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Outline

• Memory Management in x86
– Segmentation

– Virtual Memory

• Initializing memory in xv6
– Initializing Pages

– Initializing Segments

• Implementation of kalloc
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x86 address translation
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x86 address translation
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Segmentation Unit

• Virtual address space of process divided into 
separate logical segments

• Each segment associated with a segment 
selector and offset
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Segmentation
(logical to linear address)
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Example

Segment Base Limit

0 - -

1 1000 1000

2 4000 500

3 8000 1000

4 9000 1000

Address Map of Process
0

Text
1000

2000

Data 4000
4500

Stack
8000

9000
Heap

10000

1

segment register (eg %CS)

0x3000

pointer to descriptor table

0x3000

100

offset register (eg %eip)

+

3000
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Pointer to Descriptor Table

• Global Descriptor Table (GDT)

• Stored in memory

• Pointed to by GDTR (GDT Register)
– lgdt (instruction used to load the GDT register)

• Similar table called LDT present in x86 (not used by xv6!)

047 16

sizebase

GDTR

Segment Descriptor

Segment Descriptor

Segment Descriptor

Segment Descriptor

Segment Descriptor

Segment Descriptor

GDTSize : size of GDT
Base : pointer to GDT
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Segment Descriptor

• Base Address
– 0 to 4GB

• Limit
– 0 to 4GB

• Access Rights
– Execute, Read,  Write

– Privilege Level (0-3)

Access Limit

Base Address
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Segment Registers

• Holds 16 bit segment selectors
– Points to offsets in GDT

• Segments associated with one of three types of storage
– Code

• %CS register holds segment selector
• %EIP register holds offset

– Data
• %DS, %ES, %FS, %GS registers hold segment selector

– Stack
• %SS register holds segment selector
• %SP register holds stack pointer
(Note: Only one code segment and stack segment can be accessible 

at a time. But 4 data segments can be accessed simultaneously)
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x86 address translation
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Linear to Physical Address

• 2 level page translation • How many page 
tables are 
present?

• What is the 
maximum size of 
the process’ 
address space?
– 4G

ref : mmu.h (PGADDR, NPDENTRIES, NPTENTRIES, PGSIZE)
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The full Picture

Initialized once
common for all
processes

Each proces
has one
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Virtual Address Advantages
(Isolation between Processes)

Text
(instructions)

Data

Heap

Stack

Text
(instructions)
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Stack

Process AProcess A Process BProcess B
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Process A
Page
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Process B
Page
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Virtual Addressing Advantages 
Paging on Demand

• RAM only loads pages into memory whenever needed

• When new program is executed page table is empty
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Paging on Demand (2)

• As data gets referenced, page table gets filled up. 

• Page frame loaded from hard disk
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Paging on Demand(3)

• As execution progresses, more entries in page table get filled. 

• Similarly, more frames in RAM get used

• Eventually, entire RAM is filled
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Paging on Demand (4)

• A particular frame is selected and swapped out into disk

• A new page swapped in

• Page table is updated

Page table
for process
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Virtual Memory achieves SecuritySecurity

• Security
– Page tables augmented by protection bits

Page table
for process

protection bits
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Protection Bits in x86

• PTE_W : controls if instructions are allowed to write to 
the page

• PTE_U : controls if user process can use the page. If not 
only kernel can use the page

These are checked by the MMU for each memory access!
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• Making a copy of a process 
is called forking.
– Parent (is the original)

–  child (is the new process)

• When fork is invoked,
– child is an exact copy of 

parent
• When fork is called all pages 

are shared between parent 
and child

• Easily done by copying the 
parent’s page tables

Physical Memory

Parent
Page
Table

Child
Page
Table

Virtual Addressing Advantages 
(easy to make copies of a process)
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Virtual Addressing Advantages 
(Shared libraries)

• Many common functions such as printf implemented in shared libraries

• Pages from shared libraries, shared between processes

Process AProcess A Process BProcess B

Virtual Memory Physical Memory Virtual Memory

Process A
Page
Table

Process B
Page
Table

printf(){ …} printf(){ …}

printf(){ …}
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Virtual Addressing Advantages 
(Shared Memory)

• Shared memory between processes 
easily implemented using virtual 
memories

– Shared memory mapped to the same 
page

– Writes from one process visible to 
another process

Process 1

Process 2

Shared 
memory

kernel

userspace
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back to booting…
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so far…

BIOS

bootloader

• executes on reset. 
• does POST, initializes devices
• loads boot loader to 0x07c00 and jump to it
(all in real mode)

