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Processes

• Separate streams of execution

• Each process isolated from the 
other

• Process state contains
– Process ID

– Environment

– Working directory.

– Program instructions

– Registers

– Stack

– Heap

– File descriptors

• Created by the OS using fork
– Significant overheads
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Threads

• Separate streams of execution 
within a single process

• Threads in a process not isolated 
from each other

• Each thread state (thread control 
block) contains

– Registers (including EIP, ESP)

– stack
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Why threads?

• Lightweight

• Efficient communication between entities

• Efficient context switching

Cost of creating 50,000 processes / threads
(https://computing.llnl.gov/tutorials/pthreads/)
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Threads vs Processes

• A thread has no data 
segment or heap

• A thread cannot live on its 
own. It needs to be 
attached to a process

• There can be more than 
one thread in a process. 
Each thread has its own 
stack

• If a thread dies, its stack 
is reclaimed

• A process has code, heap, 
stack, other segments

• A process has at-least one 
thread. 

• Threads within a process 
share the same I/O, code, 
files.  

• If a process dies, all threads 
die.

Based on Junfeng Yang’s lecture slides
http://www.cs.columbia.edu/~junfeng/13fa-w4118/lectures/l08-thread.pdf
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pthread library

• Create a thread in a process
      int pthread_create(pthread_t *thread, 

                                     const pthread_attr_t *attr,

                                     void *(*start_routine) (void *), 

                                      void *arg);

• Destroying a thread
    void pthread_exit(void *retval);

Pointer to a function, 
which starts execution in a 
different thread

Arguments to the function

Exit value of the thread

Thread identifier (TID) much like 
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pthread library contd.

• Join : Wait for a specific thread to complete
      

         int pthread_join(pthread_t thread, void **retval);

    what is the difference with wait()?

TID of the thread to wait for
Exit status of the thread
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Example

Note. You need to link the
pthread library

How many threads are there in this 
program? 3
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Other thread libraries

• Windows threads

• Boost (in C++)

• LinuxThreads

• etc.
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Who manages threads?

• Two strategies
– User threads

• Thread management done by user level thread 
library. Kernel knows nothing about the threads.

– Kernel threads
• Threads directly supported by the kernel.

• Known as light weight processes.
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User level threads

• Advantages:
– Fast (really lightweight)

 (no system call to manage threads. The thread library 
does everything).

– Can be implemented on an OS that does not support 
threading.

– Switching is fast. No, switch from user to protected 
mode.

• Disadvantages:
– Scheduling can be an issue. (Consider, one thread 

that is blocked on an IO and another runnable.)

– Lack of coordination between kernel and threads. (A 
process with 1000 threads competes for a timeslice 
with a process having just 1 thread.)

– Requires non-blocking system calls. (If one thread 
invokes a system call, all threads need to wait)
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Kernel level threads

• Advantages:
– Scheduler can decide to give more time to a 

process having large number of threads 
than process having small number of 
threads.

– Kernel-level threads are especially good for 
applications that frequently block.

• Disadvantages:
– The kernel-level threads are slow (they involve kernel 

invocations.) 

– Overheads in the kernel. (Since kernel must manage and 
schedule threads as well as processes. It require a full thread 
control block (TCB) for each thread to maintain information about 
threads.)
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Thread Models 

• Many-to-one model

• one-to-one model

• Many-to-many model
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Many-to-one model

• Many user level threads map to a single 
kernel thread

• Pros:
– Fast. No system calls to manage threads. 

– No mode change for switching threads

• Cons:
– No parallel execution of threads. All 

threads block when one has a system call.

– Not suited for multi-processor systems.
kernel thread

user thread
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One-to-one model

• Each user thread associated with 
one kernel thread.

• Pros.
– Better suited for multiprocessor 

environments.

– When one thread blocks, the other 
threads can continue to execute.

• Cons.
– Expensive. Kernel is involved.

kernel thread

user thread
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Many-to-Many model

• Many user threads mapped to many 
kernel threads
– Supported by some unix and windows 

versions

• Pros: flexible
– OS creates kernel threads as required

– Process creates user threads as needed

• Cons: Complex
– Double management
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Threading issues

• What happens when a thread invokes fork?
– Duplicate all threads?

• Not easily done… other threads may be running or blocked 
in a system call

– Duplicate only the caller thread?
• More feasible. 

• Segmentation fault in a thread. Should only the 
thread terminate or the entire process?
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Typical usage of threads

Creating and terminating thread lead to overheads

Event?

No event occurred

event occurred

create 
thread

Service
event

terminate
thread
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Thread pools

Number of threads in pool is critical!

Event?

No event occurred

event occurred

assign job to thread
from pool

service
event

Block 
thread

Thread pool
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Assignment

• Write a multi-threaded program to perform 
matrix multiplication.
– The input matrices are of dimension 1000 x 

1000

– Tabulate time taken vs number of threads 
used. 
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