Classical Cryptography

Chester Rebeiro
IIT Madras

Ciphers

- Symmetric Algorithms
- Encryption and Decryption use the same key
- i.e. $K_{E}=K_{D}$
- Examples:
- Block Ciphers : DES, AES, PRESENT, etc.
- Stream Ciphers : A5, Grain, etc.
- Asymmetric Algorithms
- Encryption and Decryption keys are different
- $\mathrm{K}_{\mathrm{E}} \neq \mathrm{K}_{\mathrm{D}}$
- Examples:
- RSA
- ECC

Encryption (symmetric cipher)

"Attack at Dawn!!"

The Key K is a secret

A CryptoSystem

Pictorial View of Encryption

Attacker's Capabilities (Cryptanalysis)

Mallory wants to some how get information about the secret key.

- Attack models

- ciphertext only attack
- known plaintext attack
- chosen plaintext attack

Mallory has temporary access to the encryption machine. He can choose the plaintext and get the ciphertext.

- chosen ciphertext attack

Mallory has temporary access to the decryption machine. He can choose the ciphertext and get the plaintext.

Kerckhoff's Principle for cipher design

- Kerckhoff's Principle
- The system is completely known to the attacker. This includes encryption \& decryption algorithms, plaintext
- only the key is secret
- Why do we make this assumption?
- Algorithms can be leaked (secrets never remain secret)
- or reverse engineered

Facts about e_{K}

- It is injective (one-to-one)
- i.e. $e_{k}\left(x_{1}\right)=e_{k}\left(x_{2}\right)$ iff $x_{1}=x_{2}$
-Why?
- If not, then Bob does not know if the ciphertext came from x_{1} or x_{2}
- If $\mathrm{P}=\mathrm{C}$, then the encryption function is a permutation
C is a rearrangement of P

A Shift Cipher

- Plaintext set : $P=\{0,1,2,3 \ldots, 25\}$
- Ciphertext set : $C=\{0,1,2,3 \ldots, 25\}$
- Keyspace : $\mathbb{K}=\{0,1,2,3 \ldots, 25\}$
- Encryption Rule : $e_{K}(x)=(x+K) \bmod 26$,
- Decryption Rule : $d_{k}(x)=(x-K) \bmod 26$ where $K \in \mathbb{K}$ and $x \in \mathbb{P}$
- Note:
- Each K results in a unique mapping $e_{k}: \mathrm{P} \rightarrow \mathrm{C}$ and $d_{k}: \mathrm{C} \rightarrow \mathrm{P}$
- $d_{k}\left(e_{k}(x)\right)=x$
- The encryption/decryption rules are permutations

Using the Shift Cipher

with $\mathrm{K}=3$

plaintext	a	b	c	d		e	f	g	h			j	k	1		m
ciphertext	D	E	F	G		H	I	J	K		L	M	N	0		P
plaintext	n	o	p	q			s	t	u			w	x	y		z
	Q	R	S	T		U	v	W	X			Z	A	B		C

attackatdawn \longrightarrow DWWDFNDWFDZQ

Shift Cipher Mappings

- Each K results in a unique mapping $\mathrm{e}_{\mathrm{K}}: \mathrm{P} \rightarrow \mathrm{C}$ and $\mathrm{d}_{\mathrm{K}}: \mathrm{C} \rightarrow \mathrm{P}$
- The mappings are injective (one-to-one)

plaintext	a	b	c	d	...	x	y	z
	0	1	2	3		23	24	25
	$K=8$							
ciphertext		9	10	11		5	6	7
	1	J	K	L		F	G	H
	$K=$							
ciphertext	10	11	12	13		7	8	9
	K	L	M	N		H	I	J
	K=							
ciphertext	13	14	15	16		10	11	12
	N	0	P	Q		K	L	M

$$
\begin{aligned}
& y_{1}, y_{2} \in \mathbb{C} \\
& d_{k}\left(y_{1}\right) \neq d_{k}\left(y_{2}\right)
\end{aligned}
$$

Encryption Rule
$e_{K}(x)=(x+K) \bmod 26$,

Decryption Rule
$d_{k}(x)=(x-K) \bmod 26$

How good is the shift cipher?

