
1

Interprocess Communication
and

Synchronization

Chester Rebeiro

IIT Madras

2

Inter Process Communication

• Advantages of Inter Process Communication (IPC)
– Information sharing

– Modularity/Convenience

• 3 ways
– Shared memory

– Message Passing

– Signals

3

Shared Memory

• One process will create an area in RAM which
the other process can access

• Both processes can access shared memory like
a regular working memory
– Reading/writing is like regular reading/writing
– Fast

• Limitation : Error prone. Needs synchronization
between processes

Process 1

Process 2

Shared
memory

userspace

4

Shared Memory in Linux

• int shmget (key, size, flags)
– Create a shared memory segment;
– Returns ID of segment : shmid
– key : unique identifier of the shared memory segment
– size : size of the shared memory (rounded up to the

PAGE_SIZE)
• int shmat(shmid, addr, flags)

– Attach shmid shared memory to address space of the
calling process

– addr : pointer to the shared memory address space
• int shmdt(shmid)

– Detach shared memory

5

Example
server.c client.c

6

Message Passing

• Shared memory created in the kernel

• System calls such as send and receive
used for communication
– Cooperating : each send must have a

receive

• Advantage : Explicit sharing, less error
prone

• Limitation : Slow. Each call involves
marshalling / demarshalling of
information

Process 1

Process 2

Shared
memory

Kernel

userspace

7

Pipes

– Always between parent and child

– Always unidirectional

– Accessed by two associated file descriptors:
• fd[0] for reading from pipe
• fd[1] for writing to the pipe

8

Pipes for two way
communication

• Two pipes opened
pipe0 and pipe1

• Note the unnecessary
pipes

• Close the unnecessary
pipes

9

Example
(child process sending a string to parent)

10

Signals

• Asynchronous unidirectional communication
between processes

• Signals are a small integer
– eg. 9: kill, 11: segmentation fault

• Send a signal to a process
– kill(pid, signum)

• Process handler for a signal
– sighandler_t signal(signum, handler);

– Default if no handler defined

ref : http://www.comptechdoc.org/os/linux/programming/linux_pgsignals.html

11

Synchronization

Chester Rebeiro

IIT Madras

12

Motivating Scenario

• Single core
– Program 1 and program 2 are executing at the same time but sharing a

single core

{
 *
 *
counter++
 *
}

{
 *
 *
counter--
 *
}

program 0 program 1int counter=5;
shared variable

1 2 1 2 1 2 1 2

CPU usage wrt time

13

Motivating Scenario

• What is the value of counter?
– expected to be 5

– but could also be 4 and 6

{
 *
 *
counter++
 *
}

{
 *
 *
counter--
 *
}

program 0 program 1int counter=5;
Shared variable

14

Motivating Scenario

{
 *
 *
counter++
 *
}

{
 *
 *
counter--
 *
}

program 0 program 1int counter=5;
Shared variable

R1 counter
R1 R1 + 1
counter R1
R2 counter
R2 R2 - 1
counter R2

context
switch

counter = 5

R1 counter
R2 counter
R2 R2 - 1
counter R2
R1 R1 + 1
counter R1

counter = 6

R2 counter
R2 counter
R2 R2 + 1
counter R2
R2 R2 - 1
counter R2

counter = 4

15

Race Conditions

• Race conditions
– A situation where several processes access and manipulate the

same data (critical section)

– The outcome depends on the order in which the access take
place

– Prevent race conditions by synchronization
• Ensure only one process at a time manipulates the critical data

{
 *
 *
counter++
 *
}

critical section

No more than one
process should execute in
critical section at a time

16

Race Conditions in Multicore

• Multi core
– Program 1 and program 2 are executing at the same time on different

cores

{
 *
 *
counter++
 *
}

{
 *
 *
counter--
 *
}

program 0 program 1int counter=5;

1
2

CPU usage wrt time

shared variable

17

Critical Section

• Requirements
– Mutual Exclusion : No more than one process in

critical section at a given time

– Progress : When no process is in the critical section,
any process that requests entry into the critical
section must be permitted without any delay

– No starvation (bounded wait): There is an upper
bound on the number of times a process enters the
critical section, while another is waiting.

18

Locks and Unlocks

• lock(L) : acquire lock L exclusively
– Only the process with L can access the critical section

• unlock(L) : release exclusive access to lock L
– Permitting other processes to access the critical section

{
 *
 *
lock(L)
counter++
unlock(L)
 *
}

{
 *
 *
lock(L)
counter--
unlock(L)
 *
}

program 0 program 1int counter=5;
lock_t L;

shared variable

19

When to have Locking?

