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Ciphers

• Symmetric Algorithms
– Encryption and Decryption use the same key

– i.e. KE = KD

– Examples:
• Block Ciphers : DES, AES, PRESENT, etc.

• Stream Ciphers : A5, Grain, etc.
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• Stream Ciphers : A5, Grain, etc.

• Asymmetric Algorithms
– Encryption and Decryption keys are different

– KE ≠ KD

– Examples: 
• RSA

• ECC
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Encryption (symmetric cipher)

Alice Bob

Plaintext

untrusted communication link
E D

K K

“Attack at Dawn!!”
encryption decryption

#%AR3Xf34^$

(ciphertext)
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Plaintext

“Attack at Dawn!!”

Mallory

The Key K is a secret

Only sees ciphertext. 

cannot get the plaintext message

because she does not know the key K
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A CryptoSystem

Alice Bob

Plaintext

“Attack at Dawn!!”

untrusted communication link
E D

K K

“Attack at Dawn!!”
encryption decryption

#%AR3Xf34^$

(ciphertext)

A cryptosystem is a five-tuple (P,C,K,E,D), where the following are 
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A cryptosystem is a five-tuple (P,C,K,E,D), where the following are 

satisfied:

• P is a finite set of possible plaintexts

• C is a finite set of possible ciphertexts

• K, the keyspace, is a finite set of possible keys

• E is a finite set of encryption functions 

• D is a finite set of decryption functions

• ∀K∈K

Encryption Rule : ∃eK∈ E, and

Decryption Rule : ∃dK∈D

such that (eK: P→C), (dk: C→P) and ∀x∈P, dK(eK(x)) = x.



Pictorial View of Encryption
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Depending on the value of the key,

a mapping between the P and C is 

chosen.

The encryption map then fixes a 

Mapping between C and P

Decryption is the exact inverse of 

encryption.



Attacker’s Capabilities

(Cryptanalysis)

• Attack models

– ciphertext only attack

Mallory wants to some how get information about the secret key.
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– ciphertext only attack

– known plaintext attack

– chosen plaintext attack 
Mallory has temporary access to the encryption machine. He can choose the 
plaintext and get the ciphertext.

– chosen ciphertext attack

Mallory has temporary access to the decryption machine. He can choose the 

ciphertext and get the plaintext.
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Kerckhoff’s Principle for cipher design

• Kerckhoff’s Principle
– The system is completely known to the attacker. This includes 

encryption & decryption algorithms, plaintext  

– only the key is secret
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• Why do we make this assumption?

– Algorithms can be leaked (secrets never remain secret)

– or reverse engineered

7history of A5/1: https://en.wikipedia.org/wiki/A5/1 



Facts about eK

• It is injective (one-to-one)

– i.e. ek(x1) = ek(x2) iff x1 = x2

– Why?

• If not, then Bob does not know if the ciphertext came 
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• If not, then Bob does not know if the ciphertext came 

from x1 or x2

• If P = C, then the encryption function is a 

permutation

C is a rearrangement of P
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A Shift Cipher

• Plaintext set : P = {0,1,2,3 …, 25}

• Ciphertext set : C = {0,1,2,3 …, 25}

• Keyspace : K = {0,1,2,3 …, 25}

• Encryption Rule : eK(x) = (x + K) mod 26, 
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Encryption Rule : eK(x) = (x + K) mod 26, 

• Decryption Rule : dk(x) = (x – K) mod 26

where K∈K and x∈P

• Note: 

– Each K results in a unique mapping eK: P→C and dK:C→P

– dk(eK(x)) = x

– The encryption/decryption rules are permutations
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Using the Shift Cipher

plaintext

ciphertext

plaintext

ciphertext

with K=3
0     1     2     3     4    5     6     7     8     9   10   11  12 

13  14   15   16   17  18  19   20   21  22   23  24   25 
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attackatdawn DWWDFNDWFDZQ



Shift Cipher Mappings

• Each K results in a unique mapping eK: P→C and dK:C→P

• The mappings are injective (one-to-one) 

Encryption Rule

plaintext a b c d … x y z

0 1 2 3 23 24 25

y1 , y2 ∈C

dK(y1) ≠ dK(y2)
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Encryption Rule

eK(x) = (x + K) mod 26, 

Decryption Rule 

dk(x) = (x – K) mod 26

K=8

ciphertext 8 9 10 11 5 6 7

I J K L F G H

K=10

ciphertext 10 11 12 13 7 8 9

K L M N H I J

K=13

ciphertext 13 14 15 16 10 11 12

N O P Q K L M



How good is the shift cipher?

• A good cipher has two properties

– Easy to compute

• Satisfied

– An attacker (Mallory), who views the ciphertext
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– An attacker (Mallory), who views the ciphertext

should not get any information about the 

plaintext.

• Not Satisfied!!

• The attacker needs at-most 26 guesses to determine 

the secret key ….

– This is an exhaustive key search (known as brute force attack)
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Puzzle

• Cryptanalyze, assuming a shift cipher

“COMEBSDISCKCCDBYXQKCSDCGOKUOCDVSXU”
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Cryptanalysis of Shift Cipher

CR 14



History & Usage

• Used by Julius Caesar in 55 AD with K=3. This variant 

known as Caesar’s cipher.

