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Inter Process Communication

• Advantages of Inter Process Communication (IPC)
– Information sharing

– Modularity/Convenience

• 3 ways
– Shared memory

– Message Passing

– Signals
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Shared Memory

• One process will create an area in RAM which 
the other process can access

• Both processes can access shared memory like 
a regular working memory
– Reading/writing is like regular reading/writing
– Fast

• Limitation : Error prone. Needs synchronization 
between processes

Process 1

Process 2

Shared 
memory

userspace
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Shared Memory in Linux

• int shmget (key, size, flags)
– Create a shared memory segment;
– Returns ID of segment : shmid
– key : unique identifier of the shared memory segment
– size : size of the shared memory (rounded up to the 

PAGE_SIZE)
• int shmat(shmid, addr, flags)

– Attach shmid shared memory to address space of the 
calling process

– addr : pointer to the shared memory address space
• int shmdt(shmid)

– Detach shared memory
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Example
server.c client.c
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Message Passing

• Shared memory created in the kernel

• System calls such as send and receive 
used for communication
– Cooperating : each send must have a 

receive

• Advantage : Explicit sharing, less error 
prone

• Limitation : Slow. Each call involves 
marshalling / demarshalling of 
information

Process 1

Process 2

Shared 
memory

Kernel

userspace
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Pipes

– Always between parent and child

– Always unidirectional

– Accessed by two associated file descriptors:
• fd[0] for reading from pipe 
• fd[1] for writing to the pipe
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Pipes for two way 
communication

• Two pipes opened
pipe0 and pipe1

• Note the unnecessary 
pipes

• Close the unnecessary 
pipes
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Example
(child process sending a string to parent)
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Signals 

• Asynchronous unidirectional communication 
between processes

• Signals are a small integer
– eg. 9: kill, 11: segmentation fault

• Send a signal to a process
– kill(pid, signum)

• Process handler for a signal
– sighandler_t signal(signum, handler);

– Default if no handler defined

ref : http://www.comptechdoc.org/os/linux/programming/linux_pgsignals.html
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Synchronization

Chester Rebeiro
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Motivating Scenario

• Single core
– Program 1 and program 2 are executing at the same time but sharing a 

single core

{
   *
   *
counter++
   *
}

{
  *
  *
counter--
  *
}

program 0 program 1int counter=5;
shared variable

1 2 1 2 1 2 1 2

CPU usage wrt time
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Motivating Scenario

• What is the value of counter?
– expected to be 5

– but could also be 4 and 6

{
   *
   *
counter++
   *
}

{
  *
  *
counter--
  *
}

program 0 program 1int counter=5;
Shared variable
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Motivating Scenario

{
   *
   *
counter++
   *
}

{
  *
  *
counter--
  *
}

program 0 program 1int counter=5;
Shared variable

R1  counter
R1  R1 + 1
counter R1
R2  counter
R2  R2 - 1
counter R2

context
switch

counter = 5

R1  counter
R2  counter
R2 R2 - 1
counter R2
R1  R1 + 1
counter  R1

counter = 6

R2  counter
R2  counter
R2 R2 + 1
counter R2
R2  R2 - 1
counter  R2

counter = 4
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Race Conditions

• Race conditions
– A situation where several processes access and manipulate the 

same data (critical section)

– The outcome depends on the order in which the access take 
place

– Prevent race conditions by synchronization
• Ensure only one process at a time manipulates the critical data

{
   *
   *
counter++
   *
}

critical section

No more than one 
process should execute in 
critical section at a time
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Race Conditions in Multicore

• Multi core
– Program 1 and program 2 are executing at the same time on different 

cores

{
   *
   *
counter++
   *
}

{
  *
  *
counter--
  *
}

program 0 program 1int counter=5;

1
2

CPU usage wrt time

shared variable
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Critical Section

• Requirements
– Mutual Exclusion : No more than one process in 

critical section at a given time

– Progress : When no process is in the critical section, 
any process that requests entry into the critical 
section must be permitted without any delay

– No starvation (bounded wait): There is an upper 
bound on the number of times a process enters the 
critical section, while another is waiting.
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Locks and Unlocks

• lock(L) : acquire lock L exclusively
– Only the process with L can access the critical section

• unlock(L) : release exclusive access to lock L
– Permitting other processes to access the critical section

{
   *
   *
lock(L)
counter++
unlock(L)
   *
}

{
  *
  *
lock(L)
counter--
unlock(L)
  *
}

program 0 program 1int counter=5;
lock_t L;

shared variable
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When to have Locking?

