Cryptographic Hash Functions

Chester Rebeiro
IIT Madras

Issues with Integrity

How can Bob ensure that Alice's message has not been modified?
Note.... We are not concerned with confidentiality here

Hashes

Alice passes the message through a hash function, which produces a fixed length message digest.

- The message digest is representative of Alice's message.
- Even a small change in the message will result in a completely new message digest
- Typically of 160 bits, irrespective of the message size.

Bob re-computes a message hash and verifies the digest with Alice's message digest.

Integrity with Hashes

Hash functions are specially designed to resist such collisions

Message Authentication Codes (MAC)

MACs allow the message and the digest to be sent over an insecure channel
However, it requires Alice and Bob to share a common key

Avalanche Effect

Hash functions provide unique digests with high probability. Even a small change in \mathbf{M} will result in a new digest

```
SHA256("short sentence")
0x 0acdf28f4e8b00b399d89ca51f07fef34708e729ae15e85429c5b0f403295cc9
SHA256("The quick brown fox jumps over the lazy dog")
0x d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592
SHA256("The quick brown fox jumps over the lazy dog.")
(extra period added)
0x ef537f25c895bfa782526529a9b63d97aa631564d5d789c2b765448c8635fb6c
```


Hash functions in Security

- Digital signatures
- Random number generation
- Key updates and derivations
- One way functions
- MAC

- Detect malware in code
- User authentication (storing passwords)

Hash Family

- The hash family is a 4-tuple defined by (X,Y,K,H)
- X is a set of messages
(may be infinite, we assume the minimum size is at least $2|\mathrm{Y}|$)
- Y is a finite set of message digests (aka authentication tags)
- K is a finite set of keys
- Each $K \varepsilon K$, defines a keyed hash function $h_{K} \varepsilon H$

Hash Family : some definitions

- Valid pair under $\mathrm{K}:(\mathrm{x}, \mathrm{y}) \in \mathrm{XxY}$ such that, $\mathrm{x}=\mathrm{h}_{\mathrm{K}}(\mathrm{y})$
- Size of the hash family:
is the number of functions possible from set X to set Y
$|\mathrm{Y}|=\mathrm{M}$ and $|\mathrm{X}|=\mathrm{N}$
then the number of mappings possible is M^{N}

Unkeyed Hash Function

- The hash family is a 4-tuple defined by (X,Y,K,H)
- X is a set of messages
(may be infinite, we assume the minimum size is at least $2|\mathrm{Y}|$)
- Y is a finite set of message digests
- In an unkeyed hash function : |K |=1
- We thus have only one mapping function in the family

Hash function Requirement Preimage Resistant

- Also know as one-wayness problem
- If Mallory happens to know the message digest, she should not be able to determine the message
- Given a hash function $h: X \rightarrow Y$ and an element y $\varepsilon \mathrm{Y}$. Find any $x \in X$ such that, $h(x)=y$

Hash function Requirement (Second Preimage)

- Mallory has x and can compute $h(x)$, she should not be able to find another message x^{\prime} which produces the same hash.
- It would be easy to forge new digital signatures from old signatures if the hash function used weren't second preimage resistant
- Given a hash function $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}$ and an element $\mathrm{x} \varepsilon \mathrm{X}$,Find, $x^{\prime} \& X$ such that, $h(x)=h\left(x^{\prime}\right)$

Hash Function Requirement (Collision Resistant)

- Mallory should not be able to find two messages x and x^{\prime} which produce the same hash
- Given a hash function $h: X \rightarrow Y$ and an element $x \varepsilon$ X, find, $x, x^{\prime} \in X$ and $x \neq x^{\prime}$ such that, $h(x)=h\left(x^{\prime}\right)$

Hash Function Requirement (No shortcuts)

- For a message m, the only way to compute its hash is to evaluate the function $\mathrm{h}(\mathrm{m})$
- This should remain to irrespective of how many hashes we compute
- Even if we have computed $h\left(m_{1}\right), h\left(m_{2}\right), h\left(m_{3}\right), \ldots \ldots ., h\left(m_{1000}\right)$ There should not be a shortcut to compute $h\left(\mathrm{~m}_{1001}\right)$
- An example where this is not true :
eg. Consider $h(x)=a x \bmod n$
If $h\left(x_{1}\right)$ and $h\left(x_{2}\right)$ are known, then $h\left(x_{1}+x_{2}\right)$ can be calculated