• Augustus Caesar used a variant with K=-1 and no 

mod operation. 
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mod operation. 

• Shift ciphers are extremely simple, still used in 

Modern times

– By Russian Soldiers in first world war

– Last known use in 2011 (by militant groups)

15Interesting Read: https://en.wikipedia.org/wiki/Caesar_cipher



Substitution Cipher

• Plaintext set : P = {a,b,c,d,…,z}

• Ciphertext set : C = {A,B,C,D,…,Z}

• Keyspace : K = {π | such that π is a permutation of 

the alphabets}
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the alphabets}

– Size of keyspace is 26!  

• Encryption Rule : eπ(x) = π(x), 

• Decryption Rule : dπ (x) = π-1(x)
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Substitution Cipher Example
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Note that the shift cipher is a special case of the substitution cipher which includes only 26 

of the 26! keys



Cryptanalysis of Substitution Cipher

(frequency analysis)
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Cryptanalysis of Substitution Cipher

(from their frequency characteristics)
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Frequency analysis of plaintext alphabets Frequency analysis of ciphertext alphabets



Usage & Variants

• Evidence showed that it was used before Caesar’s cipher

• The technique of ‘substitution’ still used in modern day block 

ciphers

• Frequency based analysis attributed to Al-kindi, an Arab 

mathematician (in AD 800)

CR

mathematician (in AD 800)
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Polyalphabetic Ciphers

• Problem with the simple substitution cipher :

– A plaintext letter always mapped to the same ciphertext letter

eg. ‘Z’ always corresponds to plaintext ‘a’

– facilitating frequency analysis
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• A variation (polyalphabetic cipher)

– A plaintext letter may be  mapped to multiple ciphertext letters

– eg. ‘a’ may correspond to ciphertext ‘Z’ or ‘T’ or ‘C’ or ‘M’ 

– More difficult to do frequency analysis (but not impossible)

– Example : Vigenere Cipher, Hill Cipher
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Vigenère Cipher
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plaintext (x)

key (k)

(x + k) mod 26

ciphertext

|keyspace| = 26m

(where m is the length 

of the key)



Cryptanalysis of Vigenère Cipher

• Frequency analysis more difficult 

(but not impossible)

• Attack has two steps
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Determining Key Length

(Kaisiki Test)

• Kasiski test by Friedrich Kasiski in 1863

• Let m be the size of the key

• observation: two identical plaintext segments will encrypt to 
the same ciphertext when they are δ apart and (m | δ)
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• If several such δs are found (i.e. δ1, δ2, δ3, ….) then 
– m|δ1, m|δ2, m|δ3, …. 

– Thus m divides  the gcd of (δ1, δ2, δ3, ….) 
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when (m divides δ)



Increasing Confidence of Key Length

(Index of Coincidence)

• Consider a multi set of letters of size N

say s = {a,b,c,d,a,a,e,f,e,g,…..}

• Probability of picking two ‘a’ characters (without 

replacement) is
0n : Number of occurrences of   

‘a’ in S
100 −

×
nn
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• Sum of probabilities of picking two similar characters is  

25

∑
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probability the first pick is ‘a’

‘a’ in S

probability the second pick is ‘a’

1

00

−
×
NN

index of coincidence



Index of Coincidence

• Consider a random permutation of the alphabets (as in the substitution 

cipher)

• Note that :             ;  thus the value of Ic remains unaltered

s = {a,b,c,d,a,a,e,f,e,g,…..} S = {X,M,D,F,X,X,Z,G,Z,J,…..}

Xa nn =

CR

• Number of occurrence of an alphabet in a text depends on the language, 

thus each language will have a unique Ic value
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Index of Coincidence, NSA Declassified Document

https://www.nsa.gov/public_info/_files/friedmanDocuments/Publications/FOLDER_231/41760429079956.pdf

English 0.0667 French 0.0778

German 0.0762 Spanish 0.0770

Italian 0.0738 Russian 0.0529



Modular Arithmetic

Modular Arithmetic

CR

Modular Arithmetic

slides in Mathematical Background
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Affine Cipher

• A special case of substitution cipher

• Encryption: y = ax + b (mod 26)

• Decryption: x = (y – b)a-1 (mod 26)
– plaintext   : x ∈ {0,1,2,3, …. 25}

– ciphertext : y ∈ {0,1,2,3, …. 25}

– key             : (a,b) 
• where         a and b ∈ {0,1,2,3, …. 25} and 
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• where         a and b ∈ {0,1,2,3, …. 25} and 

• gcd(a, 26) = 1

• Example: a=3, b=5
– Encryption: x=4; y = (3*4 + 5)mod 26 = 17

– Decryption: x = (y – b)a-1 mod 26

a-1 = 9               (Note that 3 * 9 mod 26 = 1)
(17 - 5)*9 mod 26 = 4                 
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why need this condition?

a.a-1 = 1 mod 26. The inverse

exists only if a and 26 are prime



why gcd(a,26) must be 1?

