Interrupts, Exceptions, and
System Calls

Chester Rebeiro
lIIT Madras

OS & Events

e OS iIs event driven

—l.e. executes only when there is an interrupt,
trap, or system call

_J

=" User process 1 1 User process 2

OS

Privilege level

event

»time

Why event driven design?

* OS cannot trust user processes
— User processes may be buggy or malicious
— User process crash should not affect OS

* OS needs to guarantee fairness to all user
Processes
— One process cannot ‘hog’ CPU time
— Timer Iinterrupts

Event Types

Events

v v

Interrupts Exceptions

|
l l

Hardware Interrupts Software Interrupts

Events

* Interrupts : raised by hardware or
programs to get OS attention
— Types

* Hardware interrupts : raised by external hardware
devices

* Software Interrupts : raised by user programs

* Exceptions : due to illegal operations

Event view of CPU

4u| while(fetch next instruction)

|

Execute Instruction

Current task
suspended

Execute event
in handler

Where?

Exception & Interrupt Vectors

Event occured What to execute next?

Each interrupt/exception provided a number

Number used to index into an Interrupt descriptor table
(IDT)

IDT provides the entry point into a interrupt/exception
handler

0 to 255 vectors possible
— 0 to 31 used internally
— Remaining can be defined by the OS

Exception and Interrupt Vectors

Vector Mne- Description Type Error Source
Mao. monic Code
0 #DE Divide Emror Fauilt ha DNy and 100 fins true tions.
1 408 RESERVED Fauitt) Trap Mo For lintel use onhy.
2 - WM bniterupt Inter nupt Ha Nonmaskable external internupt.
3 H#BP Bre akpoint Trap Mo INT 3 instruction.
4 #OF Ouerfiow Trap Mo INTOinstruction
5 HBR BOUND Range Exceadad Fauilt Mo BOUND instiuction
6 D invalid Opeode (Undefined Opoode) | Fault Ha UD2 irstruction o resenied opoode.!
7 H#HM Device Mot Available (Mo Math Fault Mo Floating-point or WAl TAPWAIT instruction.
Coprocessor)
a8 H#DF Double Fauli Abort Yes Any instruction that can generate an
(zera) exception, an MM, or an INTRL
=] Coprocessor Segment Overun Fault Mo Floating-point instruction ®
(reserved)
10 #T5 Invalid TSS Fauilt e Task switchar TS5 acoess
11 #NP Segment Not Present Fault Yes Loading seqment feg Shars or acce ssing
system segments.
12 #55 Stack-Segment Fault Fault Yes Stack operations and 55 register loads.
13 #op Genaral Protection Fault Yes Arry memary reference and other
protection chedks.
14 #PF Page Fault Fauilt Yes Army memaory reference.
15 - {intel reserved. Do not use.) Mo
16 #MF 87 FPU Floating-Point Ervor (Math | Fault Ma *B7 FPU floating-point or WAITF AT
Fauilt) Instruction.
17 AL Alignment Ched Fault g Arty data reference in memary.?
{Zevc)
18 #MC Machine (had Abart Mo Errar Mﬁd{l‘f any) and source are model
dependent.
19 #XM SIMD Flaating-Paint Exception Fauilt Mo SSE/SSE 2/55E 3 floating-point
instructions®
20 H#VE Virtualization Exception Fault Mo EPT violations®
21-31 - intel reserved Donot use
32-255 - User Defined (Nan-reserved) Intemupt External intermupt or INT n instruction
interrupts

Xv6 Interrupt Vectors

* Oto 31 reserved by Intel
* 32 to 63 used for hardware interrupts
T _IRQO = 32 (added to all hardware IRQs to

scale them)
* 64 used for system call interrupt

ref : traps.h ([31], 3152)

Events

Events

v

Interrupts

|
1

l

v

Exceptions

Hardware Interrupts

Software Interrupts

10

Why Hardware Interrupts?

Several devices connected to the CPU
— eg. Keyboards, mouse, network card, etc.

These devices occasionally need to be serviced
by the CPU

— eg. Inform CPU that a key has been pressed

These events are asynchronous i.e. we cannot
predict when they will happen.