The Random Oracle Model

- The ideal hash function should be executed by applying h on the message x.
- The RO model was developed by Bellare and Rogaway for analysis of ideal hash functions

- Let $F^{(X, Y)}$ be the set of all functions mapping X to Y.
- The oracle picks a random function h from $F^{(X, Y)}$. only the Oracle has the capability of executing the hash function.
- All other entities, can invoke the oracle with a message $x \in X$. The oracle will return $y=h(x)$.

We do not know h. Thus the only way to compute $h(x)$ is to query the oracle.

Independence Property

- Let h be a randomly chosen hash function from the set $F^{(X, Y)}$
- If $x_{1} \& X$ and a different $x_{2} \& X$ then

$$
\operatorname{Pr}\left[h\left(x_{1}\right)=h\left(x_{2}\right)\right]=1 / M
$$

where $\mathrm{M}=|\mathrm{Y}|$
this means, the hash digests occur with uniform probability

Complexity of Problems in the RO model

- 3 problems : First pre-image, Second pre-image, Collision resistance
- We study the complexity of breaking these problems
- Use Las Vegas randomized algorithms
- A Las-Vegas algorithm may succeed or fail
- If it succeeds, the answer returned is always correct
- Worst case success probability
- Average case success probability (e)
- Probability that the algorithm returns success, averaged over all problem instances is at least e
- (e, Q) Las Vegas algorithm:
- Is an algorithm which can make Q queries and have an average success probability of e

Las Vegas Algorithm Example

- Find a person who has a birthday today in at-most Q queries

```
BirthdayToday(){
    X = set of Q randomly chosen people
    for }x\mathrm{ in X{
        if (birthday(x) == today) return x
    }
    return FAILURE;
}
```


Las Vegas Algorithm Example

- Find a person who has a birthday today in at-most Q queries

```
BirthdayToday(){
    X = set of Q randomly chosen people
    for }x\mathrm{ in X{
        if (birthday(x) == today) return x
    }
    return FAILURE;
}
```

- Let E be the event that a person has a birthday today

Pr that a person does not have a birthday today is $\left(1-\frac{1}{365}\right)$
$\operatorname{Pr}[$ Success in Q trials $]=1-\operatorname{Pr}[$ Failure in Q tries $]=1-\left(1-\frac{1}{365}\right)^{Q}$

First Preimage Attack

Problem : Given a hash y , find an x such that $\mathrm{h}(\mathrm{x})=\mathrm{y}$

Second Preimage Attack

Problem : Given an x, find an x^{\prime} $(\neq x)$ such that $h\left(x^{\prime}\right)=h(x)$

Finding Collisions

```
Find_Collisions(h, Q){
    choose Q distinct values from X (say }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots.,\mp@subsup{x}{Q}{}
    for(i=1; i<=Q; ++i) y y =h(x )
    if there exists ( }\mp@subsup{y}{j}{}==\mp@subsup{y}{k}{})\mathrm{ for }j\not=k\mathrm{ then return ( }\mp@subsup{\textrm{x}}{\textrm{j}}{},\mp@subsup{x}{k}{}
    return FAIL
}
```

Success Pr obability (ε) is $\varepsilon=1-\prod_{i=1}^{Q-1}\left(1-\frac{i}{M}\right)$

Birthday Paradox

- Find the probability that at-least two people in a room have the same birthday

Event A :atleast two people in the room have the same birthday
Event A^{\prime} :no two people in the room have the same birthday
$\operatorname{Pr}[A]=1-\operatorname{Pr}\left[A^{\prime}\right]$
$\operatorname{Pr}\left[A^{\prime}\right]=1 \times\left(1-\frac{1}{365}\right) \times\left(1-\frac{2}{365}\right) \times\left(1-\frac{3}{365}\right) \cdots \cdots\left(1-\frac{Q-1}{365}\right)$
$=\prod_{i=1}^{Q-1}\left(1-\frac{i}{365}\right)$
$\operatorname{Pr}[A]=1-\prod_{i=1}^{Q-1}\left(1-\frac{i}{365}\right)$

