
Key Establishment

CR

Chester Rebeiro

IIT Madras

Stinson : Chapter 10

Multi Party secure communication

A B

DC

CR

• N parties want to communicate securely with each other

(N=6 in this figure)

• If U sends a message to V (U ≠V and U,V Ɛ {a,b,c,d,e,f})

– Only V should be able to read the message

– No other parties (even if they cooperate) should be able to read the message

2

FE

Adversary Assumptions

• Passive Attacker (evesdropper)

A B

C
attacker

CR

• Passive Attacker (evesdropper)

• Active Attacker
– Aim :

fool A and B into accepting an invalid key
(invalid key : expired key, a key chosen by the attacker)

fool A / B into believing that they have exchanged a key with the other

get partial information about the key exchanged between A and B

– Modus-Operandi :
• alter messages

• save messages and replay later

• masquerade

3

Adversary Assumptions

a b

c

2-party colluding

attackersd

CR

• Attackers can collude to get the secrets

• k-party colluding attacks

– K attackers collude

4

Types of Keys

• Long lived keys

– Generally used for authentication, setting up session keys

• Could be either a key corresponding to a symmetric cipher

• Or a private key corresponding to a public key cipher

CR

• Session keys

– Used for a brief period of time such as a single session.

• Typically session key corresponds to a symmetric key cipher

– and requires to be changed periodically

– Derived from LL keys

5

Example (the keys in GSM)

• Long lived (LL) keys

– SIM contains a individual subscriber authentication key (ki)

• It is never transmitted or the network.

– A copy of ki is also stored in databases in the base station

– ki is used to authenticate the SIM using an algorithm called A3

• Session keys (k)

CR

• Session keys (kc)

– Created at the time of a call changed periodically during the call

– It is created using ki and an algorithm A8

– Voice and Signals are encrypted using the session key ki using a cipher A5

6

Why use Session Keys?

• Limit the amount of ciphertext an attacker sees.

• Limit exposure when device is compromised.

• Limits the amount of long term information that needs to be

stored on device.

CR 7

Distributing LL Keys

Non-interactively

• LL keys are stored in the device (such as TPMs)
– Or computed from stored secrets

(such as PUFs)

Interactively

• Could also be sent to the device by a trusted
authority (TA)

TA

CR

authority (TA)
– Trusted Authority

• Verifies identities of users

• Issues certificates

• Has a secure link with each user

• Distribution schemes from TA
– Using public key constructs

• User’s store private keys

• User certificates stored by TA contains the public keys

– Using symmetric key constructs
• TA has a secure channel to distribute secret keys to pairs of users

8

A

B

C D

E

F

Key Predistribution

CR 9slide borrowed from Hossein Hajiabolhassan(SBU)

Defining Feature:

Key Pre-distribution

affects all users

Key Predistribution Scheme

CR 10Slide borrowed from Hossein Hajiabolhassan(SBU)

Solution using symmetric key cryptography

(Naïve Scheme)

A B

F

D

E

C

KAB KAB

TA

CR

• TA generates a key and sends it securely to A and B.

• Storage in each user : N – 1

• Maximum secure links : N

• Network Overheads : transfers

11

FE

can we reduce the overheads?







2

N

Trading Security for reduced Overheads

• The naïve scheme protects against N-2 colluding users

A B

F
D

E

C

KAB KAB

CR

• The naïve scheme protects against N-2 colluding users

• What if we reduce this assumption to say k (< N-2) colluding

users?

– Security reduces

– But overheads may also reduce.

12

Blom’s Key PreDistribution Scheme

• Unconditionally secure key distribution in a

k-party colluding network (k < N – 2)

– At-most k parties can collude
(k parties acting together will not be able to determine the key for anyone else)

Aim : each pair of users require a unique key

CR

(k parties acting together will not be able to determine the key for anyone else)

• Maximum secure links N (no change here)

• Network Transfers : N(k+1)

(reduced from)

• Storage : Each user stores (k+1) elements

(reduced from N-1)

13










2

N

• Public parameters:
(1) prime p (> N) and (2) for each user a distinct value ru Ɛ Zp

Blom’s Key Distribution Scheme (for k=1)

