynomial time interactive
machine V, and every two sequences W 1 = {w1

x}x∈L and W 2 = {w2
x}x∈L, such that wx1 , w

x
2 ∈ RL(x), the

ensembles resulting when the auxiliary input of P is wx1 , w
x
2 , are computationally indistinguishable. The following

conditions hold:

• Indistinguishability: For every PPT algorithm D, all x ∈ L, and all z ∈ {0, 1}∗,

|Pr[D(x, z, 〈P (w1
x), V (z)〉(x)) = 1]− Pr[D(x, z, 〈P (w2

x), V (z)〉(x)) = 1]| ≤ 1

p(|x|)

• Completeness: For every x ∈ L, there exists a string y, such that for every z Pr[〈P (y), V (z)〉(x) = 1] ≥ 2
3 .

• Soundness: For every x /∈ L, and for every y, z, the Pr[〈P (y), V (z)〉(x) = 1] ≤ 1
3 .

In our construction, we use a witness indistinguishable argument (WI) for proving membership in any NP
language with perfect completeness and negligible soundness error, δ.

Commitment scheme. A commitment scheme is an efficient two-phase protocol through which one party called
the sender, commits itself to a value such that the following requirements are satisfied.

• Hiding: At the end of the first phase, the other party, receiver does not gain any knowledge of the sender’s
value.

• Binding: Given the transcript of the interaction in the first phase, there exists at most one value that the
receiver can later accept as a legal opening of the commitment.

We use a non-interactive statistically binding commitment scheme, COM in our protocol. Such a scheme can be
constructed using one-way permutations.

Yao’s Garbled Circuit construction. Yao presented a constant round protocol for securely computing any func-
tionality in the presence of semi-honest adversaries. The basic idea behind Yao’s protocol is to provide a method for
computing a circuit so that values obtained on all wires other than circuit-output wires are never revealed.

Garbled circuit construction: For every wirew in the circuit, two keys k0
w and k1

w are chosen, where kσw represents
the bit σ. The four possible inputs to a gate k0

1 ,k1
1 ,k0

2 ,k1
2 are viewed as encryption keys. The output values k0

3 and k1
3 ,

which are also keys are encrypted under the appropriate keys from the incoming wires. A garbled circuit consists of
garbled gates along with output decryption tables. These tables map the random values on circuit-output wires back
to their corresponding real values. Given the keys associated with inputs wires, it is possible to obliviously compute
the entire circuit gate-by-gate. We make use of the garbled circuit construction, and rely on its security [LP04] in
our protocol.

15

C The Basic Construction: Missing Details
C.1 Indistinguishability Argument for Theorem 1
We prove the indistinguishability of the views going from the real protocol to the simulated one through a series of
hybrids. We prove that the real protocol view is indistinguishable from that in the simulated execution by proving
indistinguishability between every pair of successive hybrids.

• Hybrid H0: This is the output distribution of a real execution of the protocol. Clearly, H0 is identical to
REALO2

CΠ,A(z)(x̄, κ).

• HybridH1: This is identical toH0 except in the leakages. The simulator replaces the leakage in the following
way: A fake garbled circuit, ĜC of the Next message function of the honest party in protocol ΠINT is
constructed that always outputs the correct next message and the encrypted state as in the previous hybrid.
The leakage is set to the evaluation transcript of this fake circuit. The leakage in all rounds is replaced by this
simulated leakage.

In distribution H1,i, the first i leakages are evaluation of fake circuits, and the rest are real. We have the sub
hybrids H1,0, . . . ,H1,t with H1,0 = H0 and H1,t = H1.

Indistinguishability from H0, H0
c≡ H1: The two hybrids differ only in the leakage. H0 consists of the

evaluation of correct garbled circuits whereas, in H1, fake garbled circuits are evaluated. For contradiction,
assume there is a distinguisher D and a polynomial p, such that

|Pr[D(H1,0) = 1]− Pr[D(H1,t) = 1]| > 1

p(κ)

it follows that, ∃i such that,

|Pr[D(H1,i) = 1]− Pr[D(H1,i+1) = 1]| > 1

tp(κ)

Two neighbouring hybrids H1,i and H1,i+1 differ only in the i + 1st transcript. The i + 1st transcript is the
evaluation of real Garbled circuit inH1,i, whereas it is simulated inH1,i+1. A distinguisher can be constructed
that can distinguish between the distribution ensemble consisting of ĜC and a single garbled value for each
input wire, and the distribution ensemble consisting of a real garbled version of C, together with garbled
values corresponding to the real input. This contradicts the security of Yao’s garbled circuit protocol.

