
1

Storage and File Systems

Chester Rebeiro

IIT Madras

2

Hardware view

File system

Two views of a file system

Application View
Look & Feel

system calls
protection attributes

rwxrwx

3

Magnetic Disks

Chester Rebeiro

IIT Madras

4

Magnetic Disks

Structure of a magnetic disk

Tracks and Sectors in a platter

5

Disk Controllers
Processor

1
Processor

2
Processor

3
Processor

4

front side bus

North BridgeDRAM

South Bridge Ethernet
Controller

VGA
PCI-PCI
Bridge

USB
Controller

DMI bus
PCI Bus 0

More
PCI

devicesLegacy
Devices PS2

(keyboard, mouse,
PC speaker)

PCI Bus 1

Memory bus

Hard Disk
Controller

(ATA)

Hard Disk
Controller

(SATA)

6

Access Time

• Seek Time
– Time it takes the head assembly to travel to the desired track

– Seek time may vary depending on the current head location

– Average seek time generally considered.(Typically 4ms high end
servers to 15ms in external drives)

• Rotational Latency
– Delay waiting for the rotation of the disk to bring the required disk

sector under the head
– Depends on the speed of the spindle motor

• CLV vs CAV

• Data Rate
– Time to get data off the disk

7

CLV and CAV

• CLV (Constant linear Velocity) – spindle speed (rpm) varies depending on
position of the head. So as to maintain constant read (or write) speeds.

– Used in audio CDs to ensure constant read rate at which data is read from disk

• CAV (Constant angular velocity) -- spindle velocity is always a constant.
Used in hard disks. Easy to engineer.

– Allows higher read rates because there are no momentum
issues

Outer sectors can typically store more
data than inner sectors

8

Disk Addressing

• Older schemes
– CHS (cylinder, head, sector) tuple

– Well suited for disks, but not for any other medium

– Need an abstraction

• Logical block addressing (LBA)
– Large 1-D array of logical blocks

• Logical block, is the smallest unit of transfer. Typically of size 512
bytes (but can be changed by low level format – don’t try this at
home!!)

– Addressing with 48 bits
– Mapping from CHS to LBA

 LBA = (C × HPC + H) × SPT + (S - 1)

C : cylinder, H : head, S : sector, HPC: heads / cylinder, SPT: sectors / track

9

Disk Scheduling

• Objectives
– Access time

• Two components
– Minimize Seek time

– Minimize Rotational latency

– Bandwidth
• Bytes transferred / (total time taken)

• Reduce seek time by minimizing head
movement

Access time and bandwidth can be
managed by the order in which
Disk I/O requests are serviced

10

Disk Scheduling

• Read/write accesses have the following cylinder
queue :
 95, 180, 34, 119, 11, 123, 62, 64

• The current position of the head is 50

• FCFS

tim
e

Track number

Total head movments = |(95 – 50)| + |(180 – 95)| + |(34 – 180)| + …
 = 644

Wild Oscillations

11

Shortest Seek Time First
(SSTF)

• Counterpart of SJF

• Could lead to starvation

tim
e

Track number

Total head movments = 236

 95, 180, 34, 119, 11, 123, 62, 64
Starting at 50

12

Elevators

SCAN

• Start scanning toward the nearest end
and goes till 0

• Then goes all the way till the other
end

C-SCAN

• Start scanning toward the nearest end
and go till the 0

• Then go all the way to the other end

• Useful if tracks accessed with uniform
distribution

• Shifting one extreme not included in
head movement count

 95, 180, 34, 119, 11, 123, 62, 64
Starting at 50

Total head movements = 230

Total head movements = 187

13

C-LOOK

• Like C-SCAN, but don’t go to the extreme.

• Stop at the minimum (or maximum)

Total head movements = 157

 95, 180, 34, 119, 11, 123, 62, 64
Starting at 50

14

Application View

Chester Rebeiro

IIT Madras

15

Files

• From a user’s perspective,
– A byte array

– Persistent across reboots and power failures

• From OS perspective,
– Secondary (non-volatile) storage device

• Hard disks, USB, CD, etc.

– Map bytes as collection of blocks on storage device

16

A File’s Metadata (inodes)

• Name. the only information kept in human readable
form.

• Identifier. A number that uniquely identifies the file within
the file system. Also called the inode number

• Type. File type (inode based file, pipe, etc.)

• Location. Pointer to location of file on device.

• Size.

