
Initializing Memory and
Memory Management in xv6

Chester Rebeiro

IIT Madras

2

Outline

• Memory Management in x86
– Segmentation

– Virtual Memory

• Initializing memory in xv6
– Initializing Pages

– Initializing Segments

• Implementation of kalloc

3

x86 address translation

CPU

Logical
Address
(segment

+
offset) Segmentation

Unit

Linear
Address Paging

Unit

Physical
Memory

Physical
Address

4

x86 address translation

CPU

Logical
Address
(segment

+
offset) Segmentation

Unit

Linear
Address Paging

Unit

Physical
Memory

Physical
Address

5

Segmentation Unit

• Virtual address space of process divided into
separate logical segments

• Each segment associated with a segment
selector and offset

Heap

Stack
Data

Text

Address Map of Process

Text

Data

Stack

Heap

6

Segmentation
(logical to linear address)

7

Example

Segment Base Limit

0 - -

1 1000 1000

2 4000 500

3 8000 1000

4 9000 1000

Address Map of Process
0

Text
1000

2000

Data 4000
4500

Stack
8000

9000
Heap

10000

1

segment register (eg %CS)

0x3000

pointer to descriptor table

0x3000

100

offset register (eg %eip)

+

3000

8

Pointer to Descriptor Table

• Global Descriptor Table (GDT)

• Stored in memory

• Pointed to by GDTR (GDT Register)
– lgdt (instruction used to load the GDT register)

• Similar table called LDT present in x86 (not used by xv6!)

047 16

sizebase

GDTR

Segment Descriptor

Segment Descriptor

Segment Descriptor

Segment Descriptor

Segment Descriptor

Segment Descriptor

GDTSize : size of GDT
Base : pointer to GDT

9

Segment Descriptor

• Base Address
– 0 to 4GB

• Limit
– 0 to 4GB

• Access Rights
– Execute, Read, Write

– Privilege Level (0-3)

Access Limit

Base Address

10

Segment Registers

• Holds 16 bit segment selectors
– Points to offsets in GDT

• Segments associated with one of three types of storage
– Code

• %CS register holds segment selector
• %EIP register holds offset

– Data
• %DS, %ES, %FS, %GS registers hold segment selector

– Stack
• %SS register holds segment selector
• %SP register holds stack pointer
(Note: Only one code segment and stack segment can be accessible

at a time. But 4 data segments can be accessed simultaneously)

11

x86 address translation

CPU

Logical
Address
(segment

+
offset) Segmentation

Unit

Linear
Address Paging

Unit

Physical
Memory

Physical
Address

12

Linear to Physical Address

• 2 level page translation • How many page
tables are
present?

• What is the
maximum size of
the process’
address space?
– 4G

ref : mmu.h (PGADDR, NPDENTRIES, NPTENTRIES, PGSIZE)

13

The full Picture

Initialized once
common for all
processes

Each proces
has one

14

Virtual Address Advantages
(Isolation between Processes)

Text
(instructions)

Data

Heap

Stack

Text
(instructions)

Data

Heap

Stack

Process AProcess A Process BProcess B

Virtual Memory Physical Memory Virtual Memory

Process A
Page
Table

Process B
Page
Table

15

Virtual Addressing Advantages
Paging on Demand

• RAM only loads pages into memory whenever needed

• When new program is executed page table is empty

Page table
for process

(is stored in RAM)

0

1

2

3

0

0

0

0

0

0

1

2

3

4

5

6

4

5

6

0

0

Present/absent

Present/Absent bit : 1 if entry in page table is valid, 0 if invalid
In x86 : PTE_P

0

0

0

0

0

0

0

0

1

2

3

16

Paging on Demand (2)

• As data gets referenced, page table gets filled up.

• Page frame loaded from hard disk

Page table
for process

(is stored in RAM)

0

1

2

3

0

0

3

0

0

0

1

2

3

4

5

6

4

5

6

0

0

Present/absent

0

0

1

0

0

0

0

0

1

2

3

17

Paging on Demand(3)

• As execution progresses, more entries in page table get filled.

• Similarly, more frames in RAM get used

• Eventually, entire RAM is filled

Page table
for process

(is stored in RAM)

0

1

2

3

1

0

3

2

0

0

1

2

3

4

5

6

4

5

6

0

0

Present/absent

1

0

1

1

1

0

0

0

1

2

3

What next?

