
Interrupts, Exceptions, and
System Calls

Chester Rebeiro

IIT Madras

2

OS & Events

• OS is event driven
– i.e. executes only when there is an interrupt,

trap, or system call

event

User process 1

OS

User process 2

time

P
riv

ile
ge

 le
ve

l

1

3

3

0

3

Why event driven design?

• OS cannot trust user processes
– User processes may be buggy or malicious

– User process crash should not affect OS

• OS needs to guarantee fairness to all user
processes
– One process cannot ‘hog’ CPU time

– Timer interrupts

Event Types

Events

Interrupts Exceptions

Hardware Interrupts Software Interrupts

4

5

Events

• Interrupts : raised by hardware or
programs to get OS attention
– Types

• Hardware interrupts : raised by external hardware
devices

• Software Interrupts : raised by user programs

• Exceptions : due to illegal operations

6

Event view of CPU

while(fetch next instruction)

If event Execute event
in handler

no

yes

Execute Instruction

Current task
suspended

Where?

7

Exception & Interrupt Vectors

• Each interrupt/exception provided a number
• Number used to index into an Interrupt descriptor table

(IDT)
• IDT provides the entry point into a interrupt/exception

handler
• 0 to 255 vectors possible

– 0 to 31 used internally

– Remaining can be defined by the OS

Event occured What to execute next?

8

Exception and Interrupt Vectors

xv6 Interrupt Vectors

• 0 to 31 reserved by Intel

• 32 to 63 used for hardware interrupts

T_IRQ0 = 32 (added to all hardware IRQs to

 scale them)

• 64 used for system call interrupt

ref : traps.h ([31], 3152) 9

Events

Events

Interrupts Exceptions

Hardware Interrupts Software Interrupts

10

11

Why Hardware Interrupts?

• Several devices connected to the CPU
– eg. Keyboards, mouse, network card, etc.

• These devices occasionally need to be serviced
by the CPU
– eg. Inform CPU that a key has been pressed

• These events are asynchronous i.e. we cannot
predict when they will happen.

• Need a way for the CPU to determine when a
device needs attention

12

Possible Solution : Polling

• CPU periodically queries device to
determine if they need attention

• Useful when device often needs to send
information
– For example in data acquisition systems

• If device does not need attention often,
– Polling wastes CPU time

13

Interrupts

• Each device signals to the CPU that it wants to be serviced

• Generally CPUs have 2 pins
– INT : Interrupt

– NMI : Non maskable – for very critical signals

• How to support more than two interrupts?

CPU

INT
Device 2

Device 1
NMI

14

8259 Programmable Interrupt Controller

• 8259 (Programmable interrupt
controller) relays upto 8 interrupt to
CPU

• Devices raise interrupts by an
‘interrupt request’ (IRQ)

• CPU acknowledges and queries
the 8259 to determine which device
interrupted

• Priorities can be assigned to each
IRQ line

• 8259s can be cascaded to support
more interrupts

device 0

device 7

CPU

INT

INTA

15

Interrupts in legacy CPUs

• 15 IRQs (IRQ0 to IRQ15), so 15
possible devices

• Interrupt types
– Edge

– Level

• Limitations
– Limited IRQs

– Spurious interrupts by 8259
• Eg. de-asserted IRQ before IRQA

INTA

Edge vs Level Interrupts

• Level triggered Interrupt : as long as the IRQ line is
asserted you get an interrupt.
– Level interrupt still active even after interrupt service is complete

– Stopping interrupt would require physically deactivating the
interrupt

• Edge triggered Interrupt : Exactly one interrupt occurs
when IRQ line is asserted
– To get a new interrupt, the IRQ line must become inactive and

then become active again

• Active high interrupts: When asserted, IRQ line is high
(logic 1)

16

Edge vs Level Interrupts
(the crying baby… an analogy)

• Level triggered interrupt :
– when baby cries (interrupt) stop what you are doing and feed the

baby

– then put the baby down

– if baby still cries (interrupt again) continue feeding

• Edge triggered interrupt
– eg. Baby cry monitor, where light turns red when baby is crying.