• Trusted Authority

1. Choose secret a, b, c Ɛ Zp and forms the polynomial

f(x,y) = (a + b(x + y) + cxy) mod p

= (a + by) + (b + cy)x mod p

2. For each user u, the TA computes f(x, r) and transmits two

CR 14

• Usage : if ‘U’ and ‘V’ want to communicate

• U : has f(x, rU), computes KVU = f(rV, rU)

• V : has f(x, rV), computes KUV = f(rU, rV) = f(rV, rU) = KVU

2. For each user u, the TA computes f(x, ru) and transmits two

elements (k+1) to user U over a secure channel

aU= (a + brU) mod p and bU = (b + crU)x mod p

• Public parameters:
(1) prime p (> N) and (2) for each user a distinct value ru Ɛ Zp

Blom’s Key Distribution Scheme (for k=1) Why it works?

• Trusted Authority

1. Choose secret a, b, c Ɛ Zp and forms the polynomial

f(x,y) = (a + b(x + y) + cxy) mod p

= (a + by) + (b + cy)x mod p

2. For each user u, the TTP computes f(x, r) and transmits two

f(x,y) is symmetric.

Interchanging x and y values

will not alter results.

a,b, c are the only secrets. If an

attacker can compute these,

then the system is broken!

CR 15

• Usage : if ‘U’ and ‘V’ want to communicate

• U : has f(x, rU), computes KVU = f(rV, rU)

• V : has f(x, rV), computes KUV = f(rU, rV) = f(rV, rU) = KVU

2. For each user u, the TTP computes f(x, ru) and transmits two

elements (k+1) to user U over a secure channel

aU= (a + brU) mod p and bU = (b + crU)x mod p

This is an Affine

transformation. There are

three unknowns (a, b, c).

Therefore requires 3 equations

to solve. However, each user

has only aU and bU.

Needs more information!!

Blom’s scheme is unconditionally secure

• What does this means? Any other user W (not U or

V) cannot get any information about KUV

apriori probability of KUV = aposteriori probability of KUV

Given all of Blom’s public parameters and f(x, r)=1/|Z |

CR 16

Given all of Blom’s public parameters and f(x, rW)

What ‘W’ has?

aW = a + brW

bW = b + crW

Two equations; three unknowns (a, b, c)

This is an underdetermined system therefore

number of solutions possible is |Zp|.

Aposteriori probability of KUV = 1/|Zp|

=1/|Zp|

2-party Colluding Attackers

• If two attackers (say W and X) collude, then

4 equations present and 3 unknowns

This will result in a unique solution for a,b,c … system

broken!!!
2-party coalition

CR 17

What ‘W’ and ‘X’ have?

aW = a + brW

bW = b + crW

aX = a + brX

bX = b + crX

Thus, the scheme is not secure against 2 (or more) party colluding attacks

W

2-party coalition

attackersX

Generalizing Blom’s Scheme

• More complex polynomial so that secret

coefficients cannot be retrieved

• For a k-party colluding network

CR 18

jiallforaaandkjiZa

pyxayxf

ijjipji

k

i

k

j

ji

ji

,),0(where

mod),(

,,,

0 0

,

=≤≤∈

=∑∑
= =

Limits of Blom’s Scheme

Pairwise keys cannot be changed

i.e. U and V cannot change their keys

To change keys, all users need to be reconfigured

CR

Thus, it is difficult to implement this scheme for session keys

19

Key Distribution Patterns

CR 20

(This is a secret operation).

Key Distribution Patterns
(Trivial Example)

Suppose

– There are n users (n = 4)

– and v keys (v = 6)