• Protection. Access control information. Owner, group
(r,w,x) permissions, etc. a

• Monitoring. Creation time, access time, etc.

Try ls –i on Linux to see the inode number for a file

17

Files vs Memory

• Every memory location has an address that can be directly
accessed

• In files, everything is relative
– A location of a file depends on the directory it is stored in

– A pointer must be used to store the current read or write position within
the file

– Eg. To read a byte in a specific file.
• First search for the file in the directory path and resolve the identifier

 expensive for each access !!!

• Use the read pointer to seek the byte position

– Solution : Use open system call to open the file before any
access

(and close system call to close the file after all accesses are complete)

18

Opening a File

• Steps involved
– Resolve Name : search directories for file

names and check permissions

– Read file metadata into open file table

– Return index in the open file table (this is the
familiar file descriptor)

19

Open file tables

• Two open file tables used
– system wide table

• Contains information about inode, size, access
dates, permission, location, etc.

• Reference count (tracks number of processes that
have opened the file)

– per process table
• Part of PCBs proc structure

• Pointer to entry in the system wide table

20

A File System Organization

• Volume used to store a file system

• A volume could be present in partitions, disks, or across disks

• Volume contains directories which record information about name,
location, size, and type of all files on that volume

21

Directories

• Maps file names to location on disk
• Directories also stored on disk
• Structure

– Single-level directory
• One directory for all files -- simple

• Issues when multiple users are present

• All files should have unique names

– Two-level directory
• One directory for each user

• Solves the name collision between users

• Still not flexible enough (difficult to share files between users)

22

Tree structured directories

• Directory stored as files on disk
– Bit in file system used to identify directory

– Special system calls to read/write/create directories

– Referenced by slashes between directory names

Special directories
/  root
.  current directory
..  parent directory

23

Acyclic Graph Directories

• Directories can share files

• Create links between files
– Hard links

 it’s a link to the actual file on disk

(Multiple directory entries point

 to the same file)

$ln a.txt ahard.txt
– Soft links

 it’s a symbolic link to the path

 where the other file is stored

$ln –s a.txt asoft.txt

24

Hard vs Soft links

• Hard links cannot link directories. Cannot cross file system
boundaries. Soft links can do both these

• Hard links always refer to the source, even if moved or removed.
Soft links are destroyed if the source is moved or removed.

• Implementation difference…hard links store reference count in file
metadata.

25

Protection

• Types of access
– Read, write, execute, …

• Access Control
– Which user can use which file!

• Classification of users
– User, group, others

26

Mounting a File System

• Just like a file needs to be opened, a file system needs
to be mounted

• OS needs to know
– The location of the device (partition) to be mounted

– The location in the current file structure where the file system is
to be attached

• OS does,
– Verify that the device has a valid file system

– Add new file system to the mount point (/media/xyz)

$ mount /dev/sda3 /media/xyz -t ext3

27

Implementing a File System

Chester Rebeiro

IIT Madras

28

FS Layers

Application View

Hardware View

Logical file system

File organization module

Basic File System

I/O Control (device drivers)

Interrupt handling, low level
I/O, DMA management

Generic read/write to device
Buffers/Caches for data blocks

Translates logical view (blocks)
to physical view (cylinder/track)
Manages free space

Manages file metadata
information. Directory structure,
inodes

Layered architecture helps prevent
 duplication of code

through system calls

Interrupts / IO etc.

29

File System : disk contents

• Boot control block (per volume)
– If no OS, then boot control block is empty

• Volume control block (per volume)
– Volume(or partition details) such as number of blocks in the

partition, size of blocks, free blocks, etc.

– Sometimes called the superblock

• Directory structure
– To organize the files. In Unix, this may include file names and

associated inode numbers. In Windows, it is a table.

• Per file FCB (File control block)
– Metadata about a file. Unique identifier to associate it with a

directory.

30

file system : in-memory contents

• Mount table : contains information about each mounted
volume

• In memory directory structure cache holds recently
accessed directories

• System wide open file table

• Per process open file table

• Buffer cache to hold file system blocks

$ cat /etc/fstab

31

File operations (create)

• File Creation
1. Create FCB for the new file

2. Update directory contents

3. Write new directory contents to disk (and may cache it as well)• .

32

File Operations (open)
• File Open

1. Application passes file name through open system call

2. sys_open searches the system-wide open file table to see if the file is
already in use by another process

• If yes, then increment usage count and add pointer in per-process open
file table

• If no, search directory structure for file name (either in the cache or disk)
add to system-wide open file table and per-process open file table

3. The pointer (or index) in the per-process open file table is returned to
application. This becomes the file descriptor

33

File operations (close)

• file close
– Per process open table entry is removed

– System wide open table reference count
decremented by 1.