• Single instructions by themselves are 
atomic

eg. add %eax, %ebx

• Multiple instructions need to be explicitly 
made atomic
– Each piece of code in the OS must be 

checked if they need to be atomic
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How to Implement Locking
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Using Interrupts

• Simple
– When interrupts are disabled, context switches won’t 

happen

• Requires privileges 
– User processes generally cannot disable interrupts

• Not suited for multicore systems

while(1){
    disable interrupts ()
    critical section
    enable interrupts () 
     other code
}

while(1){
    disable interrupts ()
    critical section
    enable interrupts () 
     other code
}

Process 1 Process 2

lock

unlock
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Software Solution (Attempt 1)

• Achieves mutual exclusion
• Busy waiting – waste of power and time
• Needs to alternate execution in critical section

process1 process2 process1 process2

while(1){
    while(turn == 2); // lock
    critical section
    turn = 2;  // unlock
     other code
}

while(1){
    while(turn == 1); // lock
    critical section
    turn = 1; // unlock
    other code
}

Process 1 Process 2
int turn=1;

Shared
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Software Solution (Attempt 2)

• Need not alternate execution in critical section

• Does not guarantee mutual exclusion

while(1){
    while(p2_inside == True); 
    p1_inside = True;
    critical section
    p1_inside = False;
     other code
}

Process 1 Process 2
while(1){
    while(p1_inside == True); 
    p2_inside = True;
    critical section
    p2_inside = False;
     other code
}

p2_inside = False, p1_inside = False
shared

lock

unlock



24

Attempt 2: No mutual exclusion

CPU p1_inside p2_inside

while(p2_inside == True); False False

context switch

while(p1_inside == True); False False

p2_inside = True; False True

context switch

p1_inside = True; True True

Both p1 and p2 can enter into the critical section at the same time

tim
e
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Software Solution (Attempt 3)

• Achieves mutual exclusion

• Does not achieve progress (could deadlock)

while(1){
    p1_wants_to_enter = True
    while(p2_wants_to_enter = True); 
    critical section
    p1_wants_to_enter = False
    other code
}

Process 1 Process 2
p2_wants_to_enter, p1_wants_to_enter

globally defined

while(1){
    p2_wants_to_enter = True
    while(p1_wants_to_enter = True); 
    critical section
    p2_wants_to_enter = False
    other code
}

lock

unlock
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Attempt 3: No Progress

CPU p1_inside p2_inside

p1_wants_to_enter = True False False

context switch

p2_wants_to_enter = True False False

There is a tie!!!

Both p1 and p2 will loop infinitely

tim
e
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Peterson’s Solution

Break the tie with a ‘favored’ process

while(1){
    p1_wants_to_enter = True
    favored = 2

    while (p2_wants_to_enter AND    
               favored = 2); 
    critical section
    p1_wants_to_enter = False
    other code
}

Process 1
p2_wants_to_enter, p1_wants_to_enter, favored

globally defined

favored is used to break the tie when 
both p1 and p2 want to enter the critical 
section.

(* the process which sets favored last 
looses the tie *)

If the second process wants to enter. favor 
it. (be nice !!!)lock

unlock
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Peterson’s Solution

while(1){
    p1_wants_to_enter = True
    favored = 2

    while (p2_wants_to_enter AND    
               favored = 2); 
    critical section
    p1_wants_to_enter = False
    other code
}

Process 1
p2_wants_to_enter, p1_wants_to_enter, favored

globally defined

while(1){
    p2_wants_to_enter = True
    favored = 1

    while (p1_wants_to_enter AND    
               favored = 1); 
    critical section
    p2_wants_to_enter = False
    other code
}

Process 2
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Bakery Algorithm

• Synchronization between N > 2 processes

• By Leslie Lamport

http://research.microsoft.com/en-us/um/people/lamport/pubs/bakery.pdf

wait your turn!!

