Cryptographic Hash Functions

Chester Rebeiro
IIT Madras

STINSON : chapter4

Issues with Integrity

Alice unsecure channel » Bob ”
— Attack at Dusk!!
Message 2

“Attack at Dawn!!” !

L Change ‘Dawn’ to ‘Dusk’

How can Bob ensure that Alice’s message has not been modified?

Note.... We are not concerned with confidentiality here

Hashes

“Message digest”

)
Il

secure channel

“Attack at Dawn!!”) i
> Attack at Dawn!!
Message unsecure channel

“Attack at Dawn!!”

y
>

Alice passes the message through a hash function, which produces a
fixed length message digest.

* The message digest is representative of Alice’s message.

* Even a small change in the message will result in a completely new message digest
* Typically of 160 bits, irrespective of the message size.

Bob re-computes a message hash and verifies the digest with Alice’s message digest.

Integrity with Hashes

“ e Y=hto
“Message digest” _
h secure channel =
B “Attack at Dawn!!” h “Attack at Dawn!!”
Message insecure Efrannel
“Attack at Dawn!!” ’

Mallory does not have access to the digest y.
Her task (to modify Alice’s message) is much
more difficult.

e =y,

If she modifies x to x’, the modification can be
detected unless h(x) = h(x’)

Hash functions are specially designed to
resist such collisions

Message Authentication Codes
(MAC)

= h(x)

T “Attack at Dawn!!”

M .
B essage Digest 1 h y
Message unsecure channel K

“Attack at Dawn!!”

MACs allow the message and the digest to be sent over an insecure channel

However, it requires Alice and Bob to share a common key

Avalanche Effect

\i Short
essage fixed length also called
M digest «—1 ‘hash’

Hash functions provide unique digests with high probability.
Even a small change in M will result in a new digest

SHA256(“short sentence”)
Ox Dacdf28f4e8b00b399d89cas 1f07fef34708e729e1585429c5b0f403295¢c9
SHA256(The qwck brown fox Jumps over the Iazy dog)

bb307d7809469ca%abcb0082e418d5651e46d3cdb762d02d0 -
SHA256(The qurck brown fox jumps over the Iazy do@
(extra period added)

FE 72 ~QOE R R11E85 i T20; TREAA
ef537125c895bfa782526529a9b63d97aa631564d5d/89c2b 76544

Hash functions in Security

Digital signatures

Random number generation
Key updates and derivations
One way functions

MAC

Detect malware in code

User authentication (storing passwords)

Hash Family

hy
i
:fﬁ
X Y

The hash family is a 4-tuple defined by (X, Y, K, H)

X is a set of messages
(may be infinite, we assume the minimum size is at least 2| Y|)

Y is a finite set of message digests (aka authentication tags)
K is a finite set of keys
Each K € K, defines a keyed hash function h, € H

Hash Family : some definitions
%
s 3

X Y
* Valid pair under K : (x,y) € XxY such that, x = h,(y)

e Size of the hash family:
is the number of functions possible from set X to set Y
Y| =M and |.X| = N
then the number of mappings possible is MN

Unkeyed Hash Function

h
i
:%ﬁ
X Y

The hash family is a 4-tuple defined by (X, Y, K, H)

X is a set of messages
(may be infinite, we assume the minimum size is at least 2| Y|)

Y is a finite set of message digests
In an unkeyed hash function: |K | =1
We thus have only one mapping function in the family

10

Hash function Requirement
Preimage Resistant

Also know as one-wayness problem

If Mallory happens to know the message digest, she should
not be able to determine the message

Given a hash function h: X 2 Y and an elementy € Y. Find
any x € X such that, h(x) =y

:

X ®
~

11

Hash function Requirement
(Second Preimage)

 Mallory has x and can compute h(x), she should not be able to
find another message x” which produces the same hash.