• If this value becomes 0 then updates copied back
to disk (if needed)

• Remove system wide open table entry

34

File Operations (read/write)

• File Read

35

Virtual File Systems

• How do we seamlessly support multiple
file systems and devices?

36

File Access Methods

• Sequential Access
– Information processed one block after the

other

– Typical usage

• Direct Access
– Suitable for database systems

– When query arrives, compute the
corresponding block number, and directly
access block

37

Tracking Free Space

• Bitmap of blocks
– 1 indicates used, 0 indicates free

• Linked list of free blocks

• File systems may use heuristics
– eg. A group of closely spaced free blocks

38

Allocation Methods

• How does the OS allocate blocks in the
disk?
– Contiguous allocation

– Linked allocation

– Indexed allocation

39

Contiguous Allocation

• Each file is allocated contiguous blocks on the disk

• Directory entry keeps the start and length

• Allocation
– First fit / best fit ?

• Advantages
– Easy / simple

• Disadvantages
– External fragmentation

 (may need regular defagmentation)

– Users need to specify the

 maximum file size at creation

 (may lead to internal fragmentation – a file may request a much large space
and not use it)

40

Linked Allocation

• Directory stores link of start and end block
(optionally)

• Pointer in block store link to next block

• Advantages
– Solves external fragmentation problems

• Disadvantages
– Not suited for direct access of files (all

pointers need to be accessed)

– Pointer needs to be stored .. overheads!!
• Overheads reduced by using clusters (ie. cluster of

sequential blocks associated with one pointer)

– Reliability.
• If a pointer is damaged (or lost), rest of file is lost.

• A bug in the OS may result in a wrong pointer
being picked up.

41

FAT File
(a variation linked allocation scheme)

• Invented by Marc McDonald and Bill Gates

• FAT is a table that
– contains one entry for each block

– and is indexed by block number.

• Files represented by linking pointers in

 the FAT

• FAT table generally cached

• Advantages,
– Solves direct access problems of linked allocation

– Easy to grow files

– Greater reliability
• A bad block implies only one block is corrupted

• Disadvantages,
– Volume size determined by FAT size

42

Indexed Allocation

• Advantages,
– Supports direct access
– No external fragmentation
– Easy to grow files

• How large should the index block be?
– Files typically, one or two blocks long

• The index block will therefore have only one or two
entries

• A large index block  huge wastage

– A small index block will limit the size of file
• Need an additional mechanism to deal with large

files

• Disadvantage,
– Sequential access may be slow

• May use clusters

Use disk blocks as index blocks
that don't hold file data, but hold
pointers to the disk blocks that
hold file data.

43

Multi Level Indexing

• Block index has multiple levels

44

Multi Level Indexing
Linux (ext2/ext3), xv6

good for small files

good for
very large
files

45

Performance Issues

• Disk cache
– In disk controller, can store a whole track

• Buffer cache
– In RAM, maintained by OS

• Synchronous / asynchronous writes
– Synchronous writes occur in the order n which the disk subsystem

receives them.
• Writes are not buffered

– In asynchronous writes, data is buffered and may be
written out of order

• Generally used

46

System Crashes

A system call wants to modify 4 blocks in the file system

Block a corresponds to a file’s FCB
Block b corresponds to the corresponding directory
Block c and d corresponds to the file data

a b c d

What happens if the system crashes after a and b are written?

a b c d

Files system state is inconsistent

Block a indicates that there exists a directory entry for the file
Block b indicates that the file should be present
BUT the file is not present

47

Recovery

• System crashes can cause inconsistencies on disk
– Eg. System crashed while creating a file

• Dealing with inconsistencies
– Consistency checking

• scan all data on directory and compares with data in each
block to determine consistency ….. slow!!