The light is turned off by a push button switch
• if baby cries and stops immediately you see that the baby has cried

(level triggered would have missed this)

• if the baby cries and you press the push buttton, the light turns off,
and remains off even though the button is pressed

17http://venkateshabbarapu.blogspot.in/2013/03/edge-triggered-vs-level-triggered.html

Spurious Interrupts

Consider the following Sequence
1. Device asserts level triggered interrupt

2. PIC tells CPU that there is an interrupt

3. CPU acknowledges and waits for PIC to send interrupt vector

4. However, device de-asserts interrupt. What does the PIC do?

This is a spurious interrupt

To prevent this, PIC sends a fake vector number called the
spurious IRQ. This is the lowest priority IRQ.

18

19

Advanced Programmable Interrupt
Controller (APIC)

• External interrupts are routed from peripherals to CPUs in multi processor systems
through APIC

• APIC distributes and prioritizes interrupts to processors
• Interrupts can be configured as edge or level triggered
• Comprises of two components

– Local APIC (LAPIC)
– I/O APIC

• APICs communicate through a special 3-wire APIC bus.
– In more recent processors, they communicate over the system bus

20

LAPIC and I/OAPIC

• LAPIC :
– Receives interrupts from I/O APIC and routes it to the

local CPU
– Can also receive local interrupts (such as from thermal

sensor, internal timer, etc)
– Send and receive IPIs (Inter processor interrupts)

• IPIs used to distribute interrupts between processors or
execute system wide functions like booting, load distribution,
etc.

• I/O APIC
– Present in chipset (north bridge)
– Used to route external interrupts to local APIC

I/O APIC Configuration in xv6

• IO APIC : 82093AA I/O APIC
• Function : ioapicinit (in ioapic.c)
• All interrupts configured during boot up as

– Active high
– Edge triggered
– Disabled (interrupt masked)

• Device drivers selectively turn on interrupts using
ioapicenable
– Three devices turn on interrupts in xv6

• UART (uart.c)
• IDE (ide.c)
• Keyboard (console.c)

ref : ioapic.c [73], (http://www.intel.com/design/chipsets/datashts/29056601.pdf)21

LAPIC Configuration in xv6

1. Enable LAPIC and set the spurious IRQ (i.e.
the default IRQ)

2. Configure Timer
• Initialize timer register (10000000)

• Set to periodic

10000000 9999999

Initial count

9999998

3

21

0interrupt

22ref : lapic.c (lapicinit) (7151)

23

What happens when there is an
Interrupt?

LAPIC asserts CPU interrupts

Device asserts IRQ of I/OAPIC

Either special 3 wire APIC bus or
system bus

By device
and APICs

By CPU

I/O APIC transfer interrupt to LAPIC

After current instruction completes
CPU senses interrupt line and obtains IRQ number

from LAPIC

1

Switch to kernel stack if necessary

2

By device
and APICs

Done by
CPU
automaticall
yDone in
software

24

What more happens when there is
an Interrupt?

Jump to interrupt handler
How does hardware find the OS
interrupt handler?

4

Interrupt handler (top half)

Just do the important stuff like
 … respond to interrupt
 … more storing of program state
 … schedule the bottom half
 … IRET

software
5

Restore flags and registers saved
earlier. Restore running task.Return from interrupt

6

Interrupt handler (bottom half)
The work horse for the interrupt

software

7

Basic program state saved

3 X86 saves the SS, ESP, EFLAGS,
CS, EIP, error code on stack
(restored by iret instruction).
Suspends current task.

Stacks

• Each process has two
stacks
– a user space stack

– a kernel space stack

25

Text
(instructions)

Data

Heap

User Stack

Kernel (Text + Data)

Kernel Stack
for process

Virtual Memory Map

A
cc

es
si

bl
e

by

us
er

 p
ro

ce
ss

A
cc

es
si

bl
e

by

ke
rn

el

Switching Stack
(to switch or not to switch)

• When event occurs OS executes
– If executing user process, privilege changes from low to high

– If already in OS no privilege change

• Why switch stack?
– OS cannot trust stack (SS and ESP) of user process

– Therefore stack switch needed only when moving from user to
kernel mode

• How to switch stack?
– CPU should know locations of the new SS and ESP.

– Done by task segment descriptor

2

26

Done automatically by CPU

To Switch or not to Switch

• No stack switch

• Use the current stack

Executing in
Kernel space

Executing in
User space

• Switch stack to a
kernel switch

How to switch stack?