3211 ,, kkkkeyshasU

1U 2U 3U
4U

1k

2k

k









1001

0101

0011

CR 21

ke
ys

users

6534

6423

5412

3211

,,

,,

,,

,,

kkkkeyshasU

kkkkeyshasU

kkkkeyshasU

kkkkeyshasU
3k

6k

5k

4k

















=

1100

1010

0110

1001
M

Group Keys

• Consider that a subset of users P (|P| ≥ 2) want to communicate together

• Define,

},,{)(3211 kkkUkeys =
)()()(kUkeysUkeysPkeys =∩=

CR

• Each user in P can compute keys(P) independently because M is public

22

},,{)(5412

3211

kkkUkeys = 121)()()(kUkeysUkeysPkeys =∩=

In this case, kP = keys(P) = k1 can be used as the key

KkkdefinethenPkeysIf
Pkeysi

iP mod,2|)(|
)(

∑
∈

=>

Security of Group Keys

• Consider another subset of users F, who want to collaborate

to determine the group key kP

Pj kcomputecanwhoFUsomeexiststherethenPFIf ∈≠∩ ,φ1

CR 23

P

FU

j

kcomputetocooperatecanwhoFinsubsetaexiststherethen

UkeysPkeysIf

PFAssume

j














⊆

=∩

∈
U)()(

φ2

If such a subset does not exist, then the system in unconditionally secure

Another Example

• M: n=7, v=7

• Storage in each user is 4
1U 2U

1k
3U

4U

CR 24

No other user has both k1 and k7.

U3 has k1 but not k7

U4 has k7 but not k1

Therefore the scheme is secure against

single party attackers

7k

The scheme is not secure against

two (or more) party attackers

If U3 and U4 collaborate, they can compute

k1 + k7

Key Distribution Pattern

(Trivial Example)

• If there are n users,

• For each pair to communicate securely, the matrix size is

• Each user must store n – 1 keys

• Security Guarantee:

n
n
×







2

CR

• Security Guarantee:

The system is secure against a coalition of size n – 2.

i.e. to get the key between Alice and Bob, everyone

remaining must cooperate

25

Maximum security guarantees, but huge of storage requirements.

Can we trade security for lower storage?

Fiat-Naor Key Distribution Patterns

• Consider n users : U = {U1, U2, ….,Un}.

• How do we construct a key pattern matrix M which can resist attacks from
w collating users (1 ≤ w ≤n)

(w is called the security parameter)

1. Compute : ∑ 







=

w

i

n
v

CR 26

1. Compute : ∑
=







=
i i

v
0

2. Compute the matrix M (v x n)

• The columns are the users (U1, U2, ….., Un)

• Each row corresponds incidence vector of a subset of

users with cardinality at-least n-w

Example

• Number of users is 6

• Security Parameter w = 1

• v = 7

Subsets of U having at-least n-w elements

CR 27

},,,,{

},,,,{

},,,,{

},,,,{

},,,,{

},,,,,{

65432

65431

65421

65321

54321

654321

UUUUU

UUUUU

UUUUU

UUUUU

UUUUU

UUUUUU

Example

• Number of users is 6

• Security Parameter w = 1

• v = 7

CR 28

Note that no other user (individually) has access to all keys k1, k2, k3, and k6

Thus the system is secure against non-cooperating attackers

Session Keys

Are between pairs of users (e.g. Alice and Bob)

Distribution of Session Keys

• Makes use of the TA

– TA tells Alice and Bob the secret key

CR

– TA tells Alice and Bob the secret key

29

TA

kab kab

Setting : (shared keys with TA)

a bKA KB

TA KA, KB, KC, KD

CR

• TA shares a secret key with each user.

• This key is used to securely communicate between TA and a

user.

30

dc KD
KC

Needham Schroeder Scheme

Alice Bob

Need to talk to Bob

securely

Pick a random number rA

TA

Randomly Choose

session key K

1

rA, ID(B)

Compute

tB = EKB(K|ID(A))

y = E (r |K|ID(B) |t) 2

KA KBKA, KB

Such random number often called Nonce

(numbers used once)

CR 31

B B

y1 = EKA(rA|K|ID(B) |tB)

ID(B) is a unique identifier for Bob

ID(A) is a unique identifier for Alice

tB, is called Bob’s ticket

Note tB is embedded in y1

2

y1

Needham Schroeder Scheme

TA Alice Bob

Need to talk to B securely

Pick a random number rA

Randomly Choose

session key K

1

Compute

tB = EKB(K|ID(A))

y = E (r |K|ID(B) |t)
2

K, KA KBKA, KB

CR 32

B B

y1 = EKA(rA|K|ID(B) |tB)
2

Decrypt y1 using KA

Check if ID(B), rA matches

If they match,

then send tB to Bob

y1

Alice now has the secret session

key K

Compute

tB = EKB(K|ID(A))

y = E (r |K|ID(B) |t)