• Hybrid H2: This is the same as H1, except that in the leakages: the simulator changes the output of the
fake garbled circuit to the encryption of a random string instead of the correct encrypted state. S internally
maintains the correct state to honestly run Π, but only in the leakage, the fake garbled circuit outputs the
encryption of a random string. In distribution H2,i, the fake garbled circuits of the first i leakages output the
encryption of a random string, and the rest are real. H2,0 is the same as H1, and hybrid H2,t is H2.

Indistinguishability from H1, H1
c≡ H2: Assume the existence of a distinguisher D that can distinguish

between H2,0 and H2,t it follows that, ∃i such that, D that can distinguish between H2,i and H2,i+1 Two
neighbouring hybrids H2,i and H2,i+1 differ only in the i+ 1st transcript. The i+ 1st transcript is the evalua-
tion of a fake garbled circuit that outputs the correct encrypted state in H2,i and encryption of a random string
in H2,i+1. D can be used to distinguish two ciphertexts under the encryption scheme E. This contradicts the
semantic security of E.

• Hybrid H3: In this experiment, S receives the commitments from A, sends a random challenge e, and gets
the openings. If it is non accepting transcript (the openings are incorrect), S outputs⊥ and aborts. Otherwise,
S keeps rewinding A with random challenge strings, until it gets another accepting transcript with another
challenge e′. If e = e′, S outputs ⊥, and aborts. Otherwise, by the responses of A to two distinct challenges

16

e, e′, the appropriate shares are combined and the adversary’s input and randomness X ′1 is recovered. S now
plays honest committer, and commits to X ′2 and R′2 and runs rest of the protocol honestly.

Indistinguishability from H2:In experiment H3, everything is identical to H2 except that S rewinds A and
extracts the input and randomness. S aborts in H3, whenever it fails to extract X ′1. The two hybrids are
indistinguishable conditioned on the event that S does not abort in H3. S fails and aborts if the challenge
strings for the two accepting transcripts in the challenge response phase are the same, that is, Pr[S aborts] =

Pr[e = e′] =
1

2k
. Thus, S aborts in H3 with negligible probability, and therefore, H3

s≡ H2.

• Hybrid H4: In this experiment, S rewinds A, and extracts the input and randomness X ′1 in Phase I as before.
Now, S plays honest committer and commits to random shares of the honest party’s input and randomness,
X ′2. In the next step, instead of committing to shares of a random string R′2, S gives commitments to random
shares of X ′1. S now runs the rest of the protocol honestly.

Indistinguishability from H3, H3
c≡ H4: Hybrid H4 is the same as hybrid H3 except in the commitment to

random stringR′2. S gives commitments to random shares ofR′2 inH3, whereas, inH4, it commits to random
shares of the extracted input and randomness X ′1. If there exists a PPT distinguisher that can distinguish H3

and H4, then there is a distinguisher D that can distinguish between commitments to two strings α and α′

under the commitment scheme COM. This contradicts the hiding property of the scheme COM.

• Hybrid H5: In this experiment, phase I is run as in the previous hybrid. In phase II, S runs protocol Π
honestly and in all WI arguments it proves the statement:

EITHER (a) (i) there exists values X ′2 = (x′2, r
′
2), such that the shares committed to phase 1 can be decommitted

to shares of X ′2, and (ii) the sent message M j
2 is consistent with input x′2 and randomness r′′2 , that is,

M j
2 = Π(T j2 , x

′
2, r
′′
2),

OR (b) The shares of the random string R′2 it committed to in phase 1, are shares of X ′1.

In the proof, S uses the witness corresponding to the second part of the statement in all WI arguments
associated with the messages of Π. This witness is available to S as it has already rewound A in phase I, and
extracted X ′1.

In distribution H5,i, the first i WIs in the protocol, use the second part of the statement as witness, and the rest
use the witness corresponding to the first part. Hybrid H5,0 is the same as H4, and H5,t is the same as H5.