Power on Reset

• disable interrupts
• Setup GDT (8941)
• switch real mode to protected mode
• setup an initial stack (8967)
• load kernel from second sector of disk to 
  0x100000
• executes kernel (_start)
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Memory when kernel is invoked
(just after the bootloader)

• Segmentation enabled but no paging

• Memory map

CPU Segmentation
Unit

physical
memorylogical

address
physical
address

code
data

bootloader

stack

logical
memory

physical memory

kernel

0x
1

00
00

0

Slide taken from Anton Burtsev, Univ. of Utah



Memory Management Analysis

• Advantages
– Got the kernel into protected mode (32 bit code) with minimum 

trouble

• Disadvantages
– Protection of kernel memory from user writes

– Protection between user processes

– User space restricted by physical memory

• The plan ahead
– Need to get paging up and running

27

CPU Segmentation
Unit

physical
memorylogical

address
physical
address



OS code are not Relocatable

• kernel.asm (xv6)

• The linker sets the 
executable so that 
the kernel starts 
from 0x80100000

• 0x80100000 is a 
virtual address and 
not a physical 
address

28
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Virtual Address Space

0

0xffffffff

KERNBASE
0x80000000

Virtual

Physical

Device memory

+0x100000

0

0x100000

PHYSTOP

• Kernel memory mapped into every process
   - easy to switch between kernel and user modes
• VA(KERNBASE:+PHYSTOP)  PA(0:PHYSTOP)
   - convert from VA to PA just by +/- KERNBASE
   - easily write to physical page
   - limits size of physical memory to 2GB

      

Kernel Memory

ref : memlayout.h (0200)



Converting virtual to physical
in kernel space

30

What would be the address generated before and immediately after paging is
enabled?  

before : 0x001000xx
Immediately after : 0x8001000xx

So the OS needs to be present at two memory ranges
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Early Kernel Paging Initialization

• Kernel entry point : _start (1036)

Turn on Page size
extension

Set Page Directory
Why 4MB pages? Simplicity
(We just want 2 pages)
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4MB Pages
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Kernel memory setup

• First setup two 4MB pages
– Entry 0:

Virtual addresses 0 to 0x04000000 Physical addresses 0 to 
4MB

– Entry 512:
    Virtual addresses 0x80000000 to 0x84000000 

    Physical addresses 0 to 4MB

Why do we need to map this twice?
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First Page Table

courtesy Anton Burtsev, Univ. of Utah

logical
memory

physical memory

virtual memory
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Enable Paging

• Entry point : _start (1036)

Turn on Page size
extension

Set Page Directory

Enable Paging
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Stack setup

• Entry point : _start (1036)

Turn on Page size
extension

Set Page Directory

Enable Paging

Stack setup
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Stack

courtesy Anton Burtsev, Univ. of Utah
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Execute main

• entry point : _start (1036)

Turn on Page size
extension

Set Page Directory

Enable Paging

Stack setup

Jump to main



New Address Scheme Analysis

Scheme : enable paging with 2 pages of 4MB each

• Advantages,
– Useful for initializing the rest of memory 

• (issues with kmalloc …. later!!!)

• Disadvantages
– Kernel mapped twice, reducing user space area

– Only 4MB of physical memory is mapped. Remaining 
is unutilized

xv6 next goes into the final addressing scheme

39
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(Re)Initializing Paging

• Configure another page table
– Map kernel only once making space for other 

user level processes

– Map more physical memory, not just the first 
4MB

– Use 4KB pages instead of 4MB pages
• 4MB pages very wasteful if processes are small

• Xv6 programs are a few dozen kilobytes
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Virtual Address Space

1823

KERNBASE = 0x80000000
KERNLINK = KERNBASE + 0x100000
PHYSTOP = 0xE000000
EXTMEM = 0x100000

Setting Up kernel pages (vm.c)
1. stuct kmap

data obtained from linker script, which determines 
size of code+readonly data

2. Kernel page tables set up in kvmalloc() (1857)

     (invoked from main)



mappages (1779)

• Fill page table entries 
mapping virtual addresses 
to physical addresses

• Which page table entry?
– obtained from walkpgdir

• What are the contents?
– Physical address

– Permissions

– present

42



walkpgdir (1754)

• Create a page table entry 
corresponding to a virtual 
address. 

• If page table is not present, 
then allocate it.

