
1

Threads
(light weight processes)

Chester Rebeiro

IIT Madras

2

Processes

• Separate streams of execution

• Each process isolated from the
other

• Process state contains
– Process ID

– Environment

– Working directory.

– Program instructions

– Registers

– Stack

– Heap

– File descriptors

• Created by the OS using fork
– Significant overheads

3

Threads

• Separate streams of execution
within a single process

• Threads in a process not isolated
from each other

• Each thread state (thread control
block) contains

– Registers (including EIP, ESP)

– stack

4

Why threads?

• Lightweight

• Efficient communication between entities

• Efficient context switching

Cost of creating 50,000 processes / threads
(https://computing.llnl.gov/tutorials/pthreads/)

5

Threads vs Processes

• A thread has no data
segment or heap

• A thread cannot live on its
own. It needs to be
attached to a process

• There can be more than
one thread in a process.
Each thread has its own
stack

• If a thread dies, its stack
is reclaimed

• A process has code, heap,
stack, other segments

• A process has at-least one
thread.

• Threads within a process
share the same I/O, code,
files.

• If a process dies, all threads
die.

Based on Junfeng Yang’s lecture slides
http://www.cs.columbia.edu/~junfeng/13fa-w4118/lectures/l08-thread.pdf

6

pthread library

• Create a thread in a process
 int pthread_create(pthread_t *thread,

 const pthread_attr_t *attr,

 void *(*start_routine) (void *),

 void *arg);

• Destroying a thread
 void pthread_exit(void *retval);

Pointer to a function,
which starts execution in a
different thread

Arguments to the function

Exit value of the thread

Thread identifier (TID) much like

7

pthread library contd.

• Join : Wait for a specific thread to complete

 int pthread_join(pthread_t thread, void **retval);

 what is the difference with wait()?

TID of the thread to wait for
Exit status of the thread

8

Example

Note. You need to link the
pthread library

How many threads are there in this
program? 3

9

Other thread libraries

• Windows threads

• Boost (in C++)

• LinuxThreads

• etc.

10

Who manages threads?

• Two strategies
– User threads

• Thread management done by user level thread
library. Kernel knows nothing about the threads.

– Kernel threads
• Threads directly supported by the kernel.

• Known as light weight processes.

11

User level threads

• Advantages:
– Fast (really lightweight)

 (no system call to manage threads. The thread library
does everything).

– Can be implemented on an OS that does not support
threading.

– Switching is fast. No, switch from user to protected
mode.

• Disadvantages:
– Scheduling can be an issue. (Consider, one thread

that is blocked on an IO and another runnable.)

– Lack of coordination between kernel and threads. (A
process with 1000 threads competes for a timeslice
with a process having just 1 thread.)

– Requires non-blocking system calls. (If one thread
invokes a system call, all threads need to wait)

12

Kernel level threads

• Advantages:
– Scheduler can decide to give more time to a

process having large number of threads
than process having small number of
threads.

– Kernel-level threads are especially good for
applications that frequently block.

• Disadvantages:
– The kernel-level threads are slow (they involve kernel

invocations.)

– Overheads in the kernel. (Since kernel must manage and
schedule threads as well as processes. It require a full thread
control block (TCB) for each thread to maintain information about
threads.)

13

Thread Models

• Many-to-one model

• one-to-one model

• Many-to-many model

14

Many-to-one model

• Many user level threads map to a single
kernel thread

• Pros:
– Fast. No system calls to manage threads.

– No mode change for switching threads

• Cons:
– No parallel execution of threads. All

threads block when one has a system call.

– Not suited for multi-processor systems.
kernel thread

user thread

15

One-to-one model

• Each user thread associated with
one kernel thread.

• Pros.
– Better suited for multiprocessor

environments.

– When one thread blocks, the other
threads can continue to execute.

• Cons.
– Expensive. Kernel is involved.

kernel thread

user thread

16

Many-to-Many model

• Many user threads mapped to many
kernel threads
– Supported by some unix and windows

versions

• Pros: flexible
– OS creates kernel threads as required

– Process creates user threads as needed

• Cons: Complex
– Double management

17

Threading issues

• What happens when a thread invokes fork?
– Duplicate all threads?

• Not easily done… other threads may be running or blocked
in a system call

– Duplicate only the caller thread?
• More feasible.

• Segmentation fault in a thread. Should only the
thread terminate or the entire process?

18

Typical usage of threads

Creating and terminating thread lead to overheads

Event?

No event occurred

event occurred

create
thread

Service
event

terminate
thread

19

Thread pools

Number of threads in pool is critical!

Event?

No event occurred

event occurred

assign job to thread
from pool

service
event

Block
thread

Thread pool

20

Assignment

• Write a multi-threaded program to perform
matrix multiplication.
– The input matrices are of dimension 1000 x

1000

– Tabulate time taken vs number of threads
used.

	Threads (light weight processes)
	Processes
	Threads
	Why threads?
	Threads vs Processes
	pthread library
	pthread library contd.
	Example
	Other thread libraries
	Who manages threads?
	User level threads
	Kernel level threads
	Thread Models
	Many-to-one model
	One-to-one model
	Many-to-Many model
	Threading issues
	Typical usage of threads
	Thread pools
	Assignment

