Signature Schemes

Chester Rebeiro
IIT Madras
Recall : MACs

MACs allow Bob to be certain that
- the message has originated from Alice
- the message was not tampered during communication

MAC cannot
- prevent Bob from creating forgeries (i.e., messages in the name of Alice)
- cannot prove Authenticity to someone without sharing the secret key K

Digital Signatures solve both these problems
Digital Signatures

• A token sent along with the message that achieves
 – Authentication
 – Non-repudiation
 – Integrity

• Based on public key cryptography
Public key Certificates

Important application of digital signatures

Bob’s Certificate{
 Bob’s public key in plaintext
 Signature of the certifying authority
 other information
}

To communicate with Bob, Alice gets his public key from a trusted authority (TA)
A trusted authority could be a Government agency, Verisign, etc.

A signature from the TA, ensures that the public key is authentic.
Digital Signature

Alice

- Alice’s Private Key
- Message: x = “Attack at Dawn!!”
- Digital Signature: y = \(\text{sig}_K(x) \)

Verifying Function

- **Input**: Digital signature, message
- **Output**: true or false
 - true if signature valid
 - false otherwise

Signing Function

- **Input**: Message (x) and Alice’s private key
- **Output**: Digital Signature of Message
Digital Signatures (Formally)

Definition: A *signature scheme* is a five-tuple \((\mathcal{P}, \mathcal{A}, \mathcal{K}, \mathcal{S}, \mathcal{V})\), where the following conditions are satisfied:

1. \(\mathcal{P}\) is a finite set of possible *messages*
2. \(\mathcal{A}\) is a finite set of possible *signatures*
3. \(\mathcal{K}\), the *keyspace*, is a finite set of possible *keys*
4. For each \(K \in \mathcal{K}\), there is a *signing algorithm* \(\text{sig}_K \in \mathcal{S}\) and a corresponding *verification algorithm* \(\text{ver}_K \in \mathcal{V}\). Each \(\text{sig}_K : \mathcal{P} \rightarrow \mathcal{A}\) and \(\text{ver}_K : \mathcal{P} \times \mathcal{A} \rightarrow \{\text{true}, \text{false}\}\) are functions such that the following equation is satisfied for every message \(x \in \mathcal{P}\) and for every signature \(y \in \mathcal{A}\):

\[
\text{ver}_K(x, y) = \begin{cases}
\text{true} & \text{if } y = \text{sig}_K(x) \\
\text{false} & \text{if } y \neq \text{sig}_K(x).
\end{cases}
\]

A pair \((x, y)\) with \(x \in \mathcal{P}\) and \(y \in \mathcal{A}\) is called a *signed message*.
If Mallory can create a valid digital signature such that \(\text{ver}_K(x, y) = \text{TRUE} \) for a message not previously signed by Alice, then the pair \((x, y)\) forms a forgery.
Security Models for Digital Signatures

Assumptions

Goals of Attacker

• **Total break:**
 Mallory can determine Alice’s private key
 (therefore can generate any number of signed messages)

• **Selective forgery:**
 Given a message x, Mallory can determine y, such that (x, y) is a valid signature from Alice

• **Existential forgery:**
 Mallory is able to create y for some x, such that (x, y) is a valid signature from Alice
Security Models for Digital Signatures

Assumptions

- **Key-only attack**: Mallory only has Alice’s public key (i.e. only has access to the verification function, \(\text{ver} \))
- **Known-message attack**: Mallory only has a list of messages signed by Alice \((x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4), \ldots\).
- **Chosen-message attack**: Mallory chooses messages \(x_1, x_2, x_3, \ldots \ldots\) and tricks Alice into providing the corresponding signatures \(y_1, y_2, y_3\) (resp.)