— It would be easy to forge new digital signatures from old signatures if
the hash function used weren’t second preimage resistant

* Given a hash function h: X 2 Y and an element x € X,Find,
x" € X such that, h(x) = h(x’)

. h

.%'/

X ®
~

12

Hash Function Requirement
(Collision Resistant)

* Mallory should not be able to find two messages x and
X" which produce the same hash

 Given a hash function h: X 2 Y and an element x €
X, find, x, x’ € X and x #x’ such that, h(x) = h(x’)

h 4 p
There is no
collision Free hash

Function
\ J

X @
~

Hash Function Requirement
(No shortcuts)

* For a message m, the only way to compute its
hash is to evaluate the function h(m)

* This should remain to irrespective of how many
hashes we compute

— Even if we have computed h(m,), h(m,), h(ms),, h(mygq0)
There should not be a shortcut to compute h(m)

— An example where this is not true :
eg. Consider h(x) = ax mod n

If h(x,) and h(x,) are known, then h(x,+x,) can be calculated

14

The Random Oracle Model

The ideal hash function should be executed by applying h on
the message x.

The RO model was developed by Bellare and Rogaway for
analysis of ideal hash functions

random oracle * Let FX.Y) be the set of all functions mapping
XtoY.

* The oracle picks a random function h from F<Y),

only the Oracle has the capability of executing
the hash function.

* All other entities, can invoke the oracle with a
message x € X . The oracle will return y = h(x).

We do not know h. Thus the only way to compute
h(x) is to query the oracle.

15

Independence Property

* Let h be arandomly chosen hash function from the set F(*Y)
* Ifx; € X and a different x, € X then
Pr[h(x,) = h(x,)] = 1/M
where M = | Y|
this means, the hash digests occur with uniform probability

16

Complexity of Problems
in the RO model

3 problems : First pre-image, Second pre-image,
Collision resistance

* We study the complexity of breaking these problems

— Use Las Vegas randomized algorithms

* A Las-Vegas algorithm may succeed or fail

 Ifit succeeds, the answer returned is always correct
— Worst case success probability

— Average case success probability (e)

* Probability that the algorithm returns success, averaged over all
problem instances is at least e

— (e, Q) Las Vegas algorithm:

* Is an algorithm which can make Q queries and have an average
success probability of e

17

Las Vegas Algorithm Example

Find a person who has a birthday today in at-most Q queries

BirthdayToday(){
X = set of Q randomly chosen people
for x in X{
if (birthday(x) == today) return x

}
return FAILURE;

18

Las Vegas Algorithm Example

Find a person who has a birthday today in at-most Q queries

BirthdayToday(){

X = set of Q randomly chosen people
for x in X{

if (birthday(x) == today) return x
}

return FAILURE;

Let E be the event that a person has a birthday today

Pr that a person does not have a birthday today is (1 — %)

0
Pr[Success in Q trials | =1— Pr[Failure in Q tries | =1- (1 — %)

First Preimage Attack
® h

Problem : Given a hash vy, find an x
such that h(x) =y

'1

First_Prelmage_Attack(h, y, Q){
Ideal hash function choose Q distinct values from X (say x;, X,, Xg)

queried using the RO access \M'\ztl' i<=Q; ++i){
if (h(x.) ==y) return x,

!
return FAIL

}

0
Y| = M Pr[Success in Q trials on average |=1-— [1 — Lj

20

Second Preimage Attack

Problem : Given an x, find an x’
(#x) such that h(x’) = h(x)

Second_Prelmage_Attack(h, x, Q){
Extra Oracle| choose Q-1 distinct values from X (say X, X,,, Xq.1)
query =y =h(x)
for(i=1; i<=Q-1; ++i){
if (h(x;) ==y) return x;
}
return FAIL

}

0-1
Pr[Success in Q trials on average |=1- (1 _ Lj

Finding Collisions

Find_Collisions(h, Q){
choose Q distinct values from X (say x;, X,, Xg)
for(i=1; i<=Q; ++i) y, = h(x,)
if there exists (y; ==y,) for j #k then return (x;, x,)
return FAIL