Indistinguishability from H4, H4
c≡ H5: For the sake of contradiction, assume the existence of a distinguisher

D that can distinguish between H5 and H4. This implies, ∃i, such that D can distinguish between H5,i

and H5,i+1. D can be used to distinguish between two WI arguments using two different witnesses w and
w′ with the same probability with which H5,i and H5,i+1 are distinguished. This contradicts the witness
indistinguishability property of WI arguments. Therefore, H4 and H5 are distinguished with probability
≤ r.γ, where r is the number of rounds in protocol Π, and γ is the probability that WI arguments with two
different witnesses are distinguishable, which is negligible.

• HybridH6: In this experiment, during the commit phase, S gives commitments to shares of random strings in
phase I instead of committing to shares of correct input and randomness of the honest party. Rest is identical
to the previous hybrid.

Indistinguishability from H5, H5
c≡ H6: The hybrids H6 and H5 differ only in the commitments to X ′2 in

phase I. The commitments to random strings X ′2 = (x′2, r
′
2) in H5 are changed to other random strings in H6.

These commitments are not used elsewhere in the experiment (S uses the fake witness in the WIs).

• Hybrid H7: In this experiment, S simulates the execution of Π. Let SΠ be the simulator for the semi honest
protocol Π. S runs SΠ with the extracted input instead of running the protocol Π honestly, and gets the
transcript T and an associated randomness. S now forces the transcript T and randomness on the adversary

17

as described in section 4.1. If A does not reply according to T and succeeds in the associated WI, S aborts.
The output of the fake garbled circuits in the leakage are also changed from the correct next message to the
ones output by SΠ.

Indistinguishability from H6, H6
c≡ H7: The hybrids H7 and H6 differ in phase II of the protocol. In H6, the

protocol Π is run honestly whereas in H7, the transcript output by the simulator for Π, SΠ is used. If there
is is a PPT distinguisher that can distinguish between H7 and H6, then the distinguisher D can be used to
distinguish between a real execution of protocol Π and a simulated one, which contradicts the security of Π.
Indistinguishability therefore follows from the security of Π and the negligible probability of S aborting in
experimentH7. Probability ofA sending a message, which is not according to the transcript T but succeeding
in WI is equal to the soundness error of WI which is negligible. This is because A will not have the witness
to part (b) of the proof statement. If A is able to successfully commit to the input (and randomness) of the
honest party and then succeed in the challenge response phase, it is easy to construct an extractor to extract
such input (and randomness) from A and violate the hiding property of the commitment scheme COM.

Therefore, the probability of S aborting in experiment H7 is ≤ r.δ, where r is the number of rounds in
protocol Π, and δ is the soundness error of WI argument.

Therefore H7
c≡ H0. The hybrid H7 is the same as the execution of the simulator S, and we have seen that H0 is

the real execution of CΠ. It follows that CΠ is secure as per Definition 4.

IDEALf,S(z)(x̄, κ)
c≡ REALO2

CΠ,A(z)(x̄, κ)

C.2 Extension to Multi-party case.
We now sketch the extension of protocol CΠ to the multi-party case. Let the n parties be denoted by {P1, . . . , Pn},
each party Pi holds input xi. Given a semi-honest multi-party protocol Π, it is first compiled into an intermediate
protocol ΠINT in the following way:
Phase I. For each party Pi:

• Let Xi = (xi, ri) where ri is the randomness of Pi. Party Pi breaks the string Xi into k pairs of random
shares, and gives commitments to these shares to all the other parties.

• The rest of the parties run a multi-party coin tossing protocol to jointly generate a uniformly random string
ei. Party Pi opens the commitments to one share in each pair of commitments as determined by the challenge
string.

• Party Pi picks a random string Ri, and similarly commits to secret shares of Ri, gets a challenge string
generated jointly by all parties and opens commitments corresponding to the challenge string.

Phase II. Now, each message to be sent by Pi in Π is compiled into a message block in ΠINT.

• Pi sends the next message mj
i as per protocol Π.

• Pi now engages in a WI with every other party Pj (sequentially), and proves the statement: either
(a) there exists Xi = (xi, ri) such that commitment in step (1) can be decommitted to Xi, and, the sent
message is consistent with the input and randomness, or
(b) The shares of random string Ri are the shares of Xj .

