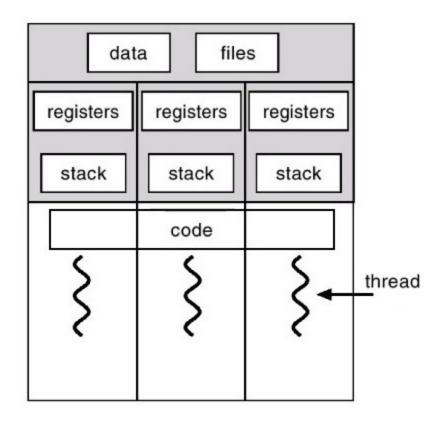

Threads (light weight processes)

Chester Rebeiro
IIT Madras

Processes


- Separate streams of execution
- Each process isolated from the other
- Process state contains
 - Process ID
 - Environment
 - Working directory.
 - Program instructions
 - Registers
 - Stack
 - Heap
 - File descriptors
- Created by the OS using fork
 - Significant overheads

Threads

- Separate streams of execution within a single process
- Threads in a process <u>not</u> isolated from each other
- Each thread state (thread control block) contains
 - Registers (including EIP, ESP)
 - stack

Why threads?

Lightweight

Platform	fork()			pthread_create()		
	real	user	sys	real	user	sys
Intel 2.6 GHz Xeon E5-2670 (16 cores/node)	8.1	0.1	2.9	0.9	0.2	0.3
Intel 2.8 GHz Xeon 5660 (12 cores/node)	4.4	0.4	4.3	0.7	0.2	0.5
AMD 2.3 GHz Opteron (16 cores/node)	12.5	1.0	12.5	1.2	0.2	1.3
AMD 2.4 GHz Opteron (8 cores/node)	17.6	2.2	15.7	1.4	0.3	1.3
IBM 4.0 GHz POWER6 (8 cpus/node)	9.5	0.6	8.8	1.6	0.1	0.4
IBM 1.9 GHz POWER5 p5-575 (8 cpus/node)	64.2	30.7	27.6	1.7	0.6	1.1
IBM 1.5 GHz POWER4 (8 cpus/node)	104.5	48.6	47.2	2.1	1.0	1.5
INTEL 2.4 GHz Xeon (2 cpus/node)	54.9	1.5	20.8	1.6	0.7	0.9
INTEL 1.4 GHz Itanium2 (4 cpus/node)	54.5	1.1	22.2	2.0	1.2	0.6

Cost of creating 50,000 processes / threads (https://computing.llnl.gov/tutorials/pthreads/)

- Efficient communication between entities
- Efficient context switching

Threads vs Processes

- A thread has no data segment or heap
- A thread cannot live on its own. It needs to be attached to a process
- There can be more than one thread in a process.
 Each thread has its own stack
- If a thread dies, its stack is reclaimed

- A process has code, heap, stack, other segments
- A process has at-least one thread.
- Threads within a process share the same I/O, code, files.
- If a process dies, all threads die.

Based on Junfeng Yang's lecture slides http://www.cs.columbia.edu/~junfeng/13fa-w4118/lectures/l08-thread.pdf

pthread library

Create a thread in a process

Pointer to a function, which starts execution in a different thread

Thread identifier (TID) much like

Arguments to the function

 Destroying a thread void pthread_exit(void *retval); Exit value of the thread

pthread library contd.

Join: Wait for a specific thread to complete

int pthread_join(pthread_t thread, void **retval);

TID of the thread to wait for

Exit status of the thread

what is the difference with wait()?

Example

```
#include <pthread.h>
#include <stdio.h>
void *thread fn(void *arg){
  long id = (long) arg;
 printf("Starting thread %ld\n", id);
 sleep(5);
 printf("Exiting thread %ld\n", id);
  return NULL;
int main(){
  pthread t t1, t2;
  pthread create(&t1, NULL, thread fn, (void *)1);
  pthread_create(&t2, NULL, thread_fn, (void *)2);
  pthread_join(t1, NULL);
  pthread join(t2, NULL);
  printf("Exiting main\n");
  return 0;
```

How many threads are there in this program? 3

Note. You need to link the pthread library

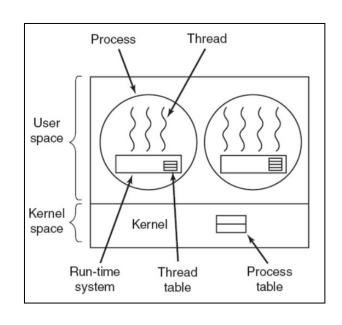
```
chester@optiplex:~/shared/OS/programs$ gcc threads.c -lpthread chester@optiplex:~/shared/OS/programs$ ./a.out
Starting thread 1
Starting thread 2
Exiting thread 1
Exiting thread 2
Exiting thread 2
Exiting main
```


Other thread libraries

- Windows threads
- Boost (in C++)
- LinuxThreads
- etc.

Who manages threads?

- Two strategies
 - User threads
 - Thread management done by user level thread library. Kernel knows nothing about the threads.
 - Kernel threads
 - Threads directly supported by the kernel.
 - Known as light weight processes.

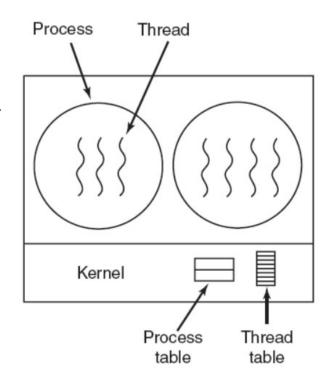

User level threads

Advantages:

- Fast (really lightweight)
 (no system call to manage threads. The thread library does everything).
- Can be implemented on an OS that does not support threading.
- Switching is fast. No, switch from user to protected mode.