}

0-1
Success Probability (¢)ise =1— H (1 — ﬁ

i=l1

/)

22

Birthday Paradox

Find the probability that at-least two people in
a room have the same birthday

Event A :atleast two peopleinthe room havethe same birthday

Event A':notwo peopleinthe room havethe same birthday
Pr[A]=1-Pr[A4']

Pr[A']zlx(l—ijx(l—ijx(l—ij ------ (I—QJ
365 365 365 365

Birthday Paradox

* |f there are 23 people in a room, then the
probability that two birthdays collide is 1/2

_ 1
T 0.9
Q0.8 |
© 0.7
‘S 0.6
>0.5 -
=04
203
DO 02 L

So1l

0 0 23 | ! | | !
O 10 20 30 40 30 60 70 80 90 100

Number of people

| | | | | | | |

Collisions in Birthdays
to Collisions in Hash Functions

Find_Collisions(h, Q){
choose Q distinct values from X (say x;, X,, Xg)
for(i=1; i<=Q; ++i) y, = h(x,)
if there exists (y; ==y,) for j #k then return (x;, x,)
return FAIL

}

0-1 :
Success Probability (¢)is € = I—H(l —ij Y] =

i=l1

Relationship between Q, M, and success

Q always proportional to square root

Q \/ZMIH— of M.

€ only affects the constant factor

If €=0.5thenQO =1.17d M

25

Birthday Attacks and Message Digests

O~1.17M

If the size of a message digest is 40 bits

M = 240

A birthday attack would require 22° queries

Thus to achieve 128 bit security against
collision attacks, hashes of length at-least 256

is required

26

Comparing Security Criteria

* Finding collisions is easier than solving pre-
image or second preimage

e Do reductions exist between the three
problems?

27

collision resistance > second preimage

e \WWe can reduce collision resistance to second
preimage problem

collision resitance 22" preimage

—i.e. If we have an algorithm to attack the 2n¢
preimage problem, then we can solve the collision
problem

findCollisions1(h, Q){
choose x randomly from X
if(Second_Prelmage_Attack(h, x, Q) == x’)
return (x,x’)
else
return FAIL

28

collision resistance - preimage

X1 o: :
Find_Collisions2(h, Q){] X [}
choose x randomly from X X 9 . ._). ®
y = hix) o B
x’ = Prelmage_Attack(h, y, Q-1) m_ ~ T8
if (x #x’) X &
return (x,x’) T e
else X Y
return FAIL N
| N> 2M

X. is an equivalence class. The number of such X, formedis | Y |

Assume Preimage_Attack always finds the pre-image of y in Q-1 queries to
the Oracle, then, Find_Collisions2 is a (1/2, Q) Las Vegas algorithm

Proof

y €Y partitions X as follows. X, .. h

X, ={xeX|sLh(x) =y} = o "

Number of partitionsof Xis|Y |=M ‘XE =.:>—%..

(assume X < %) }24 .? =
X Y

Pr[success] = Pr[x # x'] Z Z[J
N> 2M

:Wg'Xy'(l_u;yJ

XX,) = (V=)

N-N
>{ Né} (use N 22M)

1
2

Iterated Hash Functions

So far, we’ve looked at hash functions where the
message was picked from a finite set X

What if the message is of an infinite size?

— We use an iterated hash function

The core in an iterated hash function is a function

called compress |
m+t bit
— Compress, hashes from m+t bit to m bit ——

compress {01} —> {0,1}"
t > 1

m bit

31

vV

Iterated Hash Function
(Principle, given m and t)

input message (x)
(may be of any length) * must be at-least m+t+1 in length

i —

Append Pad * Input message is padded so that its length is a multiple of t

-

Pad Length

* Number of bits in the pad appended

< Concatinate previous m bit output with next t bit block
(IV used only during initialization)

concatenate

« The compress function is invoked iteratively for each t

bit block in the message. For the first operation, an
initialization vector is used

e Afterall t bit blocks are processed, there is a post
processing step, and finally the hash is obtained.
This step is optional.