18

Paging on Demand (4)

• A particular frame is selected and swapped out into disk

• A new page swapped in

• Page table is updated

Page table
for process

(is stored in RAM)

0

1

2

3

1

0

3

2

0

0

1

2

3

4

5

6

4

5

6

0

1

Present/absent

0

0

1

1

1

0

1

0

1

2

3

Disk
(swap space)

Swap out

Swap in

19

Virtual Memory achieves SecuritySecurity

• Security
– Page tables augmented by protection bits

Page table
for process

protection bits

20

Protection Bits in x86

• PTE_W : controls if instructions are allowed to write to
the page

• PTE_U : controls if user process can use the page. If not
only kernel can use the page

These are checked by the MMU for each memory access!

21

• Making a copy of a process
is called forking.
– Parent (is the original)

– child (is the new process)

• When fork is invoked,
– child is an exact copy of

parent
• When fork is called all pages

are shared between parent
and child

• Easily done by copying the
parent’s page tables

Physical Memory

Parent
Page
Table

Child
Page
Table

Virtual Addressing Advantages
(easy to make copies of a process)

22

Virtual Addressing Advantages
(Shared libraries)

• Many common functions such as printf implemented in shared libraries

• Pages from shared libraries, shared between processes

Process AProcess A Process BProcess B

Virtual Memory Physical Memory Virtual Memory

Process A
Page
Table

Process B
Page
Table

printf(){ …} printf(){ …}

printf(){ …}

23

Virtual Addressing Advantages
(Shared Memory)

• Shared memory between processes
easily implemented using virtual
memories

– Shared memory mapped to the same
page

– Writes from one process visible to
another process

Process 1

Process 2

Shared
memory

kernel

userspace

24

back to booting…

25

so far…

BIOS

bootloader

• executes on reset.
• does POST, initializes devices
• loads boot loader to 0x07c00 and jump to it
(all in real mode)

Power on Reset

• disable interrupts
• Setup GDT (8941)
• switch real mode to protected mode
• setup an initial stack (8967)
• load kernel from second sector of disk to
 0x100000
• executes kernel (_start)

26

Memory when kernel is invoked
(just after the bootloader)

• Segmentation enabled but no paging

• Memory map

CPU Segmentation
Unit

physical
memorylogical

address
physical
address

code
data

bootloader

stack

logical
memory

physical memory

kernel

0x
1

00
00

0

Slide taken from Anton Burtsev, Univ. of Utah

Memory Management Analysis

• Advantages
– Got the kernel into protected mode (32 bit code) with minimum

trouble

• Disadvantages
– Protection of kernel memory from user writes

– Protection between user processes

– User space restricted by physical memory

• The plan ahead
– Need to get paging up and running

27

CPU Segmentation
Unit

physical
memorylogical

address
physical
address

OS code are not Relocatable

• kernel.asm (xv6)

• The linker sets the
executable so that
the kernel starts
from 0x80100000

• 0x80100000 is a
virtual address and
not a physical
address

28

29

Virtual Address Space

0

0xffffffff

KERNBASE
0x80000000

Virtual

Physical

Device memory

+0x100000

0

0x100000

PHYSTOP

• Kernel memory mapped into every process
 - easy to switch between kernel and user modes
• VA(KERNBASE:+PHYSTOP) PA(0:PHYSTOP)
 - convert from VA to PA just by +/- KERNBASE
 - easily write to physical page
 - limits size of physical memory to 2GB

Kernel Memory

ref : memlayout.h (0200)

Converting virtual to physical
in kernel space

30

What would be the address generated before and immediately after paging is
enabled?

before : 0x001000xx
Immediately after : 0x8001000xx

So the OS needs to be present at two memory ranges

31

Early Kernel Paging Initialization

• Kernel entry point : _start (1036)

Turn on Page size
extension

Set Page Directory
Why 4MB pages? Simplicity
(We just want 2 pages)

32

4MB Pages

33

Kernel memory setup

• First setup two 4MB pages
– Entry 0:

Virtual addresses 0 to 0x04000000 Physical addresses 0 to
4MB

– Entry 512:
 Virtual addresses 0x80000000 to 0x84000000

 Physical addresses 0 to 4MB

Why do we need to map this twice?

