
Operating Systems
Overview

Chester Rebeiro

IIT Madras

2

Outline

 Basics

 OS Concepts

 OS Structure

3

What is the OS used for?

• Hardware Abstraction

turns hardware into something that
applications can use

• Resource Management

manage system’s resources

4

Sharing the CPU

When one app completes the next starts

App1 App2 App3 App4

App1 App2 App3 App4

time

Who uses the CPU?

5

Idle CPU Cycles

CPU is idle when executing app waits for an event.
Reduced performance.

App1 App2 App3 App4

App1 App2 App3 App4

time

App1

Wait for an event
(like scanf)

Got event; continue execution

CPU is idle
Who uses the CPU?

6

When OS supports Multiprogramming

When CPU idle, switch to another app

App1 App2 App3 App4

App1 App2 App3 App4

time

App1

Wait for an event Got event; App1 put into queue

7

Multiprogramming could cause
starvation

App1 App2 App3 App4

App1 App2

time

One app can hang the entire system

while(1);

8

When OS supports Time Sharing
(Multitasking)

• Time sliced

• Each app executes within a slice

• Gives impression that apps run concurrently

• No starvation. Performance improved

1 2 3 41 2 3 4 3 4

Time slice / time quanta

time

9

Other Shared Resources
(examples)

• Printers

• Keyboards

• RAM

• disks

• Files on disk

• Networks

Multiprocessors

• Multiple processors chips in a single system

• Multiple cores in a single chip

• Multiple threads in a single core

10

Processor core

chip

thread

Multiprocessors

• Each processor can execute an app
independent of the others

11

App1 App2 App3 App4

time

App5 App6 App7 App8

Multiprocessors and
Multithreading

12

2 3 41 2 3 4 3 4

5 6 57 6 8 7 5 6

Race Conditions

• App2 and App5 want to write into some resource (like a
file) simultaneously

• This results in a race condition
– Need to synchronize between the two Apps

13

2

5

Some resource

Synchronization

• The shared file is associated with a lock

• The lock ensures that only one App can access the resource at a time

• Sequence of Steps
– App X locks the resource

– App X accesses the resource, while App Y waits

– App X unlocks the resource

– App Y can now lock and then access the resource

14

2

5

Some resource

15

Who should execute next?

• Scheduling
– Algorithm that executes to determine which App should execute

next

– Needs to be fair

– Needs to be able to prioritize some Apps over the others

1 2 3 41 2 3 4 3 4

Time slice / time quanta

time

16

OS and Isolation

• Why is it needed?
– Multiple apps execute concurrently, each app could

be from a different user. Therefore needs isolation.
– Preventing a malfunctioning app from affecting other

apps

OS Isolation

• First ensure that the OS itself runs in a
protected mode

17

Least privileged

Most privileged

Program Isolation

• Use virtual memory to ensure programs are
isolated from each other

• Set page permissions
– Execute, read only, read-write

18

19

OS and Security

• Why is it needed?
– Defend against internal or external attacks

from viruses, worms, identity theft, theft of
service.

• How is it achieved?
– Access Control
– Passwords and Cryptography
– Biometrics
– Security assessment

Access Control

• Only authorized users can access files
and other resources

20

Security Assessment

• How secure is my system?

• Can be done by
– mathematical analysis

– Manual / semi-automated verificiation method

21

22

Outline

 Basics

 OS Concepts

 OS Structure

23

Executing Apps
(Process)

• Process
– A program in execution

– Comprises of
• Executable instructions

• Stack
• Heap
• State

– State contains : registers, list
of open files, related
processes, etc.

Executable
(a.out)

$gcc hello.c

Process

$./a.out

24

Operating Modes

• User Mode
– Where processes run

– Restricted access to
resources

– Restricted capabilities

• Kernel mode a.k.a.
Privileged mode
– Where the OS runs

– Privileged (can do anything)

Hardware

Software

Kernel Mode

User Mode

25

Communicating with the OS
(System Calls)

• System call invokes a function in
the kernel using a Trap

• This causes
– Processor to shift from user mode

to privileged mode

• On completion of the system
call, the execution gets
transferred back to the user
mode process

System Calls

Process

Kernel

26

Example (write system call)

Trap Handler

write(STDOUT)

Implementation
of

write syscall

Kernel
space

User
space

trap

libc invocation

27

System Call vs Procedure Call

System Call Procedure Call

Uses a TRAP instruction
(such as int 0x80)

Uses a CALL instruction

System shifts from user
space to kernel space

Stays in user space (or
kernel space) … no shift

TRAP always jumps to a
fixed addess (depending on
the architecture)

Re-locatable address

28

System Call Interfaces

• System calls provide users with interfaces into
the OS.