Need a way for the CPU to determine when a
device needs attention

11

Possible Solution : Polling

* CPU periodically queries device to
determine If they need attention

 Useful when device often needs to send
Information

— For example in data acquisition systems

* |f device does not need attention often,
— Polling wastes CPU time

12

Interrupts

* Each device signals to the CPU that it wants to be serviced

* Generally CPUs have 2 pins
— INT : Interrupt
— NMI : Non maskable — for very critical signals

* How to support more than two interrupts?

Device 2 INT‘

Device 1

NMI

8259 Programmable Interrupt Controller

8259 (Programmable interrupt
controller) relays upto 8 interrupt to
CPU

Devices raise interrupts by an
‘interrupt request’ (IRQ)

CPU acknowledges and queries
the 8259 to determine which device
interrupted

Priorities can be assigned to each
IRQ line

8259s can be cascaded to support
more interrupts

device O

device 7

N

8259

] INT
LINTA

14

Interrupts in legacy CPUs

15 IRQs (IRQO to IRQ15), so 15
possible devices
Interrupt types

— Edge

— Level
Limitations

— Limited IRQs

— Spurious interrupts by 8259

* Eg. de-asserted IRQ before IRQA

System Timer L}n
Keyboard f—— 3]
Y
Serial Devices |———3»
Serial Devices ;} =%
Parallel Devices ;}-
Floppy Drves L}-
Parallel Devices ;}r
CMOS Clock |——3»
Ayailable —}-g
Avalable f———
aalable |—' 3
Avalable |——3 22
Math Prcessor |— 3l
Primary HD L},
Secondary HD —}1 2

15

Edge vs Level Interrupts

* Level triggered Interrupt : as long as the IRQ line is
asserted you get an interrupt.
— Level interrupt still active even after interrupt service is complete

— Stopping interrupt would require physically deactivating the
Interrupt

* Edge triggered Interrupt : Exactly one interrupt occurs
when IRQ line Is asserted

— To get a new interrupt, the IRQ line must become inactive and
then become active again

* Active high interrupts: When asserted, IRQ line is high
(logic 1)

16

Edge vs Level Interrupts
(the crying baby... an analogy)

* Level triggered interrupt :

— when baby cries (interrupt) stop what you are doing and feed the
baby

— then put the baby down
— If baby still cries (interrupt again) continue feeding

* Edge triggered interrupt
— eg. Baby cry monitor, where light turns red when baby is crying.
The light is turned off by a push button switch

* iIf baby cries and stops immediately you see that the baby has cried
(level triggered would have missed this)

* if the baby cries and you press the push buttton, the light turns off,
and remains off even though the button is pressed

http://venkateshabbarapu.blogspot.in/2013/03/edge-triggered-vs-level-triggered.html

17

Spurious Interrupts

Consider the following Sequence

1.

2.
3.
4

Device asserts level triggered interrupt
PIC tells CPU that there is an interrupt
CPU acknowledges and waits for PIC to send interrupt vector
However, device de-asserts interrupt. What does the PIC do?

This Is a spurious interrupt

To prevent this, PIC sends a fake vector number called the

spurious IRQ. This is the lowest priority IRQ.

18

Advanced Programmable Interrupt
Controller (APIC)

Hrocessor #1 Hrocessor #2 Frocessor #3 Processor #4
CPU CPU CPU CPU
Local APIC Local APIC Local APIC Local APIC
Interrupt IPls Interrupt A IPls Interrupt IPls Interrupt 1 IPls
Messages Messages v Messages Messages v
IntlerTlthjll 3-wire APIC Bus
Messages
Y
External ——
Interrupts - IO APIC
System Chip Set

External interrupts are routed from peripherals to CPUs in multi processor systems
through APIC

APIC distributes and prioritizes interrupts to processors
Interrupts can be configured as edge or level triggered

Comprises of two components
— Local APIC (LAPIC)
— 1/OAPIC
APICs communicate through a special 3-wire APIC bus.
— In more recent processors, they communicate over the system bus

LAPIC and I/OAPIC

LAPIC :

— Recelves interrupts from I/O APIC and routes it to the
local CPU

— Can also receive local interrupts (such as from thermal
sensor, internal timer, etc)

— Send and receive IPIs (Inter processor interrupts)

* |PIs used to distribute interrupts between processors or
execute system wide functions like booting, load distribution,
etc.