Eat
when 196 displayed
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Simplified Bakery Algorithm

• Processes numbered 0 to N-1

• num is an array N integers (initially 0). 
– Each entry corresponds to a process

lock(i){
    num[i] = MAX(num[0], num[1], …., num[N-1]) + 1
    for(p = 0; p < N; ++p){
         while (num[p] != 0 and num[p] < num[i]);
    } 
}

unlock(i){
    num[i] = 0;
}

critical section
This is at the doorway!!!
It has to be atomic
to ensure two processes
do not get the same token
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Original Bakery Algorithm

• Without atomic operation assumptions

• Introduce an array of N Booleans: choosing, initially all values False.

lock(i){
    choosing[i] = True
    num[i] = MAX(num[0], num[1], …., num[N-1]) + 1
    choosing[i] = False
    for(p = 0; p < N; ++p){
         while (choosing[p]);
         while (num[p] != 0 and (num[p],p)<(num[i],i));
    } 
}

unlock(i){
    num[i] = 0;
}

critical section

(a, b) < (c, d) which is equivalent to: (a < c) or ((a == c) and (b < d))

Choosing ensures that a process 
Is not at the doorway

doorway
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Analyze this

• Does this scheme provide mutual exclusion?

while(1){
    while(lock != 0); 
    lock= 1; // lock
    critical section
    lock = 0;  // unlock
    other code
}

while(1){
    while(lock != 0); 
    lock = 1; // lock
    critical section
    lock = 0; // unlock
    other code
}

Process 1 Process 2

lock = 0
P1: while(lock != 0);
P2: while(lock != 0);
P2: lock = 1;
P1: lock = 1;
…. Both processes in critical section

context switchNo
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If only…

• We could make this operation atomic

while(1){
    while(lock != 0); 
    lock= 1; // lock
    critical section
    lock = 0;  // unlock
    other code
}

Process 1

Make atomic

Hardware to the rescue….
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Hardware Support
(Test & Set Instruction)

• Write to a memory location, return its old value

int test_and_set(int  *L){
   int prev = *L;
   *L = 1;
   return prev;
}

equivalent software representation
(the entire function is executed atomically)

while(1){
    while(test_and_set(&lock) == 1); 
    critical section
    lock = 0;  // unlock
    other code
}

Usage for locking

Why does this work? If two CPUs execute test_and_set at the same time, the 
hardware ensures that one test_and_set does both its steps before the other 
one starts. 
So the first invocation of test_and_set  will read a 0 and set lock to 1 and 
return. The second test_and_set invocation will then see lock as 1, and will 
loop continuously until lock becomes 0

atomic
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Intel Hardware Software
(xchg instruction)

• xchg : Intel instruction. 
exchange.

typical usage : 

   xchg reg, mem

int xchg(addr, value){
  %eax = value
  xchg %eax, (addr)
}

void acquire(int *locked){
  while(1){
    if(xchg(locked, 1) == 0)
      break;
  }
}

void release(int *locked){
    locked = 0;
}

Note. %eax is returned
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High Level Constructs

• Spinlock

• Mutex

• Semaphore
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Spinlocks Usage

int xchg(addr, value){
  %eax = value
  xchg %eax, (addr)
}

void acquire(int *locked){
  while(1){
    if(xchg(locked, 1) == 0)
      break;
  }
}

void release(int *locked){
    locked = 0;
}

• One process will acquire the lock

• The other will wait in a loop 
repeatedly checking if the lock is 
available 

• The lock becomes available when 
the former process releases it

acquire(&locked)
critical section
release(&locked)

acquire(&locked)
critical section
release(&locked)

Process 1

Process 2

See spinlock.c and spinlock.h in xv6 [15]
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Issues with Spinlocks

• No compiler optimizations should be allowed
– Should not make X a register variable

• Write the loop in assembly or use volatile

• Should not reorder memory loads and stores
• Use serialized instructions (which forces instructions not to be reordered)