Birthday Paradox

- If there are 23 people in a room, then the probability that two birthdays collide is $1 / 2$

Collisions in Birthdays to Collisions in Hash Functions

```
Find_Collisions(h, Q){
    choose Q distinct values from X (say }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots.,\mp@subsup{x}{Q}{}
    for(i=1; i<=Q; ++i) y = h( }\mp@subsup{\textrm{x}}{\textrm{i}}{\prime
    if there exists ( }\mp@subsup{y}{j}{}==\mp@subsup{y}{k}{})\mathrm{ for j }\not=k\mathrm{ then return ( }\mp@subsup{\textrm{x}}{\textrm{j}}{},\mp@subsup{x}{k}{}
    return FAIL
}
```

Success Pr obability (ε) is $\varepsilon=1-\prod_{i=1}^{Q-1}\left(1-\frac{i}{M}\right) \quad|\mathrm{Y}|=\mathrm{M}$
Relationship between Q, M, and success

$$
\begin{aligned}
& Q \approx \sqrt{2 M \ln \frac{1}{1-\varepsilon}} \quad \begin{array}{l}
\text { Q always proportional to square root } \\
\text { of } M . \\
\varepsilon \text { only affects the constant factor }
\end{array} \\
& \text { If } \varepsilon=0.5 \text { then } Q \approx 1.17 \sqrt{M}
\end{aligned}
$$

Birthday Attacks and Message Digests

$$
Q \approx 1.17 \sqrt{M}
$$

- If the size of a message digest is 40 bits
- $M=2^{40}$
- A birthday attack would require 2^{20} queries
- Thus to achieve 128 bit security against collision attacks, hashes of length at-least 256 is required

Comparing Security Criteria

- Finding collisions is easier than solving preimage or second preimage
- Do reductions exist between the three problems?

collision resistance \rightarrow second preimage

- We can reduce collision resistance to second preimage problem

```
collision resitance }->\mp@subsup{2}{}{\mathrm{ nd }}\mathrm{ preimage
```

- i.e. If we have an algorithm to attack the $2^{\text {nd }}$ preimage problem, then we can solve the collision problem

```
findCollisions1(h, Q){
    choose x randomly from X
    if(Second_Prelmage_Attack(h, x, Q) == x')
        return (x,\mp@subsup{x}{}{\prime})
    else
        return FAIL
}
```


collision resistance \rightarrow preimage

```
Find_Collisions2(h, Q){
    choose x randomly from X
    y=h(x)
    x' = Prelmage_Attack(h, y, Q-1)
    if ( }x\not=\mp@subsup{x}{}{\prime}\mathrm{ )
            return (x, x')
    else
        return FAIL
}
```


$X=X_{1} \cup X_{2} U X_{3} U X_{4}$
X_{i} is an equivalence class. The number of such X_{i} formed is $|Y|$
Assume Preimage_Attack always finds the pre-image of y in $\mathrm{Q}-1$ queries to the Oracle, then, Find_Collisions2 is a (1/2, Q) Las Vegas algorithm

Proof

$y \in Y$ partitions X as follows.
$X_{y}=\{x \in X \mid$ s.t. $h(x)=y\}$
Number of partitions of X is $|Y|=M$
(assume $X \leq \frac{M}{2}$)
$\operatorname{Pr}[$ success $]=\operatorname{Pr}\left[x \neq x^{\prime}\right]=\frac{1}{N} \sum_{y} \sum_{X_{y}}\left(1-\frac{1}{\left|X_{y}\right|}\right)$

$$
\begin{aligned}
& =\frac{1}{N} \sum_{y}\left|X_{y}\right|\left(1-\frac{1}{\left|X_{y}\right|}\right) \\
& =\frac{1}{N} \sum_{y}\left(\left|X_{y}\right|-1\right) \quad=\frac{1}{N}(N-M) \\
& \left.\geq\left(\frac{N-N / 2}{N}\right) \quad \quad \quad \text { use } N \geq 2 M\right) \\
& =\frac{1}{2}
\end{aligned}
$$