- A good cipher has two properties
- Easy to compute
- Satisfied
- An attacker (Mallory), who views the ciphertext should not get any information about the plaintext.
- Not Satisfied!!
- The attacker needs at-most 26 guesses to determine the secret key
- This is an exhaustive key search (known as brute force attack)

Puzzle

- Cryptanalyze, assuming a shift cipher
"COMEBSDISCKCCDBYXOKCSDCGOKUOCDVSXU"

Cryptanalysis of Shift Cipher

By Brute Force... Ciphertext: "DWWDFNDWGDZQ"

- There are only 26 possible keys, so 26 possible decryptions
- Try all of them
- key=0, "dwwdfndwgdzq"
- key=1, "cvvcemcvfcyp"
- key=2, "buubdlbuebxo"
- key=3, "attackatdawn" ... makes sense
- key=4,...
- key=25, ...
- Only key=3 makes sense, thus it is likely to be the key
- ... too easy!!!

History \& Usage

- Used by Julius Caesar in 55 AD with $\mathrm{K}=3$. This variant known as Caesar's cipher.
- Augustus Caesar used a variant with $\mathrm{K}=-1$ and no mod operation.
- Shift ciphers are extremely simple, still used in Modern times
- By Russian Soldiers in first world war
- Last known use in 2011 (by militant groups)

Substitution Cipher

- Plaintext set : $P=\{a, b, c, d, \ldots, z\}$
- Ciphertext set : $C=\{A, B, C, D, \ldots, Z\}$
- Keyspace : $\mathbb{K}=\{\pi \mid$ such that π is a permutation of the alphabets\}
- Size of keyspace is 26!
- Encryption Rule : $e_{\pi}(x)=\pi(x)$,
- Decryption Rule : $d_{\pi}(x)=\pi^{-1}(x)$

Substitution Cipher Example

Key is some permutation of the alphabets

Plaintext: "attackatdawn"
Ciphertext: "ZXXZHAXKZRY"
26! permutations possible. Thus possible keys are 26 ! $\approx 4 \times 10^{26} \ldots$ rules out brute force!!!

Note that the shift cipher is a special case of the substitution cipher which includes only 26 of the 26 ! keys

Cryptanalysis of Substitution Cipher (frequency analysis)

Languages do not have uniform probabilities

- Unigram probabilities of alphabets
- E has probability 0.12 (12\%)
- T,A,O,I,N,S,H,R each have probabilities between 0.06 and 0.09
- D,L each have probabilites around 0.04
- C,U,M,W,F,G,Y,P,B each have probabilities between 0.015 and 0.028
- V,K,J,X,Q,Z each occur less than 0.01
- 30 common digrams are TH, HE, IN, ER, AN, RE, AT,...

Cryptanalysis of Substitution Cipher (from their frequency characteristics)

Frequency analysis of plaintext alphabets

Frequency analysis of ciphertext alphabets

Usage \& Variants

- Evidence showed that it was used before Caesar's cipher
- The technique of 'substitution' still used in modern day block ciphers
- Frequency based analysis attributed to Al-kindi, an Arab mathematician (in AD 800)

Polyalphabetic Ciphers

- Problem with the simple substitution cipher :
- A plaintext letter always mapped to the same ciphertext letter eg. 'z' always corresponds to plaintext 'a'
- facilitating frequency analysis
- A variation (polyalphabetic cipher)
- A plaintext letter may be mapped to multiple ciphertext letters
- eg. 'a' may correspond to ciphertext 'Z' or ' T ' or ' C ' or ' M '
- More difficult to do frequency analysis (but not impossible)
- Example : Vigenere Cipher, Hill Cipher

Vigenère Cipher

- Let the key be $(2,5,8,7,9,12)$ of size 6
- Let the message to be encrypted be "attackatdawn"
- Convert message to integers modulo 26
- "attackatdawn" becomes ($0,19,19,0,2,10,0,19,3,0,22,13$)
- To encrypt, group them in terms of 6 and add the corresponding key
|keyspace| $=26^{\mathrm{m}}$ (where m is the length of the key)

plaintext (x)	a	t	t	a	c	k	a	t	d	a	w	n
	0	19	19	0	2	10	0	19	3	0	22	13
key (k)	2	5	8	7	9	12	2	5	8	7	9	12
$(x+k) \bmod 26$	2	23	1	7	11	22	2	24	11	7	θ	25
ciphertext	C	X	B	I	K	W	C	Y	K	H	F	Z

Cryptanalysis of Vigenère Cipher

- Frequency analysis more difficult (but not impossible)
- Attack has two steps

1. Determine the length m of the key
2. Determine $K=\left(k_{1}, k_{2}, k_{3}, \cdots k_{m}\right)$ by finding each k_{i} separately

Determining Key Length (Kaisiki Test)

- Kasiski test by Friedrich Kasiski in 1863
- Let m be the size of the key
- observation: two identical plaintext segments will encrypt to the same ciphertext when they are δ apart and (m / δ)