• PDX(va) : page directory 
index

• PTE_ADDR(*pde) : page 
directory entry

• PTX(va) : page table entry

43
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Using Page Tables (in OS)

• Functions available
– mappages (1779) : create page table entries mapping 

virtual addresses to physical addresses

– copyuvm (2053): copy a process’s page table into 
another 

– walkpgdir (1754) : return page table entry 
corresponding to a virtual address
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User Pages mapped twice

0

0xffffffff

KERNBASE

Virtual

Physical

Device memory

+0x10000

Device memory

0

0x10000

PHYSTOP

Kernel Memory

• Kernel has easy access to user pages (useful for 
system calls)
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(Re)Initializing Segmentation

• Segments
– Kernel code 

– Kernel data

– User code

– User data

– Per CPU data

ref : seginit (1716)
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Segment Descriptor in xv6

ref : mmu.h ([7], 0752, 0769)
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Loading the GDTR

• Instruction LGDT 
• Each CPU has its own GDTR

ref : x86.h



Per CPU Data

49



Recall 
Memory is Symmetric Across Processors

Processor
1

Processor
2

Processor
3

Processor
4

front side bus

North BridgeDRAM
Memory bus

• Memory Symmetry
• All processors in the system share the same memory space
• Advantage : Common operating system code

• However there are certain data which have to be unique to each 
processor
• This is the per-cpu data
• example, cpu id, scheduler context, taskstate, gdt, etc.



Naïve implementation of 
per-cpu data

• An array of structures, each element in array corresponding to a processor

• Access to a per-cpu data, example : cpu[cpunum()].ncli

• This requires locking every time the cpu structure is accessed
– eg. Consider process migrating from one processor to another while updating a per-cpu 

data
– slow (because locking can be tedious)!!!

51ref : proc.h [23]



Alternate Solution
(using CPU registers)

• CPU has several general purpose registers
– The registers are unique to each processor (not shared)

• Use CPU registers to store per-cpu data
– Must ensure the gcc does not use these registers for other 

purposes

• Fastest solution to our problem, but we do not have so 
many registers 

52Content borrowed from  Carmi Merimovich (http://www2.mta.ac.il/~carmi/)



Next best solution
(xv6 implementation)

• In seginit(), which is run on each CPU 
initialization, the following is done.

– GDTR will point upon cpu initialization to 
cpus[cpunum()].gdt.

– (Thus, each processor will have its own private GDT in 
struct cpu).

• Have an entry which is unique for each 
processor

– The base address field of SEG_KCPU entry in GDT is 
&cpus[cpunum()].cpu (1731)

– %gs register loaded with SEG KCPU << 3.

• Lock free access to per-cpu data
– %gs indexes into the SEG_KCPU offset in GDT

– This is unique for each processor

53

CPU0 CPU1

GDT
For CPU0

GDT
For CPU1

per-cpu
for CPU0

per-cpu
for CPU1

%gs %gs

Content borrowed from  Carmi Merimovich (http://www2.mta.ac.il/~carmi/)



Using %gs

• Without locking or cpunum() overhead we have:
– %gs:0 is cpus[cpunum()].cpu.

– %gs:4 is cpus[cpunum()].proc.

• If we are interrupting user mode code then %gs 
might contain irrelevant value. Hence
– In alltraps %gs is loaded with SEG_KCPU << 3.
– (The interrupted code %gs is already on the trapframe.)

• gcc not aware of the existence of %gs, so it will no generate code messing 
up gs.

54Content borrowed from  Carmi Merimovich (http://www2.mta.ac.il/~carmi/)



Allocating Memory

55
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Allocating Pages (kalloc)
Physical
Memory

0

end of 
kernel

PHYSTOP

used for allocation

Used page
Free page

freelist

• Physical memory allocation done in page   
  granularity (i.e. 4KB)
• Free physical pages in a list
• Page Allocation removes from list head (see 
  function kalloc)
• Page free adds to list head (see kfree)

ref : kalloc.c [30]
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Freelist Implementation

• How is the freelist implemented?
– No exclusive memory to store links (3014)

ptr to next free page

ptr to next free page

ptr to next free page

ptr to next free page

freelist
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Initializing the list
(chicken & egg problem)

create free list marking 
all pages as free

at boot

access memory via
Page tables

this needs

Page tables are
in memory and need to

be allocated
Create a page table

this needs

ref : kalloc.c (kinit1 and kinit2)

Resolved by a separate page allocator during boot up, which allocates
4MB memory just after the kernel’s data segment (see kinit1 and kinit2).



For next class…

• revise / learn interrupt handling in x86 
processors

59
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