• Single instructions by themselves are
atomic

eg. add %eax, %ebx

• Multiple instructions need to be explicitly
made atomic
– Each piece of code in the OS must be

checked if they need to be atomic

20

How to Implement Locking

21

Using Interrupts

• Simple
– When interrupts are disabled, context switches won’t

happen

• Requires privileges
– User processes generally cannot disable interrupts

• Not suited for multicore systems

while(1){
 disable interrupts ()
 critical section
 enable interrupts ()
 other code
}

while(1){
 disable interrupts ()
 critical section
 enable interrupts ()
 other code
}

Process 1 Process 2

lock

unlock

22

Software Solution (Attempt 1)

• Achieves mutual exclusion
• Busy waiting – waste of power and time
• Needs to alternate execution in critical section

process1 process2 process1 process2

while(1){
 while(turn == 2); // lock
 critical section
 turn = 2; // unlock
 other code
}

while(1){
 while(turn == 1); // lock
 critical section
 turn = 1; // unlock
 other code
}

Process 1 Process 2
int turn=1;

Shared

23

Software Solution (Attempt 2)

• Need not alternate execution in critical section

• Does not guarantee mutual exclusion

while(1){
 while(p2_inside == True);
 p1_inside = True;
 critical section
 p1_inside = False;
 other code
}

Process 1 Process 2
while(1){
 while(p1_inside == True);
 p2_inside = True;
 critical section
 p2_inside = False;
 other code
}

p2_inside = False, p1_inside = False
shared

lock

unlock

24

Attempt 2: No mutual exclusion

CPU p1_inside p2_inside

while(p2_inside == True); False False

context switch

while(p1_inside == True); False False

p2_inside = True; False True

context switch

p1_inside = True; True True

Both p1 and p2 can enter into the critical section at the same time

tim
e

25

Software Solution (Attempt 3)

• Achieves mutual exclusion

• Does not achieve progress (could deadlock)

while(1){
 p1_wants_to_enter = True
 while(p2_wants_to_enter = True);
 critical section
 p1_wants_to_enter = False
 other code
}

Process 1 Process 2
p2_wants_to_enter, p1_wants_to_enter

globally defined

while(1){
 p2_wants_to_enter = True
 while(p1_wants_to_enter = True);
 critical section
 p2_wants_to_enter = False
 other code
}

lock

unlock

26

Attempt 3: No Progress

CPU p1_inside p2_inside

p1_wants_to_enter = True False False

context switch

p2_wants_to_enter = True False False

There is a tie!!!

Both p1 and p2 will loop infinitely

tim
e

27

Peterson’s Solution

Break the tie with a ‘favored’ process

while(1){
 p1_wants_to_enter = True
 favored = 2

 while (p2_wants_to_enter AND
 favored = 2);
 critical section
 p1_wants_to_enter = False
 other code
}

Process 1
p2_wants_to_enter, p1_wants_to_enter, favored

globally defined

favored is used to break the tie when
both p1 and p2 want to enter the critical
section.

(* the process which sets favored last
looses the tie *)

If the second process wants to enter. favor
it. (be nice !!!)lock

unlock

28

Peterson’s Solution

while(1){
 p1_wants_to_enter = True
 favored = 2

 while (p2_wants_to_enter AND
 favored = 2);
 critical section
 p1_wants_to_enter = False
 other code
}

Process 1
p2_wants_to_enter, p1_wants_to_enter, favored

globally defined

while(1){
 p2_wants_to_enter = True
 favored = 1

 while (p1_wants_to_enter AND
 favored = 1);
 critical section
 p2_wants_to_enter = False
 other code
}

Process 2

29

Bakery Algorithm

• Synchronization between N > 2 processes

• By Leslie Lamport

http://research.microsoft.com/en-us/um/people/lamport/pubs/bakery.pdf

wait your turn!!

