Mathematical Background

Chester Rebeiro

February 15, 2017

Modular Arithmetic

Division Theorem

- Let n be a positive integer
- Let a be any integer
- a / n leaves a quotient q and remainder r such that

$$
a=q n+r \quad 0 \leq r<n ; q=\lfloor a / n\rfloor
$$

- a is congruent to b modulo m, if a / m leaves a remainder b
- we write this as $a \equiv b \bmod m$

Division Theorem

- Let n be a positive integer
- Let a be any integer
- a / n leaves a quotient q and remainder r such that

$$
a=q n+r \quad 0 \leq r<n ; q=\lfloor a / n\rfloor
$$

- a is congruent to b modulo m, if a / m leaves a remainder b
- we write this as $a \equiv b \bmod m$
- Examples
- $13 \equiv 3 \bmod 5$

Division Theorem

- Let n be a positive integer
- Let a be any integer
- a / n leaves a quotient q and remainder r such that

$$
a=q n+r \quad 0 \leq r<n ; q=\lfloor a / n\rfloor
$$

- a is congruent to b modulo m, if a / m leaves a remainder b
- we write this as $a \equiv b \bmod m$
- Examples
- $13 \equiv 3 \bmod 5$
- $7 \equiv 1 \bmod 3$

Division Theorem

- Let n be a positive integer
- Let a be any integer
- a / n leaves a quotient q and remainder r such that

$$
a=q n+r \quad 0 \leq r<n ; q=\lfloor a / n\rfloor
$$

- a is congruent to b modulo m, if a / m leaves a remainder b
- we write this as $a \equiv b \bmod m$
- Examples
- $13 \equiv 3 \bmod 5$
- $7 \equiv 1 \bmod 3$
- $23 \equiv-1 \bmod 12$

Division Theorem

- Let n be a positive integer
- Let a be any integer
- a / n leaves a quotient q and remainder r such that

$$
a=q n+r \quad 0 \leq r<n ; q=\lfloor a / n\rfloor
$$

- a is congruent to b modulo m, if a / m leaves a remainder b
- we write this as $a \equiv b \bmod m$
- Examples
- $13 \equiv 3 \bmod 5$
- $7 \equiv 1 \bmod 3$
- $23 \equiv-1 \bmod 12$
- $20 \equiv 0 \bmod 10$

Division Theorem

- Let n be a positive integer
- Let a be any integer
- a / n leaves a quotient q and remainder r such that

$$
a=q n+r \quad 0 \leq r<n ; q=\lfloor a / n\rfloor
$$

- a is congruent to b modulo m, if a / m leaves a remainder b
- we write this as $a \equiv b \bmod m$
- Examples
- $13 \equiv 3 \bmod 5$
- $7 \equiv 1 \bmod 3$
- $23 \equiv-1 \bmod 12$
- $20 \equiv 0 \bmod 10$
- If $b=0$, we say m divides a. This is denoted $m \mid a$

Equivalent Statements

All these statments are equivalent

- $a \equiv b \bmod m$
- For some constant $k, a=b+k m$
- $m \mid(a-b)$
- When divided by m, a and b leave the same remainder

Equivalence Relations

Congruence $\bmod m$ is an equivalence relation on intergers

- Reflexivity: any integer is congruent to itself $\bmod m$
- Symmetry: $a \equiv b(\bmod m)$ implies that $b \equiv a(\bmod m)$.
- Transitivity : $a \equiv b(\bmod m)$ and $b \equiv a(\bmod m)$ implies that $a \equiv c(\bmod m)$

Residue Class

It consists of all integers that leave the same remainder when divided by m

- The residue classes $\bmod 4$ are

$$
\begin{aligned}
{[0]_{4} } & =\{\ldots,-16,-12,-8,-4,0,4,8,12,16, \ldots\} \\
{[1]_{4} } & =\{\ldots,-15,-11,-7,-3,1,5,9,13,17, \ldots\} \\
{[2]_{4} } & =\{\ldots,-14,-10,-6,-2,2,6,10,14,18, \ldots\} \\
{[3]_{4} } & =\{\ldots,-13,-9,-5,-1,3,7,11,15,19, \ldots\}
\end{aligned}
$$