Task State Segment
• Specialized segment for hardware

support for multitasking
• TSS stored in memory

– Pointer stored as part of GDT
– Loaded by instruction : ltr(SEG_TSS <<

3) in switchuvm()

• Important contents of TSS used to
find the new stack
– SS0 : the stack segment (in kernel)
– ESP0 : stack pointer (in kernel)

ref : (switchuvm) ([18],1873), taskstate ([08],0850) 28

Saving Program State

Why?

• Current program being executed must be
able to resume after interrupt service is
completed

3

Saving Program State

30

3

EFLAGS
CS
EIP

Error Code

ESP before

ESP after

When no stack switch occurs
use existing stack

When stack switch occurs
also save the previous SS and ESP

EFLAGS
CS
EIP

Error Code

ESP
SS

ESP after

ESP before

Interrupted Procedure
Stack (in user space)

Procedure’s kernel stack

Error code is only for some
exceptions. Contains additional
Information.

Done automatically by CPU

SS : No change
ESP : new frame pushed

SS : from TSS (SS0)
ESP : from TSS (ESP0)

Finding the Interrupt/Exception
Service Routine

• IDT : Interrupt descriptor table
– Also called Interrupt vectors
– Stored in memory and pointed to by IDTR
– Conceptually similar to GDT and LDT
– Initialized by OS at boot

31

Selected Descriptor =
 Base Address + (Vector * 8)

4

Done automatically by
CPU

Interrupt Gate Descriptor

32

points to a segment descriptor
for executable code in the GDT

points to offset in the segment
which contains the interrupt handler
(lower order bits)

points to offset in the segment
which contains the interrupt handler
(higher order bits)

1 Segment present
0 Segment absent

privilege level

ref : SETGATE (0921), gatedesc (0901)

Getting to the Interrupt Procedure

(obtained from
either the PIC or APIC)

33

64 bytes

IDTR

IDTR : pointer to IDT
table in memory

Done
automatically
by CPU

Setting up IDT in xv6

• Array of 256 gate descriptors (idt)
• Each idt has

– Segment Selector : SEG_KCODE
• This is the offset in the GDT for kernel code segment

– Offset : (interrupt) vectors (generated by Script vectors.pl)
• Memory addresses for interrupt handler
• 256 interrupt handlers possible

• Load IDTR by instruction lidt
– The IDT table is the same for all processors.
– For each processor, we need to explicetly load lidt (idtinit())

ref : tvinit() (3317) and idtinit() in trap.c 34

Interrupt Vectors in xv6

vector0

vector1

vector2

vector i

vector255

vector i:
 push 0
 push i
 Jmp alltraps

ref : vectors.s [generated by vectors.pl (run $perl vectors.pl)] ([32])

Error code:
Hardware pushes error
Code for some exceptions.
For others, xv6 pushes 0.

35

alltraps

36

Creates a trapframe
Stack frame used for

interrupt

Setup kernel data and code
segments

Invokes trap
(3350 [33])

ref : trapasm.S [32] (alltraps), trap.c [33] (trap())

5

trapframeonly if s tack
change d

EFLAGS
CS
EIP

Error Code

ESP
SS

Trap Number

ESP

SS B
y hard w

are
Pushed by
hardware or
software

ds
es
…

eax
ecx
…
esi
edi

(empty)

p->kstack

B
y softw

are

trapframe

esp

argument for
trap
(pointer to this trapframe)

ref : struct trapframe in x86.h (0602 [06]) 37

trapframe struct

38

EFLAGS
CS
EIP

Error Code

ESP
SS

Trap Number
ds
es
…

eax
ecx
…
esi
edi

(empty)

esp

Interrupt Handlers

• Typical Interrupt Handler
– Save additional CPU context (written in assembly)

 (done by alltraps in xv6)

– Process interrupt (communicate with I/O devices)

– Invoke kernel scheduler

– Restore CPU context and return (written in assembly)

4

39

40

Interrupt Latency

Interrupt latency can be significant

interrupt

User process 1

OS

User process 2

time

P
riv

ile
ge

 le
ve

l

1

3

3

0

time needed to service an interrupt

Interrupt handler executes

Importance of Interrupt Latency

• Real time systems
– OS should ‘guarantee’ interrupt latency is less than a

specified value

• Minimum Interrupt Latency
– Mostly due to the interrupt controller

• Maximum Interrupt Latency
– Due to the OS
– Occurs when interrupt handler cannot be serviced

immediately
• Eg. when OS executing atomic operations, interrupt handler

would need to wait till completion of atomic operations.