Eat
when 196 displayed

30

Simplified Bakery Algorithm

• Processes numbered 0 to N-1

• num is an array N integers (initially 0).
– Each entry corresponds to a process

lock(i){
 num[i] = MAX(num[0], num[1], …., num[N-1]) + 1
 for(p = 0; p < N; ++p){
 while (num[p] != 0 and num[p] < num[i]);
 }
}

unlock(i){
 num[i] = 0;
}

critical section
This is at the doorway!!!
It has to be atomic
to ensure two processes
do not get the same token

31

Original Bakery Algorithm

• Without atomic operation assumptions

• Introduce an array of N Booleans: choosing, initially all values False.

lock(i){
 choosing[i] = True
 num[i] = MAX(num[0], num[1], …., num[N-1]) + 1
 choosing[i] = False
 for(p = 0; p < N; ++p){
 while (choosing[p]);
 while (num[p] != 0 and (num[p],p)<(num[i],i));
 }
}

unlock(i){
 num[i] = 0;
}

critical section

(a, b) < (c, d) which is equivalent to: (a < c) or ((a == c) and (b < d))

Choosing ensures that a process
Is not at the doorway

doorway

32

Analyze this

• Does this scheme provide mutual exclusion?

while(1){
 while(lock != 0);
 lock= 1; // lock
 critical section
 lock = 0; // unlock
 other code
}

while(1){
 while(lock != 0);
 lock = 1; // lock
 critical section
 lock = 0; // unlock
 other code
}

Process 1 Process 2

lock = 0
P1: while(lock != 0);
P2: while(lock != 0);
P2: lock = 1;
P1: lock = 1;
…. Both processes in critical section

context switchNo

33

If only…

• We could make this operation atomic

while(1){
 while(lock != 0);
 lock= 1; // lock
 critical section
 lock = 0; // unlock
 other code
}

Process 1

Make atomic

Hardware to the rescue….

34

Hardware Support
(Test & Set Instruction)

• Write to a memory location, return its old value

int test_and_set(int *L){
 int prev = *L;
 *L = 1;
 return prev;
}

equivalent software representation
(the entire function is executed atomically)

while(1){
 while(test_and_set(&lock) == 1);
 critical section
 lock = 0; // unlock
 other code
}

Usage for locking

Why does this work? If two CPUs execute test_and_set at the same time, the
hardware ensures that one test_and_set does both its steps before the other
one starts.
So the first invocation of test_and_set will read a 0 and set lock to 1 and
return. The second test_and_set invocation will then see lock as 1, and will
loop continuously until lock becomes 0

atomic

35

Intel Hardware Software
(xchg instruction)

• xchg : Intel instruction.
exchange.

typical usage :

 xchg reg, mem

int xchg(addr, value){
 %eax = value
 xchg %eax, (addr)
}

void acquire(int *locked){
 while(1){
 if(xchg(locked, 1) == 0)
 break;
 }
}

void release(int *locked){
 locked = 0;
}

Note. %eax is returned

36

High Level Constructs

• Spinlock

• Mutex

• Semaphore

37

Spinlocks Usage

int xchg(addr, value){
 %eax = value
 xchg %eax, (addr)
}

void acquire(int *locked){
 while(1){
 if(xchg(locked, 1) == 0)
 break;
 }
}

void release(int *locked){
 locked = 0;
}

• One process will acquire the lock

• The other will wait in a loop
repeatedly checking if the lock is
available

• The lock becomes available when
the former process releases it

acquire(&locked)
critical section
release(&locked)

acquire(&locked)
critical section
release(&locked)

Process 1

Process 2

See spinlock.c and spinlock.h in xv6 [15]

38

Issues with Spinlocks

• No compiler optimizations should be allowed
– Should not make X a register variable

• Write the loop in assembly or use volatile

• Should not reorder memory loads and stores
• Use serialized instructions (which forces instructions not to be reordered)

• Luckly xchg is already implements serialization

xchg %eax, X

39

More issues with Spinlocks

• No caching of (X) possible. All xchg operations are bus transactions.
– CPU asserts the LOCK, to inform that there is a ‘locked ‘ memory

access

• acquire function in spinlock invokes xchg in a loop…each operation
is a bus transaction …. huge performance hits

CPU0
xchg %eax, X

CPU1

L1 cache L1 cache

Memory
X

cache coherence
protocol

#LOCK

40

A better acquire

void acquire(int *locked){
 reg = 1
 while(1)
 if(xchg(locked, reg) == 0)
 break;
}

void acquire(int *locked) {
 reg = 1;
 while (xchg(locked, reg) == 1)
 while (*locked == 1);
}

int xchg(addr, value){
 %eax = value
 xchg %eax, (addr)
}

Better way
inner loop allows caching of
locked. Access cache instead of memory.