- The complete residue class mod 4 has one 'representative' from each set $[0]_{4},[1]_{4},[2]_{4},[3]_{4}$. This is denoted $Z / m Z$.
- Complete residue Classes for $\bmod 4:\{0,1,2,3\}$

Theorem

If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then

- $-a \equiv-b(\bmod m)$
- $a+c \equiv b+d(\bmod m)$
- $a c \equiv b d(\bmod m)$

Problems to Solve

- Prove that $2^{32}+1$ is divisible by 641
- Prove that if the sum of all digits in a number is divisible by 9 , then the number itself is divisible by 9 .
- GCD of two integers is the largest positive integer that divides both numbers without a remainder
- Examples
- $\operatorname{gcd}(8,12)=4$
- $\operatorname{gcd}(24,18)=6$
- $\operatorname{gcd}(5,8)=1$
- If $\operatorname{gcd}(a, b)=1$ and $a \geq 1$ and $b \geq 2$, then a and b are said to be relatively prime

Euler-Toient Function

- $\phi(n)$
- Counts the number of integers less than or equal to n that are relatively prime to n
- $\phi(1)=1$
- example : $\phi(9)=6$

Euler-Toient Function

- $\phi(n)$
- Counts the number of integers less than or equal to n that are relatively prime to n
- $\phi(1)=1$
- example : $\phi(9)=6 \ldots$ verify !!
- example2 : $\phi(26)=$?

Euler-Toient Function

- $\phi(n)$
- Counts the number of integers less than or equal to n that are relatively prime to n
- $\phi(1)=1$
- example : $\phi(9)=6 \ldots$ verify !!
- example2 : $\phi(26)=$? . . 12
- If p is prime, then $\phi(p)=p-1$

Properties of ϕ

- If m and n are relatively prime then $\phi(m \times n)=\phi(m) \times \phi(n)$
- $\phi(77)=\phi(7 \times 11)=6 \times 10=60$
- $\phi(1896)=\phi(3 \times 8 \times 79)=2 \times 4 \times 78=624$

More Properties

If p is a prime number then,

- $\phi\left(p^{a}\right)=p^{a}-p^{a-1}$
- Evident for $a=1$
- For $a>1$, out of the elements $1,2, \cdots p^{\text {a }}$, the elements p, $2 p, 3 p \cdots p^{a-2} p$ are not coprime to p^{a}

More Properties

If p is a prime number then,

- $\phi\left(p^{a}\right)=p^{a}-p^{a-1}$
- Evident for $a=1$
- For $a>1$, out of the elements $1,2, \cdots p^{\text {a }}$, the elements p, $2 p, 3 p \cdots p^{a-2} p$ are not coprime to p^{a}
- $\phi\left(p^{a}\right)=p^{a}-p^{a-1}=p^{a}(1-1 / p)$

contd..

- Suppose $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$, where $p_{1}, p_{2}, \ldots, p_{k}$ are primes then
- $\phi(n)=\phi\left(p_{1}^{a_{1}}\right) \phi\left(p_{2}^{a_{2}}\right) \cdots \phi\left(p_{k}^{a_{k}}\right)$
$=n\left(1-1 / p_{1}\right)\left(1-1 / p_{2}\right) \cdots\left(1-1 / p_{k}\right)$

contd..

- Suppose $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$, where $p_{1}, p_{2}, \ldots, p_{k}$ are primes then
- $\phi(n)=\phi\left(p_{1}^{a_{1}}\right) \phi\left(p_{2}^{a_{2}}\right) \cdots \phi\left(p_{k}^{a_{k}}\right)$
$=n\left(1-1 / p_{1}\right)\left(1-1 / p_{2}\right) \cdots\left(1-1 / p_{k}\right)$
- eg. Find $\phi(60)$?