Needham Schroeder Scheme

TA

Randomly Choose

session key K

1

2
y1

Need to talk to B securely

Pick a random number rA

Alice Bob
K, KA K, KBKA, KB

CR

B B

y1 = EKA(rA|K|ID(B) |tB)

33

y1

Decrypt tB using KB

Pick a random number rB

Compute y2 = EK(rB)

tB

3

Bob too now has the secret K,

He also has ID(A), so he knows

it’s a session key with Alice

K is used for encrypting rB

Decrypt y1 using KA

Check if ID(B), rA matches

If they match,

then send tB to Bob

Needham Schroeder Scheme

TA Alice Bob

2
y1

Compute

tB = EKB(K|ID(A))

y = E (r |K|ID(B) |t)

Randomly Choose

session key K

Need to talk to B securely

Pick a random number rA

K, KA K, KBKA, KB

1

CR 34

y1

tB

3

Decrypt y2 using K to get rB

Compute y3=EK(rB-1)

y2

5

y3

B B

y1 = EKA(rA|K|ID(B) |tB)

Decrypt tB using KB

Pick a random number rB

Compute y2 = EK(rB)

Decrypt y1 using KA

Check if ID(B), rA matches

If they match,

then send tB to Bob

4

Needham Schroeder Scheme

TA

2
y1

Compute

tB = EKB(K|ID(A))

y = E (r |K|ID(B) |t)

Randomly Choose

session key K

Need to talk to B securely

Pick a random number rA

Alice Bob

1

KA KBKA, KB

CR 35

y1

Decrypt y2 using K to get rB

Compute y3=EK(rB-1)

y2

y3

Decrypt y3 and verify the

correctness of rB-1. If

incorrect, reject

This step tell Bob that K is

indeed correct

B B

y1 = EKA(rA|K|ID(B) |tB)
Decrypt y1 using KA

Check if ID(B), ru matches

If they match,

then send tB to Bob

tB

Decrypt tB using KB

Pick a random number rB

Compute y2 = EK(rB)

3

5

4

Denning-Sacco Attack on the NS Scheme

Attacker Bob
Input is a previously used

session key K’, which was

used between A and B

This is a known session key attack / replay attack,

where the attacker has a previously used

session key between U and V, and can convinces V to use this old session key

CR 36

Has a previously used

tB’ = EKB(K’|ID(U)) and K’

t‘B

y2

y3

Decrypt y2 using K to get rB

Compute y3=EK(rB-1)

Decrypt y3 and verify the

correctness of rB-1. If

incorrect, reject

Decrypt tB using KB

Pick a random number rB

Compute y2 = EK(rB)

3

5

4

Denning-Sacco Attack on the NS Scheme

Attacker Bob
Input is a previously used

session key K’, which was

used between A and B

What is the flaw in the NS scheme?
Bob has no way to know if tB

has been used previously.

CR 37

Has a previously used

tB’ = EKB(K’|ID(U)) and K’

t‘B

y2

y3

Decrypt y2 using K to get rB

Compute y3=EK(rB-1)

Decrypt y3 and verify the

correctness of rB-1. If

incorrect, reject

Decrypt tB using KB

Pick a random number rB

Compute y2 = EK(rB)

3

5

4

Fixed in Kerberos by

adding a timestamp

Kerberos (setup a session key K between Alice and Bob)

TA Alice Bob
Need to talk to Bob

securely.

Generate RARandomly Choose

secret key K;

Set Lifetime L

1

K is the session key chosen by the TTP

It is valid only for the until time L.

The timestamps are added to prevent replay attacks
compute
m1 = EKA(RA, K, L, ID(B))

m = E (K, L, ID(A)) ID(B) is a unique identifier for Bob

KA KBKA, KB

CR 38

1 A A

m2 = EKB(K, L, ID(A)) ID(B) is a unique identifier for Bob

ID(A) is a unique identifier for Alice

These are use to authenticate the parties

Kerberos (setup a session key K between Alice and Bob)

TA
Need to talk to Bob

securely.