Disadvantages:

- Scheduling can be an issue. (Consider, one thread that is blocked on an IO and another runnable.)
- Lack of coordination between kernel and threads. (A process with 1000 threads competes for a timeslice with a process having just 1 thread.)
- Requires non-blocking system calls. (If one thread invokes a system call, all threads need to wait)


Kernel level threads

Advantages:

- Scheduler can decide to give more time to a process having large number of threads than process having small number of threads.
- Kernel-level threads are especially good for applications that frequently block.

Disadvantages:

- The kernel-level threads are slow (they involve kernel invocations.)
- Overheads in the kernel. (Since kernel must manage and schedule threads as well as processes. It require a full thread control block (TCB) for each thread to maintain information about threads.)

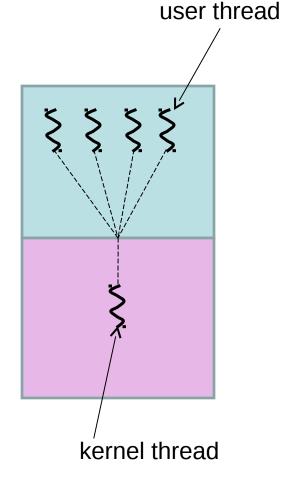
Thread Models

Many-to-one model

one-to-one model

Many-to-many model

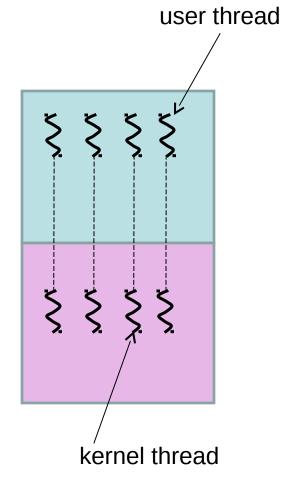
Many-to-one model


 Many user level threads map to a single kernel thread

Pros:

- Fast. No system calls to manage threads.
- No mode change for switching threads

Cons:

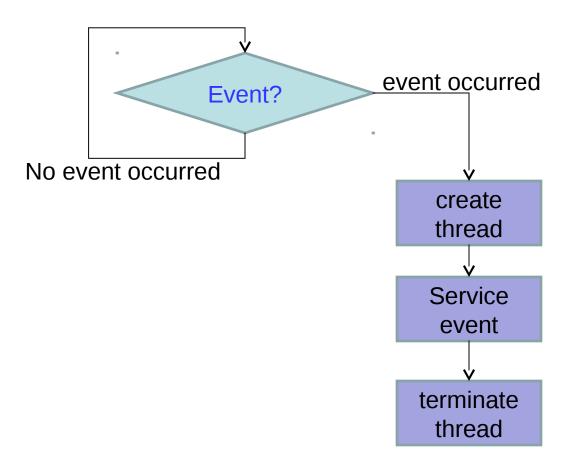

- No parallel execution of threads. All threads block when one has a system call.
- Not suited for multi-processor systems.

One-to-one model

- Each user thread associated with one kernel thread.
- Pros.
 - Better suited for multiprocessor environments.
 - When one thread blocks, the other threads can continue to execute.
- Cons.
 - Expensive. Kernel is involved.

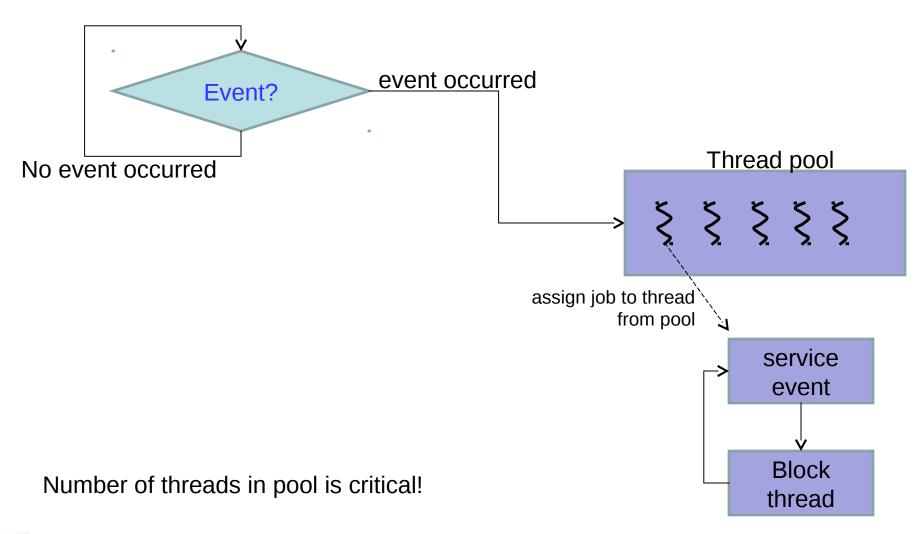
Many-to-Many model

- Many user threads mapped to many kernel threads
 - Supported by some unix and windows versions
- Pros: flexible
 - OS creates kernel threads as required
 - Process creates user threads as needed
- Cons: Complex
 - Double management



Threading issues

- What happens when a thread invokes fork?
 - Duplicate all threads?
 - Not easily done... other threads may be running or blocked in a system call
 - Duplicate only the caller thread?
 - More feasible.
- Segmentation fault in a thread. Should only the thread terminate or the entire process?


Typical usage of threads

Creating and terminating thread lead to overheads

Thread pools

Assignment

- Write a multi-threaded program to perform matrix multiplication.
 - The input matrices are of dimension 1000 x
 1000
 - Tabulate time taken vs number of threads used.

