
Secure Systems Engineering

Chester Rebeiro

Indian Institute of Technology Madras



Chester Rebeiro, IITM 2

Flaws that would allow an attacker 
access the OS

flaw

Bugs in the OS The Human factor



Chester Rebeiro, IITM 3

Program Bugs that can be exploited

• Buffer overflows
– In the stack

– In the heap

– Return-to-libc attacks

• Double frees

• Integer overflows

• Format string bugs



Chester Rebeiro, IITM 4

Buffer Overflows in the Stack

• We need to first know how a stack is 
managed



Chester Rebeiro, IITM 5

Stack in a Program
(when function is executing)

Parameters 
for main

return Address

Locals of main

prev frame pointer

Frame pointer

Stack pointer

Parameters 
for function

return Address

Locals of function

prev frame pointer



Chester Rebeiro, IITM 6

Stack Usage (example)
Stack (top to bottom):

address stored data

1000 to 997 3

996 to 993 2

992 to 989 1

988 to 985 return address

984 to 981 %ebp (stored 
frame pointer)

(%ebp)980 to 976 buffer1

975 to 966 buffer2

(%sp) 964
stack pointer

Parameters 
for function

Return Address

Locals of function

prev frame pointerframe pointer



Chester Rebeiro, IITM 7

Stack Usage Contd.
Stack (top to bottom):

address stored data

1000 to 997 3

996 to 993 2

992 to 989 1

988 to 985 return address

984 to 981 %ebp (stored 
frame pointer)

(%ebp)980 to 976 buffer1

976 to 966 buffer2

(%sp) 964

What is the output of the following?

• printf(“%x”, buffer2)  : 966

• printf(“%x”, &buffer2[10]) 

      976  buffer1

Therefore buffer2[10] = buffer1[0]

    A BUFFER OVERFLOW



Chester Rebeiro, IITM 8

Modifying the Return Address

buffer2[19] = 

    &arbitrary memory location

This causes execution of an 
arbitrary memory location 
instead of the standard return

Stack (top to bottom):

address stored data

1000 to 997 3

996 to 993 2

992 to 989 1

988 to 985

984 to 981 %ebp (stored 
frame pointer)

(%ebp)980 to 976 buffer1

976 to 966 buffer2

(%sp) 964

Return Address

19

Arbitrary Location



Chester Rebeiro, IITM 9

Now that we seen how buffer 
overflows can skip an instruction,

We will see how an attacker can use 
it to execute his own code (exploit 
code)

Stack (top to bottom):

address stored data

1000 to 997 3

996 to 993 2

992 to 989 1

988 to 985 ATTACKER’S 
code pointer

984 to 981 %ebp (stored 
frame pointer)

(%ebp)980 to 976 buffer1

976 to 966 buffer2

(%sp) 964



Chester Rebeiro, IITM 10

Big Picture of the exploit

Fill the stack as follows 
(where BA is buffer address)

stack pointer

Parameters 
for function

Return Address

buffer

prev frame pointerframe pointer

Exploit code

BA

BA 
buffer Address

BA

BA

BA

BA

BA

BA

BA



Chester Rebeiro, IITM 11

Exploit Code

• Lets say the attacker wants to spawn a 
shell

• ie. do as follows:

• How does he put this code onto the stack?



Chester Rebeiro, IITM 12

Step 1 : Get machine codes

• objdump –disassemble-all shellcode.o
• Get machine code : “eb 1e 5e 89 76 

08 c6 46 07 00 c7 46 0c 00 00 00 00 
b8 0b 00 00 00 89 f3 8d 4e 08 8d 56 
0c cd 80 cd 80”

• If there are 00s replace it with other 
instructions



Chester Rebeiro, IITM 13

Step 2: Find Buffer overflow in an 
application

O
O
O
O
o

Defined on stack



Chester Rebeiro, IITM 14

Step 3 :
Put Machine Code in Large String

shellcode

large_string



Chester Rebeiro, IITM 15

Step 3 (contd) : 
Fill up Large String with BA

shellcode BA BA BA BA BA BA BA BA

large_string

Address of buffer is BA



Chester Rebeiro, IITM 16

Final state of Stack

• Copy large string into buffer

• When strcpy returns the

exploit code would be executed

shellcode BA BA BA BA BA BA BA BA

large_string

shellcode

BA

BA 
buffer Address

BA

BA

BA

BA

BA

BA

BA

buffer

BA



Chester Rebeiro, IITM 17

Putting it all together

bash$ gcc overflow1.c
bash$ ./a.out
$sh



Chester Rebeiro, IITM 18

Buffer overflow in the Wild

• Worm CODERED … released on 13th July 
2001

• Infected 3,59,000 computers by 19th July.



Chester Rebeiro, IITM 19

CODERED Worm

• Targeted a bug in Microsoft’s IIS web 
server

• CODERED’s string

GET /default.ida?NNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNN
%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u78
01%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u
00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u00=a 
HTTP/1.0 



Chester Rebeiro, IITM 20

How to Protect against buffer overflows



Chester Rebeiro, IITM 21

Non-executable stack

• Mark the stack pages as non-executable.

bash$ gcc overflow1.c
bash$ ./a.out
Segmentation Fault



Chester Rebeiro, IITM 22

Non Executable Stack 
Implementations

• In Intel processors, NX bit present to mark 
stack as non-executable.