Atomic Operations

Kernel code

Interrupt handler

Kernel code

Global variable :
int x;

for(i = 0; I < 1000; ++i)
 x++ x = x * 5

Value of x depends on whether an interrupt occurred or not!

Solution : make the part of code atomic (i.e. disable interrupts while executing
this code)

Atomic start

Atomic end

interrupt

Nested Interrupts

• Typically interrupts disabled until handler executes
– This reduces system responsiveness

• To improve responsiveness, enable Interrupts within handlers
– This often causes nested interrupts
– Makes system more responsive but difficult to develop and validate

• Interrupt handler approach: design interrupt handlers to be small so that
nested interrupts are less likely

Kernel code

Interrupt handler 1

Kernel code

interrupt

Interrupt handler 2

interrupt

Small Interrupt Handlers

• Do as little as possible in the interrupt
handler
– Often just queue a work item or set a flag

• Defer non-critical actions till later

Top and Bottom Half Technique
(Linux)

• Top half : do minimum work and return from
interrupt handler
– Saving registers
– Unmasking other interrupts
– Restore registers and return to previous context

• Bottom half : deferred processing
– eg. Workqueue
– Can be interrupted

Interrupt Handlers in xv6

vectors.S alltraps
(alltraps.S) trap

(trap.c)

Interrupt s
specific
handler

Example
(Keyboard Interrupt in xv6)

• Keyboard connected to
second interrupt line in
8259 master

• Mapped to vector 33 in xv6
(T_IRQ0 + IRQ_KBD).

• In function trap, invoke
keyboard interrupt
(kbdintr), which is
redirected to consleintr

Keyboard Interrupt Handler

consoleintr (console.c)

get pressed character (kbdgetc (kbd.c0)
talks to keyboard through
specific predifined io ports

Service special characters

Push into circular buffer

System Calls and Exceptions

Events

Events

Interrupts Exceptions

Hardware Interrupts Software Interrupts

50

Hardware vs Software
Interrupt

• A device (like the PIC)
asserts a pin in the CPU

CPU

INT
Device

• An instruction which
when executed causes
an interrupt

.

.
INT x
.
.

Hardware Interrupt Software Interrupt

51

Software Interrupt

Software interrupt used
for implementing
system calls
– In Linux INT 128, is

used for system calls

– In xv6, INT 64 is used
for system calls

52

System Calls
INT 64

Process

Kernel

0

3

Example (write system call)

Int Handler

write(STDOUT)

Implementation
of

write syscall

Kernel
space

User
space

int

libc invocation

System call processing in kernel
Almost similar to hardware interrupts

vectors.S
alltraps

(alltraps.S)
trap

(trap.c)

INT 64

syscall
(syscall.c)

if vector = 64

Executes the
System calls

Back to user
process

0

3

54

System Calls in xv6

How does the
OS distinguish

between the system
calls?

55

System Call Number
System call number used to distinguish between system calls

mov x, %eax
INT 64

System
 call number

ref : syscall.h, syscall() in syscall.c

Based on the system call number
function syscall invokes the
corresponding syscall handler

System call numbers System call handlers

56

Prototype of a typical System Call

int system_call(resource_descriptor, parameters)

return is generally
‘int’ (or equivalent)
sometimes ‘void’

int used to denote completion
status of system call sometimes
also has additional information
like number of bytes written to
file

What OS resource is the target
here?
For example a file, device, etc.

If not specified, generally means
the current process

System call specific parameters
passed.
How are they passed?

57

Passing Parameters
in System Calls

• Passing parameters to system calls not similar
to passing parameters in function calls
– Recall stack changes from user mode stack to kernel

stack.