• Luckly xchg is already implements serialization

xchg %eax, X
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More issues with Spinlocks

• No caching of (X) possible. All xchg operations are bus transactions.
– CPU asserts the LOCK, to inform that there is a ‘locked ‘ memory 

access

• acquire function in spinlock invokes xchg in a loop…each operation 
is a bus transaction …. huge performance hits

CPU0
xchg %eax, X

CPU1

L1  cache L1  cache

Memory
X

cache coherence
protocol

#LOCK
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A better acquire

void acquire(int *locked){
  reg = 1
  while(1)
      if(xchg(locked, reg) == 0)
          break;
}

void acquire(int *locked) {
  reg = 1;
  while (xchg(locked, reg) == 1) 
        while (*locked == 1);
}

int xchg(addr, value){
  %eax = value
  xchg %eax, (addr)
}

Better way
inner loop allows caching of
locked. Access cache instead of memory.

Original.
Loop with xchg.
Bus transactions. 
Huge overheads
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Spinlocks
(when should it be used?)

• Characteristic : busy waiting
– Useful for short critical sections, where much CPU 

time is not wasted waiting
• eg. To increment a counter, access an array element, etc.

– Not useful, when the period of wait is unpredictable or 
will take a long time

• eg. Not good to read page from disk.

• Use mutex instead (…mutex)
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Spinlock in pthreads

lock

unlock

create spinlock

destroy spinlock
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Mutexes

• Can we do better than busy 
waiting?
– If critical section is locked then 

yield CPU 
• Go to a SLEEP state

– While unlocking, wake up 
sleeping process

int xchg(addr, value){
  %eax = value
  xchg %eax, (addr)
}

void lock(int *locked){
  while(1){
    if(xchg(locked, 1) == 0)
      break;
    else
       sleep();
  }
}

void unlock(int *locked){
    locked = 0;
    wakeup();
}

Ref: wakeup(2864), sleep(2803)



44

Thundering Herd Problem

• A large number of processes 
wake up (almost 
simultaneously) when the event 
occurs.
– All waiting processes wake up

– Leading to several context 
switches

– All processes go back to sleep 
except for one, which gets the 
critical section

• Large number of context switches

• Could lead to starvation

int xchg(addr, value){
  %eax = value
  xchg %eax, (addr)
}

void lock(int *locked){
  while(1){
    if(xchg(locked, 1) == 0)
      break;
    else
       sleep();
  }
}

void unlock(int *locked){
    locked = 0;
    wakeup();
}
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Thundering Herd Problem

• The Solution
– When entering critical 

section, push into a 
queue before blocking

– When exiting critical 
section, wake up only 
the first process in the 
queue

int xchg(addr, value){
  %eax = value
  xchg %eax, (addr)
}

void lock(int *locked){
  while(1){
    if(xchg(locked, 1) == 0)
      break;
    else{
       // add this process to Queue
       sleep();
    }
  }
}

void unlock(int *locked){
    locked = 0;
     // remove process P from queue
     wakeup(P)
}
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pthread Mutex

• pthread_mutex_lock

• pthread_mutex_unlock
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Locks and Priorities

• What happens when a high priority task requests 
a lock, while a low priority task is in the critical 
section
– Priority Inversion

– Possible solution
• Priority Inheritance

Interesting Read : Mass Pathfinder
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.html
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Producer – Consumer
Problems

• Also known as Bounded buffer Problem

• Producer produces and stores in buffer, Consumer consumes from 
buffer

• Trouble when
– Producer produces, but buffer is full

– Consumer consumes, but buffer is empty

Producer Consumer

Buffer (of size N)
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Producer-Consumer Code

void producer(){
    while(TRUE){ 
        item = produce_item();
        if (count == N) sleep(empty); 
        lock(mutex);
        insert_item(item); // into buffer
        count++;
        unlock(mutex);
        if (count == 1) wakeup(full);
    }
}

void consumer(){
    while(TRUE){ 
        if (count == 0) sleep(full); 
        lock(mutex); 
        item = remove_item(); // from buffer
        count--;
        unlock(mutex);
        if (count == N-1) wakeup(empty);
        consume_item(item);
    }
}