Prove that...

For $n>2$, prove that $\phi(n)$ is even.

Fermat's Little Theorem

- If $\operatorname{gcd}(a, m)=1$, then $a^{\phi(m)} \equiv 1 \bmod m$
- Find the remainder when 72^{1001} is divided by 31
- $72 \equiv 10 \bmod 31$, therefore $72^{1001} \equiv 10^{1001} \bmod 31$
- Now from Fermat's Little Theorem, $10^{30} \equiv 1 \bmod 31$
- Raising both sides to the power of $33,10^{990} \equiv 1 \bmod 31$
- Thus,

$$
\begin{aligned}
& 10^{1001}=10^{990} 10^{8} 10^{2} 10 \\
& =1\left(10^{2}\right)^{4} 10^{2} 10 \\
& =1(7)^{4} 7 * 10 \\
& =49^{2} .7 \cdot 10 \\
& =(-13)^{2} \cdot 7 \cdot 10 \\
& =(14) \cdot 7 \cdot 10 \\
& =98 \cdot 10=5 \cdot 10=19 \mathrm{mod} 31
\end{aligned}
$$

by Fermat's little theorem using $7 \equiv 10^{2} \bmod 31$
using $7^{4}=\left(7^{2}\right)^{2}$
using $49 \equiv-13 \bmod 31$
using $-13=14 \bmod 31$

Finite Fields

Évariste Galois
(October 25, 1811 - May 31, 1832)

Groups, Abelian Groups, and Monoids

- Consider a set S and a binary function $*$ that maps $S \times S \rightarrow S$ ie. for every $(a, b) \in S \times S, *((a, b)) \in S$. This is denoted as $a * b$.

Groups, Abelian Groups, and Monoids

- Consider a set S and a binary function $*$ that maps $S \times S \rightarrow S$ ie. for every $(a, b) \in S \times S, *((a, b)) \in S$. This is denoted as $a * b$.
- Now consider a subset H of S

Groups, Abelian Groups, and Monoids

- Consider a set S and a binary function $*$ that maps $S \times S \rightarrow S$ ie. for every $(a, b) \in S \times S, *((a, b)) \in S$. This is denoted as $a * b$.
- Now consider a subset H of S
- $\langle H, *\rangle$ forms a group if the following properties are satisfied:

Groups, Abelian Groups, and Monoids

- Consider a set S and a binary function $*$ that maps $S \times S \rightarrow S$ ie. for every $(a, b) \in S \times S, *((a, b)) \in S$. This is denoted as $a * b$.
- Now consider a subset H of S
- $\langle H, *\rangle$ forms a group if the following properties are satisfied:
- Closure: If $a, b \in H$ then $a * b \in H$

Groups, Abelian Groups, and Monoids

- Consider a set S and a binary function $*$ that maps $S \times S \rightarrow S$ ie. for every $(a, b) \in S \times S, *((a, b)) \in S$. This is denoted as $a * b$.
- Now consider a subset H of S
- $\langle H, *\rangle$ forms a group if the following properties are satisfied:
- Closure : If $a, b \in H$ then $a * b \in H$
- Associativity : If $a, b, c \in H$, then $(a * b) * c=a *(b * c)$

Groups, Abelian Groups, and Monoids

- Consider a set S and a binary function $*$ that maps $S \times S \rightarrow S$ ie. for every $(a, b) \in S \times S, *((a, b)) \in S$. This is denoted as $a * b$.
- Now consider a subset H of S
- $\langle H, *\rangle$ forms a group if the following properties are satisfied:
- Closure : If $a, b \in H$ then $a * b \in H$
- Associativity : If $a, b, c \in H$, then $(a * b) * c=a *(b * c)$
- Identity : There exists a unique element e such that for all $a \in H, a * e=e * a=a$