Goals of Attacker

Weak

Strong
First Attempt making a digital signature (using RSA)

\[
\begin{align*}
b, n & \quad \text{public} \\
a, p, q & \quad \text{private} \\
n = pq; \ a \equiv b-1 \mod \phi(n)
\end{align*}
\]

\[
\begin{align*}
sig(x) & \{ \\
y & \equiv x^a \mod n \\
return (x, y) &
\}
\end{align*}
\]

\[
\begin{align*}
ver(x, y) & \{ \\
if (x \equiv y^b \mod n) & \text{ return TRUE} \\
else & \text{ return FALSE}
\}
\end{align*}
\]

\[x \text{ is the message here} \]
\[\text{and } (x, y) \text{ the signature} \]
A Forgery for the RSA signature (First Forgery)

\[b, n \quad \text{public} \]
\[a, p, q \quad \text{private} \]
\[n = pq; \quad a \equiv b-1 \mod \varphi(n) \]

\[\text{sig}(x) \{ \]
\[\quad y \equiv x^a \mod n \]
\[\quad \text{return } (x, y) \]
\[\} \]

\[\text{ver}_k(x, y) \{ \]
\[\quad (x, y) \]
\[\quad \text{if } (x \equiv y^b \mod n) \quad \text{return } \text{TRUE} \]
\[\quad \text{else return } \text{FALSE} \]
\[\} \]

\[\text{forgery}() \{ \]
\[\quad \text{select a random } y \]
\[\quad \text{compute } x \equiv y^b \mod n \]
\[\quad \text{return } (x, y) \]
\[\} \]

Key only, existential forgery
Second Forgery

Suppose Alice creates signatures of two messages x_1 and x_2

\[
y_1 = \text{sig}(x_1) \rightarrow y_1 \equiv x_1^a \mod n \quad (x_1, y_1)
\]

\[
y_2 = \text{sig}(x_2) \rightarrow y_2 \equiv x_2^a \mod n \quad (x_2, y_2)
\]

Mallory can use the *multiplicative property of RSA* to create a forgery

\[
(x_1 x_2 \mod n, y_1 y_2 \mod n) \quad \text{is a forgery}
\]

\[
y_1 y_2 \equiv x_1^a x_2^a \mod n
\]

Known message, existential forgery
RSA Digital Signatures

Incorporate a hash function in the scheme to prevent forgery

\[\begin{align*}
\text{sig}(x) & \{ \\
& z = h(x) \\
& y \equiv z^a \mod n \\
& \text{return } (x, y) \\
\} \\
\end{align*} \]

\[\begin{align*}
\text{ver}_K(x, y) & \{ \\
& z = h(x) \\
& \text{if } (z \equiv y^b \mod n) \text{ return TRUE} \\
& \text{else return FALSE} \\
\} \\
\end{align*} \]

x is the message here, (x, y) the signature and h is a hash function
How does the hash function help?

Preventing the First Forgery

```c
forgery()
{
    select a random $y$
    compute $z' \equiv y^b \mod n$
    compute $I^{st}$ preimage: $x s.t. \ z' = h(x)$
    return $(x, y)$
}
```

Forgery becomes equivalent to the first preimage attack on the hash function
How does the hash function help?

Preventing the Second Forgery

\[(x_1 x_2 \mod n, y_1 y_2 \mod n) \text{ is difficult} \]

\[y_1 y_2 \equiv h(x_1)^a h(x_2)^a \mod n \]

\[\neq x_1^a x_2^a \mod n \]

creating such a forgery is unlikely
How does the hash function help?

Another Forgery prevented

```java
def forgery(x, y):
    compute $h(x)$
    compute $\text{II}^{nd}$ preimage: find $x'$ s.t. $h(x) = h(x')$ and $x \neq x'$
    return $(x', y)$
```

Given a valid signature (x,y) find (x',y)
creating such a forgery is equivalent to solving the 2^{nd} preimage problem of the hash function.
ElGamal Signature Scheme

• 1985
• Variant adopted by NIST as the DSA
 (DSA: standard for digital signature algorithm)
• Based on the difficult of the discrete log problem
ElGamal Signing

Initialization

Choose a large prime p
Let $\alpha \in \mathbb{Z}_p^*$ be a primitive element
Choose a \hspace{0.5cm} (0 < a \leq p - 1)
Compute $\beta \equiv \alpha^a \mod p$