Generate RARandomly Choose

secret key K;

Set Lifetime L

1

2
compute

m1 = EKA(RA,K, L, ID(B))

m = E (K, L, ID(A))

Alice Bob
K, KA KBKA, KB

CR 39

(RA, K, L, ID(B)) � DKA(m1)

m3 = EK(T, ID(A))

Only Alice can decrypt message m1

Alice will verify

* the current time to check for validity

* if RA matches

* If ID(B) is correct

T is the current timestamp

1 A A

m2 = EKB(K, L, ID(A))

Kerberos (setup a session key K between Alice and Bob)

TA
Need to talk to Bob

securely.

Generate RARandomly Choose

secret key K;

set Lifetime L

1

2

Only Bob can decrypt message m2

After decrypting m2, he can decrypt m3 using K

compute

m1 = EKA(RA,K, L, ID(B))

m = E (K, L, ID(A))

Alice Bob
K, KA K, KBKA, KB

CR 40

(RA, K, L, ID(B))� DKA(m1)

m3 = EK(T, ID(A))

(K, L, ID(A))� DKB(m2)

(T, ID(A)) �DK (m3)

3

check if ID matches,

and T <= L

T = T + 1; m4 = eK(T+1)

Check lifetime;

check ID(A) is the same in both decryptions

1 A A

m2 = EKB(K, L, ID(A))

Kerberos (setup a session key K between Alice and Bob)

TA
Need to talk to Bob

securely.

Generate RARandomly Choose

secret key K;

Lifetime L

Alice Bob

2
compute

m1 = EKA(RA,K, L, ID(B))

m = E (K, L, ID(A))

1

K, KA K, KBKA, KB

CR 41

check if ID matches,

and T <= L

T = T + 1; m4 = eK(T+1)

(T’)= DK(m4)

Verify timestamp is

indeed T’= T + 1

4

This ensures that Bob

has successfully received

the correct key K

Alice and Bob can now

communicate using

session key K

(RA, K, L, ID(B))= DKA(m1)

m3 = EK(T, ID(A))

(K, L, ID(A))= DKB(m2)

(T, ID(A)) = DK (m3)

3

1 A A

m2 = EKB(K, L, ID(A))

Limitations of Kerberos

• Requires all users and the TA to be synchronized due to the

timestamp requirements.

– Not easily done

• Does not completely prevent replay attacks

– Replay attacks can still occur within the lifetime (L) of a key

CR

– Replay attacks can still occur within the lifetime (L) of a key

• Is key confirmation (step 4) actually needed?

– Nobody else can decrypted the encrypted message anyways.

42

Bellare-Rogaway Scheme

TA Alice Bob
Need to talk to Bob

securely.

Generate RA

1

KA KBKA, KB

Generate RB

2

CR 43

Notice that Alice contacts Bob first.

This is crucial to eliminate replay attacks

Bellare-Rogaway Scheme

TA Alice Bob
Need to talk to Bob

securely.

Generate RA

1

KA KBKA, KB

Generate RB

2

yA y
3

yB=(EKB
(K), MACB(ID(A), ID(B), RB, EKB

(K))

yA=(EKA
(K), MACA(ID(A), ID(B), RA, EKA

(K))

CR 44

yA yB

Uses MAC, prevents double encryption.

No timestamps present

Bellare-Rogaway Scheme

TA Alice Bob
Need to talk to Bob

securely.

Generate RA

1

KA KBKA, KB

Generate RB

2

yA y
3

yB=(EKB
(K), MACB(ID(A), ID(B), RB, EKB

(K))

yA=(EKA
(K), MACA(ID(A), ID(B), RA, EKA

(K))

CR 45

yA yB

Decrypt K;
Compute MAC. Verify ID(B),

ID(A), RA, K

Decrypt K;
Compute MAC. Verify ID(B),

ID(A), RB, K

Replay attacks prevented. As Alice and Bob expect a key K corresponding to RA and RB

No key confirmation phase. Alice / Bob does not know if the other person has received the

key.

Security of Bellare-Rogaway

Session Key Distribution Scheme

• The Bellare-Rogaway scheme is secure under the assumptions

– A, B, and TA are honest

– MACs generated are secure

– Secret keys are not known to anyone other than the required parties

– Random numbers are generated perfectly

CR

– Random numbers are generated perfectly

46

BR Scheme Analysis : When Attacker is Passive

TA Alice Bob
Need to talk to Bob

securely.