Iterated Hash Functions

- So far, we've looked at hash functions where the message was picked from a finite set X
- What if the message is of an infinite size?
- We use an iterated hash function
- The core in an iterated hash function is a function called compress
- Compress, hashes from $m+t$ bit to m bit

$$
\begin{aligned}
& \text { compress } \quad:\{0,1\}^{m+t} \rightarrow\{0,1\}^{m} \\
& t \geq 1
\end{aligned}
$$

Iterated Hash Function (Principle, given m and t)

- Input message is padded so that its length is a multiple of t
- Number of bits in the pad appended
- Concatinate previous m bit output with next t bit block (IV used only during initialization)
- The compress function is invoked iteratively for each t bit block in the message. For the first operation, an initialization vector is used
- After all t bit blocks are processed, there is a post processing step, and finally the hash is obtained. This step is optional.

Iterated Hash Function (Principle)

- Another perspective

Merkle-Damgard Iterated Hash Function

Merkle-Damgard Iterated Hash Function

On Merkle-Damgard Construction

Theorem: If the compress function is collision resistant then the Merkle-Damgard construction is collision resistant

Proof: We show the contra-positive...
If the Merkle-Damgard construction results in a collision then the compress function is NOT collision resistant

Merkle-Damgard Construction is Collision Resistant (Proof)

- Assume we have two message x and x^{\prime} which result in the same hash.
- Proof proceeds by considering 2 cases:

Case $1 \quad|x| \neq\left|x^{\prime}\right| \bmod (t-1)$

- This means that the padding (resp. d and d^{\prime}) applied to x and x^{\prime} is different (i.e. $d \neq d^{\prime}$)

The last step in hashing

If $h(x)=h\left(x^{\prime}\right)$ then
compress($\mathrm{xx}||1|| \mathrm{d})=\operatorname{compress}\left(\mathrm{xx}| | 1| | \mathrm{d}^{\prime}\right)$
Since $d \neq d^{\prime}$, we have a collision in compress.

Case 1 formally : $|x| \neq\left|x^{\prime}\right| \bmod (t-1)$
case 1: $|x| \not \equiv\left|x^{\prime}\right|(\bmod t-1)$.
Here $d \neq d^{\prime}$ and $y_{k+1} \neq y_{\ell+1}^{\prime}$. We have

$$
\begin{aligned}
\operatorname{compress}\left(g_{k}\|1\| y_{k+1}\right) & =g_{k+1} \\
& =h(x) \\
& =h\left(x^{\prime}\right) \\
& =g_{\ell+1}^{\prime} \\
& =\operatorname{compress}\left(g_{\ell}^{\prime}\|1\| y_{\ell+1}^{\prime}\right)
\end{aligned}
$$

which is a collision for compress because $y_{k+1} \neq y_{\ell+1}^{\prime}$.

Case 2a : $|x|=\left|x^{\prime}\right| \bmod (t-1)$ and $|x|=\left|x^{\prime}\right|$

Case 2a : $|x|=\left|x^{\prime}\right| \bmod (t-1)$ and $|x|=\left|x^{\prime}\right|$

Case 2a formally : $|x|=\left|x^{\prime}\right| \bmod (t-1)$ and $|x|=\left|x^{\prime}\right|$

Here we have $k=\ell$ and $y_{k+1}=y_{k+1}^{\prime}$. We begin as in case 1:

$$
\begin{aligned}
\operatorname{compress}\left(g_{k}\|1\| y_{k+1}\right) & =g_{k+1} \\
& =h(x) \\
& =h\left(x^{\prime}\right) \\
& =g_{k+1}^{\prime} \\
& =\operatorname{compress}\left(g_{k}^{\prime}\|1\| y_{k+1}^{\prime}\right) .
\end{aligned}
$$