Public Parameters : p, α, β

Private key : a

Signing Message x

```
sig(x){
    select a secret random $k$ s.t. $\gcd(k, p - 1) = 1$
    $\gamma \equiv \alpha^k \mod p$
    $\delta \equiv (x - a\gamma)k^{-1} \mod p - 1$
    $y = (\gamma, \delta)$
    return $(x, y)$
}
```

The use of a random secret k for every signature makes ElGamal non-deterministic
ElGamal Verifying

Initialization
- Choose a large prime p
- Let $\alpha \in \mathbb{Z}_p^*$ be a primitive element
- Choose a \quad ($0 < a \leq p - 1$)
- Compute $\beta \equiv \alpha^a \mod p$
- Public Parameters : p, α, β
- Private key : a

Verifying Signature (x,y)

```
ver(x, (γ, δ)) {
    compute $t_1 \equiv \alpha^x \mod p$
    compute $t_2 \equiv \beta^γγ^δ \mod p$
    if ($t_1 = t_2$)
        return TRUE
    else
        return FALSE
}
```
ElGamal Correctness

Signing Message x

\[
\text{sig}(x) = \left\{ \begin{array}{l}
\text{select a secret random } k \\
\gamma = \alpha^k \mod p \\
\delta = (x - a\gamma)k^{-1} \mod p - 1 \\
y = (\gamma, \delta) \\
\text{return } (x, y)
\end{array} \right.
\]

Initialization

Choose a large prime \(p \)
Let \(\alpha \in \mathbb{Z}_p^* \) be a primitive element
Choose \(a \) \((0 < a \leq p - 1) \)
Compute \(\beta = \alpha^a \mod p \)

Public Parameters: \(p, \alpha, \beta \)
Private key: \(a \)

Verifying Signature (x,y)

\[
\text{ver}(x, (\gamma, \delta)) = \left\{ \begin{array}{l}
\text{compute } t_1 = \alpha^x \mod p \\
\text{compute } t_2 = \beta^\gamma \gamma^\delta \mod p \\
\text{if } (t_1 = t_2) \text{ return TRUE} \\
\text{else return FALSE}
\end{array} \right.
\]

First note that

\[
a\gamma + k\delta \equiv x \mod (p - 1)
\]

\[
t_2 = \beta^\gamma \gamma^\delta \mod p \quad t_1 = \alpha^x \mod p
\]

\[
\equiv (\alpha^a)^\gamma + (\alpha^k)^\delta \mod p
\]

\[
\equiv \alpha^{ay+ks} \mod p
\]

\[
\equiv \alpha^x \mod p
\]

if the signature is valid, \(t_1 = t_2 \)
Example

Signature of message $x = 100$

\[
k = 213 \quad (chosen \ randomly)
\]
\[
k^{-1} \mod (p - 1) = 431
\]
\[
\gamma = \alpha^k \mod p
\]
\[
= 2^{213} \mod 467
\]
\[
= 29
\]
\[
\delta = (x - a\gamma)k^{-1} \mod p - 1
\]
\[
= (100 - 2 \cdot 29)431 \mod 466
\]
\[
= 51
\]

Verifying

\[
p = 467
\]
\[
\alpha = 2
\]
\[
a = 127
\]
\[
\beta \equiv \alpha^a \mod p
\]
\[
= 2^{127} \mod 467
\]
\[
= 132
\]

\[
\beta^\gamma \delta \mod p = 132^{29}29^{51} \mod 467 = 189
\]
\[
\alpha^x \mod p = 2^{100} \mod p = 189
\]

TRUE
Security of ElGamal Signature Scheme
(against Selective forgery)

Given an x, Mallory needs to find (γ, δ) such that $\text{ver}(x, (\gamma, \delta)) = \text{TRUE}$

Attempt 1
Choose a value for γ, then try to compute $\delta \; \text{s.t.} \; \beta^\gamma \gamma^\delta \equiv \alpha^x \text{ mod } p$
$\delta = \log_\gamma \alpha^x \beta^{-\gamma}$
This is the intractable discrete log problem

Attempt 2
Choose a value for δ, then try to compute $\gamma \; \text{s.t.} \; \beta^\gamma \gamma^\delta \equiv \alpha^x \text{ mod } p$
This is not related to the discrete log problem. There is no known solution for this.