Buffer of size N
int count=0;
Mutex mutex, empty, full;

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10
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Lost Wakeups

• Consider the following 
context of instructions

• Assume buffer is initially 
empty

read count value // count  0
item = produce_item();
lock(mutex);
insert_item(item); // into buffer
count++;  // count = 1
unlock(mutex)
test (count == 1)  // yes
signal(full);
test (count == 0) // yes
wait();

consumer 
still uses the old value of count (ie 0)

Note, the wakeup is lost.
Consumer waits even though buffer is not empty.
Eventually producer and consumer will wait infinitely

context switch

3
3
5
6
7
8
9
9
3
3
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Semaphores

• Proposed by Dijkstra in 1965

• Functions down and up must be 
atomic

• down also called P (Proberen Dutch 
for try)

• up also called V (Verhogen, Dutch 
form make higher)

• Can have different variants
– Such as blocking, non-blocking

• If S is initially set to 1,
– Blocking semaphore similar to a Mutex 

– Non-blocking semaphore similar to a 
spinlock

void down(int *S){
  while( *S <= 0); 
  *S--;
}

void up(int *S){
   *S++;
}
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Producer-Consumer 
with Semaphores

void producer(){
    while(TRUE){ 
        item = produce_item();
        down(empty); 
        wait(mutex);
        insert_item(item); // into buffer
        signal(mutex);
        up(full);
    }
}

void consumer(){
    while(TRUE){ 
        down(full); 
        wait(mutex);
        item = remove_item(); // from buffer
        signal(mutex);
        up(empty);
        consume_item(item);
    }
}

Buffer of size N
int count;                full = 0, empty = N
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POSIX semaphores

• sem_init

• sem_wait

• sem_post

• sem_getvalue

• sem_destroy
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Dining Philosophers Problem

• Philosophers either think or eat

•To eat, a philosopher needs to hold  
  both forks (the one on his left and the 
  
  one on his right)

• If the philosopher is not eating, he is   
  thinking.

• Problem Statement : Develop an  
  algorithm where no philosopher     
  starves.

1

2

3

4

5

E

A

BC

D
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First Try

#define N 5

void philosopher(int i){

  while(TRUE){

      think(); // for some_time

      take_fork(i);

      take_fork((i + 1) % N);

      eat();

      put_fork(i);

      put_fork((i + 1) % N);

  }

}

E

A

BC

D

What happens if only philosophers A and C are always given the priority?
B, D, and E starves… so scheme needs to be fair

1

2

3

4

5
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First Try

#define N 5

void philosopher(int i){

  while(TRUE){

      think(); // for some_time

      take_fork(i);

      take_fork((i + 1) % N);

      eat();

      put_fork(i);

      put_fork((i + 1) % N);

  }

}

What happens if all philosophers decide to pick up their left forks at the same time?
Possible starvation due to deadlock

1

2

3

4

5

E

A

BC

D
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Deadlocks

• A situation where programs continue to run indefinitely 
without making any progress

• Each program is waiting for an event that another 
process can cause
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Second try

#define N 5

void philosopher(int i){

  while(TRUE){

      think();

      take_fork(i);

      if (available((i+1)%N){

         take_fork((i + 1) % N);

         eat();

      }else{

          put_fork(i);

     }

}

• Take fork i, check if fork (i+1)%N is 
available

• Imagine,
– All philosophers start at the same time

– Run simultaneously

– And think for the same time

• This could lead to philosophers taking 
fork and putting it down continuously. a 
deadlock.

• A better alternative
– Philosophers wait a random time before 

take_fork(i)

– Less likelihood of deadlock.