Original.
Loop with xchg.
Bus transactions.
Huge overheads

41

Spinlocks
(when should it be used?)

• Characteristic : busy waiting
– Useful for short critical sections, where much CPU

time is not wasted waiting
• eg. To increment a counter, access an array element, etc.

– Not useful, when the period of wait is unpredictable or
will take a long time

• eg. Not good to read page from disk.

• Use mutex instead (…mutex)

42

Spinlock in pthreads

lock

unlock

create spinlock

destroy spinlock

43

Mutexes

• Can we do better than busy
waiting?
– If critical section is locked then

yield CPU
• Go to a SLEEP state

– While unlocking, wake up
sleeping process

int xchg(addr, value){
 %eax = value
 xchg %eax, (addr)
}

void lock(int *locked){
 while(1){
 if(xchg(locked, 1) == 0)
 break;
 else
 sleep();
 }
}

void unlock(int *locked){
 locked = 0;
 wakeup();
}

Ref: wakeup(2864), sleep(2803)

44

Thundering Herd Problem

• A large number of processes
wake up (almost
simultaneously) when the event
occurs.
– All waiting processes wake up

– Leading to several context
switches

– All processes go back to sleep
except for one, which gets the
critical section

• Large number of context switches

• Could lead to starvation

int xchg(addr, value){
 %eax = value
 xchg %eax, (addr)
}

void lock(int *locked){
 while(1){
 if(xchg(locked, 1) == 0)
 break;
 else
 sleep();
 }
}

void unlock(int *locked){
 locked = 0;
 wakeup();
}

45

Thundering Herd Problem

• The Solution
– When entering critical

section, push into a
queue before blocking

– When exiting critical
section, wake up only
the first process in the
queue

int xchg(addr, value){
 %eax = value
 xchg %eax, (addr)
}

void lock(int *locked){
 while(1){
 if(xchg(locked, 1) == 0)
 break;
 else{
 // add this process to Queue
 sleep();
 }
 }
}

void unlock(int *locked){
 locked = 0;
 // remove process P from queue
 wakeup(P)
}

46

pthread Mutex

• pthread_mutex_lock

• pthread_mutex_unlock

47

Locks and Priorities

• What happens when a high priority task requests
a lock, while a low priority task is in the critical
section
– Priority Inversion

– Possible solution
• Priority Inheritance

Interesting Read : Mass Pathfinder
http://research.microsoft.com/en-us/um/people/mbj/mars_pathfinder/mars_pathfinder.html

48

Producer – Consumer
Problems

• Also known as Bounded buffer Problem

• Producer produces and stores in buffer, Consumer consumes from
buffer

• Trouble when
– Producer produces, but buffer is full

– Consumer consumes, but buffer is empty

Producer Consumer

Buffer (of size N)

49

Producer-Consumer Code

void producer(){
 while(TRUE){
 item = produce_item();
 if (count == N) sleep(empty);
 lock(mutex);
 insert_item(item); // into buffer
 count++;
 unlock(mutex);
 if (count == 1) wakeup(full);
 }
}

void consumer(){
 while(TRUE){
 if (count == 0) sleep(full);
 lock(mutex);
 item = remove_item(); // from buffer
 count--;
 unlock(mutex);
 if (count == N-1) wakeup(empty);
 consume_item(item);
 }
}

Buffer of size N
int count=0;
Mutex mutex, empty, full;

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

10

50

Lost Wakeups

• Consider the following
context of instructions

• Assume buffer is initially
empty

read count value // count 0
item = produce_item();
lock(mutex);
insert_item(item); // into buffer
count++; // count = 1
unlock(mutex)
test (count == 1) // yes
signal(full);
test (count == 0) // yes
wait();

consumer
still uses the old value of count (ie 0)

Note, the wakeup is lost.
Consumer waits even though buffer is not empty.
Eventually producer and consumer will wait infinitely

context switch

3
3
5
6
7
8
9
9
3
3

51

Semaphores

• Proposed by Dijkstra in 1965

• Functions down and up must be
atomic

• down also called P (Proberen Dutch
for try)

• up also called V (Verhogen, Dutch
form make higher)