/0 APIC

— Present in chipset (north bridge)
— Used to route external interrupts to local APIC

20

/O APIC Configuration in xv6

IO APIC : 82093AA I/O APIC

Function : ioapicinit (in ioapic.c)

All interrupts configured during boot up as
— Active high

— Edge triggered

— Disabled (interrupt masked)

Device drivers selectively turn on interrupts using
loapicenable
— Three devices turn on interrupts in xv6

* UART (uart.c)

* IDE (ide.c)

* Keyboard (console.c)

ref . ioapic.c [73], (http://www.intel.com/design/chipsets/datashts/29056601.

df) -4

LAPIC Configuration in xv6

1. Enable LAPIC and set the spurious IRQ (i.e.

the default IRQ)

2. Configure Timer
* [Initialize timer register (10000000)
* Setto periodic

Initial count
10000000 » 9999999 » 9999998

~~o
~<

) 0

Interrupt

ref : lapic.c (lapicinit) (7151)

22

What happens when there Is an

By device
and APICs

By CPU<

Interrupt?

Device asserts IRQ of I/OAPIC

A

LAPIC asserts CPU interrupts

After current instruction completes
CPU senses interrupt line and obtains IRQ number
from LAPIC

Switch to kernel stack if necessary

I/O APIC transfer interrupt to LAPIC |------ > Either speC|aI 3 wire APIC bus

. system bus

By device
and APICs

0
CPU

automaticall

bone in
software

What more happens when there Is
an Interrupt?

, X86 saves the SS, ESP, EFLAGS,
N CS, EIP, error code on stack

| (restored by iret instruction).

" Suspends current task.

Basic program state saved

How does hardware find the OS
Jump to interrupt handler interrupt handler?

Just do the important stuff like

S | ... respond to interrupt
software Interrupt handler (top half) [~ > ... more storing of program state
' ... schedule the bottom half
l .. IRET
6 _ Restore flags and registers saved
Return from interrupt earlier. Restore running task.

The work horse for the interrupt

software Interrupt handler (bottom half) .

Stacks

* Each process has two - el e« o
stacks
Kernel Stack

— a user space stack for process
— a kernel space stack

>
o
QLo
% GEJ - Heap
o< | =
0
9 2 ¢ User Stack
L D
< = O
D 9_
N o Data
Q
S &
< > Text
(instructions)

—

Virtual Memory Map
25

Switching Stack

® (to switch or not to switch)

When event occurs OS executes
If executing user process, privilege changes from low to high
If already in OS no privilege change

Why switch stack?
OS cannot trust stack (SS and ESP) of user process

Therefore stack switch needed only when moving from user to
kernel mode

How to switch stack?
CPU should know locations of the new SS and ESP.
Done by task segment descriptor

Done automatically by CPU

26

To Switch or not to Switch

Executing in
Kernel space

No stack switch
Use the current stack

Executing in
User space

e Switch stack to a
kernel switch

How to switch stack?

Task State Segment

* Specialized segment for hardware
support for multitasking

* TSS stored in memory
— Pointer stored as part of GDT
— Loaded by instruction : Itr(SEG_TSS <<
3) in switchuvm()

* Important contents of TSS used to
find the new stack
— SS0 : the stack segment (in kernel)
— ESPO : stack pointer (in kernel)

/O bit map 64

&0

58
50

| 48
EDI
ESI
EBP
ESP 38
EBX
EDX 30
ECX
EAX 28
EFLAGS

40

ref : (switchuvm) ([18],1873), taskstate ([08],0850)

28

® Saving Program State

Why?

* Current program being executed must be
able to resume after interrupt service is
completed

® Saving Program State

When no stack switch occurs
use existing stack

«—— ESP before

EFLAGS
CS
EIP

Error Code |«— ESP after

SS : No change
ESP : new frame pushed

Error code is only for some

exceptions. Contains additional
Information.