Groups, Abelian Groups, and Monoids

- Consider a set S and a binary function $*$ that maps $S \times S \rightarrow S$ ie. for every $(a, b) \in S \times S, *((a, b)) \in S$. This is denoted as $a * b$.
- Now consider a subset H of S
- $\langle H, *\rangle$ forms a group if the following properties are satisfied:
- Closure : If $a, b \in H$ then $a * b \in H$
- Associativity : If $a, b, c \in H$, then $(a * b) * c=a *(b * c)$
- Identity : There exists a unique element e such that for all $a \in H, a * e=e * a=a$
- Inverse : For each $a \in H$, there exists and $a^{-1} \in H$ such that $a * a^{-1}=e$

Groups, Abelian Groups, and Monoids

- Consider a set S and a binary function $*$ that maps $S \times S \rightarrow S$ ie. for every $(a, b) \in S \times S, *((a, b)) \in S$. This is denoted as $a * b$.
- Now consider a subset H of S
- $\langle H, *\rangle$ forms a group if the following properties are satisfied:
- Closure : If $a, b \in H$ then $a * b \in H$
- Associativity : If $a, b, c \in H$, then $(a * b) * c=a *(b * c)$
- Identity : There exists a unique element e such that for all $a \in H, a * e=e * a=a$
- Inverse : For each $a \in H$, there exists and $a^{-1} \in H$ such that $a * a^{-1}=e$
- $\langle H, *\rangle$ is an abelian group if for all $a, b \in H, a * b=b * a$

Examples

- $\langle\mathbb{C},+\rangle$ forms a group $\mathbb{C}=\{u+i v: u, v \in \mathbb{R}\}$
- Closure and Associativity is satisfied
- identity element 0
- inverse $-u+i(-v)$

Examples

- $\langle\mathbb{C},+\rangle$ forms a group $\mathbb{C}=\{u+i v: u, v \in \mathbb{R}\}$
- Closure and Associativity is satisfied
- identity element 0
- inverse $-u+i(-v)$
- $\left\langle\mathbb{C}^{*}, \cdot\right\rangle$ forms a group
- Closure and Associativity is satisfied
- Identity Element: 1
- Inverse of $u+i v \in C^{*}$ is

$$
\frac{u}{u^{2}+v^{2}}+i \frac{-v}{u^{2}+v^{2}}
$$

Examples

- $\langle\mathbb{C},+\rangle$ forms a group $\mathbb{C}=\{u+i v: u, v \in \mathbb{R}\}$
- Closure and Associativity is satisfied
- identity element 0
- inverse $-u+i(-v)$
- $\left\langle\mathbb{C}^{*}, \cdot\right\rangle$ forms a group
- Closure and Associativity is satisfied
- Identity Element: 1
- Inverse of $u+i v \in C^{*}$ is

$$
\frac{u}{u^{2}+v^{2}}+i \frac{-v}{u^{2}+v^{2}}
$$

- Note that $\langle\mathbb{C}, \cdot\rangle$ does not form a group, as 0 has no inverse.

Rings

A ring is defined by $\langle R,+, \cdot\rangle$ with the following properties

- $\langle R,+\rangle$ is an abelian group

Rings

A ring is defined by $\langle R,+, \cdot\rangle$ with the following properties

- $\langle R,+\rangle$ is an abelian group
- $\langle R, \cdot\rangle$ satisfies closure and associativity

Rings

A ring is defined by $\langle R,+, \cdot\rangle$ with the following properties

- $\langle R,+\rangle$ is an abelian group
- $\langle R, \cdot\rangle$ satisfies closure and associativity
- Multiplication distributes over addition
- $a \cdot(b+c)=a \cdot b+a \cdot c$

Fields

Definition

A field is a commutative ring with unity, in which every non-zero element has an inverse. The field is denoted by $\langle F,+, \cdot\rangle$

Fields

Definition

A field is a commutative ring with unity, in which every non-zero element has an inverse. The field is denoted by $\langle F,+, \cdot\rangle$
...in other words
A field is a set with two commutative operations (+ and \cdot), in which one can add, subtract, and multiply any two elements, divide any element by another non-zero element, and multiplication distributes over addition.