32

Iterated Hash Function (Principle)

* Another perspective

¥:

¥Yi

33

Merkle-Damgard Iterated Hash

input message (x)
(may be of any length)

J

Append Pad
Pad Length

V=0

compress

after k steps

v

h(y)

y

Function

o0, = 0,1}"

X = O{o,l}"

I=m+t+1
r=0 for the first iteration

else r=1

Itrated hash function construction
That uses a compress function h

If h is collision resistant then the Merkle Damgard
construction is collision resistant

34

Merkle-Damgard Iterated Hash
Function

Algorithm : MERKLE-DAMGARD(z)

external compress
comment: compress: {0,1}"*" — {0,1}™, where ¢ > 2
n + |z > Message length
ke {n/(t - 1)1 k :Num of blofks of in x. Each
? {_ ﬁit l_tl)k_ ”1 block has length t-1

ore 0 Note that t cannot be =1

do Yi & &;
Y @k || 04— Apply padding
Yk41 the binary representationof d — Append d

21— 0M 1 |y Vs om Amo.unt of padding
g1 + compress(z;) requifed to make
fori«+— ltok messpge a multiple of
do {fm —gi |l 1] yipr t-1
gip1 + compress(z;i,)
h(I] — gk+1

return (h(z))

35

On Merkle-Damgard Construction

Theorem: If the compress function is collision
resistant then the Merkle-Damgard
construction is collision resistant

Proof: We show the contra-positive...

If the Merkle-Damgard construction results in
a collision then the compress function is NOT
collision resistant

36

Merkle-Damgard Construction is Collision Resistant (Proof)

* Assume we have two message x and x” which
result in the same hash.

* Proof proceeds by considering 2 cases:

—

| | x || x'| mod(z — 1) @) x |=| x'| mod(z — 1)

N\

cll xf=lx| el

37

Case1l |Xx|#|x'|mod(f—1)

* This means that the padding (resp. d and d’) applied to x and x’ is different
(i,e.dzd)

T
U

X
The last step in hashing

1 ld 1 ld’

J

concatenate If h(X) = h(X') then

, compress(xx||1||d) = compress(xx||1]]|d’)

\compress/ \ /
Since d# d’, we have a collision in compress.

m m

\ \
h(x) h(x’)

38

Case 1 formally : | x |#| x'| mod(f — 1)

case 1: |¢| # |2'| (mod ¢ — 1).
Here d # d’ and yx 11 # y;, ;. We have

compress(gi || 1 || yks1) = gra

= h(z')
= 9:?+1
= compress(g; || 1 || ¥11),

which is a collision for compress because yi 1 # ¥) ;.

39

x|=| x'|mod(r—1) and | x|=| x'

- d In this case, padding in x and X’ are the

same. Hence d = d".

- d’ ... can’t use the old trick ®

These may or may not collide.
If they collide, we are done : we have shown a collision in

J,l \|/_‘yk+1 . compress. If they don’t collide we look at the previous

iteration

a collision here

Case 2a:
X
1
Y J
XI
| .
N .
concatenate concatenate
compress compress
= [
concatenate concatenate
compress compress
\]/1 \,/—‘yk+1
concatenate concatenate
ompress ompress
h(x) Vh(x

40

Case 2a:
X
1
1
Y J
XI
| |
L T
concatenate concatenate
compress compress
1 \,/—‘yk 1 \|/—‘yk
concatenate concatenate
compress compress
1 \,/—‘yk+1 1 \|/_‘yk+1
concatenate concatenate
ompress ompress
h(x) Vh(x

x|=| x'|mod(r—1) and | x|=| x'

- d In this case, padding in x and X’ are the

same. Hence d = d".