This protocol ΠINT is compiled with the compiler C to get a leakage resilient multi-party protocol CΠ. That is,
each of the parties constructs garbled circuits corresponding to the next message function of the protocol ΠINT in
the input encoding phase and uses them to compute the next message in the secure computation phase as described
before.

18

D Proof of Theorem 2
W.l.o.g., let P1 be the corrupt party in CΠ. Let A be the adversary controlling P1 in CΠ. The simulator S works in
a similar way as described in Section 4.1, except for the way leakage is simulated.

1. S chooses a key pair of the fully homomorphic encryption scheme E.
(pks, sks)← KeyGen(1κ)

2. Let mj−1
1 be the message sent by A in round j − 1. Then, S encrypts mj−1

1 , and sets le to be the transcript of
encryption.

3. Next, S picks a random string randj and computes Eval(E[randj], E[mj−1
1], NextMsgj2). It sets lh to be

the transcript of this homomorphic evaluation of NextMsgj2.

4. S also constructs a fake garbled circuit ĜC of the decryption circuit that always outputs mj
2 and sets ld to be

the transcript of evaluation of this garbled circuit. (mj
2 is the message S sends to the adversary in round j,

simulated as described in Section 4.1).

5. The leakage lj2 is set to be 〈le, lh, ld〉. This leakage lj2 is sent to A along with message mj
2.

6. Whenever S rewinds the adversary and gives leakage for round j again, S constructs the entire leakage again
from scratch using a fresh random tape (including constructing a fresh fake garbled circuit of the decryption
circuit).

We prove the indistinguishability of the views going from the real protocol to the simulated one through a
series of hybrids. We prove that the real protocol is indistinguishable from the simulated execution by proving
indistinguishability between every pair of successive hybrids.

• Hybrid H0: This hybrid corresponds to the real execution.

• Hybrid H1: This hybrid is identical to the previous hybrid except for the ld component of leakage. The
simulator constructs a fake garbled circuit of the decryption circuit, ĜC, that always outputs mj

2. It evaluates
these garbled circuits under the wire keys corresponding toE[mj

2] and sets ld of each leakage to the transcript.

Indistinguishability from H0: H0
c≡ H1

Let H1,i, 0 ≤ i ≤ t, be the distribution in which the ld components of the first i leakages are simulated, and
the rest are real. Note that H1,0 = H0 and H1,t = H1. Hence, H1,i and H1,i+1 differ only in the i + 1st
transcript. The ld component of the i+ 1st leakage is the transcript of the evaluation of a real garbled circuit
in H1,i whereas, it is a fake circuit in H1,i+1. By standard arguments (as we have seen before), a distinguisher
for H0 vs. H1 can also distinguish (with at most a factor of t loss in the distinguishing probability) between a
real garbled circuit and a fake one. This contradicts the security of the garbled circuit protocol.

• Hybrid H2: This hybrid is the same as the previous one, except for the following: The simulator picks a
random string randj , and evaluates the NextMsgj2(E[mj

1], E[randj]) function homomorphically (using the
scheme chosen by the simulator). The lh component of each leakage lj2 is replaced by the transcript of the
above evaluation by the simulator. The le component remains unchanged. The simulator maintains the correct
state internally, to run the rest of the protocol honestly.

Indistinguishability from H1: H1
c≡ H2

H2 differs from H1 only in the lh leakage components. The homomorphic evaluation of the Next Message
function is done honestly in H1, whereas in H2, this evaluation uses the encryption of a random string instead
of the correct encrypted state. The indistinguishability from H1 follows from the indistinguishability of
ciphertexts under the encryption scheme E.

• Rest of the hybrids are the same as the hybrids H3 – H7 in the previous protocol.

19

It follows that H7
c≡ H0. The hybrid H7 is the same as the execution of the simulator S. Using S as an ideal

world adversary for f and recalling that H0 corresponds to the real execution of CΠ with adversary A, we conclude
that the ideal world execution of f and the real world execution of CΠ are computationally indistinguishable. This
proves Theorem 2.