Fields

Definition

A field is a commutative ring with unity, in which every non-zero element has an inverse. The field is denoted by $\langle F,+, \cdot\rangle$
...in other words
A field is a set with two commutative operations (+ and \cdot), in which one can add, subtract, and multiply any two elements, divide any element by another non-zero element, and multiplication distributes over addition.

Example
Set of real numbers, with operations addition and multiplication.
Finite Field
A field in which the set is finite

Finite Fields

- A finite field is a field with finite number of elements.
- The number of elements in the set is called the order of the field.
- A field with order m exists iff m is a prime power.
- i.e. $m=p^{n}$, for some n and prime p
- p is the characteristic of the finite field

Prime and Galois Field

Every finite field is of size p^{n} for some prime p and $n \in \mathbb{N}$ and is denoted as $\mathbb{F}_{q}=\mathbb{F}_{p^{n}}$
Prime Field $\left(\mathbb{F}_{p}\right)$
The finite field obtained when $n=1$, ie. $\mathbb{F}_{q}=\mathbb{F}_{p}$
Galois Field $\left(\mathbb{F}_{p^{n}}\right)$
The finite field obtained when $n>1$.
This is also known as extension field

Prime Field \mathbb{F}_{7}

- Identities: Additive Identity is 0 , Multiplicative Identity is 1
- Addition Table for mod 7

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

- Multiplication Table for $\bmod 7$

\times	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

(b) Multiplication modulo 7

Another Prime Field in \mathbb{F}_{2}

- Identity for addition is 0 and multiplication is 1
- Addition is by \oplus
- Multiplicaiton is by .

Binary Fields

Binary fields are extension fields of the form \mathbb{F}_{2}^{m}. These fields have efficient representations in computers and are extensively used in cryptography.

How to construct an Extension Field

Constructing Galios Field $\mathbb{F}_{2^{4}}$ from \mathbb{F}_{2}.

1. Pick an irreducible polynomial $(f(x))$ of degree n with coefficients in $\mathbb{F}_{2}=\{0,1\}$

$$
x^{4}+x+1
$$

How to construct an Extension Field

Constructing Galios Field $\mathbb{F}_{2^{4}}$ from \mathbb{F}_{2}.

1. Pick an irreducible polynomial $(f(x))$ of degree n with coefficients in $\mathbb{F}_{2}=\{0,1\}$

$$
x^{4}+x+1
$$

2. Let θ be a root of $f(x)$.

$$
f(\theta): \theta^{4}+\theta+1=0
$$

How to construct an Extension Field

Constructing Galios Field $\mathbb{F}_{2^{4}}$ from \mathbb{F}_{2}.

1. Pick an irreducible polynomial $(f(x))$ of degree n with coefficients in $\mathbb{F}_{2}=\{0,1\}$

$$
x^{4}+x+1
$$

2. Let θ be a root of $f(x)$.

$$
f(\theta): \theta^{4}+\theta+1=0
$$

3. Given this equation, all other powers can be derived:

$$
\begin{aligned}
& \theta^{4}=\theta+1 \\
& \theta^{5}=\theta^{4} \cdot \theta \\
& \theta^{6}=\theta^{5} \cdot \theta^{2}
\end{aligned}
$$

closure is satisfied

How to construct an Extension Field

Constructing Galios Field $\mathbb{F}_{2^{4}}$ from \mathbb{F}_{2}.