• Can have different variants
– Such as blocking, non-blocking

• If S is initially set to 1,
– Blocking semaphore similar to a Mutex

– Non-blocking semaphore similar to a
spinlock

void down(int *S){
 while(*S <= 0);
 *S--;
}

void up(int *S){
 *S++;
}

52

Producer-Consumer
with Semaphores

void producer(){
 while(TRUE){
 item = produce_item();
 down(empty);
 wait(mutex);
 insert_item(item); // into buffer
 signal(mutex);
 up(full);
 }
}

void consumer(){
 while(TRUE){
 down(full);
 wait(mutex);
 item = remove_item(); // from buffer
 signal(mutex);
 up(empty);
 consume_item(item);
 }
}

Buffer of size N
int count; full = 0, empty = N

53

POSIX semaphores

• sem_init

• sem_wait

• sem_post

• sem_getvalue

• sem_destroy

54

Dining Philosophers Problem

• Philosophers either think or eat

•To eat, a philosopher needs to hold
 both forks (the one on his left and the

 one on his right)

• If the philosopher is not eating, he is
 thinking.

• Problem Statement : Develop an
 algorithm where no philosopher
 starves.

1

2

3

4

5

E

A

BC

D

55

First Try

#define N 5

void philosopher(int i){

 while(TRUE){

 think(); // for some_time

 take_fork(i);

 take_fork((i + 1) % N);

 eat();

 put_fork(i);

 put_fork((i + 1) % N);

 }

}

E

A

BC

D

What happens if only philosophers A and C are always given the priority?
B, D, and E starves… so scheme needs to be fair

1

2

3

4

5

56

First Try

#define N 5

void philosopher(int i){

 while(TRUE){

 think(); // for some_time

 take_fork(i);

 take_fork((i + 1) % N);

 eat();

 put_fork(i);

 put_fork((i + 1) % N);

 }

}

What happens if all philosophers decide to pick up their left forks at the same time?
Possible starvation due to deadlock

1

2

3

4

5

E

A

BC

D

57

Deadlocks

• A situation where programs continue to run indefinitely
without making any progress

• Each program is waiting for an event that another
process can cause

58

Second try

#define N 5

void philosopher(int i){

 while(TRUE){

 think();

 take_fork(i);

 if (available((i+1)%N){

 take_fork((i + 1) % N);

 eat();

 }else{

 put_fork(i);

 }

}

• Take fork i, check if fork (i+1)%N is
available

• Imagine,
– All philosophers start at the same time

– Run simultaneously

– And think for the same time

• This could lead to philosophers taking
fork and putting it down continuously. a
deadlock.

• A better alternative
– Philosophers wait a random time before

take_fork(i)

– Less likelihood of deadlock.

– Used in schemes such as Ethernet

59

Solution using Mutex

• Protect critical sections with a
mutex

• Prevents deadlock

• But has performance issues
– Only one philosopher can eat at a

time

#define N 5

void philosopher(int i){

 while(TRUE){

 think(); // for some_time

 wait(mutex);

 take_fork(i);

 take_fork((i + 1) % N);

 eat();

 put_fork(i);

 put_fork((i + 1) % N);

 signal(mutex);

 }

}

60

Solution to Dining Philosophers
Uses N semaphores (s[0], s[1], …., s[N]) all initialized to 0, and a mutex
Philosopher has 3 states: HUNGRY, EATING, THINKING
A philosopher can only move to EATING state if neither neighbor is eating

void philosopher(int i){
 while(TRUE){
 think();
 take_forks(i);
 eat();
 put_forks();
 }
}

void take_forks(int i){
 lock(mutex);
 state[i] = HUNGRY;
 test(i);
 unlock(mutex);
 down(s[i]);
}

void put_forks(int i){
 lock(mutex);
 state[i] = THINKING;
 test(LEFT);
 test(RIGHT)
 unlock(mutex);
}

void test(int i){
 if (state[i] = HUNGRY && state[LEFT] != EATING && state[RIGHT] != EATING){
 state[i] = EATING;
 up(s[i]);
 }
}

61

Deadlocks

R1

R2

A B

A holds

reso
urce

 R
1

B holds

reso
urce

 R
2

Consider this situation:

62

Deadlocks

A Deadlock Arises:

Deadlock : A set of processes is deadlocked if each process in the set is
waiting for an event that only another process in the set can cause.