• fsck in Linux, chkdsk in Windows
– Checks for inconsistencies and could potentially fix them

• Disadvantages
– May not always be successful in repairing

– May require human intervention to resolve conflicts

48

Journaling File Systems (JFS)
(Log based recovery techniques)

1. When system call is invoked, all metadata changes are written
sequentially to a log and the system call returns.

2. Log entries corresponding to a single operation is called transactions.

3. Entries are played sequentially to actual file system structures.
– As changes are made to file systems, a pointer is updates which actions

have completed

– When an entire transaction is completed; the corresponding log entries are
removed

4. If the system crashes, and if log file has one or more entries

(it means OS has committed the operations but FS is not
updated)

– continue to play entries; as in step 3

49

Journaling File Systems (JFS)

• Allocate a small portion of the file system (on disk) as a
log

• System call modifies 4 blocks (as before)

– This we call as a transaction

– JFS ensures that this transaction is done
atomically

(either all 4 blocks are modified or none)

log

a b c d

50

JFS working (1)

a b c d

0complete

1 Copy blocks to Log. First complete, then a, b, c, d

2 Set complete bit in file system to 1 (Commit)

1

3 Copy from Log to file system

4 Set complete bit in file system to 0
Remove a, b, c, d from the log

complete

51

JFS Working (2)

1. Copy blocks to Log. First complete, then a, b, c, d
2. Set complete bit in file system to 1
3. Copy from Log to file system
4. Set complete bit in file system to 0. Remove a, b, c, d

from the log

1 2 3 4

If failure during (1)
on restart, C = 0
Ignore transaction
update

If failure during (2 to 3)
On restart, C = 1
Proceed with (3) as
usual

If failure during (3) or between (3 to 4)
On restart, C = 1
Redo (3) from
beginning

52

xv6 File System

53

xv6 File System Layers

File system interface

Resolve device, pathnames,
inodes, directory,

Log

ide

Buffer cache

54

On disk file system format

boot
super

inode bitmap data blocks log

0 1 2 …

Block size 512 bytes

array

ref: fs.h

55

Buffer Cache
(caches popular blocks)

• Size of list is fixed
• Recycling done by LRU

512 bytes

disk queue

bcache spinlock

ref: buf.h

56

IDE disk driver

• Has a queue of bufs that need to be read / written from disk

ref: ide.c

wait until disk is not busy

specify the sector to read / write

Interrupt when ready

Convert from block no. to sector no.

57

IDE interrupt handler

Loop 512/4 times to read data from disk (if needed)

Serialize access to disk
(only the first buf in queue must be serviced)

Wakeup any process that is sleeping for this buffer

Trigger the next buf on queue to be serviced

58

Buffer Cache Access

(1) Find block number (blockno) in buffer cache;
(2) If not found, need to query the hard disk and allocate a block from buffer cache.

(may need to use LRU policy to allocate block)
(3) Returns pointer to the buf queried for

Trigger disk to read/write buf from cache to disk

Release buffer and mark as most recently used

Ref: bio.c

Typical Usage for modifying a block

bp = bread(xxx, yyy)
// modify bp[offset]
bwrite(bp)
brelse(bp)

59

Log based Recovery

Log Structure on Disk

log block numbers

Number of blocks in log

bp = bread(xxx, yyy)
// modify bp[offset]
log_write(bp)
…
…
commit()

60

	Storage and File Systems
	Two views of a file system
	Magnetic Disks
	Slide 4
	Disk Controllers
	Access Time
	CLV and CAV
	Disk Addressing
	Disk Scheduling
	Slide 10
	Shortest Seek Time First (SSTF)
	Elevators
	C-LOOK
	Application View
	Files
	A File’s Metadata (inodes)
	Files vs Memory
	Opening a File
	Open file tables
	A File System Organization
	Directories
	Tree structured directories
	Acyclic Graph Directories
	Hard vs Soft links
	Protection
	Mounting a File System
	Implementing a File System
	FS Layers
	File System : disk contents
	file system : in-memory contents
	File operations (create)
	File Operations (open)
	File operations (close)
	File Operations (read/write)
	Virtual File Systems
	File Access Methods
	Tracking Free Space
	Allocation Methods
	Contiguous Allocation
	Linked Allocation
	FAT File (a variation linked allocation scheme)
	Indexed Allocation
	Multi Level Indexing
	Multi Level Indexing Linux (ext2/ext3), xv6
	Performance Issues
	System Crashes
	Recovery
	Journaling File Systems (JFS) (Log based recovery techniques)
	Journaling File Systems (JFS)
	JFS working (1)
	JFS Working (2)
	xv6 File System
	xv6 File System Layers
	On disk file system format
	Buffer Cache (caches popular blocks)
	IDE disk driver
	IDE interrupt handler
	Buffer Cache Access
	Log based Recovery
	Slide 60