1. Pick an irreducible polynomial $(f(x))$ of degree n with coefficients in $\mathbb{F}_{2}=\{0,1\}$

$$
x^{4}+x+1
$$

2. Let θ be a root of $f(x)$.

$$
f(\theta): \theta^{4}+\theta+1=0
$$

3. Given this equation, all other powers can be derived:

$$
\begin{aligned}
& \theta^{4}=\theta+1 \\
& \theta^{5}=\theta^{4} \cdot \theta \\
& \theta^{6}=\theta^{5} \cdot \theta^{2}
\end{aligned}
$$

closure is satisfied
4. Therefore, it is sufficient that $\mathbb{F}_{2^{4}}$ contain all polynomials of degree $<n$.

Example : Consider the binary finite field $G F\left(2^{4}\right)$. there are 16 polynomials in the field.
The irreducible polynomial is $\theta^{4}+\theta+1$.

0	θ^{2}	θ^{3}	$\theta^{3}+\theta^{2}$
1	$\theta^{2}+1$	$\theta^{3}+1$	$\theta^{3}+\theta^{2}+1$
θ	$\theta^{2}+\theta$	$\theta^{3}+\theta$	$\theta^{3}+\theta^{2}+\theta$
$\theta+1$	$\theta^{2}+\theta+1$	$\theta^{3}+\theta+1$	$\theta^{3}+\theta^{2}+\theta+1$

Representation on a computer $\theta^{3}+\theta+1 \rightarrow(1011)_{2}$: Efficient !!!

Binary Field Arithmetic

Addition

Addition done by simple XOR operation.

$$
\left(x^{3}+x^{2}+1\right)+\left(x^{2}+x+1\right)=x^{3}+x
$$

Binary Field Arithmetic

Addition

Addition done by simple XOR operation.

$$
\left(x^{3}+x^{2}+1\right)+\left(x^{2}+x+1\right)=x^{3}+x
$$

Subtraction

Subtraction same as addition.

$$
\left(\theta^{3}+\theta^{2}+1\right)-\left(\theta^{2}+x+1\right)=\theta^{3}+\theta
$$

Binary Field Multiplication

		x^{3}	$+x^{2}$	+1	
		x^{2}	$+x$	+1	
		x^{3}	$+x^{2}$		+1
	x^{4}	$+x^{3}$		$+x$	
x^{5}	$+x^{4}$		$+x^{2}$		
x^{5}				$+x$	+1

Binary Field Multiplication

- $x^{5}+x+1$ is not in $G F\left(2^{4}\right)$

Binary Field Multiplication

		x^{3}	$+x^{2}$	+1	
		x^{2}	$+x$	+1	
		x^{3}	$+x^{2}$		+1
	x^{4}	$+x^{3}$		$+x$	
x^{5}	$+x^{4}$		$+x^{2}$		
x^{5}				$+x$	+1

- $x^{5}+x+1$ is not in $G F\left(2^{4}\right)$
- Modular reduction $x^{5}+x+1 \bmod \left(x^{4}+x+1\right)=x^{2}+1$

Binary Field Multiplication

- $x^{5}+x+1$ is not in $G F\left(2^{4}\right)$
- Modular reduction $x^{5}+x+1 \bmod \left(x^{4}+x+1\right)=x^{2}+1$

Efficient Multiplications
Karatsuba Multiplier, Mastrovito multiplier, Sunar-Koc multiplier, Massey-Omura multiplier, Montgomery multiplier

Squaring

Squaring

Squaring

Inversion

- Itoh-Tsujii Algorithm: Uses Fermat's Little Theorem
- $\alpha^{2^{m}-1}=1$
- Thus, $\alpha \alpha^{2^{m}-2}=1$
- The inverse of α is $\alpha^{2^{m}-2}$

Inversion

Determine the inverse of $a \in G F\left(2^{19}\right)$ using Itoh-Tsujii Algorithm.