- d’ ... can’t use the old trick ®

These may or may not collide.

If they collide, we are done :

We have shown a collision in compress.

If they don’t collide we look at the previous iteration
We continue this back tracking, until we find a

collision. We will definitely find a collision at some point
because x # X

41

Case 2a formally : | x |=| x'|mod(¢ —1) and |x|= x'|

Here we have k = fand y;, 1 = U’k+1* We begin as in case 1:

g.
compress(gi || 1 || yk41) = gr4a 41. Vi
= h(z) ;
concatenate
= h(z')
compress
— 9£:+1
= compress(g, || 1 || gh.1)- Birt
If gr # gj., then we find a collision for compress, so assume gy = gj.
Then we have
compress(gx—1 || 1 || ys) = gx
= gk
= compress(g;_, || 1 || yx)-
Either we find a collision for compress, or gz 1 = g,._, and yx = v,.
Assuming we do not find a collision, we continue working backwards, until
finally we obtain
compress(0™! || y1) = g1 but y,=y,” implies x=x".

which is a contradiction.

= ¢}

= compress(0™! || y}).

42

Case2b: | x|=| x'|mod(z —1) and |x|#| x'|

X
A

—

Note here that d=d’ even though
lengths of the messages are not the same.

In most cases, the proof would proceed
similar to case 2a.

But there is a cornercase.

43

Case2b: | x|=| x'|mod(z —1) and |x|#| x'|

X
A

B
-d

* The corner case: x = (x| x’)
back tracking in such as case will not help
find a collision

 Handling this case:

the inserted bit r
(r=0 for the 1t round, else r=1)

Om

o

concatenate

compress

¢1 rl Y

concatenate

compress

i

concatenate

compress

—

\I/l \,/_fykﬂ

concatenate

ompress

44

Case 2b formally :

x|=| x'|mod(zt—1) and |x|#| x'|

case 2b: |z £ |2|.

Without loss of generality, assume |2‘| > |z|, so £ > k. This case pro- -

ceeds in a similar fashion as case 2a. Assuming we find no collisions for
compress, we eventually reach the situation where

compress(0™! || y1) = ¢
— g:?-k-|-l
= compress(g;_; || 1 || ¥r_z 1)

But the (m + 1)st bit of
0™+ | 1

is a 0 and the (m + 1)st bit of

Jei || 1| y;:-k+1

isa 1. So we find a collision for compress.

45

Merkle-Damgard-2
(for the case when t=1)

Algorithm : MERKLE-DAMGARD2(z)

extermal compress
comment: compress : {0, 1}™+!1 — {0 1}™

n & |z|
y & 11| flea) || fz2) || - [] f(zn)
denotey =y ||y ||+« - || yx, wherey; € {0,1},1<i <k

g1 « compress(0™ || y1)
fori — 1tok—1

do g;,1 < compress(g; || ¥iy1)
return (g)

46

Hash Functions in Practice

* MD5

* NIST specified “secure hash algorithm”
— SHAO : published in 1993. 160 bit hash.

* There were unpublished weaknesses in this algorithm
* The first published weakness was in 1998, where a collision attack was discovered with
complexity 261

— SHA1 published in 1995. 160 bit hash.

SHAO replaced with SHA1 which resolved several of the weaknesses

* SHA1 used in several applications until 2005, when an algorithm to find collisions with a
complexity of 2%° was developed

* In 2010, SHA1 was no longer supported. All applications that used SHA1 needed to be
migrated to SHA2

— SHAZ2 : published in 2001. Supports 6 functions: 224, 256, 384, 512, and
two truncated versions of 512 bit hashes

* No collision attacks on SHA2 as yet. The best attack so far assumes reduced rounds of the
algorithm (46 rounds)

— SHA3 : published in 2015. Also known as Kecchak

47

eachlimb A B CD
I

is of 32 bits

J

input message x

Append Pad

Pad Length

Each round has 16 similar operations of this modified Feistel form

32 bits x 16

MD5

1

. Appended with 1 and then Os so that length is a multiple of 512 — 64 = 448

.