• Let gcd(a, 26) = d > 1

– then d|a and d|26   (i.e. d mod 26 = 0)

– y = ax + b mod 26

Let ciphertext y = b ;      ax = 0 mod 26
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Let ciphertext y = b ;      ax = 0 mod 26
In this case x can have two decrypted values : 0 and d.

Thus the function is not injective…. cannot be used for an 

encryption

What is the ciphertext when (1) x1 = 1 and (2) x2 = 14 are 

encrypted with the Affine cipher with key (4, 0)?
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Usage & Variants of Affine Cipher

• Ciphers built using the Affine Cipher

– Caesar’s cipher is a special case of the Affine 

cipher with a = 1

– Atbash
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– Atbash

• b = 25,  a-1 = a = 25  

• Encryption : y = 25x + 25 mod 26

• Decryption : x = 25x + 25 mod 26

30

Encryption function

same as decryption function



Hill Cipher 

• Encryption: y = xK (mod 26)

• Decryption: x = yK-1 (mod 26)

– plaintext   : x ∈ {0,1,2,3, …. 25}

– ciphertext : y ∈ {0,1,2,3, …. 25}

– key             : K is an invertible matrix

• example h i l l

CR

• example 
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







=

73

811
K 








=−

1123

187
1K 26mod11 =• −KK

h i l l

(7,8)(11,11)
[ ] [ ]

[ ] [ ]87)26(mod
1123

187
823

823)26(mod
73

811
87

=







×

=







× encryption

decryption

plaintext

h i l l

h i l l (7,8)(11,11) (23,8)(24,9) XIYJ
plaintext ciphertext



Cryptanalysis of Hill Cipher

• ciphertext only attack is difficult

• known plaintext attack

(7,8)(11,11) (23,8)(24,9)





× 1211 kk
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(7,8)(11,11) (23,8)(24,9)





×
2221 kkknown plaintext corresponding ciphertext

241111

2387

2111

2111

=+

=+

kk

kk

Form equations and solve to get the key

91111

887

2212

2212

=+

=+

kk

kk



Permutation Cipher

• Ciphers we seen so far were substitution ciphers

– Plaintext characters substituted with ciphertext characters

h i l l XIYJ
plaintext ciphertext
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• Alternate technique : permutation

– Plaintext characters re-ordred by a random permutation
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h i l l LIHI
plaintext ciphertext



Permutation Cipher

• Example plaintext : attackatdawn

– key : (1,3,2,0)    here is of length 4 and a permutation of 

(0,1,2,3)

• It mean’s 0th character in plaintext goes to 1st character in 

ciphertext (and so on…)
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ciphertext (and so on…)

• cryptanalysis : 4! possibilities
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a t t a c k a t d a w n

A A T T T C A K N D W A

plaintext

ciphertext



Rotor Machines (German Enigma)

CR

• Each rotor makes a permutation

– Adding / removing a rotor would change the 

ciphertext

• Additionally, the rotors rotates with a gear 

after a character is entered

• Broken by Alan Turing
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Block Ciphers

• General principal of all ciphers seen so far
– Plaintext divided into blocks and each block encrypted with the same key

– Blocks can vary in length starting from 1 character

plaintext

ciphertext

CR

• examples: substitution ciphers, polyalphabetic ciphers, permutation ciphers, etc.
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E

plaintext

key

plaintext block
ciphertext block



Stream Ciphers

• Each block of plaintext is encrypted with a different key

plaintext ciphertext

plaintext block
ciphertext block

Typically a bit, but can also more than a bit
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E

key

key block

Observe: the key should be variable length… we call this a key stream.

Formally, )...()()(... 321321
321
xexexeyyyy kkk==

Typically ex-or operation



Stream Ciphers

(how they work)

,....;;

...

333222111

321

kxykxykxy

yyyy

⊕=⊕=⊕=

=
stream cipher output : 

),...,,,,( 1321 −= iii kkkkKfk

ith key is a function of K and the first i-1 plaintexts

How to generate the ith key :
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ith key is a function of K and the first i-1 plaintexts

ikkkk ,...,,, 321 Is known as the keystream



Generating the 

keystream in practice

• Using LFSRs (Linear feedback shift registers)

b3 b2 b1 b0
IV keystream

b3 b2 b1 b0

1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1

1 1 0 0

0 1 1 0

1 0 1 1

0 1 0 1

Initialization Vector
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0 1 0 1

1 0 1 0

1 1 0 1

1 1 1 0

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

1 0 0 0



Surprise Quiz-1

1. Prove that if the sum of all digits in a number is divisible by 9 

then the number itself is divisible by 9.

2. How can the permutation cipher be represented as a Hill 

cipher? Explain with an example.

3. If GCD(a, N) = 1 then prove that a x i ≠ a x j mod N
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3. If GCD(a, N) = 1 then prove that a x i ≠ a x j mod N

4. Use (3) to show that a x k mod N is a permutation of 

{1,2, … N-1} where k varies from 1, 2, 3, …., N – 1.

5. Use (4) to show that the inverse of ‘a mod N’ (i.e. a-1) exists 

(where gcd(a, N) = 1)

40

Credit will be given for whoever first puts up 

clear solutions in Google groups