When stack switch occurs
also save the previous SS and ESP

«——ESP before

Interrupted Procedure

Stack (in user space)

SS

ESP

EFLAGS

CS

Procedure’s kernel stack

EIP

Error Code

«— ESP after

SS : from TSS (SS0)
ESP : from TSS (ESPO)

30

Finding the Interrupt/Exception
@ Service Routine
* IDT : Interrupt descriptor table
— Also called Interrupt vectors CPU
— Stored in memory and pointed to by IDTR

— Conceptually similar to GDT and LDT
— Initialized by OS at boot

IDTR Register
47 16 15 0
| IDT Base Address | DT Limit
l Selected Descriptor =
Imterrupt
4 Descriptor Table (IDT) Base Address + (Vector * 8)
S Gate fo
Imterrupt #n {n—1)=8
{';* -:’.}
ate for
Intermupt #3 18
ate for
Intermupt #2 8
Gate for
- Intermupt #1 i}
31 0

31

Interrupt Gate Descriptor

1 Segment present
points to offset in the segment 0 Segment absent

which contains the interrupt handler
(higher order bits)

privilege level

a 16 |6 14 13 12 B 7 5 4 a

Offsat 31..16

p

D
ploD110|00O0 4
L

a1 18

15

Segment Selector

Offeet 15..0 0

points to a segment descriptor
for executable code in the GDT

points to offset in the segment
which contains the interrupt handler
(lower order bits)

ref : SETGATE (0921), gatedesc (0901)

32

Getting to the Interrupt Procedure

Desfination
DT Code Segment
Offset Interrupt
e Procedure
et | Wempter | (D>
(obtained from Done
either the PIC or APIC) -
automatically
-—
IDTR - by CPU
Segment Selector
GDT or LDT
IDTR : pointer to IDT e
table in memory
- Segment
= Descriptor
64 bytes

33

Setting up IDT In xv6

D | 168 15 14 13 12 BE 7 5 4 a
C
Orffset 3116 Pl e |DD1 710|000 4
L
a1 16 15 a
Segment Salector Offest 15..0 0

* Array of 256 gate descriptors (idt)

* Each idt has
— Segment Selector : SEG_KCODE
* This is the offset in the GDT for kernel code segment
— Offset : (interrupt) vectors (generated by Script vectors.pl)
* Memory addresses for interrupt handler
* 256 interrupt handlers possible
* Load IDTR by instruction lidt

— The IDT table is the same for all processors.
— For each processor, we need to explicetly load lidt (idtinit())

ref : tvinit() (3317) and idtinit() in trap.c

Interrupt Vectors in Xv6

vectorQO

vectorl

vector2

vector i:
push
push i
Jmp alltraps

vector |

vector255

Error code:

Hardware pushes error
Code for some exceptions.
For others, xv6 pushes 0.

ref :

vectors.s [generated by vectors.pl (run $perl vectors.pl)] ([32]) 35

3253 .globl alltraps)
3254 alltraps:
/3255)

Build trap frame.
alltraps 3256 pushl %ds
3237 pushl %es
3258 pushl %fs
3259 pushl %gs

\3260 _ pushal J
L 3261

Creates a trapframe 3262 4 Set up data and u_seqments.
3263 movw §(SEG_FDATA<<3), %ax

Stack frame used for
. 3264 movw %ax, %ds
interrupt 3265 movw %ax, %es

EF movw §(SEG_KCPU<<3), %ax
3267 movw %ax, %fs

\

\J268 movw %ax, %gs Y,
Setup kernel data and code 3269
3270 # Call trap(tf), where tf=%esp
segments 3271 pushl %esp

3272 call trap
3273 addl $4, %esp
3274

Invokes trapé 3275 # Return falls through to trapret...
(3350 [33]) 3276 .globl trapret

3277 trapret:

3278 popal

3279 popl %gs

3230 popl %fs

3231 popl %es

3232 popl %ds

3233 addl $0x8, %esp & trapno and errcode
3284 iret

ref : trapasm.S [32] (alltraps), trap.c [33] (trap())

36

trapframe

@)
SS o =
o<)
SS }g =) <
ESP Q g’,_; i’;
EFLAGS Qo >0
CS ~ g
EIP | J @
Error COde\NPushed by
HE I(\jIlSJ mber hardware or
es W software

<

eax &

o 2

QD

@ argument for
esl
ESP_. esp) (pointer to this trapframe)
(empty) trapframe
p->kstack —

ref : struct trapframe in x86.h (0602 [06])

37

trapframe struct

1602 struct trapframe {

0603 /) registers as pushed by pusha

0604 uint edi;