If $g_{k} \neq g_{k}^{\prime}$, then we find a collision for compress, so assume $g_{k}=g_{k}^{\prime}$.
Then we have

$$
\begin{aligned}
\operatorname{compress}\left(g_{k-1}\|1\| y_{k}\right) & =g_{k} \\
& =g_{k}^{\prime} \\
& =\operatorname{compress}\left(g_{k-1}^{\prime}\|1\| y_{k}^{\prime}\right) .
\end{aligned}
$$

Either we find a collision for compress, or $g_{k-1}=g_{k-1}^{\prime}$ and $y_{k}=y_{k}^{\prime}$.
Assuming we do not find a collision, we continue working backwards, until finally we obtain

$$
\begin{aligned}
\operatorname{compress}\left(0^{m+1} \| y_{1}\right) & =g_{1} \\
& =g_{1}^{\prime} \\
& =\operatorname{compress}\left(0^{m+1} \| y_{1}^{\prime}\right) .
\end{aligned}
$$

but $y_{1}=y_{1}{ }^{\prime}$ implies $x=x^{\prime}$. which is a contradiction.

Case 2b : $|x|=\left|x^{\prime}\right| \bmod (t-1)$ and $|x| \neq\left|x^{\prime}\right|$

Note here that $d=d^{\prime}$ even though
lengths of the messages are not the same.

In most cases, the proof would proceed similar to case 2 a .

But there is a cornercase.

- The corner case: $x=\left(x^{\prime \prime} \mid x^{\prime}\right)$
back tracking in such as case will not help find a collision
- Handling this case:
the inserted bit r
($r=0$ for the $1^{\text {st }}$ round, else $r=1$)

Case 2b formally : $|x|=\left|x^{\prime}\right| \bmod (t-1)$ and $|x| \neq\left|x^{\prime}\right|$

case 2b: $|x| \neq\left|x^{\prime}\right|$.
Without loss of generality, assume $\left|x^{\prime}\right|>|x|$, so $\ell>k$. This case proceeds in a similar fashion as case 2 a . Assuming we find no collisions for compress, we eventually reach the situation where

$$
\begin{aligned}
\operatorname{compress}\left(0^{m+1} \| y_{1}\right) & =g_{1} \\
& =g_{\ell-k+1}^{\prime} \\
& =\operatorname{compress}\left(g_{\ell-k}^{\prime}\|1\| y_{\ell-k+1}^{\prime}\right)
\end{aligned}
$$

But the $(m+1)$ st bit of

$$
0^{m+1} \| y_{1}
$$

is a 0 and the $(m+1)$ st bit of

$$
g_{\ell-k}^{\prime}\|1\| y_{\ell-k+1}^{\prime}
$$

is a 1 . So we find a collision for compress.

Merkle-Damgard-2 (for the case when $\mathrm{t}=1$)

```
Algorithm : MERKLE-DAMGARD2 \((x)\)
external compress
comment: compress : \(\{0,1\}^{m+1} \rightarrow\{0,1\}^{m}\)
\(n \leftarrow|x|\)
\(y \leftarrow 11\left\|f\left(x_{1}\right)\right\| f\left(x_{2}\right)\|\cdots\| f\left(x_{n}\right)\)
denote \(y=y_{1}\left\|y_{2}\right\| \cdots \| y_{k}\), where \(y_{i} \in\{0,1\}, 1 \leq i \leq k\)
\(g_{1} \leftarrow \operatorname{compress}\left(0^{m} \| y_{1}\right)\)
for \(i \leftarrow 1\) to \(k-1\)
    do \(g_{i+1} \leftarrow\) compress \(\left(g_{i} \| y_{i+1}\right)\)
return \(\left(g_{k}\right)\)
```


Hash Functions in Practice

- MD5
- NIST specified "secure hash algorithm"
- SHAO : published in 1993. 160 bit hash.
- There were unpublished weaknesses in this algorithm
- The first published weakness was in 1998 , where a collision attack was discovered with complexity 2^{61}
- SHA1 : published in 1995. 160 bit hash.
- SHAO replaced with SHA1 which resolved several of the weaknesses
- SHA1 used in several applications until 2005, when an algorithm to find collisions with a complexity of 2^{69} was developed
- In 2010, SHA1 was no longer supported. All applications that used SHA1 needed to be migrated to SHA2
- SHA2 : published in 2001. Supports 6 functions: 224, 256, 384, 512, and two truncated versions of 512 bit hashes
- No collision attacks on SHA2 as yet. The best attack so far assumes reduced rounds of the algorithm (46 rounds)
- SHA3 : published in 2015. Also known as Kecchak

