
Operating Systems
Introduction

Chester Rebeiro

IIT Madras

Webpage : http://www.cse.iitm.ac.in/~chester/courses/16o_os/index.html
Moodle : Institute moodle
Google group : https://groups.google.com/forum/#!forum/osiitm_2016

The Layers in Systems

2

VLSI

Computer
Organization

Transistors

Operating Systems

Applications

3

OS usage

•  Hardware Abstraction
 turns hardware into something that

 applications can use
•  Resource Management

 manage system’s resources

4

A Simple Program

What is the output of the following program?

How is the string displayed on the screen?

5

Displaying on the Screen

•  Can be complex and tedious
•  Hardware dependent

Without an OS, all programs need to take care of every nitty gritty detail

Processor Memory

Processor

Graphics Card

Monitor

“Hello World” “Hello World” +
coordinates, color,
depth, etc

6

Operating Systems Provide
Abstraction

•  Easy to program apps
–  No more nitty gritty details for programmers

•  Reusable functionality
–  Apps can reuse the OS functionality

•  Portable
–  OS interfaces are consistent. The app does not change when hardware

changes

App

Operating System

system call
(write to STDOUT)

Device
driver

7

OS as a Resource Manager

•  Multiple apps but limited hardware

Operating Systems

A
pp

s

A few processors

8

OS as Resource Manager

•  OS must manage CPU, memory, network,
disk etc…

•  Resource management
– allows multiple apps to share resources
– protects apps from each other
–  Improves performance by efficient utilization

of resources

pre9

Sharing the CPU

App1 App2 App3 App4

App1 App2 App3 App4

time

Who uses the CPU?

Sharing the RAM

10

App1 App2 App3 App4

Operating Systems Types
•  Application Specific

–  Embedded OS
•  eg. Contiki OS, for extremely memory constraint environments

–  Mobile OS
•  Android, iOS, Ubuntu Touch, Windows Touch

–  RTOS
•  QNX, VxWorks, RTLinux

–  Secure Environments
•  SeLinux, SeL4

–  For Servers
•  Redhat, Ubuntu, Windows Server

–  Desktops
•  Mac OS, Windows, Ubuntu

11

JOS and xv6

•  Designed for pedagogical reasons
•  Unix like (version 6)

–  Looks very similar to modern Linux operating systems

•  Theory classes : xv6
–  Well documented, easy to understand

•  Lab : JOS
–  Build your own operating system from the skeleton

12

L2_1 : Choose the OS?
•  A company WishWash decides to make a washing

machine with the following features.
–  It is a fully automatic washing machine, and has features such

(1) smart wash (runs a learning algorithm to determine how long
 clothes must be washed),

 (2) Wifi connect
 (to see if your clothes are done via a mobile app),
 (3) emergency stop button
 (4) Lowest cost in the market
–  What is the type of OS you would suggest WishWash use?

•  What are the devices the OS should abstract?
•  Are there any special features for the OS?
•  Would security features be needed in the OS. If Yes, then why?
•  What applications would run on the OS. Comment on the

priorities of the applications.
 13

Course Structure

•  Syllabus
–  Overview of Operating Systems
–  PC Hardware
–  Memory Management
–  Interrupts
–  Context Switching
–  Processes
–  Scheduling
–  Cooperating Processes
–  Synchronization
–  File Systems
–  Security

14

Textbooks / References
•  ''xv6: a simple, Unix-like teaching operating system",

Revision 8, by Russ Cox, Frans Kaashoek, Robert
Morris

•  ''Operating System Concepts'', 8th edition, by
Adraham Silberschatz, Pert B. Galvin, and Greg Gagne,
Wiley-India edition

•  The xv6 source code booklet (revision 8)

15

http://www.cse.iitm.ac.in/~chester/courses/16o_os/index.html

Logistics

•  Theory Classes (CS24, Slot F)
–  Wednesdays : 11:00 - 11:50 AM
–  Thursdays : 9:00 - 9:50 AM
–  Fridays : 8:00 - 8:50 AM

•  Lab (System’s Lab, Slot P)
–  Monday’s : 2:00 – 5:00 PMs

16

Exams

•  Quiz 1 : 20%
•  Quiz 2 : 20%
•  Final : 40%
•  Assignments / class assignments / group

participation : 20%

 Google Group

17

https://groups.google.com/forum/#!managemembers/osiitm_2016

18

Operating Systems

(How did it all start?)