0605 uint esi:

0606 uint ebp;

0607 uint oesp; /[useless & ignored
0608 uint ebx;

0609 uint edx;
0610 uint ecx:
0611 uint eax:
0612

0613 J// rest of trap frame

0614 ushort gs:

0615 ushort paddingl:

0616 ushort fs;

0617 ushort padding2:

0613 ushort es:

0619 ushort padding3:

0620 ushort ds;

1621 ushort paddingd:

0622 uint trapno:

0623

0624 // below here defined by x86 hardware

0625 uint err;

0626 uint eip;

0627 ushort cs:

0628 ushort padding3:

1629 uint eflags;

0630

0631 /! below here only when crossing rings, such as
0632 uint esp;

0633 ushort ss;

0634 ushort paddingé:

0635 }

from user to kernel

SS
ESP
EFLAGS
CS
EIP
|_Error Code |
Trap Number
ds
es

eax
ecXx

esi
edi
esp

(empty)

38

@ Interrupt Handlers

* Typical Interrupt Handler
— Save additional CPU context (written in assembly)
(done by alltraps in xv6)
— Process interrupt (communicate with 1/O devices)
— Invoke kernel scheduler
— Restore CPU context and return (written in assembly)

39

Interrupt Latency

time needed to service an interrupt

O

3) ' 5
User process 1 | ‘ User process 2

Privilege level

interrupt Interrupt handler executes
>time

Interrupt latency can be significant

Importance of Interrupt Latency

* Real time systems

— OS should ‘guarantee’ interrupt latency is less than a
specified value

* Minimum Interrupt Latency
— Mostly due to the interrupt controller

* Maximum Interrupt Latency
— Due to the OS

— Occurs when interrupt handler cannot be serviced
Immediately

* Eg. when OS executing atomic operations, interrupt handler
would need to wait till completion of atomic operations.

Atomic Operations

Interrupt handler

Global variable :
int Xx;

Kernel code 1 Kernel code

/ interrupt

for(i=0; | <1000; ++1)

X++ X=X*D5

Value of x depends on whether an interrupt occurred or not!

Solution : make the part of code atomic (i.e. disable interrupts while executing
this code)

Nested Interrupts

Interrupt handler 2

Interrupt handler 1

interrupt

Kernel code Kernel code

interrupt

Typically interrupts disabled until handler executes
— This reduces system responsiveness
To improve responsiveness, enable Interrupts within handlers
— This often causes nested interrupts
— Makes system more responsive but difficult to develop and validate

Interrupt handler approach: design interrupt handlers to be small so that
nested interrupts are less likely

Small Interrupt Handlers

* Do as little as possible in the interrupt
handler

— Often just queue a work item or set a flag
* Defer non-critical actions till later

Top and Bottom Half Technigue
(LInux)

* Top half : do minimum work and return from
Interrupt handler
— Saving registers
— Unmasking other interrupts
— Restore registers and return to previous context

* Bottom half : deferred processing
— eg. Workgueue
— Can be interrupted

Interrupt Handlers in xv6

handler

~
vectors.S —__,| alltraps Interrupt s
(alltraps.S) | L— (t:;pc) < > SpeCifi(I?

/

Example

(Keyboard Interrupt in xv6)

* Keyboard connected to
second interrupt line in
8259 master

* Mapped to vector 33 in Xv6
(T_IRQO + IRQ_KBD).

* In function trap, invoke
keyboard interrupt
(kbdintr), which is
redirected to consleintr

System Timer

- ————— W
2

| 0 o)

Serial Devices

>
LI

Serial Devices

4

Paralle Devicas

Floppy Drives

Parallel Devices

8259

GMOS Clock

Available

Available

Available

Available

tath Processor

Primary HD

Secondary HD

&2359

Keyboard Interrupt Handler

consoleintr (console.c)

get pressed character (kbdgetc (kbd.cO)

