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OS usage 

•  Hardware Abstraction 
  turns hardware into something that 

 applications can use 
•  Resource Management 

  manage system’s resources 
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A Simple Program 

What is the output of the following program? 

 
How is the string displayed on the screen? 
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Displaying on the Screen 

•  Can be complex and tedious 
•  Hardware dependent 

Without an OS, all programs need to take care of every nitty gritty detail 

Processor Memory 

Processor 

Graphics Card 

Monitor 

“Hello World” “Hello World” +  
coordinates, color, 
depth, etc 
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Operating Systems Provide 
Abstraction 

•  Easy to program apps  
–  No more nitty gritty details for programmers 

•  Reusable functionality 
–  Apps can reuse the OS functionality 

•  Portable 
–  OS interfaces are consistent. The app does not change when hardware 

changes 

App 

Operating System 

system call 
(write to STDOUT) 

Device 
driver 
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OS as a Resource Manager 

•  Multiple apps but limited hardware 

Operating Systems 

A
pp

s 

A few processors 
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OS as Resource Manager 

•  OS must manage CPU, memory, network, 
disk etc… 

•  Resource management 
– allows multiple apps to share resources 
– protects apps from each other 
–  Improves performance by efficient utilization 

of resources  
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Sharing the CPU 

App1 App2 App3 App4 

App1 App2 App3 App4 

time 

Who uses the CPU? 



Sharing the RAM 
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App1 App2 App3 App4 



Operating Systems Types 
•  Application Specific 

–  Embedded OS 
•  eg. Contiki OS, for extremely memory constraint environments 

–  Mobile OS 
•  Android, iOS, Ubuntu Touch, Windows Touch 

–  RTOS 
•  QNX, VxWorks, RTLinux 

–  Secure Environments 
•  SeLinux, SeL4 

–  For Servers 
•  Redhat, Ubuntu, Windows Server 

–  Desktops 
•  Mac OS, Windows, Ubuntu 
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JOS and xv6 

•  Designed for pedagogical reasons 
•  Unix like (version 6)  

–  Looks very similar to modern Linux operating systems 

•  Theory classes : xv6 
–  Well documented, easy to understand 

•  Lab : JOS 
–  Build your own operating system from the skeleton 
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L2_1 : Choose the OS? 
•  A company WishWash decides to make a washing 

machine with the following features. 
–  It is a fully automatic washing machine, and has features such  

(1) smart wash (runs a learning algorithm to determine how long    
 clothes must be washed),  

    (2) Wifi connect  
        (to see if your clothes are done via a mobile app),  
    (3) emergency stop button   
    (4) Lowest cost in the market 
–  What is the type of OS you would suggest WishWash use? 

•  What are the devices the OS should abstract? 
•  Are there any special features for the OS? 
•  Would security features be needed in the OS. If Yes, then why? 
•  What applications would run on the OS. Comment on the 

priorities of the applications. 
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Course Structure 

•  Syllabus 
–  Overview of Operating Systems 
–  PC Hardware 
–  Memory Management 
–  Interrupts 
–  Context Switching 
–  Processes 
–  Scheduling 
–  Cooperating Processes 
–  Synchronization 
–  File Systems 
–  Security 
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Textbooks / References 
•  ''xv6: a simple, Unix-like teaching operating system", 

Revision 8, by Russ Cox, Frans Kaashoek, Robert 
Morris 

•  ''Operating System Concepts'', 8th edition, by 
Adraham Silberschatz, Pert B. Galvin, and Greg Gagne, 
Wiley-India edition 

•  The xv6 source code booklet (revision 8)  
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http://www.cse.iitm.ac.in/~chester/courses/16o_os/index.html 



Logistics 

•  Theory Classes (CS24, Slot F) 
–  Wednesdays : 11:00 - 11:50 AM 
–  Thursdays : 9:00 - 9:50 AM 
–  Fridays : 8:00 - 8:50 AM 
 

•  Lab (System’s Lab, Slot P) 
–  Monday’s : 2:00 – 5:00 PMs 
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Exams 

•  Quiz 1 : 20% 
•  Quiz 2 : 20% 
•  Final : 40% 
•  Assignments / class assignments / group 

participation : 20% 
     
     Google Group 
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https://groups.google.com/forum/#!managemembers/osiitm_2016 
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Operating Systems 
 

(How did it all start?) 
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OS Evolution 