• What set of system calls should an OS support?
– Offer sophisticated features
– But yet be simple and abstract whatever is necessary
– General design goal : rely on a few mechanisms that

can be combined to provide generality

29

Files

• Data persistent across reboot

• What should the file system calls
expose?
– Open a file, read/write file, creation date,

permissions, etc.

– More sophisticated options like seeking
into a file, linking, etc.

• What should the file system calls
hide?
– Details about the storage media.

– Exact locations in the storage media.

file
System Calls

Process

Kernel

30

Outline

 Basics

 OS Concepts

 OS StructureOS Structure

31

What goes into an OS?

System Call Interface

Device Drivers

Memory
Management

CPU
Scheduling

File System
Management

Networking
Stack

Inter Process
Communication

32

 OS Structure :
Monolithic Structure

• Linux, MS-DOS, xv6
• All components of OS in kernel space
• Cons : Large size, difficult to maintain, likely to have more bugs,

difficult to verify
• Pros : direct communication between modules in the kernel by

procedure calls

System Call Interface

Deice Drivers

Memory
Management

CPU
Scheduling

File System
Management

Networking
Stack

Inter Process
Communication

User Space Processes
K

er
ne

l s
p

ac
e

33

OS Structure : Microkernel

• Highly modular.
– Every component has its own

space.

– Interactions between
components strictly through
well defined interfaces (no
backdoors)

• Kernel has basic inter process
communication and scheduling
– Everything else in user space.
– Ideally kernel is so small that it

fits the first level cache

User Space Processes

F
ile

M

an
ag

em
en

t

P
ro

ce
ss

S
er

ve
r

D
ev

ic
e

D
riv

er
s

P
ag

er

Microkernel
(interprocess communication,

scheduling)

K
e

rn
e

l s
p

a
ce

Eg. QNX and L4

34

Monolithic vs Microkernels
Monolithic Microkernel

Inter process
communication

Signals, sockets Message queues

Memory management Everything in kernel space (allocation
strategies, page replacement
algorithms,)

Memory management in user space,
kernel controls only user rghts

Stability Kernel more ‘crashable’ because of
large code size

Smaller code size ensures kernel
crashes are less likely

I/O Communication
(Interrupts)

By device drivers in kernel space.
Request from hardware handled by
interrupts in kernel

Requests from hardware converted
to messages directed to user
processes

Extendibility Adding new features requires rebuilding
the entire kernel

The micro kernel can be base of an
embedded system or of a server

Speed Fast (Less communication between
modules)

Slow (Everything is a message)

35

Virtual Machines

Hardware

Software

Kernel

User Space
Processes

Hardware

Virtual Machine Interface

User Space
Processes

Kernel

VM1

User Space
Processes

Kernel

VM2

User Space
Processes

Kernel

VM3

No virtual Machines With virtual Machines

for next class

• Please revise / learn
– memory management in Intel i386 (especially GDTs,

page tables, and page size extensions)

(http://www.logix.cz/michal/doc/i386/chp05-00.htm)

– Real mode and protected mode in Intel i386

(Shifting from real mode to protected mode)

36

http://www.logix.cz/michal/doc/i386/chp05-00.htm

	Operating Systems Overview
	Outline
	What is the OS used for?
	Sharing the CPU
	Idle CPU Cycles
	When OS supports Multiprogramming
	Multiprogramming could cause starvation
	When OS supports Time Sharing (Multitasking)
	Other Shared Resources (examples)
	Multiprocessors
	Slide 11
	Multiprocessors and Multithreading
	Race Conditions
	Synchronization
	Who should execute next?
	OS and Isolation
	OS Isolation
	Program Isolation
	OS and Security
	Access Control
	Security Assessment
	Slide 22
	Executing Apps (Process)
	Operating Modes
	Communicating with the OS (System Calls)
	Example (write system call)
	System Call vs Procedure Call
	System Call Interfaces
	Files
	Slide 30
	What goes into an OS?
	OS Structure : Monolithic Structure
	OS Structure : Microkernel
	Monolithic vs Microkernels
	Virtual Machines
	for next class