• Works for most programs

• Does not work for some programs that 
NEED to execute from the stack. 
– Eg. Linux signal delivery. 



Chester Rebeiro, IITM 23

Will non executable stack prevent buffer overflow attacks ?

return to libc attacks



Chester Rebeiro, IITM 24

Return to Libc
(big picture)

Exploit code

BA

BA

BA

BA

BA

BA

BA

BA

buffer

This will not work if NX bit is set
Return Address



Chester Rebeiro, IITM 25

Return to Libc
(big picture contd.)

F1ptr

F1ptr

F1ptr

F1ptr

F1ptr

F1ptr

F1ptr

F1ptr

buffer
F1ptr

Return Address

Some 
Function

F1

What is F1?
• It is some function present in the program
• It should be able to execute attacker’s code



Chester Rebeiro, IITM 26

F1 = system()

• One option is function system present in 
libc

      system(“/bin/bash”);
      would create a bash shell

So we need to 
1. Find the address of system in the process
2. Supply an address that points to the string 

/bin/sh



Chester Rebeiro, IITM 27

The return-to-libc attack

F1ptr

F1ptr

F1ptr

F1ptr

F1ptr

Shell ptr

F1 ptr

F1ptr

buffer
F1ptr

Return Address

system()
In libc

/bin/bash



Chester Rebeiro, IITM 28

Find address of system

$ gdb a.out

(gdb) p system

$1 {<text variable…>} 0x28086526 <system>



Chester Rebeiro, IITM 29

Find address of /bin/sh

• Every process stores the enviroment 
variables

• We need to find this and extract the 
string /bin/sh from it



Chester Rebeiro, IITM 30

Limitation of ret2libc

“Difficult to execute arbitrary code”



Chester Rebeiro, IITM 31

Return Oriented Programming 
Attacks

• Discovered by Hovav Shacham of 
Stanford University

• Allows arbitrary computation without code 
injection
– thus can be used with non executable stacks



Chester Rebeiro, IITM 32

Gadgets (1)

Lets say this is the payload needed to be 
executed by an attacker.



Chester Rebeiro, IITM 33

Gadgets (2)

• Scan the entire binary for code snippets of 
the form

• This is called a gadget 

useful instruction(s)
ret



Chester Rebeiro, IITM 34

Gadgets (3)

• Find gadgets in the binary for the payload

Program Binary

movl %esi, 0x8(%esi)
ret

G1

movb $0x0, 0x7(%esi)
ret G2

movb $0x0, 0xc(%esi)
ret G3

movl $0xb, %eax
ret

G4



Chester Rebeiro, IITM 35

Other Precautions for buffer 
overflows

• Use a programming language that 
automatically check array bounds
– Example java

• Use securer libraries. For example C11 
annex K, gets_s, strcpy_s, strncpy_s, etc.

   (_s is for secure)



Chester Rebeiro, IITM 36

Canaries
Stack (top to bottom):

stored data

3

2

1

ret addr

sfp (%ebp)

Insert canary here

buffer1

buffer2

Insert a canary here

check if the canary value
has got modified

• Known (pseudo random) values 
placed on stack to monitor buffer 
overflows.

• A change in the value of the canary 
indicates a buffer overflow.

• Implemented in gcc by default.

• Evaded if canary is known



Chester Rebeiro, IITM 37

Bounds Checking

• Check accesses to each buffer so that it 
cannot be beyond the bounds

• In C and C++, bound checking performed 
at pointer calculation time or dereference 
time.

• Requires run-time bound information for 
each allocated block.



Chester Rebeiro, IITM 38

Address Space Randomization

• Attackers need to know specific locations in the code.
– For instance, where the stack begins

– Where functions are placed in memory, etc.

• Address space layout randomization (ASLR) makes this 
difficult by randomizing the address space layout of the 
process


	Secure Systems Engineering
	Flaws that would allow an attacker access the OS
	Program Bugs that can be exploited
	Buffer Overflows in the Stack
	Stack in a Program (when function is executing)
	Stack Usage (example)
	Stack Usage Contd.
	Modifying the Return Address
	Slide 9
	Big Picture of the exploit
	Exploit Code
	Step 1 : Get machine codes
	Step 2: Find Buffer overflow in an application
	Step 3 : Put Machine Code in Large String
	Step 3 (contd) : Fill up Large String with BA
	Final state of Stack
	Putting it all together
	Buffer overflow in the Wild
	CODERED Worm
	Slide 20
	Non-executable stack
	Non Executable Stack Implementations
	Slide 23
	Return to Libc (big picture)
	Return to Libc (big picture contd.)
	F1 = system()
	The return-to-libc attack
	Find address of system
	Find address of /bin/sh
	Limitation of ret2libc
	Return Oriented Programming Attacks
	Gadgets (1)
	Gadgets (2)
	Gadgets (3)
	Other Precautions for buffer overflows
	Canaries
	Bounds Checking
	Address Space Randomization