– Used in schemes such as Ethernet
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Solution using Mutex

• Protect critical sections with a 
mutex

• Prevents deadlock

• But has performance issues
– Only one philosopher can eat at a 

time

#define N 5

void philosopher(int i){

  while(TRUE){

      think(); // for some_time

      wait(mutex);

      take_fork(i);

      take_fork((i + 1) % N);

      eat();

      put_fork(i);

      put_fork((i + 1) % N);

      signal(mutex);

  }

}
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Solution to Dining Philosophers
Uses N semaphores (s[0], s[1], …., s[N]) all initialized to 0, and a mutex
Philosopher has 3 states: HUNGRY, EATING, THINKING
A philosopher can only move to EATING state if neither neighbor is eating

void philosopher(int i){
    while(TRUE){
        think();
        take_forks(i);
        eat();
        put_forks();
    }
}

void take_forks(int i){
     lock(mutex);
     state[i] = HUNGRY;
     test(i);
     unlock(mutex);
     down(s[i]);
}

void put_forks(int i){
     lock(mutex);
     state[i] = THINKING;
     test(LEFT);
     test(RIGHT)
     unlock(mutex);
}

void test(int i){
     if (state[i] = HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING){
             state[i] = EATING;
             up(s[i]);
     }
}
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Deadlocks

   

R1

R2

A B

A holds 

reso
urce

 R
1

B holds 

reso
urce

 R
2

Consider this situation:
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Deadlocks

A Deadlock Arises:   

Deadlock :  A set of processes is deadlocked if each process in the set is 
waiting for an event that only another process in the set can cause.

R1

R2

A B

A holds 

reso
urce

 R
1

B holds 

reso
urce

 R
2

B waits for

resource R1

A waits for

resource R2

Resource Allocation Graph
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Conditions for Resource 
Deadlocks

1. Mutual Exclusion 
– Each resource is either available or currently assigned to exactly one 

process

2. Hold and wait
– A process holding a resource, can request another resource

3. No preemption
– Resources previously granted cannot be forcibly taken away from a 

process

4. Circular wait
– There must be a circular chain of two or more processes, each of 

which is waiting for a resouce held by the next member of the chain

All four of these conditions must be present for a resource deadlock 
to occur!!
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Deadlocks :
(A Chanced Event)

• Ordering of resource requests and allocations are probabilistic, thus 
deadlock occurrence is also probabilistic

Deadlock occurs
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No dead lock occurrence
(B can be granted S 
  after step q)
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Should Deadlocks be handled?

• Preventing / detecting deadlocks could be tedious

• Can we live without detecting / preventing deadlocks?
– What is the probability of occurrence? 

– What are the consequences of a deadlock? (How critical is a 
deadlock?)
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Handling Deadlocks

• Detection and Recovery

• Avoidance

• Prevention
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Deadlock detection

• How can an OS detect when there is a 
deadlock?

• OS needs to keep track of
– Current resource allocation 

• Which process has which resource

– Current request allocation
• Which process is waiting for which resource

• Use this informaiton to detect deadlocks
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Deadlock Detection

• Deadlock detection with one resource of each type

• Find cycles in resource graph
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Deadlock Detection

• Deadlock detection with multiple resources of each type

Existing Resource Vector Resources Available

Current Allocation Matrix Request Matrix

P1

P2

P3

Process Pi holds Ci resources and requests Ri resources,  where i = 1 to 3
Goal is to check if there is any sequence of allocations by which all current 
requests can be met. If so, there is no deadlock.

Who has what!! Who is waiting for what!!
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Deadlock Detection

• Deadlock detection with multiple resources of each type

Existing Resource Vector Resources Available

Current Allocation Matrix Request Matrix

P1

P2

P3

Process Pi holds Ci resources and requests Ri resources,  where i = 1 to 3

P1 cannot be satisfied

P2 cannot be satisfied

P3 can be satisfied
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Deadlock Detection

• Deadlock detection with multiple resources of each type

Existing Resource Vector Resources Available

Current Allocation Matrix Request Matrix

P1

P2

P3

P3 runs and its allocation is (2, 2, 2, 0)
On completion it returns the available resources are A = (4 2 2 1)
Either P1 or P2 can now run.
NO Deadlock!!!
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Deadlock Detection

• Deadlock detection with multiple resources of each type

Existing Resource Vector Resources Available

Current Allocation Matrix Request Matrix

P1

P2

P3

Process Pi holds Ci resources and requests Ri resources,  where i = 1 to 3
Deadlock detected as none of the requests can be satisfied

P1 cannot be satisfied

P2 cannot be satisfied

P3 cannot be satisfied
deadlock

2   1    1   0
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Deadlock Recovery

What should the OS do when it detects a deadlock?