34

First Page Table

courtesy Anton Burtsev, Univ. of Utah

logical
memory

physical memory

virtual memory

35

Enable Paging

• Entry point : _start (1036)

Turn on Page size
extension

Set Page Directory

Enable Paging

36

Stack setup

• Entry point : _start (1036)

Turn on Page size
extension

Set Page Directory

Enable Paging

Stack setup

37

Stack

courtesy Anton Burtsev, Univ. of Utah

38

Execute main

• entry point : _start (1036)

Turn on Page size
extension

Set Page Directory

Enable Paging

Stack setup

Jump to main

New Address Scheme Analysis

Scheme : enable paging with 2 pages of 4MB each

• Advantages,
– Useful for initializing the rest of memory

• (issues with kmalloc …. later!!!)

• Disadvantages
– Kernel mapped twice, reducing user space area

– Only 4MB of physical memory is mapped. Remaining
is unutilized

xv6 next goes into the final addressing scheme

39

40

(Re)Initializing Paging

• Configure another page table
– Map kernel only once making space for other

user level processes

– Map more physical memory, not just the first
4MB

– Use 4KB pages instead of 4MB pages
• 4MB pages very wasteful if processes are small

• Xv6 programs are a few dozen kilobytes

41

Virtual Address Space

1823

KERNBASE = 0x80000000
KERNLINK = KERNBASE + 0x100000
PHYSTOP = 0xE000000
EXTMEM = 0x100000

Setting Up kernel pages (vm.c)
1. stuct kmap

data obtained from linker script, which determines
size of code+readonly data

2. Kernel page tables set up in kvmalloc() (1857)

 (invoked from main)

mappages (1779)

• Fill page table entries
mapping virtual addresses
to physical addresses

• Which page table entry?
– obtained from walkpgdir

• What are the contents?
– Physical address

– Permissions

– present

42

walkpgdir (1754)

• Create a page table entry
corresponding to a virtual
address.

• If page table is not present,
then allocate it.

• PDX(va) : page directory
index

• PTE_ADDR(*pde) : page
directory entry

• PTX(va) : page table entry

43

44

Using Page Tables (in OS)

• Functions available
– mappages (1779) : create page table entries mapping

virtual addresses to physical addresses

– copyuvm (2053): copy a process’s page table into
another

– walkpgdir (1754) : return page table entry
corresponding to a virtual address

45

User Pages mapped twice

0

0xffffffff

KERNBASE

Virtual

Physical

Device memory

+0x10000

Device memory

0

0x10000

PHYSTOP

Kernel Memory

• Kernel has easy access to user pages (useful for
system calls)

46

(Re)Initializing Segmentation

• Segments
– Kernel code

– Kernel data

– User code

– User data

– Per CPU data

ref : seginit (1716)

47

Segment Descriptor in xv6

ref : mmu.h ([7], 0752, 0769)

48

Loading the GDTR

• Instruction LGDT
• Each CPU has its own GDTR

ref : x86.h

Per CPU Data

49

Recall
Memory is Symmetric Across Processors

Processor
1

Processor
2

Processor
3

Processor
4

front side bus

North BridgeDRAM
Memory bus

• Memory Symmetry
• All processors in the system share the same memory space
• Advantage : Common operating system code

• However there are certain data which have to be unique to each
processor
• This is the per-cpu data
• example, cpu id, scheduler context, taskstate, gdt, etc.

Naïve implementation of
per-cpu data

• An array of structures, each element in array corresponding to a processor

• Access to a per-cpu data, example : cpu[cpunum()].ncli

• This requires locking every time the cpu structure is accessed
– eg. Consider process migrating from one processor to another while updating a per-cpu

data
– slow (because locking can be tedious)!!!

51ref : proc.h [23]

Alternate Solution
(using CPU registers)

• CPU has several general purpose registers
– The registers are unique to each processor (not shared)

• Use CPU registers to store per-cpu data
– Must ensure the gcc does not use these registers for other

purposes

• Fastest solution to our problem, but we do not have so
many registers

52Content borrowed from Carmi Merimovich (http://www2.mta.ac.il/~carmi/)

Next best solution
(xv6 implementation)

• In seginit(), which is run on each CPU
initialization, the following is done.