MD5

- Message length appended (in 64 bits) and split into blocks of 512 bits

Collisions in MD5 (Timeline)

- A birthday attack on MD5 has complexity of 2^{64}
- Small enough to brute force collision search
- 1996, collisions on the inner functions of MD5 found
- 2004, collisions demonstrated practically
- 2007, chosen-prefix collisions demonstrated

Given two different prefixes $\mathrm{p} 1, \mathrm{p} 2$ find two appendages m 1 and m 2 such that hash $(\mathrm{p} 1 \| \mathrm{m} 1)=\operatorname{hash}(\mathrm{p} 2 \| \mathrm{m} 2)$

- 2008, rogue SSL certificates generated
- 2012, MD5 collisions used in cyberwarfare
- Flame malware uses an MD5 prefix collision to fake a Microsoft digital code signature

Collision attack on MD5 like hash functions

- Analyze differential trails
- A bit different from block ciphers
- No secret key involved
- We can choose M and M^{*} as we want
- We have a valid attack if probability of trail is $\mathrm{P}>2^{-\mathrm{N} / 2}$
input message (x)
S.A1 (may be of any length less than 2^{64})
$32 * 5=160$ bit hash output

Algorithm $\quad: \operatorname{SHA}-1-\operatorname{PAD}(x)$
comment: $\|x\| \leq 2^{64}-1$
$d \leftarrow(447-\|x\|) \bmod 512$
$\ell \leftarrow$ the binary representation of $\|x\|$, where $\|\ell\|=64$
$y \leftarrow x\\|1\\| 0^{d} \\| \ell$

each word is 32 bits (512/16=32)
expand to 79 words $\mathrm{f}_{t}(B, C, D)= \begin{cases}(B \wedge C) \vee((\neg B) \wedge D) & \text { if } 0 \leq t \leq 19 \\ B \oplus C \oplus D & \text { if } 20 \leq t \leq 39 \\ (B \wedge C) \vee(B \wedge D) \vee(C \wedge D) & \text { if } 40 \leq t \leq 59 \\ B \oplus C \oplus D & \text { if } 60 \leq t \leq 79 .\end{cases}$

Kacchak and the SHA3

- Uses a sponge construction
- Achieves variable length hash functions

sponge
Success of an attack against Kecchak < $\mathrm{N}^{2} / 2^{\text {c+1 }}$
where N is number of calls to f

Message Authentication Codes (Keyed Hash Functions)

Provides Integrity and Authenticity
Integrity : Messages are not tampered
Authenticity : Bob can verify that the message came from Alice (Does not provide non-repudiation)

How to construct MACs?

recall ... shortcuts

- For a message m, the only way to compute its hash is to evaluate the function $h_{k}(m)$
- This should remain to irrespective of how many hashes we compute
- Even if we have computed $h_{k}\left(m_{1}\right), h_{k}\left(m_{2}\right), h_{K}\left(m_{3}\right), \ldots \ldots .$, $h_{k}\left(m_{1000}\right)$
It should be difficult to compute $h_{k}(x)$ without knowing the value of K

Constructing a MAC (First Attempt)

input message (x) (may be of any length)

Won't work if no preprocessing step

- attackers could append messages and get the same hash

$$
\begin{aligned}
& x \rightarrow h_{k}(x), \\
& x \| x^{\prime} \rightarrow \operatorname{compress}\left(h_{k}(x) \| x^{\prime}\right)
\end{aligned}
$$

Constructing a MAC (First Attempt)

input message (x) (may be of any length)