Attempt 3
Choose value for γ and δ simultaneously, $\text{s.t.} \; \beta^\gamma \gamma^\delta \equiv \alpha^x \text{ mod } p$
No way known.
Security of ElGamal Signature Scheme
\textit{(against Existential forgery)}

Mallory needs to find an \((x, (\gamma, \delta))\) such that \(\text{ver}(x, (\gamma, \delta)) = \text{TRUE}\)

The one-parameter forgery

\begin{align*}
\text{choose some } i & \quad (0 \leq i \leq p - 2). \\
\text{form } \gamma & \equiv \alpha^i \beta \mod p \\
\delta & \equiv -\gamma \mod (p - 1) \\
x & \equiv i\delta \mod (p - 1). \\
\text{then, } \text{ver}(x, (\gamma, \delta)) = \text{TRUE} \\
\alpha^x & \equiv \beta^\gamma \gamma^\delta \mod p \\
\text{RHS} & \equiv \beta^\gamma (\alpha^i \beta)^\delta \mod p \\
& \equiv \beta^{\gamma+\delta} \alpha^{i\delta} \mod p \\
& \equiv \alpha^{\alpha\gamma+\delta} \alpha^{i\delta} \mod p \\
& \equiv \alpha^{\alpha\gamma-\gamma+i\delta} \mod p \\
& \equiv \alpha^{i\delta} \mod p \\
& \equiv \alpha^x \mod p = \text{LHS}
\end{align*}
Security of ElGamal Signature Scheme (against Existential forging)

Mallory needs to find an \((x, (\gamma, \delta))\) such that \(ver(x, (\gamma, \delta)) = TRUE\)

The two-parameter forgery

choose some \(i, j\) \((0 \leq i, j \leq p - 2; \gcd(j, p - 1) = 1)\)

form \(\gamma \equiv \alpha^i \beta^j \mod p\)

\[\delta \equiv -\gamma^{-1} \mod (p - 1)\]

\[x \equiv \gamma j^{-1} \mod (p - 1)\]

then, \(ver(x, (\gamma, \delta)) = TRUE\)

Prevent Existential Forgeries by hashing the message
Improper use of ElGamal’s Signature Scheme

1. What if \(k \) is not a secret?

\[
\text{if } \gcd(y, p - 1) = 1 \text{ then}
\]
secret \(a \) can be computed as follows
\[
a = (x - k\delta)y^{-1} \mod (p - 1).
\]

The secret key ‘\(a \)’ is retrieved and Mallory can create many forgeries.

\[
sig(x)\
\begin{align*}
\text{select a secret random } k \\
\gamma & \equiv \alpha^k \mod p \\
\delta & \equiv (x - a\gamma)k^{-1} \mod p - 1 \\
y & = (\gamma, \delta) \\
\text{return } (x, y)
\end{align*}
\]
Improper use of ElGamal’s Signature Scheme

2. What if \(k \) is reused?

Let's say we have two different messages \(x_1 \) and \(x_2 \) signed with the same \(k \).

The signatures are \((\gamma, \delta_1)\) and \((\gamma, \delta_2)\) then,

\[
\beta^\gamma \gamma^{\delta_1} \equiv \alpha^{x_1} \pmod{p}
\]

\[
\beta^\gamma \gamma^{\delta_2} \equiv \alpha^{x_2} \pmod{p}.
\]

dividing

\[
\alpha^{x_1-x_2} \equiv \gamma^{\delta_1-\delta_2} \pmod{p}.
\]

Representing in terms of \(\alpha \)

\[
\alpha^{x_1-x_2} \equiv \alpha^{k(\delta_1-\delta_2)} \pmod{p},
\]

=>

\[
x_1 - x_2 \equiv k(\delta_1 - \delta_2) \pmod{p - 1}.
\]
Improper use of ElGamal’s Signature Scheme

\[x_1 - x_2 \equiv k(\delta_1 - \delta_2) \pmod{p - 1}. \]