Y
512 bits

32 bit
message

parts \{

M

i
consta nt/(

128 bit hash

A B C
BT
L 4
s
s
B
Me
"

roundl F(B,C,D)=(BAC)V(-BAD)

round2 G(B,C,D)=(BrD)V(CA-D)
round3 H(B,C,D)=B&C&D
round4 [(B,C,D)=C&(Bv-D)

* Message length appended (in 64 bits) and split into blocks of 512 bits

round operations

48

Collisions in MD5 (Timeline)

A birthday attack on MD5 has complexity of 254

Small enough to brute force collision search

1996, collisions on the inner functions of MD5 found

2004, collisions demonstrated practically

2007, chosen-prefix collisions demonstrated
Given two different prefixes p1, p2 find two appendages m1 and m2 such
that hash(p1 || m1) = hash(p2 || m2)

2008, rogue SSL certificates generated

2012, MD5 collisions used in cyberwarfare

— Flame malware uses an MD5 prefix collision to fake a Microsoft digital
code signature

MD?5 Collisions demos : http://www.mscs.dal.ca/~selinger/md5collision/ v

Collision attack on MD5
like hash functions

* Analyze differential trails

* A bit different from block ciphers
— No secret key involved

— We can choose M and M* as we want

* We have a valid attack if probability of
trail is P > 2-N/2

AH

0

50

input message (x)

S HA1 (may be of any length less than 254)

gll)bal KD, .

H, + EFCDAB89
H, + 98BADCFE
Hsz + 10325476
H, + C3D2E1F0

Jfori+ 1ton

(denote M; = Wy || Wi || - - - || Wis, where each ¥; is a word
fort + 16 to 79

doW, « ROTL' (W,_3 @& W,_s & Wy_145 Wi_15) —

A« Hy
B4—H1
O« Hy
D'C—H3
E'(—H4

do <

do

. Hqg
y + SHA-1-PAD(z)
denotey = M, || Mz || - - - || M, where each M; is a 512-bit block
THo +— 67452301

fort — 0to79

temp + ROTL?(A) + f,(B.C,D)+ E + W, + K,
E«D

D« C

C « ROTL¥(B)
B« A

A « temp

HO (—H0+A

Hy+« H+B

Hg (—H2+C

Hy +— Hs + D
\Hy +— Hy+ E

return (Ho || Hy || Ha || H3 || Ha)

Algorithm

comment:
d + (447

y+zx |1

: SHA-1-PAD(x)

x| < 26% —]

— |2|) mod 512
{ < the binary representation of |z|, where [¢| = 64

1ot e

7 each word is 32 bits (512/16=32)

> expand to 79 words

o

- —— -

32*5=160 bit hash output

(BAC)V ((~B)A D) 0 <t<19
BaC if ¢ 3
£(B.C. D) = &CaD if20 < 1< 39
(BACIV(BADYV(CAD) if40 <t <59
BaCaD if60 < t < 79.
l
/A B E
y
Y
{"C{: / :—_
;
< W,
1]
<K,

51

Kacchak and the SHA3

* Uses a sponge construction

— Achieves variable length hash functions

I
] = = N r\: ™\
:
bit rate r(|0—&> o= o o T
LAY S
| |
__Sc 0 - > : >
N/ N/ N/ N _/

security parameter| ¥ —

sponge

Success of an attack against Kecchak < N2/2¢+1

where N is number of calls to f

absorbing: squeezing

Z
A

52

Message Authentication Codes
(Keyed Hash Functions)

= h(x)
hK

T “Attack at Dawn!!”

M .
B essage Digest 1 h y
Message unsecure channel K

“Attack at Dawn!!”