Generate RA

1

KA KBKA, KB

Attacker Knows rA, rB, ID(A), ID(B), yA, yB

Attacker cannot get the K because she doesn’t have KA or KB that decrypts

YA, YB respectively

CR 47

Generate RB

2

yA yB

Decrypt K;
Compute MAC. Verify ID(B),

ID(A), RA, K

Decrypt K;
Compute MAC. Verify ID(B),

ID(A), RB, K

3

yB=(EKB
(K), MACB(ID(A), ID(B), RB, EKB

(K))

yA=(EKA
(K), MACA(ID(A), ID(B), RA, EKA

(K))

BR Scheme Analysis : When Attacker is Active and Impersonates Bob

TA Alice Attacker(M)
Need to talk to Bob

securely.

Generate RA

1

KA KBKA, KB

Attacker Sends ID(M) instead of ID(B) to TA

Alice finds that the MAC she computes does not match the MAC sent by the TA

CR 48

Generate RB

2

yA yB

Decrypt K;
Compute MAC (ID(A), ID(B), RA, EKA(K))

Finds that MACs do not match

Aborts the communication

Decrypt K;
Compute MAC. Verify ID(B),

ID(A), RB, K

3

yB=(EKM
(K), MACM(ID(A), ID(M), RB, EKM

(K))

yA=(EKA
(K), MACA(ID(A), ID(M), RA, EKA

(K))

BR Scheme Analysis : When Attacker is Active and Impersonates Bob

TA Alice Attacker(M)
Need to talk to Bob

securely.

Generate RA

1

KA KBKA, KB

Attacker Sends ID(B) as usual

Attacker cannot decrypt yB because she does not have the decryption key KB

Messages sent from Alice encrypted with K, cannot be decrypted by the attacker

CR 49

Generate RB

2

yA yB

Decrypt K;
Compute MAC (ID(A), ID(B), RA, EKB(K))

MACs match

Cannot decrypt yB

Because Attacker has no

decryption key KB

3

yB=(EKB
(K), MACB(ID(A), ID(B), RB, EKM

(K))

yA=(EKA
(K), MACA(ID(A), ID(B), RA, EKA

(K))

BR Scheme Analysis : When Attacker is Active and Impersonates Alice

TA Attacker Bob
Need to talk to Bob

securely.

Generate RA

1

KA KBKA, KB

Attacker sends ID(A), rA to Bob

Attacker cannot decrypt yA because she does not have the decryption key KA

Messages sent from Bob encrypted with K, cannot be decrypted by the attacker

CR 50

Generate RB

2

yA yB

Cannot decrypt yA

Because Attacker has no

decryption key KA

Decrypt K;
Compute MAC. Verify ID(B),

ID(A), RB, K

3

yB=(EKB
(K), MACB(ID(A), ID(B), RB, EKB

(K))

yA=(EKA
(K), MACA(ID(A), ID(B), RA, EKA

(K))

Key Agreement Schemes

How does Alice and Bob agree upon a secret key without active

use of a TA?

CR

• Users use a public key algorithm

– The secret key agreed on is a function of
• Alices’ public and private keys

• Bob’s public and private keys

51

Recall…

Diffie Hellman Key Exchange

Alice and Bob agree upon a prime p and a generator g.

This is public information

choose a secret a

compute A = ga mod p

choose a secret b

compute B = gb mod p

CR
52

B A

Compute K = Ba mod p Compute K = Ab mod p

Ab mod p = (ga)b mod p = (gb)a mod p = Ba mod p

Diffie Hellman

(Man in the Middle Attack)

choose a secret a

compute A = ga mod p

choose a secret b

compute B = gb mod p

For some m

compute M = gm mod p

CR 53

compute M = gm mod p

A

MM

B

Compute

Ka = Ma mod p

Compute

Kb = Mb mod p
Compute

Ka = Am mod p

Kb = Bm mod p

Diffie Hellman

(Man in the Middle Attack)

choose a secret a

compute A = ga mod p

choose a secret b

compute B = gb mod p

For some m

compute M = gm mod p

What’s missing is Authentication!

Alice and Bob need to authenticate

each other before exchanging

messages

CR 54

compute M = gm mod p

A

MM

B

Compute

Ka = Ma mod p

Compute

Kb = Mb mod p
Compute

Ka = Am mod p

Kb = Bm mod p