Now let \(d = \gcd(\delta_1 - \delta_2, p - 1) \). Since \(d \mid (p - 1) \) and \(d \mid (\delta_1 - \delta_2) \), it follows that \(d \mid (x_1 - x_2) \). Define

\[
\begin{align*}
x' &= \frac{x_1 - x_2}{d} \\
\delta' &= \frac{\delta_1 - \delta_2}{d} \\
p' &= \frac{p - 1}{d}.
\end{align*}
\]

Then the congruence becomes:

\[x' \equiv k\delta' \pmod{p'} . \]

Since \(\gcd(\delta', p') = 1 \), we can compute

\[\epsilon = (\delta')^{-1} \pmod{p'} . \]

Then value of \(k \) is determined modulo \(p' \) to be

\[k = x'\epsilon \pmod{p'} . \]

This yields \(d \) candidate values for \(k \):

\[k = x'\epsilon + ip' \pmod{(p - 1)} \]

for some \(i, \ 0 \leq i \leq d - 1 \). Of these \(d \) candidate values, the (unique) correct one can be determined by testing the condition

\[\gamma \equiv \alpha^k \pmod{p} . \]
ElGamal Signature Length

- Generally p is a prime of length 1024 bits
- The signature comprises of \((\gamma, \delta)\) which is of length 2048 bits

Schnorr’s Signature Scheme is a modification of the ElGamal signature scheme with signatures of length around 320 bits
Initialization

Choose a large prime p (1024 bit)
Choose another prime q (160 bit) s.t. $q \mid p - 1$
Find α of order q (α creates a subgroup of order q)
Choose a $(0 < a \leq q - 1)$
Compute $\beta \equiv \alpha^a \mod p$

Public Parameters: p, q, α, β
Private key: a

- Choose some α
- And compute $\alpha^{(p-1)/q} \mod p$
DSA (Signing Function)

Initialization

- Choose a large prime p (1024 bit)
- Choose another prime q (160 bit) s.t. $q | p - 1$
- Find α of order q (\alpha creates a subgroup of order q)
- Choose a \((0 < a \leq q - 1)\)
- Compute $\beta \equiv a^\alpha \mod p$

Public Parameters: p, q, α, β

Private key: a

Signing Message x

```plaintext
sig(x) {
    select a secret random $k$ s.t. $\gcd(k, q) = 1$
    $\gamma \equiv (\alpha^k \mod p) \mod q$
    $\delta \equiv (SHA(x) + a\gamma)k^{-1} \mod q$
    $y = (\gamma, \delta)$
    return $(x, y)$
}
```

The use of a random secret k for every signature makes ElGamal non-deterministic.
DSA (Verifying Function)

Initialization

- Choose a large prime \(p \) (1024 bit)
- Choose another prime \(q \) (160 bit) s.t. \(q \mid p - 1 \)
- Find \(\alpha \) of order \(q \) (\(\alpha \) creates a subgroup of order \(q \))
- Choose \(a \) (0 < \(a \leq q - 1 \))
- Compute \(\beta \equiv \alpha^a \mod p \)

Public Parameters: \(p, q, \alpha, \beta \)

Private key: \(a \)

Signing Message \(x \)

\[
\text{sig}(x) \{
\text{select a secret random } k \text{ s.t. } \gcd(k, q) = 1 \\
\gamma \equiv (\alpha^k \mod p) \mod q \\
\delta \equiv (SHA(x) + a\gamma)k^{-1} \mod q \\
y = (\gamma, \delta) \\
\text{return } (x, y)
\}
\]

Verifying Signature

\[
\text{ver}(x, (\gamma, \delta)) \{
\text{compute } w \equiv \delta^{-1} \mod q \\
\text{compute } t_1 \equiv w \cdot SHA(x) \mod q \\
\text{compute } t_2 \equiv w \cdot \gamma \mod q \\
\text{compute } v \equiv (\alpha^t_1 \cdot \beta^t_2 \mod p) \mod q \\
\text{if } (v \equiv \gamma \mod q) \text{ return TRUE} \\
\text{else return FALSE}
\}
\]
DSA (Correctness)

Initialization

Public Parameters: \(p, q, \alpha, \beta \ (\beta \equiv \alpha^a \mod p) \)

Private key: \(a \)