1. $a^{-1}=a^{2^{19}-2}$
2. Thus $a^{-1}=a^{\left.2^{19}-1\right)^{2}}$
3. Take $\beta_{k}(a)=a^{2^{k}-1} \ldots$ therefore $a^{-1}=\beta_{k}(a)^{2}$
4. Consider the addition chain for $18=(1,2,4,8,9,18)$
5. Consider the recursion $\beta_{m+n}(a)=\beta_{m}(a)^{2^{n}} \beta_{n}(a)$
6. Start from $\beta_{1}(a)=a$ and iterate the addition chain

Finite Fields and their Irreducible Polynomials

- Consider the fields in $G F\left(2^{4}\right)$. The elements in the field are

0	x^{2}	x^{3}	$x^{3}+x^{2}$
1	$x^{2}+1$	$x^{3}+1$	$x^{3}+x^{2}+1$
x	$x^{2}+x$	$x^{3}+x$	$x^{3}+x^{2}+x$
$x+1$	$x^{2}+x+1$	$x^{3}+x+1$	$x^{3}+x^{2}+x+1$

- Three irreducible polynomials of degree 4 that can generate the fields are:
- $f_{1}(x)=x^{4}+x+1$ results in field $F 1$
- $f_{2}(x)=x^{4}+x^{3}+1$ results in field $F 2$
- $f_{3}(x)=x^{4}+x^{3}+x^{2}+x+1$ results in field $F 3$
- Note,
- Each irreducible polynomial generates a different field with the same 16 elements
- However operations within each field is different
- $x \cdot x^{4}$ is $x+1$ in $F 1$
- $x \cdot x^{4}$ is $x^{3}+1$ in F2
- $x \cdot x^{4}$ is $x^{3}+x^{2}+x+1$ in F3

Group Isomorphisms

- Given two groups (G, \circ) and (H, \bullet)
- A group isomorphism is a bijective mapping $f: G \rightarrow H$ such that for all $u, v \in G$,

$$
f(u \circ v)=f(u) \bullet f(v)
$$

- If such a function f exists, G and H are said to be isomorphic.
- All finite fields of same order (number of elements) are isomorphic.

Isomorphic Field Mappings in $G F\left(2^{4}\right)$

- Consider isomorphic fields
- $F_{1}: G F\left(2^{4}\right) /\left(x^{4}+x+1\right)$ call this IR f_{1}
- $F_{2}: G F\left(2^{4}\right) /\left(x^{4}+x^{3}+1\right)$ call this $\operatorname{IR} f_{2}$
- To construct a mapping $T: F_{1} \rightarrow F_{2}$ find $c \in F_{2}$ such that $f_{1}(c) \equiv 0 \bmod \left(f_{2}\right)$.
- This creates a mapping from $x \rightarrow c$
- For example : take $c=x^{2}+x \in F_{2}$.
- $f_{1}(c)=\left(\left(x^{2}+x\right)^{4}+\left(x^{2}+x\right)+1\right) \bmod f_{2} \equiv 0$
- This creates a map $T: x \rightarrow c$
- Example:
- Take $e_{1}=x^{2}+x$ and $e_{2}=x^{3}+x$
- Verify $T\left(e_{1} \times e_{2} \bmod f_{1}\right)=T\left(e_{1}\right) \times T\left(e_{2}\right) \bmod f_{2}$

Composite Fields

1. Let $k=n \times m$, then $G F\left(2^{n}\right)^{m}$ is a composite field of $G F\left(2^{k}\right)$
2. For example,

- $G F\left(2^{4}\right)^{2}$ is a composite fields of $G F\left(2^{8}\right)$
- Elements in $G F\left(2^{4}\right)^{2}$ have the form $A_{1} x+A_{0}$ where a_{1} and $a_{0} \in G F\left(2^{4}\right)$

3. The composite field $G F\left(2^{n}\right)^{m}$ is isomorphic to $G F\left(2^{k}\right)$

- Therefore we can define a map $f: G F\left(2^{k}\right) \rightarrow G F\left(2^{n}\right)^{m}$
- and peform operations in the finite field
- Typically operations such as inverse are easier done in composite fields