Provides Integrity and Authenticity

Integrity : Messages are not tampered

Authenticity : Bob can verify that the message came from Alice
(Does not provide non-repudiation)

53

How to construct MACs?
recall ... shortcuts

* For a message m, the only way to compute its
hash is to evaluate the function h,(m)

* This should remain to irrespective of how many
hashes we compute

— Even if we have computed h(m,), h (m,), h(m,),,
hi(M1000)
It should be difficult to compute h(x) without knowing the
value of K

54

Constructing a MAC
(First Attempt)

Won’t work if no preprocessing step

— attackers could append messages and get the
same hash

Apoen{d Pud X 9 h K(X),

X || X' = compress(h,(x) || x)

input message (x) .
(may be of any length)

Secret IV

N concatenate

compress

after k steps

v

h(y)

55

Constructing a MAC
(First Attempt)

. t . H
nput message (X) ot work if preprocessing step present

(may be of any Iength).

l suppose y = x || pad(x) where| y |= rt
Append Pad consider x'= x|| pad(x)||w where|wl|=t
Pad Length y'=x'l| pad(x') = x || pad(x) || w|| pad(x')
Secret IV = Y where| y'|=r't forsomeinteger 7' > r

Let z, = h, (x)
z,, < compress(hg (x) || y,.,)

compress Z,., < compress(z,, || y,.,)

z,. <= compress(z,_, || y,)

after k steps

Jvr thus h,(x")=z,

h(y)

56

CBC-MAC

h(pol 1P111.--P4)

Authenticated Encryption

* Achieves Confidentiality, Integrity, and Authentication

*

Encryption

Hash function

EtM
(encrypt then MAC)

! !

Encryption “lﬂl" Hash function

Key

Hash function

MAC

A

Encryption < —

e

E&M

MtE
(MAC then Encrypt)

58

1.

3.

Using CBC-MAC for Authenticated
Encryption

Consider p = (py, P1, Py, P3) is @ message Alice sends to Bob

1. She encrypts it with CBC as follows
Co = Eilpo) s €1 = Elpy + Co); €3 = E(p, + ¢41); €3 = Eylps + ¢))
2. She computes mac = CBC-MAC,(p)
She transmits (¢, mac) to Bob : where ¢ = (c,, ¢;, ¢, C35)

Mallory modifies one or more of the ciphertexts (c,, c,, ¢,) to (¢, ¢,’, ¢,’)
Bob will

1. Decrypt (¢4, ¢y, ¢;') to (py, Py PS)
2. Anduse it compute the MAC mac’

We show that mac’ = ¢; irrespective of how Mallory modifies the ciphertext

59

Using CBC-MAC for Authenticated

Alice’s side
(encryption)
¢ = Ei(py)

¢ =E.(p,®cy)
¢, =E (p,®c)
¢, =E (p;®@c,)

mac'= CBCMAC(p")

Encryption
Bob’s side
(decryption)
p,=D(c) (assume IV =0)
p :Dk(c'l)@c
p =Dk(c'2)69c

=E (p,®E(p,®E(p, ®E(p,))

=E,(p;®c))

= Ek(Dk(CZ')(—BC'Z ('BC’z)

= E (D, (c3))

:C3

Without modifying the final
ciphertext, Mallory can change any
other ciphertext as she pleases. The
CBC-MAC will not be altered.

Moral of the story: Never use CBC-
MAC with CBC encryption!!

60

Counter Mode + CBC-MAC for
Authenticated Encryption

Consider p = (py, P1, Py, P3) is @ message Alice sends to Bob

1. She encrypts p with counter mode as follows
Co=Po + Eilctr); ¢y =p;y + Efctr+1);
c, = p, + E (ctr + 2); c; = py+ E (ctr + 3)

2. She computes mac = CBC-MAC,(p)
She transmits (¢, mac) to Bob : where ¢ = (c,, ¢;, ¢, C35)

61