– GDTR will point upon cpu initialization to
cpus[cpunum()].gdt.

– (Thus, each processor will have its own private GDT in
struct cpu).

• Have an entry which is unique for each
processor

– The base address field of SEG_KCPU entry in GDT is
&cpus[cpunum()].cpu (1731)

– %gs register loaded with SEG KCPU << 3.

• Lock free access to per-cpu data
– %gs indexes into the SEG_KCPU offset in GDT

– This is unique for each processor

53

CPU0 CPU1

GDT
For CPU0

GDT
For CPU1

per-cpu
for CPU0

per-cpu
for CPU1

%gs %gs

Content borrowed from Carmi Merimovich (http://www2.mta.ac.il/~carmi/)

Using %gs

• Without locking or cpunum() overhead we have:
– %gs:0 is cpus[cpunum()].cpu.

– %gs:4 is cpus[cpunum()].proc.

• If we are interrupting user mode code then %gs
might contain irrelevant value. Hence
– In alltraps %gs is loaded with SEG_KCPU << 3.
– (The interrupted code %gs is already on the trapframe.)

• gcc not aware of the existence of %gs, so it will no generate code messing
up gs.

54Content borrowed from Carmi Merimovich (http://www2.mta.ac.il/~carmi/)

Allocating Memory

55

56

Allocating Pages (kalloc)
Physical
Memory

0

end of
kernel

PHYSTOP

used for allocation

Used page
Free page

freelist

• Physical memory allocation done in page
 granularity (i.e. 4KB)
• Free physical pages in a list
• Page Allocation removes from list head (see
 function kalloc)
• Page free adds to list head (see kfree)

ref : kalloc.c [30]

57

Freelist Implementation

• How is the freelist implemented?
– No exclusive memory to store links (3014)

ptr to next free page

ptr to next free page

ptr to next free page

ptr to next free page

freelist

58

Initializing the list
(chicken & egg problem)

create free list marking
all pages as free

at boot

access memory via
Page tables

this needs

Page tables are
in memory and need to

be allocated
Create a page table

this needs

ref : kalloc.c (kinit1 and kinit2)

Resolved by a separate page allocator during boot up, which allocates
4MB memory just after the kernel’s data segment (see kinit1 and kinit2).

For next class…

• revise / learn interrupt handling in x86
processors

59

	Initializing Memory and Memory Management in xv6
	Outline
	x86 address translation
	Slide 4
	Segmentation Unit
	Segmentation (logical to linear address)
	Example
	Pointer to Descriptor Table
	Segment Descriptor
	Segment Registers
	Slide 11
	Linear to Physical Address
	The full Picture
	Virtual Address Advantages (Isolation between Processes)
	Virtual Addressing Advantages Paging on Demand
	Paging on Demand (2)
	Paging on Demand(3)
	Paging on Demand (4)
	Virtual Memory achieves Security
	Protection Bits in x86
	Virtual Addressing Advantages (easy to make copies of a process)
	Virtual Addressing Advantages (Shared libraries)
	Virtual Addressing Advantages (Shared Memory)
	back to booting…
	so far…
	Memory when kernel is invoked (just after the bootloader)
	Memory Management Analysis
	OS code are not Relocatable
	Virtual Address Space
	Converting virtual to physical in kernel space
	Early Kernel Paging Initialization
	4MB Pages
	Kernel memory setup
	First Page Table
	Enable Paging
	Stack setup
	Stack
	Execute main
	New Address Scheme Analysis
	(Re)Initializing Paging
	Slide 41
	mappages (1779)
	walkpgdir (1754)
	Using Page Tables (in OS)
	User Pages mapped twice
	(Re)Initializing Segmentation
	Segment Descriptor in xv6
	Loading the GDTR
	Per CPU Data
	Recall Memory is Symmetric Across Processors
	Naïve implementation of per-cpu data
	Alternate Solution (using CPU registers)
	Next best solution (xv6 implementation)
	Using %gs
	Allocating Memory
	Allocating Pages (kalloc)
	Freelist Implementation
	Initializing the list (chicken & egg problem)
	For next class…