• Typical Methods
– Pass by Registers (eg. Linux)

– Pass via user mode stack (eg. xv6)
• Complex

– Pass via a designated memory region
• Address passed through registers

58

Pass By Registers (Linux)

• System calls with fewer than 6 parameters
passed in registers
– %eax (sys call number), %ebx, %ecx,, %esi, %edi,

%ebp

• If 6 or more arguments
– Pass pointer to block structure containing argument

list

• Max size of argument is the register size (eg. 32
bit)
– Larger pointers passed through pointers

59

Pass via User Mode Stack (xv6)

push param1
push param2
push param3
mov sysnum, %eax
int 64

User process
param1
param2
param3

User stack

EFLAGS
CS
EIP

Error Code

ESP
SS

Trap Number
ds
es
…

eax
ecx
…
esi
edi

(empty)

ESP

trapframe

proc entry
for process

Points to trapframe

ESP pushed by hardware
contains user mode stack
pointer

ref : sys_open (sysfile.c), argint, fetchint (syscall.c) 60

Returns from System Calls

push param1
push param2
push param3
mov sysnum, %eax
int 64
…..

Return value
register EAX

move result to eax in
trap frame

EFLAGS
CS
EIP

Error Code

ESP
SS

Trap Number
ds
es
…

eax
ecx
…
esi
edi

(empty)

ESP

trapframe

in system call

Automatically restored

by hardware while returning

to user process

User process

61

Events

Events

Interrupts Exceptions

Hardware Interrupts Software Interrupts

62

Exception Sources

– Program-Error Exceptions
• Eg. divide by zero

– Software Generated Exceptions
• Example INTO, INT 3, BOUND

• INT 3 is a break point exception

• INTO overflow instruction

• BOUND, Bound range exceeded

– Machine-Check Exceptions
• Exception occurring due to a hardware error (eg. System bus error,

parity errors in memory, cache memory errors)

63

Microsoft Windows : Machine check exception

Exception Types

Faults

Exceptions

Aborts

Traps

• Exceptions in the user space vs kernel space

64

Faults

Exception that generally can be corrected.

Once corrected, the program can continue execution.

Examples :

Divide by zero error

Invalid Opcode

Device not available

Segment not present

Page not present

65

Traps

 Traps are reported immediately after the
execution of the trapping instruction.

Examples:

Breakpoint

Overflow

Debug instructions

66

Aborts

Severe unrecoverable errors

Examples

Double fault : occurs when an exception is
unhandled or when an exception occurs while
the CPU is trying to call an exception handler.

Machine Check : internal errors in hardware
detected. Such as bad memory, bus errors,
cache errors, etc.

67

	Interrupts, Exceptions, and System Calls
	OS & Events
	Why event driven design?
	Event Types
	Events
	Event view of CPU
	Exception & Interrupt Vectors
	Exception and Interrupt Vectors
	xv6 Interrupt Vectors
	Slide 10
	Why Hardware Interrupts?
	Possible Solution : Polling
	Interrupts
	8259 Programmable Interrupt Controller
	Interrupts in legacy CPUs
	Edge vs Level Interrupts
	Edge vs Level Interrupts (the crying baby… an analogy)
	Spurious Interrupts
	Advanced Programmable Interrupt Controller (APIC)
	LAPIC and I/OAPIC
	I/O APIC Configuration in xv6
	LAPIC Configuration in xv6
	What happens when there is an Interrupt?
	What more happens when there is an Interrupt?
	Stacks
	Switching Stack (to switch or not to switch)
	To Switch or not to Switch
	How to switch stack?
	Saving Program State
	Slide 30
	Finding the Interrupt/Exception Service Routine
	Interrupt Gate Descriptor
	Getting to the Interrupt Procedure
	Setting up IDT in xv6
	Interrupt Vectors in xv6
	alltraps
	trapframe
	trapframe struct
	Interrupt Handlers
	Interrupt Latency
	Importance of Interrupt Latency
	Atomic Operations
	Nested Interrupts
	Small Interrupt Handlers
	Top and Bottom Half Technique (Linux)
	Interrupt Handlers in xv6
	Example (Keyboard Interrupt in xv6)
	Keyboard Interrupt Handler
	System Calls and Exceptions
	Slide 50
	Hardware vs Software Interrupt
	Software Interrupt
	Example (write system call)
	System call processing in kernel
	System Calls in xv6
	System Call Number
	Prototype of a typical System Call
	Passing Parameters in System Calls
	Pass By Registers (Linux)
	Pass via User Mode Stack (xv6)
	Returns from System Calls
	Slide 62
	Exception Sources
	Exception Types
	Faults
	Traps
	Aborts