- If several such δs are found (i.e. $\delta_{1}, \delta_{2}, \delta_{3}, \ldots$.) then
- $m / \delta_{1}, m / \delta_{2}, m / \delta_{3}, \ldots$.
- Thus m divides the gcd of $\left(\delta_{1}, \delta_{2}, \delta_{3}, \ldots.\right)$

Increasing Confidence of Key Length (Index of Coincidence)

- Consider a multi set of letters of size N

$$
\text { say } s=\{a, b, c, d, a, a, e, f, e, g, \ldots . . .\}
$$

- Probability of picking two 'a' characters (without replacement) is

$$
\frac{n_{0}}{N} \times \frac{n_{0}-1}{N-1}
$$

$$
\begin{aligned}
& n_{0}: \text { Number of occurrences of } \\
& \text { 'a' in } S
\end{aligned}
$$

probability the first pick is ' a '

- Sum of probabilities of picking two similar characters is

$$
I_{c}=\sum_{i=0}^{25} \frac{n_{i}\left(n_{i}-1\right)}{N(N-1)}
$$

index of coincidence

Index of Coincidence

- Consider a random permutation of the alphabets (as in the substitution cipher)

$$
s=\{a, b, c, d, a, a, e, f, f, g, \ldots . . .\} \longrightarrow S=\{X, M, D, F, X, X, Z, G, Z, J, \ldots . . .\}
$$

- Note that $: n_{a}=n_{X}$; thus the value of I_{c} remains unaltered
- Number of occurrence of an alphabet in a text depends on the language, thus each language will have a unique I_{c} value

English	0.0667	French	0.0778
German	0.0762	Spanish	0.0770
Italian	0.0738	Russian	0.0529

Modular Arithmetic

Modular Arithmetic

slides in Mathematical Background

Affine Cipher

- A special case of substitution cipher
- Encryption: y = ax + b (mod 26)
- Decryption: $x=(y-b) a^{-1}(\bmod 26)$
- plaintext $: x \in\{0,1,2,3, \ldots .25\}$
- ciphertext: $\mathrm{y} \in\{0,1,2,3, \ldots .25\}$
- key
: (a, b)
- where a and $b \in\{0,1,2,3, \ldots .25\}$ and
- $\operatorname{gcd}(a, 26)=1 \quad$ why need this condition?
- Example: $a=3, b=5$
- Encryption: $x=4 ; y=(3 * 4+5) \bmod 26=17$
- Decryption: $x=(y-b) a^{-1} \bmod 26 \cdots \cdots \cdot a^{-1}=1 \bmod 26$. The inverse exists only if a and 26 are prime $\mathrm{a}^{-1}=9 \quad$ (Note that $3 * 9 \bmod 26=1$)
$(17-5)^{*} 9 \bmod 26=4$

why $\operatorname{gcd}(\mathrm{a}, 26)$ must be 1 ?

- Let $\operatorname{gcd}(a, 26)=d>1$
- then d / a and $d / 26$ (i.e. $d \bmod 26=0$)
$-y=a x+b \bmod 26$
Let ciphertext $\mathrm{y}=\mathrm{b}$; $\quad \mathrm{ax}=0 \bmod 26$
In this case x can have two decrypted values: 0 and d.
Thus the function is not injective.... cannot be used for an encryption

What is the ciphertext when (1) $x_{1}=1$ and (2) $x_{2}=14$ are encrypted with the Affine cipher with key (4, 0)?

Usage \& Variants of Affine Cipher

- Ciphers built using the Affine Cipher
- Caesar's cipher is a special case of the Affine cipher with $\mathrm{a}=1$
- Atbash
- $b=25, a^{-1}=a=25$
- Encryption : y $=25 x+25 \bmod 26$
- Decryption : $x=25 x+25 \bmod 26$

Hill Cipher

- Encryption: $y=x K(\bmod 26)$
- Decryption: $x=\mathrm{yK}^{-1}(\bmod 26)$
- plaintext : $x \in\{0,1,2,3, \ldots .25\}$
- ciphertext : $\mathrm{y} \in\{0,1,2,3, \ldots .25\}$
- key $\quad: K$ is an invertible matrix
- example

$$
K=\left[\begin{array}{cc}
11 & 8 \\
3 & 7
\end{array}\right] \quad \begin{gathered}
\text { hiff } \\
K^{-1}=\left[\begin{array}{cc}
7 & 18 \\
23 & 11
\end{array}\right] \quad K \bullet K^{-1}=1 \bmod 26
\end{gathered}
$$

plaintext

$\left[\begin{array}{ll}7 & 8\end{array}\right] \times\left[\begin{array}{cc}11 & 8 \\ 3 & 7\end{array}\right](\bmod 26)=\left[\begin{array}{ll}23 & 8\end{array}\right]$
$\left[\begin{array}{cc}23 & 8\end{array}\right] \times\left[\begin{array}{cc}7 & 18 \\ 23 & 11\end{array}\right](\bmod 26)=\left[\begin{array}{ll}7 & 8\end{array}\right]$