Service special characters

Push into circular buffer

talks to keyboard through
specific predifined io ports

segment where data is written

read pointer write pointer
N /
r W

segment where data is NOT written

System Calls and Exceptions

Events

Events

v

Interrupts

|
l

l

v

Exceptions

Hardware Interrupts

Software Interrupts

50

Hardware vs Software

Hardware Interrupt

Device

L

* Adevice (like the PIC)
asserts a pin in the CPU

INT

Interrupt

Software Interrupt

INT X

 An instruction which
when executed causes
an interrupt

o1

Software Interrupt

Software interrupt used
for implementing
system calls

— In Linux INT 128, is
used for system calls

— In xv6, INT 64 is used
for system calls

Process

ﬁSystem Calls
INT 64

Kernel

52

Example (write system call)

printf("%s", str);

libc invocation

User
space write(STDOUT)

int

Int Handler

Kernel
space

Implementation
of
write syscall

System call processing In kernel

Almost similar to hardware interrupts

F INT 64 Back to user
) process

l alltraps trap 't vector = 6 syscall
— — >
‘vectorS.S (alltraps.S) (trap.c) (syscall.c)

Executes the
System calls

System Calls Iin xv6

System call

tork()

exit()

wait()

kill(pid)

getpid()

sleep(n)
exec(filename, *argv)
sbrk(n)
open(tilename, flags)
read(fd, but, n)
write(td, but, n)
close(td)

dup(td)

pipe(p)
chdir(dirname)

mkdir(dirname)

mknod(name, major, minor)

tstat(td)
link (11, £2)

unlink(filename)

Description

Create process

Terminate current process

Wait tor a child process to exit
Terminate process pid

Return current process’s id

Sleep for n seconds

Load a file and execute it

Grow processs memory by n bytes
Open a file; flags indicate read/write
Read n byes from an open file into buf
Write n bytes to an open file
Release open file td

Duplicate td

Create a pipe and return fds in p
Change the current directory
Create a new directory

Create a device file

Return info about an open file
Create another name (£2) for the file {1
Remove a file

How does the
OS distinguish
between the system
calls?

55

System Call Number

System call number used to distinguish between system calls

System
call number
mov X, %eax
INT 64

Based on the system call number
function syscall invokes the
corresponding syscall handler

ystem call number

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

SYS fork
SYS exit
SYS walt
SYS pipe
SYS read
SYS kill
SYS exec
SYs fstat
SYS chdir
SYS dup
SYS getpid
SYS sbrk
SYS sleep
SYS uptime
SYS open
SYS write
SYS mknod
SYS unlink
SYS link
SYS mkdir
SYS close

System call handlers

[SYS fork]
[SYS exit]
[SYS walit]
[SYS pipe]
[SYS read]
[SYS kill]
[SYS exec]

[SYS fstat]
[SYS chdir]
[SYS dup]

[SYS getpid]
[SYS sbrk]

[SYS sleep]
[SYS uptime]
[SYS open]

[SYS write]
[SYS mknod]
[SYS unlink]
[SYS link]

[SYS mkdir]
[SYS close]

sys fork,
sys exit,
sys wait,
sys pipe,
sys read,
sys kill,
sys exec,
sys fstat,
sys chdir,
sys dup,
sys getpid,
sys sbrk,
sys sleep,
sys uptime,
sys open,
sys write,
sys mknod,
sys unlink,
sys link,
sys mkdir,
sys close,

ref . syscall.h, syscall() in syscall.c

56

Prototype of a typical System Call

int system_call(resource_descriptor, parameters)

return is generally
‘int’ (or equivalent)

sometimes ‘void’ What OS resource is the target
here?

int used to denote completion For example a file, device, etc.

status of system call sometimes

also has additional information If not specified, generally means

like number of bytes written to the current process

file

System call specific parameters
passed.
How are they passed?

o7

Passing Parameters
In System Calls

* Passing parameters to system calls not similar
to passing parameters in function calls

— Recall stack changes from user mode stack to kernel
stack.
* Typical Methods
— Pass by Registers (eg. Linux)
— Pass via user mode stack (eg. xv6)
* Complex

— Pass via a designated memory region
* Address passed through registers

58

Pass By Registers (Linux)

* System calls with fewer than 6 parameters
passed In registers

— %eax (sys call number), %ebx, %ecx,, %esi, %edi,
%ebp

* |f 6 or more arguments
— Pass pointer to block structure containing argument
list
* Max size of argument is the register size (eg. 32
bit)

— Larger pointers passed through pointers

59

Pass via User Mode Stack (xv6)