Signing Message \(x \)

\[
sig(x)\{
 \text{select a secret random } k \text{ s.t. } \gcd(k, q) = 1 \\
 \gamma \equiv (\alpha^k \mod p) \mod q \\
 \delta \equiv (\text{SHA}(x) + a\gamma)k^{-1} \mod q \\
 y = (\gamma, \delta) \\
 \text{return } (x, y)
\}
\]

Verifying Signature

\[
\text{ver}(x, (\gamma, \delta))\{
 \text{compute } w \equiv \delta^{-1} \mod q \\
 \text{compute } t_1 \equiv w \cdot \text{SHA}(x) \mod q \\
 \text{compute } t_2 \equiv w \cdot \gamma \mod q \\
 \text{compute } v \equiv (\alpha^{t_1} \cdot \beta^{t_2} \mod p) \mod q \\
 \text{if } (v \equiv \gamma \mod q) \text{ return TRUE} \\
 \text{else return FALSE}
\}
\]

\[
\delta \equiv (\text{SHA}(x) + a\gamma)k^{-1} \mod q \\
k \equiv (\text{SHA}(x) + a\gamma)\delta^{-1} \mod q \\
= (w\text{SHA}(x) + wa\gamma) \mod q \\
k \equiv (t_1 + at_2) \mod q
\]

\[
\alpha^k \equiv \alpha^{(t_1 + at_2) \mod q} \mod p \\
\alpha^k \equiv \alpha^{t_1} \beta^{t_2} \mod p \\
\text{Take } \mod q \text{ on both sides} \\
\gamma \equiv (\alpha^{t_1} \beta^{t_2} \mod p) \mod q
\]
Security of DSA

• There are two ways to attack the DSA (attempt to recover the secret a)
 – Target the large cyclic group \mathbb{Z}_p
 – Target the smaller group \mathbb{Z}_q

Could you techniques such as Index Calculus. For a 1024 bit p, this method offers security of 80 bits

Cannot apply Index Calculus relies on Pollard rho for solving the discrete log, For 160 bit q, this offers security of 80 bits
Security of DSA

• There are two ways to attack the DSA (attempt to recover the secret a)
 – Target the large cyclic group Z_p
 – Target the smaller group Z_q

Could you techniques such as Index Calculus. For a 1024 bit p, this method offers security of 80 bits

Cannot apply Index Calculus relies on Pollard rho for solving the discrete log, For 160 bit q, this offers security of 80 bits

Thus the size of p dictates the size of q.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>160</td>
<td>320</td>
</tr>
<tr>
<td>2048</td>
<td>224</td>
<td>448</td>
</tr>
<tr>
<td>3072</td>
<td>256</td>
<td>512</td>
</tr>
</tbody>
</table>
Schnorr Signature Scheme
(uses a hash function to get smaller signatures)

Initialization
Choose a large prime \(p \) (of size 1024 bits)
Choose a smaller prime \(q \) (of size 160 bits) and \(q \mid (p-1) \)
Let \(\alpha_0 \in \mathbb{Z}_p^* \) be a primitive element

then \(\alpha = \alpha_0^{(p-1)/q} \mod p \) is the \(q \)th root of 1 mod \(p \)
Choose \(a \) randomly from \((0 \leq a < q) \)
Compute \(\beta = \alpha^a \mod q \)

Private: \(a \)
Private: \(\alpha, \beta, p, q \)

Signing Message \(x \)
\[
\text{sig}(x)\{ \\
\quad \text{select a secret random } k \text{ s.t. } 1 \leq k \leq q-1. \\
\quad \gamma = h(x \parallel \alpha^k \mod p) \\
\quad \delta = k + a\gamma \mod p \\
\quad y = (\gamma, \delta) \\
\quad \text{return } (x, y) \\
\}
\]

Verifying Signature \((x, y)\)
\[
\text{ver}(x, (\gamma, \delta))\{ \\
\quad \text{compute } t_1 \equiv h(x \parallel \alpha^\delta \beta^{-\gamma} \mod p) \\
\quad \text{if } (t_1 = \gamma) \text{ return } \text{TRUE} \\
\quad \text{else return } \text{FALSE} \\
\}
\]