R1

R2

A B

A holds

reso
urce

 R
1

B holds

reso
urce

 R
2

B waits for

resource R1

A waits for

resource R2

Resource Allocation Graph

63

Conditions for Resource
Deadlocks

1. Mutual Exclusion
– Each resource is either available or currently assigned to exactly one

process

2. Hold and wait
– A process holding a resource, can request another resource

3. No preemption
– Resources previously granted cannot be forcibly taken away from a

process

4. Circular wait
– There must be a circular chain of two or more processes, each of

which is waiting for a resouce held by the next member of the chain

All four of these conditions must be present for a resource deadlock
to occur!!

64

Deadlocks :
(A Chanced Event)

• Ordering of resource requests and allocations are probabilistic, thus
deadlock occurrence is also probabilistic

Deadlock occurs

65

No dead lock occurrence
(B can be granted S
 after step q)

66

Should Deadlocks be handled?

• Preventing / detecting deadlocks could be tedious

• Can we live without detecting / preventing deadlocks?
– What is the probability of occurrence?

– What are the consequences of a deadlock? (How critical is a
deadlock?)

67

Handling Deadlocks

• Detection and Recovery

• Avoidance

• Prevention

68

Deadlock detection

• How can an OS detect when there is a
deadlock?

• OS needs to keep track of
– Current resource allocation

• Which process has which resource

– Current request allocation
• Which process is waiting for which resource

• Use this informaiton to detect deadlocks

69

Deadlock Detection

• Deadlock detection with one resource of each type

• Find cycles in resource graph

70

Deadlock Detection

• Deadlock detection with multiple resources of each type

Existing Resource Vector Resources Available

Current Allocation Matrix Request Matrix

P1

P2

P3

Process Pi holds Ci resources and requests Ri resources, where i = 1 to 3
Goal is to check if there is any sequence of allocations by which all current
requests can be met. If so, there is no deadlock.

Who has what!! Who is waiting for what!!

71

Deadlock Detection

• Deadlock detection with multiple resources of each type

Existing Resource Vector Resources Available

Current Allocation Matrix Request Matrix

P1

P2

P3

Process Pi holds Ci resources and requests Ri resources, where i = 1 to 3

P1 cannot be satisfied

P2 cannot be satisfied

P3 can be satisfied

72

Deadlock Detection

• Deadlock detection with multiple resources of each type

Existing Resource Vector Resources Available

Current Allocation Matrix Request Matrix

P1

P2

P3

P3 runs and its allocation is (2, 2, 2, 0)
On completion it returns the available resources are A = (4 2 2 1)
Either P1 or P2 can now run.
NO Deadlock!!!

73

Deadlock Detection

• Deadlock detection with multiple resources of each type

Existing Resource Vector Resources Available

Current Allocation Matrix Request Matrix

P1

P2

P3

Process Pi holds Ci resources and requests Ri resources, where i = 1 to 3
Deadlock detected as none of the requests can be satisfied

P1 cannot be satisfied

P2 cannot be satisfied

P3 cannot be satisfied
deadlock

2 1 1 0

74

Deadlock Recovery

What should the OS do when it detects a deadlock?

• Raise an alarm
– Tell users and administrator

• Preemption
– Take away a resource temporarily (frequently not possible)

• Rollback
– Checkpoint states and then rollback

• Kill low priority process
– Keep killing processes until deadlock is broken

– (or reset the entire system)

75

Deadlock Avoidance

• System decides in advance if allocating a resource to a
process will lead to a deadlock

process 1 instructions

pr
oc

es
s

2
in

st
ru

ct
io

ns

R1

R1

R2

R2

Both processes request
Resource R1

Both processes
request
Resource R2

Unsafe state
(may cause a deadlock)

Note: unsafe state is
not a deadlocked state

76

Deadlock Avoidance

 Is there an algorithm that can always avoid deadlocks by
conservatively make the right choice.

• Ensures system never reaches an unsafe state

• Safe state : A state is said to be safe, if there is some
scheduling order in which every process can run to
completion even if all of them suddenly requests their
maximum number of resources immediately

• An unsafe state does not have to lead to a deadlock; it
could lead to a deadlock

77

Example with a Banker

• Consider a banker with 4 clients (P1, P2, P3, P4).
– Each client has certain credit limits (totaling 20 units)

– The banker knows that max credits will not be used at once, so
he keeps only 10 units

– Clients declare maximum credits in advance. The banker can
allocate credits provided no unsafe state is reached.