User process

push paraml

push param?2

push param3

mov sysnum, %eax
int 64

User stack

trapframe

paraml

SS

param?2

ESP

param3

EFLAGS

/

CS

EIP

Error Code

Trap Number

ds

es

eax

ecXx

esi

edi

ESP

(empty)

ESP pushed by hardware
contains user mode stack
pointer

proc entry
for process

Points to trapframe

ref : sys_open (sysfile.c), argint, fetchint (syscall.c)

60

Returns from System Calls

User process

push paraml

push param?2

push param3

mov sysnum, %eax
int 64

trapframe

SS

ESP

in system call

EFLAGS

CS

EIP

move result to eax in

trap frame

Error Code

Trap Number

ds

es

eax

ecXx

esi

edi

ESP

(empty)

61

Events

Events

v

Interrupts

|
1

l

v

Exceptions

Hardware Interrupts

Software Interrupts

62

Exception Sources

— Program-Error Exceptions
* Eg. divide by zero
— Software Generated Exceptions
* Example INTO, INT 3, BOUND
* INT 3 is a break point exception
* INTO overflow instruction
* BOUND, Bound range exceeded
— Machine-Check Exceptions

* Exception occurring due to a hardware error (eg. System bus error,
parity errors in memaory, cache memory errors)

STOP: 9x0900009C (Ox00000084, B9xPPPODD0O, OxB2000008, OxB88920151) "MACHINE_CHECK EXCEPTION"

Microsoft Windows : Machine check exception

63

Exception Types

Exceptions

Faults

Exceptions in the user space vs kernel space

Traps

Aborts

64

Faults

Exception that generally can be corrected.
Once corrected, the program can continue execution.

Examples :

Divide by zero error
Invalid Opcode
Device not available
Segment not present
Page not present

65

Traps

Traps are reported immediately after the
execution of the trapping instruction.

Examples:
Breakpoint
Overflow

Debug instructions

66

Aborts

Severe unrecoverable errors

Examples

Double fault : occurs when an exception Is
unhandled or when an exception occurs while
the CPU is trying to call an exception handler.

Machine Check : internal errors in hardware
detected. Such as bad memory, bus errors,
cache errors, etc.

67

	Interrupts, Exceptions, and System Calls
	OS & Events
	Why event driven design?
	Event Types
	Events
	Event view of CPU
	Exception & Interrupt Vectors
	Exception and Interrupt Vectors
	xv6 Interrupt Vectors
	Slide 10
	Why Hardware Interrupts?
	Possible Solution : Polling
	Interrupts
	8259 Programmable Interrupt Controller
	Interrupts in legacy CPUs
	Edge vs Level Interrupts
	Edge vs Level Interrupts (the crying baby… an analogy)
	Spurious Interrupts
	Advanced Programmable Interrupt Controller (APIC)
	LAPIC and I/OAPIC
	I/O APIC Configuration in xv6
	LAPIC Configuration in xv6
	What happens when there is an Interrupt?
	What more happens when there is an Interrupt?
	Stacks
	Switching Stack (to switch or not to switch)
	To Switch or not to Switch
	How to switch stack?
	Saving Program State
	Slide 30
	Finding the Interrupt/Exception Service Routine
	Interrupt Gate Descriptor
	Getting to the Interrupt Procedure
	Setting up IDT in xv6
	Interrupt Vectors in xv6
	alltraps
	trapframe
	trapframe struct
	Interrupt Handlers
	Interrupt Latency
	Importance of Interrupt Latency
	Atomic Operations
	Nested Interrupts
	Small Interrupt Handlers
	Top and Bottom Half Technique (Linux)
	Interrupt Handlers in xv6
	Example (Keyboard Interrupt in xv6)
	Keyboard Interrupt Handler
	System Calls and Exceptions
	Slide 50
	Hardware vs Software Interrupt
	Software Interrupt
	Example (write system call)
	System call processing in kernel
	System Calls in xv6
	System Call Number
	Prototype of a typical System Call
	Passing Parameters in System Calls
	Pass By Registers (Linux)
	Pass via User Mode Stack (xv6)
	Returns from System Calls
	Slide 62
	Exception Sources
	Exception Types
	Faults
	Traps
	Aborts