•  Evolution driven by Hardware improvements 
+ User needs 
– eg. low power requirements, Increased / 

reduced security, lower latency 
– Evolution by 

•  New/better abstractions 
•  New/better resource management 

THE EVOLUTION OF OPERATING SYSTEMS by PER BRINCH HANSEN 
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Gen 1: Vacuum Tubes 
•  Hardware 

–  Vacuum tubes and IO with punchcards 
–  Expensive and slow 

•  User Apps 
–  Generally straightforward numeric computations done in machine 

language 

ENIAC 

IBM Punch card 
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Gen 1 : OS 

•  OS: Unheard of 
•  Human feeds program and prints  output 

George Ryckman, on IBM’s first computer 

The cost of wastage was $146,000 per month (in 1954 US Dollars) 
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Gen 2 : Mainframes 
•  Hardware 

–  transistors 
•  User Programs 

–  Assembly or Fortran entered using punch cards 
•  OS : Batch systems 

–  Possibly greatest invention in OS 
•  Computers may be able to schedule their own workload by 

means of software 



23 

Batch Systems 

•  Operator collects jobs (through punch cards) and feeds it into a magnetic 
tape drive 

•  Special Program reads a job from input tape drive and on completion writes 
result to output tape drive 

•  The next program is then read and executed 
•  Printing was done offline 
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Batch Systems (pros.) 

•  Pros 
– Better utilization of machine 
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Batch Systems (cons.) 

•  In Batch Systems execute time includes reading 
from input and writing to output. 

•  I/O considerably slower than execution 
–  Magnetic tapes were best read sequentially 

•  Therefore programmer must wait for long time 

CPU 
Input 

Magnetic 
Tape 

Output 
Magnetic 

Tape 
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Gen 3 : Mini computers  

•  Hardware 
–  SSI/MSI/LSI ICs 
–  Random access memories 
–  Interrupts  (used to simulate concurrent execution) 

•  User Programs 
–  High level languages (Fotran, COBOL, C, …) 

•  Operating Systems 
–  Multiprogramming 
–  Spooling 
–  Time sharing 
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Multiprogramming 

•  Multiple jobs in memory 
–  When one waits for I/O the next job executes 

•  OS controls  
–  scheduling of jobs 
–  Protection between jobs 

OS 
Job 1 
Job 2 
Job 3 

Multiprogramming with 
3 jobs in memory 

Memory 
partitions 
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Spooling 
•  Uses buffers to continuously stream inputs and outputs 

to the system 

•  Pros : better utilization / throughput 
•  Cons : still not interactive 

Disk 

 
CPU 

Input 
Magnetic 

Tape 

Output 
Magnetic 

Tape 



Timesharing 

29 

Terminal 1 Terminal 2 Terminal 3 Terminal 4 

time 

Who uses the CPU? 

Computers much faster than terminals 
 
Uses interrupts 



Timesharing 
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John McCarthy, 1962 



Multics, 1964 
•  Multiplexed Information and Computing Service 
•  Ambitious project started in MIT 
•  Introduced several new OS features but was not 

successful by itself 
–  Segmented and Virtual memory 
–  High level language support 
–  Multi language support 
–  Security 
–  File system hierarchies 
–  Relational databases 
–  Shared memory multiprocessor 
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Gen 4 : Personal Computers 

•  Hardware 
–  VLSI ICs 

•  User Programs 
–  High level languages 

•  Operating Systems 
–  Multi tasking 
–  More complex memory management and scheduling 
–  Synchronization 
–  Examples : Windows, Linux, etc 



Unix 
•  Dennis Ritchie and Ken Thomson tried to find an 

alternative for Multics 
•  Appeared at the right time 

33 

Slater, 1987 



Unix adopted 

•  Spread and soon became widely adopted 

•  Wide spread adoption arguably a 
hindrance to research? 
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Aho, 1984 
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Smartphones & Tablets 
•  Hardware 

–  VLSI ICs, low power requirements & high compute 
power 

•  Operating Systems 
–  User friendly 
–  Power awareness 
–  Always connected 
–  Offload to cloud 
–  Better protection, Virtual machines 
–  Examples : Android, iOS 



OS Buzzwords 

•  Buzzwords that have been around 

•  Contemporary buzzwords 
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Security/ 
Reliability 

Isolation 

Utilization 

Fairness 

energy / size 

virtualization 

application 
specific OS 

multi core 
support 
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OS Research Trends 

Features 
(better device support, 
Multi core support) 
 

Security, Reliability  
(fewer errors,  

Formally verified,  
fault tolerant) 

 

Small  
(footprint,  
Minimum energy  
requirements) 
 