Has Max

A 3 9

B 2 4

C 2 7

free : 3 unitsTotal : 10 units

78

Safe State

Has Max

A 3 9

B 2 4

C 2 7

free : 3 units

Has Max

A 3 9

B 4 4

C 2 7

free : 1 units

Has Max

A 3 9

B 0 -

C 2 7

free : 5 units

Allocate 2 units to B B completes

Has Max

A 3 9

B 0 -

C 7 7

Allocate 5 to C

free : 0 units

Has Max

A 3 9

B 0 -

C 0 -

free : 7 units

C completes
Has Max

A 9 9

B 0 -

C 0 -

Allocate 6 units to A

free : 0 units

This is a safe state because there is some scheduling
order in which every process executes

79

Unsafe State

Has Max

A 4 9

B 2 4

C 2 7

free : 2 units

Has Max

A 4 9

B 4 4

C 2 7

free : 0 units

Has Max

A 4 9

B 0 -

C 2 7

free : 4 units

Allocate 2 units to B B completes

This is an unsafe state because there exists NO scheduling
order in which every process executes

80

Banker’s Algorithm
(with a single resource)

When a request occurs
– If(is_system_in_a_safe_state)

• Grant request

– else
• postpone until later

Please read Banker’s Algorithm with multiple resources from
Modern Operating Systems, Tanenbaum

Deadlock unsafe

safe

81

Deadlock Prevention

• Deadlock avoidance not practical, need to
know maximum requests of a process

• Deadlock prevention
– Prevent at-least one of the 4 conditions
1. Mutual Exclusion

2. Hold and wait

3. No preemption

4. Circular wait

82

Prevention

1. Preventing Mutual Exclusion
– Not feasible in practice

– But OS can ensure that resources are optimally allocated

2. Hold and wait
– One way is to achieve this is to require all processes to request resources

before starting execution
• May not lead to optimal usage

• May not be feasible to know resource requirements

3. No preemption
– Pre-empt the resources, such as by virtualization of resources (eg. Printer

spools)

4. Circular wait
– One way, process holding a resource cannot hold a resource and request for

another one

– Ordering requests in a sequential / hierarchical order.

83

Hierarchical Ordering of
Resources

• Group resources into levels
(i.e. prioritize resources numerically)

• A process may only request resources at higher levels
than any resource it currently holds

• Resource may be released in any order

• eg.
– Semaphore s1, s2, s3 (with priorities in increasing order)

 down(S1); down(S2); down(S3) ; allowed

 down(S1); down(S3); down(S2); not allowed

	Interprocess Communication and Synchronization
	Inter Process Communication
	Shared Memory
	Shared Memory in Linux
	Example
	Message Passing
	Pipes
	Pipes for two way communication
	Example (child process sending a string to parent)
	Signals
	Synchronization
	Motivating Scenario
	Slide 13
	Slide 14
	Race Conditions
	Race Conditions in Multicore
	Critical Section
	Locks and Unlocks
	When to have Locking?
	How to Implement Locking
	Using Interrupts
	Software Solution (Attempt 1)
	Software Solution (Attempt 2)
	Attempt 2: No mutual exclusion
	Software Solution (Attempt 3)
	Attempt 3: No Progress
	Peterson’s Solution
	Slide 28
	Bakery Algorithm
	Simplified Bakery Algorithm
	Original Bakery Algorithm
	Analyze this
	If only…
	Hardware Support (Test & Set Instruction)
	Intel Hardware Software (xchg instruction)
	High Level Constructs
	Spinlocks Usage
	Issues with Spinlocks
	More issues with Spinlocks
	A better acquire
	Spinlocks (when should it be used?)
	Spinlock in pthreads
	Mutexes
	Thundering Herd Problem
	Slide 45
	pthread Mutex
	Locks and Priorities
	Producer – Consumer Problems
	Producer-Consumer Code
	Lost Wakeups
	Semaphores
	Producer-Consumer with Semaphores
	POSIX semaphores
	Dining Philosophers Problem
	First Try
	Slide 56
	Deadlocks
	Second try
	Solution using Mutex
	Solution to Dining Philosophers
	Slide 61
	Slide 62
	Conditions for Resource Deadlocks
	Deadlocks : (A Chanced Event)
	Slide 65
	Should Deadlocks be handled?
	Handling Deadlocks
	Deadlock detection
	Deadlock Detection
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Deadlock Recovery
	Deadlock Avoidance
	Slide 76
	Example with a Banker
	Safe State
	Unsafe State
	Banker’s Algorithm (with a single resource)
	Deadlock Prevention
	Prevention
	Hierarchical Ordering of Resources