19

OS Evolution

•  Evolution driven by Hardware improvements
+ User needs
– eg. low power requirements, Increased /

reduced security, lower latency
– Evolution by

•  New/better abstractions
•  New/better resource management

THE EVOLUTION OF OPERATING SYSTEMS by PER BRINCH HANSEN

20

Gen 1: Vacuum Tubes
•  Hardware

–  Vacuum tubes and IO with punchcards
–  Expensive and slow

•  User Apps
–  Generally straightforward numeric computations done in machine

language

ENIAC

IBM Punch card

21

Gen 1 : OS

•  OS: Unheard of
•  Human feeds program and prints output

George Ryckman, on IBM’s first computer

The cost of wastage was $146,000 per month (in 1954 US Dollars)

22

Gen 2 : Mainframes
•  Hardware

–  transistors
•  User Programs

–  Assembly or Fortran entered using punch cards
•  OS : Batch systems

–  Possibly greatest invention in OS
•  Computers may be able to schedule their own workload by

means of software

23

Batch Systems

•  Operator collects jobs (through punch cards) and feeds it into a magnetic
tape drive

•  Special Program reads a job from input tape drive and on completion writes
result to output tape drive

•  The next program is then read and executed
•  Printing was done offline

24

Batch Systems (pros.)

•  Pros
– Better utilization of machine

25

Batch Systems (cons.)

•  In Batch Systems execute time includes reading
from input and writing to output.

•  I/O considerably slower than execution
–  Magnetic tapes were best read sequentially

•  Therefore programmer must wait for long time

CPU
Input

Magnetic
Tape

Output
Magnetic

Tape

26

Gen 3 : Mini computers

•  Hardware
–  SSI/MSI/LSI ICs
–  Random access memories
–  Interrupts (used to simulate concurrent execution)

•  User Programs
–  High level languages (Fotran, COBOL, C, …)

•  Operating Systems
–  Multiprogramming
–  Spooling
–  Time sharing

27

Multiprogramming

•  Multiple jobs in memory
–  When one waits for I/O the next job executes

•  OS controls
–  scheduling of jobs
–  Protection between jobs

OS
Job 1
Job 2
Job 3

Multiprogramming with
3 jobs in memory

Memory
partitions

28

Spooling
•  Uses buffers to continuously stream inputs and outputs

to the system

•  Pros : better utilization / throughput
•  Cons : still not interactive

Disk

CPU

Input
Magnetic

Tape

Output
Magnetic

Tape

Timesharing

29

Terminal 1 Terminal 2 Terminal 3 Terminal 4

time

Who uses the CPU?

Computers much faster than terminals

Uses interrupts

Timesharing

30

John McCarthy, 1962

Multics, 1964
•  Multiplexed Information and Computing Service
•  Ambitious project started in MIT
•  Introduced several new OS features but was not

successful by itself
–  Segmented and Virtual memory
–  High level language support
–  Multi language support
–  Security
–  File system hierarchies
–  Relational databases
–  Shared memory multiprocessor

31

32

Gen 4 : Personal Computers

•  Hardware
–  VLSI ICs

•  User Programs
–  High level languages

•  Operating Systems
–  Multi tasking
–  More complex memory management and scheduling
–  Synchronization
–  Examples : Windows, Linux, etc

Unix
•  Dennis Ritchie and Ken Thomson tried to find an

alternative for Multics
•  Appeared at the right time

33

Slater, 1987

Unix adopted

•  Spread and soon became widely adopted

•  Wide spread adoption arguably a
hindrance to research?

34

Aho, 1984

35

Smartphones & Tablets
•  Hardware

–  VLSI ICs, low power requirements & high compute
power

•  Operating Systems
–  User friendly
–  Power awareness
–  Always connected
–  Offload to cloud
–  Better protection, Virtual machines
–  Examples : Android, iOS

OS Buzzwords

•  Buzzwords that have been around

•  Contemporary buzzwords

36

Security/
Reliability

Isolation

Utilization

Fairness

energy / size

virtualization

application
specific OS

multi core
support

37

OS Research Trends

Features
(better device support,
Multi core support)

Security, Reliability
(fewer errors,

Formally verified,
fault tolerant)

Small
(footprint,
Minimum energy
requirements)