CBC-MAC

Authenticated Encryption

- Achieves Confidentiality, Integrity, and Authentication

Using CBC-MAC for Authenticated Encryption

1. Consider $p=\left(p_{0}, p_{1}, p_{2}, p_{3}\right)$ is a message Alice sends to Bob
2. She encrypts it with CBC as follows

$$
c_{0}=E_{k}\left(p_{0}\right) ; c_{1}=E_{k}\left(p_{1}+c_{0}\right) ; c_{2}=E_{k}\left(p_{2}+c_{1}\right) ; c_{3}=E_{k}\left(p_{3}+c_{2}\right)
$$

2. She computes mac $=\mathrm{CBC}-\mathrm{MAC}_{k}(\mathrm{p})$

She transmits (\mathbf{c}, mac) to Bob : where $\mathbf{c}=\left(\mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}\right)$
2. Mallory modifies one or more of the ciphertexts $\left(c_{0}, c_{1}, c_{2}\right)$ to $\left(c_{0}{ }^{\prime}, c_{1}{ }^{\prime}, c_{2}{ }^{\prime}\right)$
3. Bob will

1. Decrypt $\left(c_{0}{ }^{\prime}, c_{1}{ }^{\prime}, c_{2}{ }^{\prime}\right)$ to $\left(p_{0}{ }^{\prime}, p_{1}{ }^{\prime}, p_{2}{ }^{\prime}\right)$
2. And use it compute the MAC mac'

We show that mac' $=\mathbf{c}_{\mathbf{3}}$ irrespective of how Mallory modifies the ciphertext

Using CBC-MAC for Authenticated Encryption

Alice's side	Bob's side
(encryption)	(decryption)

$$
c_{0}=E_{k}\left(p_{0}\right)
$$

$$
p_{0}^{\prime}=D_{k}\left(c_{0}^{\prime}\right)
$$

$$
\text { (assume } I V=0)
$$

$$
c_{1}=E_{k}\left(p_{1} \oplus c_{0}\right) \quad p_{1}^{\prime}=D_{k}\left(c_{1}^{\prime}\right) \oplus c_{0}^{\prime}
$$

$$
c_{2}=E_{k}\left(p_{2} \oplus c_{1}\right) \quad p_{2}^{\prime}=D_{k}\left(c_{2}^{\prime}\right) \oplus c_{1}^{\prime}
$$

$$
c_{3}=E_{k}\left(p_{3} \oplus c_{2}\right) \quad p_{3}^{\prime}=D_{k}\left(c_{3}\right) \oplus c_{2}^{\prime}
$$

Without modifying the final ciphertext, Mallory can change any other ciphertext as she pleases. The CBC-MAC will not be altered.

Moral of the story: Never use CBCMAC with CBC encryption!!

$$
\begin{aligned}
\text { mac' }^{\prime} & =\text { CBCMAC }\left(p^{\prime}\right) \\
& =E_{k}\left(p_{3}^{\prime} \oplus E_{k}\left(p_{2}^{\prime} \oplus E_{k}\left(p_{1}^{\prime} \oplus E_{k}\left(p_{0}^{\prime}\right)\right)\right)\right) \\
& =E_{k}\left(p_{3} \oplus c_{2}^{\prime}\right) \\
& =E_{k}\left(D_{k}\left(c_{3}\right) \oplus c_{2}^{\prime} \oplus c_{2}^{\prime}\right) \\
& =E_{k}\left(D_{k}\left(c_{3}\right)\right) \\
& =c_{3}
\end{aligned}
$$

Counter Mode + CBC-MAC for Authenticated Encryption

Consider $p=\left(p_{0}, p_{1}, p_{2}, p_{3}\right)$ is a message Alice sends to Bob

1. She encrypts p with counter mode as follows

$$
\begin{aligned}
& c_{0}=p_{0}+E_{k}(\operatorname{ctr}) ; \quad c_{1}=p_{1}+E_{k}(\operatorname{ctr}+1) ; \\
& c_{2}=p_{2}+E_{k}(\operatorname{ctr}+2) ; c_{3}=p_{3}+E_{k}(\operatorname{ctr}+3)
\end{aligned}
$$

2. She computes mac $=C B C-M A C_{k}(p)$

She transmits (c, mac) to Bob: where $\mathbf{c}=\left(\mathrm{c}_{0}, \mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}\right)$

