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Flaws that would allow an attacker 
access the OS

flaw

Bugs in the OS The Human factor
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Program Bugs that can be exploited

• Buffer overflows
– In the stack

– In the heap

– Return-to-libc attacks

• Double frees

• Integer overflows

• Format string bugs
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Buffer Overflows in the Stack

• We need to first know how a stack is 
managed
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Stack in a Program
(when function is executing)

Parameters 
for main

return Address

Locals of main

prev frame pointer

Frame pointer

Stack pointer

Parameters 
for function

return Address

Locals of function

prev frame pointer
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Stack Usage (example)
Stack (top to bottom):

address stored data

1000 to 997 3

996 to 993 2

992 to 989 1

988 to 985 return address

984 to 981 %ebp (stored 
frame pointer)

(%ebp)980 to 976 buffer1

975 to 966 buffer2

(%sp) 964
stack pointer

Parameters 
for function

Return Address

Locals of function

prev frame pointerframe pointer
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Stack Usage Contd.
Stack (top to bottom):

address stored data

1000 to 997 3

996 to 993 2

992 to 989 1

988 to 985 return address

984 to 981 %ebp (stored 
frame pointer)

(%ebp)980 to 976 buffer1

976 to 966 buffer2

(%sp) 964

What is the output of the following?

• printf(“%x”, buffer2)  : 966

• printf(“%x”, &buffer2[10]) 

      976  buffer1

Therefore buffer2[10] = buffer1[0]

    A BUFFER OVERFLOW
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Modifying the Return Address

buffer2[19] = 

    &arbitrary memory location

This causes execution of an 
arbitrary memory location 
instead of the standard return

Stack (top to bottom):

address stored data

1000 to 997 3

996 to 993 2

992 to 989 1

988 to 985

984 to 981 %ebp (stored 
frame pointer)

(%ebp)980 to 976 buffer1

976 to 966 buffer2

(%sp) 964

Return Address

19

Arbitrary Location
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Now that we seen how buffer 
overflows can skip an instruction,

We will see how an attacker can use 
it to execute his own code (exploit 
code)

Stack (top to bottom):

address stored data

1000 to 997 3

996 to 993 2

992 to 989 1

988 to 985 ATTACKER’S 
code pointer

984 to 981 %ebp (stored 
frame pointer)

(%ebp)980 to 976 buffer1

976 to 966 buffer2

(%sp) 964
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Big Picture of the exploit

Fill the stack as follows 
(where BA is buffer address)

stack pointer

Parameters 
for function

Return Address

buffer

prev frame pointerframe pointer

Exploit code

BA

BA 
buffer Address

BA

BA

BA

BA

BA

BA

BA
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Exploit Code

• Lets say the attacker wants to spawn a 
shell

• ie. do as follows:

• How does he put this code onto the stack?
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Step 1 : Get machine codes

• objdump –disassemble-all shellcode.o
• Get machine code : “eb 1e 5e 89 76 

08 c6 46 07 00 c7 46 0c 00 00 00 00 
b8 0b 00 00 00 89 f3 8d 4e 08 8d 56 
0c cd 80 cd 80”

• If there are 00s replace it with other 
instructions
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Step 2: Find Buffer overflow in an 
application

O
O
O
O
o

Defined on stack
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Step 3 :
Put Machine Code in Large String

shellcode

large_string
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Step 3 (contd) : 
Fill up Large String with BA

shellcode BA BA BA BA BA BA BA BA

large_string

Address of buffer is BA
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Final state of Stack

• Copy large string into buffer

• When strcpy returns the

exploit code would be executed

shellcode BA BA BA BA BA BA BA BA

large_string

shellcode

BA

BA 
buffer Address

BA

BA

BA

BA

BA

BA

BA

buffer

BA
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Putting it all together

bash$ gcc overflow1.c
bash$ ./a.out
$sh
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Buffer overflow in the Wild

• Worm CODERED … released on 13th July 
2001

• Infected 3,59,000 computers by 19th July.
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CODERED Worm

• Targeted a bug in Microsoft’s IIS web 
server

• CODERED’s string

GET /default.ida?NNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNN
%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u78
01%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u
00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u00=a 
HTTP/1.0 
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How to Protect against buffer overflows
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Non-executable stack

• Mark the stack pages as non-executable.

bash$ gcc overflow1.c
bash$ ./a.out
Segmentation Fault
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Non Executable Stack 
Implementations

• In Intel processors, NX bit present to mark 
stack as non-executable.

• Works for most programs

• Does not work for some programs that 
NEED to execute from the stack. 
– Eg. Linux signal delivery. 
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Will non executable stack prevent buffer overflow attacks ?

return to libc attacks
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Return to Libc
(big picture)

Exploit code

BA

BA

BA

BA

BA

BA

BA

BA

buffer

This will not work if NX bit is set
Return Address
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Return to Libc
(big picture contd.)

F1ptr

F1ptr

F1ptr

F1ptr

F1ptr

F1ptr

F1ptr

F1ptr

buffer
F1ptr

Return Address

Some 
Function

F1

What is F1?
• It is some function present in the program
• It should be able to execute attacker’s code
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F1 = system()

• One option is function system present in 
libc

      system(“/bin/bash”);
      would create a bash shell

So we need to 
1. Find the address of system in the process
2. Supply an address that points to the string 

/bin/sh
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The return-to-libc attack

F1ptr

F1ptr

F1ptr

F1ptr

F1ptr

Shell ptr

F1 ptr

F1ptr

buffer
F1ptr

Return Address

system()
In libc

/bin/bash
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Find address of system

$ gdb a.out

(gdb) p system

$1 {<text variable…>} 0x28086526 <system>
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Find address of /bin/sh

• Every process stores the enviroment 
variables

• We need to find this and extract the 
string /bin/sh from it
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Limitation of ret2libc

“Difficult to execute arbitrary code”
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Return Oriented Programming 
Attacks

• Discovered by Hovav Shacham of 
Stanford University

• Allows arbitrary computation without code 
injection
– thus can be used with non executable stacks
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Gadgets (1)

Lets say this is the payload needed to be 
executed by an attacker.
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Gadgets (2)

• Scan the entire binary for code snippets of 
the form

• This is called a gadget 

useful instruction(s)
ret
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Gadgets (3)

• Find gadgets in the binary for the payload

Program Binary

movl %esi, 0x8(%esi)
ret

G1

movb $0x0, 0x7(%esi)
ret G2

movb $0x0, 0xc(%esi)
ret G3

movl $0xb, %eax
ret

G4
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Other Precautions for buffer 
overflows

• Use a programming language that 
automatically check array bounds
– Example java

• Use securer libraries. For example C11 
annex K, gets_s, strcpy_s, strncpy_s, etc.

   (_s is for secure)
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Canaries
Stack (top to bottom):

stored data

3

2

1

ret addr

sfp (%ebp)

Insert canary here

buffer1

buffer2

Insert a canary here

check if the canary value
has got modified

• Known (pseudo random) values 
placed on stack to monitor buffer 
overflows.

• A change in the value of the canary 
indicates a buffer overflow.

• Implemented in gcc by default.

• Evaded if canary is known
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Bounds Checking

• Check accesses to each buffer so that it 
cannot be beyond the bounds

• In C and C++, bound checking performed 
at pointer calculation time or dereference 
time.

• Requires run-time bound information for 
each allocated block.
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Address Space Randomization

• Attackers need to know specific locations in the code.
– For instance, where the stack begins

– Where functions are placed in memory, etc.

• Address space layout randomization (ASLR) makes this 
difficult by randomizing the address space layout of the 
process
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