Fí $\iint \rightarrow(7,8)(11,11)$
plaintext

Cryptanalysis of Hill Cipher

- ciphertext only attack is difficult
- known plaintext attack

Form equations and solve to get the key
$7 k_{11}+8 k_{21}=23$
$7 k_{12}+8 k_{22}=8$
$11 k_{11}+11 k_{21}=24$
$11 k_{12}+11 k_{22}=9$

Permutation Cipher

- Ciphers we seen so far were substitution ciphers
- Plaintext characters substituted with ciphertext characters

$$
\underset{\text { plaintext }}{\text { Fiff }} \longrightarrow \underset{\text { ciphertext }}{\text { XIYJ }}
$$

- Alternate technique : permutation
- Plaintext characters re-ordred by a random permutation
hiff
plaintext
LIHI
ciphertext

Permutation Cipher

- Example plaintext: attackatdawn
- key : $(1,3,2,0)$ here is of length 4 and a permutation of (0,1,2,3)
- It mean's $0^{\text {th }}$ character in plaintext goes to $1^{\text {st }}$ character in ciphertext (and so on...)

- cryptanalysis : 4! possibilities

Rotor Machines (German Enigma)

- Each rotor makes a permutation
- Adding / removing a rotor would change the ciphertext
- Additionally, the rotors rotates with a gear after a character is entered
- Broken by Alan Turing

Block Ciphers

- General principal of all ciphers seen so far
- Plaintext divided into blocks and each block encrypted with the same key
- Blocks can vary in length starting from 1 character

- examples: substitution ciphers, polyalphabetic ciphers, permutation ciphers, etc.

Stream Ciphers

Typically a bit, but can also more than a bit

- Each block of plaintext is encrypted with a different key

Formally, $y=y_{1} y_{2} y_{3} \ldots=e_{k_{1}}\left(x_{1}\right) e_{k_{2}}\left(x_{2}\right) e_{k_{3}}\left(x_{3}\right) \ldots$

Observe: the key should be variable length... we call this a key stream.

Stream Ciphers (how they work)

```
stream cipher output: \(y=y_{1} y_{2} y_{3} \ldots\)
\(y_{1}=x_{1} \oplus k_{1} ; y_{2}=x_{2} \oplus k_{2} ; y_{3}=x_{3} \oplus k_{3}, \ldots\).
```

How to generate the $\mathrm{i}^{\text {th }}$ key : $k_{i}=f_{i}\left(K, k_{1}, k_{2}, k_{3}, \ldots, k_{i-1}\right)$
$\mathrm{i}^{\text {th }}$ key is a function of K and the first $\mathrm{i}-1$ plaintexts
$k_{1}, k_{2}, k_{3}, \ldots, k_{i}$ Is known as the keystream

Generating the keystream in practice

- Using LFSRs (Linear feedback shift registers)

b3	b2	b1	b0
$\rightarrow 1$	0	0	0
0	1	0	0
0	0	1	0
1	0	0	1
1	1	0	0
0	1	1	0
1	0	1	1
0	1	0	1
1	0	1	0
1	1	0	1
1	1	1	0
1	1	1	1
0	1	1	1
0	0	1	1
0	0	0	1
1	0	0	0

Surprise Quiz-1

1. Prove that if the sum of all digits in a number is divisible by 9 then the number itself is divisible by 9 .
2. How can the permutation cipher be represented as a Hill cipher? Explain with an example.
3. If $\operatorname{GCD}(\mathrm{a}, \mathrm{N})=1$ then prove that $\mathrm{ax} \mathrm{i} \neq \mathrm{a} \times \mathrm{j} \bmod \mathrm{N}$
4. Use (3) to show that a $x \mathrm{k} \bmod \mathrm{N}$ is a permutation of $\{1,2, \ldots \mathrm{~N}-1\}$ where k varies from $1,2,3, \ldots . \mathrm{N}-1$.
5. Use (4) to show that the inverse of 'a mod N^{\prime} (i.e. a^{-1}) exists (where $\operatorname{gcd}(\mathrm{a}, \mathrm{N})=1$)