E Continual Leakage Resilient Protocol: The Model
We give a formal definition of security against malicious adversaries in the presence of continual leakage in the
ideal/real simulation paradigm. The execution in the ideal and real world are as follows:

Execution in the Ideal Model

Inputs: Each party obtains an input; the ith party’s input is denoted by xi; we assume that the inputs are of the same
length n. The adversary A receives an auxiliary-input z.
Send inputs to trusted party: The honest party Pj sends its received input xj to the trusted party. A malicious
party may depending on its input (as well as on its coin tosses and the auxiliary input) either abort or send some
other input of the same length to the trusted party.
Trusted party answers the first party: In case the trusted party received the input pair, (u1, u2), the trusted party
first replies to the first party with f(u1, u2).
Trusted party answers the second party: In case the first party is malicious, it may depending on its input and
the trusted party’s answer, decide to abort the trusted party. In this case, the trusted party sends abort to the second
party. Otherwise, the trusted party sends f(u1, u2) to the second party.
Outputs: An honest party always outputs the message it obtained from the trusted party. A malicious party may out-
put any arbitrary (probabilistic polynomial-time computable) function of the initial input and the message obtained
from the trusted party.
k interactions: The parties interact k times, and compute a different functionality of the same inputs xi. That is
fj(x1, x2) is the functionality computed in the jth interaction with the trusted party.

Definition 7. The outputs of honest party and the adversary in k executions of the above model is denoted by
IDEALk,f,A(z)(x1, x2).

Execution in the Real Model

Let P1 and P2 be two parties who wish to securely compute functionality f : ({0, 1}∗)2 → ({0, 1}∗)2. W.l.o.g.,
let P1 be the corrupt party (P2 is honest). We want to model leakage from the honest party P2. Note that we
only need to consider leakage from honest parties. Let A be a PPT adversary controlling malicious party P1. The
adversary A can deviate from the protocol in an arbitrary way. In particular, A can access leakage from P2 via its
leakage oracle throughout the execution of the protocol. In addition, A’s behavior may depend on some auxiliary
input z. More details follow.

Our real world execution proceeds in three phases: a leakage-free Encoding phase and a Secure Computation
Phase and a Refresh Phase in which leakage may occur. In the Encoding phase, each party Pi, locally computes an
encoding of its input and any other auxiliary information. The adversary has no access to the leakage oracle during
the encoding phase. In the Secure Computation phase, the parties begin to interact, and the adversary gets access to
the leakage from the local computation of P2. Specifically, let s2 be a circuit describing the internal computation of
P2. The circuit s2 takes as input the history of protocol execution of the secure computation phase so far, and some
specified bits of the encoded input, and outputs the next message from P2 and the new internal state of P2. Thus, by
Definition 1, the leakage is accessible to the adversary via the oracle Os2 , which we abbreviate by O2. Thus, at the
end of round j of the protocol, A can query O2 for any PPT function hj applied on the transcript of the jth round
computation of the honest party P2. We denote this leakage information by lj2. After each execution, the parties
run a Refresh phase. The adversary continues to have access to the leakage oracle during the Refresh phase. After
Refresh, the protocol, that is the Secure Computation phase can be run again on the same input. Specifically, the
Encoding phase is run just once in the beginning for k executions of the protocol. The Refresh phase is run after
each execution of the Secure Computation phase.

20

Definition 8. We define REALO
λ

k,π,A(z)(x1, x2, κ) to be the output pairs of the honest party and the adversary A
from k real executions of π as defined above on inputs (x1, x2), auxiliary input z to A, with oracle access to Oλ2 ,
and security parameter κ.

Definition of Security

Definition 9. Let f, π, be the executions in the ideal world and the real world as described above. Protocol π is said
to securely compute f in the presence of λ− continual leakage if for every non-uniform probabilistic polynomial-
time pair of algorithms A = (A1, A2) for the real model, there exists a non-uniform probabilistic polynomial-time
pair S = (S1, S2) for the ideal model such that

IDEALk,f,S(z)(x1, x2)
c≡ REALOλk,π,A(z)(x1, x2, κ)

for a polynomial number of executions k, where x1, x2, z ∈ {0, 1}∗, such that |x1| = |x2| and |z| = poly(|x1|).
When λ = 1 in the Secure Computation phase, protocol π is said to securely compute f in the presence of complete
leakage.

21