• Raise an alarm
– Tell users and administrator

• Preemption
– Take away a resource temporarily (frequently not possible)

• Rollback
– Checkpoint states and then rollback

• Kill low priority process
– Keep killing processes until deadlock is broken

– (or reset the entire system)
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Deadlock Avoidance

• System decides in advance if allocating a resource to a 
process will lead to a deadlock

process 1 instructions

pr
oc

es
s 

2 
in

st
ru

ct
io

ns

R1

R1

R2

R2

Both processes request 
Resource R1

Both processes 
request 
Resource R2

Unsafe state
(may cause a  deadlock)

Note: unsafe state is
not a deadlocked state
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Deadlock Avoidance

    Is there an algorithm that can always avoid deadlocks by 
conservatively make the right choice.

• Ensures system never reaches an unsafe state

• Safe state : A state is said to be safe, if there is some 
scheduling order in which every process can run to 
completion even if all of them suddenly requests their 
maximum number of resources immediately

• An unsafe state does not have to lead to a deadlock; it 
could lead to a deadlock
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Example with a Banker

• Consider a banker with 4 clients (P1, P2, P3, P4). 
– Each client has certain credit limits (totaling 20 units)

– The banker knows that max credits will not be used at once, so 
he keeps only 10 units

– Clients declare maximum credits in advance. The banker can 
allocate credits provided no unsafe state is reached.

Has Max

A 3 9

B 2 4

C 2 7

free : 3 unitsTotal : 10 units
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Safe State

Has Max

A 3 9

B 2 4

C 2 7

free : 3 units

Has Max

A 3 9

B 4 4

C 2 7

free : 1 units

Has Max

A 3 9

B 0 -

C 2 7

free : 5 units

Allocate 2 units to B B completes

Has Max

A 3 9

B 0 -

C 7 7

Allocate 5 to C

free : 0 units

Has Max

A 3 9

B 0 -

C 0 -

free : 7 units

C completes
Has Max

A 9 9

B 0 -

C 0 -

Allocate 6 units to A

free : 0 units

This is a safe state because there is some scheduling 
order in which every process executes
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Unsafe State

Has Max

A 4 9

B 2 4

C 2 7

free : 2 units

Has Max

A 4 9

B 4 4

C 2 7

free : 0 units

Has Max

A 4 9

B 0 -

C 2 7

free : 4 units

Allocate 2 units to B B completes

This is an unsafe state because there exists NO scheduling 
order in which every process executes
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Banker’s Algorithm
(with a single resource)

When a request occurs
– If(is_system_in_a_safe_state)

• Grant request

– else
• postpone until later

Please read Banker’s Algorithm with multiple resources from 
Modern Operating Systems, Tanenbaum

Deadlock unsafe

safe
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Deadlock Prevention

• Deadlock avoidance not practical, need to 
know maximum requests of a process

• Deadlock prevention
– Prevent at-least one of the 4 conditions
1. Mutual Exclusion 

2. Hold and wait

3. No preemption

4. Circular wait
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Prevention

1. Preventing Mutual Exclusion 
– Not feasible in practice

– But OS can ensure that resources are optimally allocated

2. Hold and wait
– One way is to achieve this is to require all processes to request resources 

before starting execution
• May not lead to optimal usage

• May not be feasible to know resource requirements

3. No preemption
– Pre-empt the resources, such as by virtualization of resources (eg. Printer 

spools)

4. Circular wait
– One way, process holding a resource cannot hold a resource and request for 

another one

– Ordering requests in a sequential / hierarchical order.
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Hierarchical Ordering of 
Resources

• Group resources into levels 
(i.e. prioritize resources numerically)

• A process may only request resources at higher levels 
than any resource it currently holds

• Resource may be released in any order

• eg. 
– Semaphore s1, s2, s3 (with priorities in increasing order)

    down(S1);  down(S2); down(S3) ;  allowed

    down(S1); down(S3); down(S2); not allowed
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